
CoRE Working Group T. Zotti
Internet-Draft Philips Research
Intended status: Informational P. van der Stok
Expires: March 31, 2016 Consultant
 E. Dijk
 Philips Research
 September 28, 2015

 Sleepy CoAP Nodes
 draft-zotti-core-sleepy-nodes-04

Abstract

 Control networks rely on application protocols like CoAP to enable
 RESTful communications in constrained environments. Many of these
 networks make use of "Sleepy Nodes": battery powered devices that
 switch off their (radio) interface during most of the time to
 conserve battery energy. As a result of this, Sleepy Nodes cannot be
 reached most of the time. This fact prevents using normal
 communication patterns as specified in the CoRE group, since the
 server-model is not applicable to these devices. This document
 discusses and specifies an architecture to support Sleepy Nodes such
 as battery-powered sensors in mesh networks with the goal of
 proposing a standardisation solution for Sleepy Node proxies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 31, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Zotti, et al. Expires March 31, 2016 [Page 1]

Internet-Draft Sleepy Nodes September 2015

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Problem statement . 3
 1.2. Assumptions . 4
 1.3. Requirements Language 4
 1.4. Acronyms . 5
 2. Use cases and architecture 5
 2.1. Node interactions and use cases 6
 2.2. Architecture . 9
 2.3. Example contents . 10
 3. Design motivation . 10
 4. Interactions involving Resource Directory 10
 5. Synchronize interface . 12
 5.1. Sleepy Node discovers proxy 12
 5.2. Registration at a Proxy 12
 5.3. De-registration at a Proxy 15
 5.4. Initialization of delegated resource 16
 5.5. Sleepy Node updates delegated resource at Proxy 17
 5.6. Sleepy Node READs resource updates from Proxy 18
 6. Delegate Interface . 18
 6.1. Discovering Endpoint discovers Sleepy Node at Proxy . . . 19
 6.2. Proxy REPORTs events to Endpoint 20
 6.3. A Node WRITEs to Sleepy Node via Proxy 21
 6.4. A Node READs information from Sleepy Node via Proxy . . . 22
 7. Direct Interface . 22
 7.1. Sleepy Node REPORTs events directly to Destination Node . 22
 7.2. A Sleepy Node READs information from a Server Node . . . 23
 8. Realization with PubSub broker 23
 9. IANA Considerations . 23
 10. Security Considerations 24
 11. Acknowledgements . 24
 12. Changelog . 24
 13. References . 25
 13.1. Normative References 25
 13.2. Informative References 25
 Authors’ Addresses . 26

Zotti, et al. Expires March 31, 2016 [Page 2]

Internet-Draft Sleepy Nodes September 2015

1. Introduction

 Control networks rely on application protocols such as CoAP to enable
 RESTful communications in constrained environments. Many of these
 networks feature "Sleepy Nodes": battery-powered nodes which switch
 on/off their communication interface to conserve battery energy. As
 a result of this, Sleepy Nodes cannot be reached most of the time.
 This fact prevents using normal communication patterns as specified
 by the CoRE group, since the server model is clearly not applicable
 to the most energy constrained devices.

 This document discusses and specifies an architecture to support
 Sleepy Nodes such as battery-powered sensors in wireless networks.
 The proposed solution makes use of a Proxy Node to which a Sleepy
 Node delegates part of its communication tasks while it is not
 accessible in the wireless network. Direct interactions between
 Sleepy Nodes and non-Sleepy Nodes are only possible, when the Sleepy
 Node initiates the communication.

 Earlier related documents treating the Sleepy Node subject are the
 CoRE mirror server [I-D.vial-core-mirror-server] and the Publish-
 Subscribe in the Constrained Application Protocol (CoAP)
 [I-D.koster-core-coap-pubsub]. Both documents describe the
 interfaces to the proxy accompanying the Sleepy Node. Both make use
 of the observe option discussed in [I-D.ietf-core-observe]. This
 document describes the roles of the nodes communicating with the
 Sleepy Node and/or its proxy. The draft describes the differences
 between the concepts supporting the Sleepy Node, and the concepts
 underlying the PubSub paradigm.

 The draft relies heavily on the concepts introduced by the Resource
 Directory [I-D.ietf-core-resource-directory], and describes how the
 Sleepy Node profits of the introduction of a Resource Directory into
 the network.

 The issues that need to be addressed to provide support for Sleepy
 Nodes in Control networks are summarized in Section 1.1. Section 2
 provides a set of use case descriptions that introduce communication
 patterns to be used in home and building control scenarios.
 Section 4, Section 5,Section 6, and Section 7 specify interfaces to
 support each of these scenarios. Many interface specifications and
 examples are taken over from [I-D.vial-core-mirror-server].

1.1. Problem statement

 During typical operation, a Sleepy Node has its radio disabled and
 the CPU may be in a sleeping state. If an external event occurs
 (e.g. person walks into the room activating a presence sensor), the

Zotti, et al. Expires March 31, 2016 [Page 3]

Internet-Draft Sleepy Nodes September 2015

 CPU and radio are powered back on and they send out a message to
 another node, or to a group of nodes. After sending this message,
 the radio and CPU are powered off again, and the Sleepy Node sleeps
 until the next external event or until a predefined time period has
 passed. The main problems when introducing Sleepy Nodes into a
 wireless network are as follows:

 Problem 1: How to contact a Sleepy Node that has its radio turned off
 most of the time for:

 - Writing configuration settings.

 - Reading out sensor data, settings or log data.

 - Configuring additional event destination nodes or node groups.

 Problem 2: How to discover a Sleepy Node and its services, while the
 node is asleep:

 - Direct node discovery (CoAP GET /.well-known/core as defined in
 [RFC7252]) does not find the node with high probability.

 - Mechanisms may be needed to provide, as the result of node
 discovery, the IP address of a Proxy instead of the IP address of
 the node directly.

 Problem 3: How a Sleepy Node can convey data to a node or groups of
 nodes, with good reliability and minimal energy consumption.

1.2. Assumptions

 The solution architecture specified here assumes that a Sleepy Node
 has enough energy to perform bidirectional communication during its
 normal operational state. This solution may be applicable also to
 extreme low-power devices such as solar powered sensors as long as
 they have enough energy to perform commissioning and the initial
 registration steps. These installation operations may require, in
 some cases, an additional source of power. Since a Sleepy Node is
 unreachable for relatively long periods of times, the data exchanges
 in the interaction model are always initiated by a Sleepy Node when
 its sleep period ends.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Zotti, et al. Expires March 31, 2016 [Page 4]

Internet-Draft Sleepy Nodes September 2015

 This document assumes readers are familiar with the terms and
 concepts discussed in [RFC7252],[RFC5988],
 [I-D.ietf-core-resource-directory],
 [I-D.ietf-core-interfaces],[I-D.ietf-core-observe] and
 [I-D.vial-core-mirror-server].

 In addition, this document makes use of the following additional
 terminology:

 Sleepy Node: a battery-powered node which does the on/off switching
 of its communication interface with the purpose of conserving battery
 energy

 Sleeping/Asleep: A Sleepy Node being in a "sleeping state" i.e. its
 network interface is switched off and a Sleepy Node is not able to
 send or receive messages.

 Awake/Not Sleeping: A Sleepy Node being in an "awake state" i.e. its
 network interface is switched on and the Sleepy Node is able to send
 or receive messages.

 Wake up reporting duration: the duration between a wake up from a
 Sleepy Node and the next wake up and report of the same Node.

 Proxy: any node that is configured to, or selected to, perform
 communication tasks on behalf of one or more Sleepy Nodes.

 Regular Node: any node in the network which is not a Proxy or a
 Sleepy Node.

1.4. Acronyms

 This Internet-Draft contains the following acronyms:

 DTLS: Datagram Transport Layer Security

 EP: Endpoint

 MC: Multicast

 RD: Resource Directory

2. Use cases and architecture

 To describe the application viewpoint of the solution, we introduce
 some example scenarios for the various interactions shown in
 Figure 1. The figure assigns the following roles taken up by a
 regular node:

Zotti, et al. Expires March 31, 2016 [Page 5]

Internet-Draft Sleepy Nodes September 2015

 o Reading Node: any regular node that reads information from the
 Sleepy Node.

 o Configuring Node: any regular node that writes information/
 configuration into Sleepy Node(s). Examples of configuration are
 new thresholds for a sensor or a new value for the wake-up cycle
 time.

 o Discovering Node: any regular node that performs discovery of the
 nodes in a network, including Sleepy Nodes.

 o Destination Node: any regular node or node in a group that
 receives a message that is generated by the Sleepy Node.

 o Server Node: an optional server that the Sleepy Node knows about,
 or is told about, which is used to fetch
 information/configuration/firmware updates/etc.

 o Discovery Server: an optional server that enables nodes to
 discover all the devices in the network, including Sleepy Nodes,
 and query their capabilities. For example, a Resource Directory
 server as defined in [I-D.ietf-core-resource-directory] or a DNS-
 SD server as defined in [RFC6763]. For the rest of this document
 the discovery server is a Resource Directory. Specifically, the
 functionalities of the Resource Directory related to the
 architecture presented in this Internet-Draft are described in
 more details in Section 4.

 o Delegated resource is the copy at the Proxy of a resource present
 in the Sleepy Node.

2.1. Node interactions and use cases

Zotti, et al. Expires March 31, 2016 [Page 6]

Internet-Draft Sleepy Nodes September 2015

 +------------+ +-------------+
 | Discovery | <-DISCOVERY-| Discovering |
 | server | | Node |
 | (Optional) | +-------------+
 +------------+ |
 |
 .--DISCOVERY--’ +---------+
 | | Reading |
 | .---| Node |
 v | +---------+
 +---------+ +-----------+ |
 | Sleepy |---REPORT(A)-->| |<--READ--’ +-------------+
 | Node |---READ------->| Proxy |<--WRITE---| Configuring |
 | |---WRITE------>| | | Node |
 +---------+ +-----------+ +-------------+
 | | | +-------------+
 | | ’---REPORT(B)->| Destination |
 | ’-----DIRECT REPORT---------------------->| Node |
 | +-------------+
 | +-----------+
 ’------------READ--------------------------->| Server |
 | Node |
 +-----------+

 Figure 1: Interaction model for Sleepy Nodes in IP-based networks

 The interactions visualized in Figure 1 are discussed and motivated
 with their use cases. The arrows in the figure indicate that the
 initiative for an interaction is taken by the source of the arrow.

 DISCOVERY Interaction: a Discovering Node discovers Sleepy Node(s)via
 Proxy or Discovery Server; for example:

 - A Discovering Node wants to discover given services related to a
 group of deployed sensors by sending a multicast to /.well-known/
 core. It gets responses for the sleeping sensors from the Proxy
 nodes.

 - During commissioning phase, a discovering node queries a
 Discovery Server to find all the proxies providing a given
 service.

 REPORT Interaction: On request of a Destination Node or because of
 configuration settings which have instructed the Node to do so, a
 Node sends a sequence of event notifications to destination Node(s),
 (A) directly or (B) via Proxy; for example:

Zotti, et al. Expires March 31, 2016 [Page 7]

Internet-Draft Sleepy Nodes September 2015

 - A battery-powered sensor sends a notification with "battery low"
 event directly to a designated Destination Node (REPORT(A)).

 - A battery-powered occupancy sensor detects an event "people
 present", switches on the radio and multicasts an "ON" command to
 a group of lights (REPORT(A)).

 - A battery-powered temperature sensor reports periodically the
 room temperature to a proxy Node (REPORT(A)). The proxy node
 reports to all associated HVAC destination nodes when the
 temperature change deviates from a predefined range (REPORT(B)).

 WRITE Interaction: A node sends a request to a proxy to set a value.

 o A Sleepy Node WRITES to the proxy; for example:

 - A battery-powered sensor wants to extend the registration
 lifetime of its delegated resource at the Proxy.

 o A configuring Node WRITEs information to a Proxy; for example:

 - A configuring Node changes the reporting frequency of a
 deployed sensor by contacting the Proxy node to which the
 sensor is registered.

 - Sensor firmware is upgraded. A configuring Node pushes
 firmware data blocks to the Proxy, which pushes the blocks to
 the Sleepy Node.

 - A configuring Node adds a new subscription to an operational
 sensor via the Proxy. From that moment on, the new Node
 receives also the sensor events and status updates from the
 sensor.

 READ Interaction: A node sends a read request to a node that returns
 a value.

 o Sleepy Node sends a read request to a server Node; for example:

 - A sensor (periodically) updates internal data tables by
 fetching it from a predetermined remote node.

 - A sensor (periodically) checks for new firmware with a remote
 node. If new firmware is found, the sensor switches to a non-
 sleepy operation mode, and fetches the data.

 o A Sleepy Node sends a read request to its proxy; for example:

Zotti, et al. Expires March 31, 2016 [Page 8]

Internet-Draft Sleepy Nodes September 2015

 - A sensor (periodically) checks with his Proxy availability of
 configuration updates or changes of its delegated resources
 (e.g. a sensor may detect in this way that a configuring Node
 has changed its name or modified its reporting frequency).

 o A reading Node sends a read request to a proxy; for example:

 - A Node (e.g. in the backend) requests the status of a
 deployed sensor, e.g. asking the sensor state and/or firmware
 version and/or battery status and/or its error log. The Proxy
 returns this information.

 - A Node requests a Proxy when a Sleepy sensor was ’last
 active’ (i.e. identified as being awake) in the network.

2.2. Architecture

 The architecture associated with the support of Sleepy Nodes is
 illustrated in Figure 2. Three High level interfaces are shown.

 direct synchronize delegate
 | | |
 +----+ | +--------+ | +-------+ | +----+
 | EP |---|---| sleepy |---|---| proxy |---|---| EP |
 +----+ | +--------+ | +-------+ | +----+
 | | |

 Figure 2: Architecture of Sleepy Node support

 o Direct interface: it allows the Sleepy Node to communicate
 directly to endpoints (i.e. for sending or reading information).
 The operations performed via this interface are always initiated
 by the Sleepy Node when its sleep period ends.

 o Delegate interface: via this interface the Proxy exposes the
 values of delegated resources to interested endpoints on behalf of
 the Sleepy Node. The same interface is used by endpoints which
 want to communicate with the Sleepy Node (e.g. for reading or
 writing information).

 o Synchronize interface: used by Sleepy Node and Proxy to
 synchronize values of delegated resources. Through this interface
 operations as discovery of the Proxy, registration, initialization
 and update of resources at the Proxy are performed, along with a
 de-registration operation to explicitly remove resources already
 registered to the Proxy.

Zotti, et al. Expires March 31, 2016 [Page 9]

Internet-Draft Sleepy Nodes September 2015

 The interfaces consist of a set of functions which together realize
 the interactions described in Section 2.1.

 Endpoints and the proxy communicate with a Resource Directory (RD) to
 discover resources of the Sleepy Node and delegated resources on the
 proxy (not shown in the Figure 2).

2.3. Example contents

 The examples presented in this specification make use of a smart
 temperature sensor the resources of which are defined below using
 Link Format [RFC6690]. Three resources are dedicated to the Device
 Description (manufacturer, model, name) and one contains the current
 temperature in degree Celsius.

 </dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </dev/n>;rt="ipso.dev.n";if="core.p",
 </sen/temp>;rt="ucum.Cel";if="core.s"

3. Design motivation

 The Sleepy Node stack features a CoAP interface, to make the Sleepy
 Node part of the IP-based network. Adding CoAP with a transport
 protocol increases the possibilities to configure the Sleepy Node
 within the network. The increased energy consumption coming from the
 overhead of the CoAP and IP headers can be acceptable in many cases.

 The proxy and Sleepy Node make use of the /.well-known/core resource
 to handle discovery during network initialization. Using the
 Resource Directory during operation of the Sleepy Node reduces its
 participation in the discovery traffic.

 A Sleepy Node delegates its resources to a proxy. The proxy
 functionality extends the functionality of the RD, because the proxy
 handles the value of the resource, and the RD does not. A proxy may
 support multiple Sleepy Nodes. A Sleepy Node may also delegate its
 resources to multiple proxies. A node can select a proxy that
 handles the resource of the Sleepy Node of choice.

 The complexity of the discovery and delegation interfaces is
 minimized by reusing the RD interface as much as possible.

4. Interactions involving Resource Directory

 It is assumed that the Proxy has a resource type rt="core.sp", where
 sp stands for sleepy proxy.

Zotti, et al. Expires March 31, 2016 [Page 10]

Internet-Draft Sleepy Nodes September 2015

 In order to become fully operational in a network and to communicate
 over the functional interfaces shown in Figure 2, a Sleepy Node and
 the Proxy need to perform operations via the Registration interface
 of the RD:

 - Discovery of Proxy via RD. The Sleepy Node MAY discover the
 Proxy by sending a request to the RD to return all EP with
 rt=core.sp.

 - Register existence of Proxy. When a RD is present and a Sleepy
 Node has registered itself to a Proxy (see Section 5.2), the Proxy
 MUST register the Sleepy Node at the RD and MUST keep this
 registration up-to-date.

 - Register delegated resources. When a RD is present, the Proxy
 MUST register the delegated resources at the RD and keep them up-
 to date.

 A Configuring Endpoint (often part of a so-called Commissioning Tool)
 registers the services that are reported directly by the Sleepy Node
 in the resource directory, by registering the resource type and the
 multicast address. The multicast address can be associated with a
 group as described in [I-D.ietf-core-resource-directory].

 A discovering Endpoint can discover one or more Sleepy Node resources
 via the Resource Directory.

 +-------------+ +-----------------+
 | Configuring | | Discovering |---.
 | Endpoint | | Endpoint | |
 +-------------+ +-----------------+ |
 | |
 | +------------+ |
 .-Register MC------>| |<--Discover resources -.
 | Resource |
 | Directory |<--Register Proxy -----.
 .-Proxy Discovery-->| |<--Register resources -.
 | +------------+ |
 | |
 +---------+ +-----------+ |
 | Sleepy | | Proxy |---------’
 | Node | | |
 +---------+ +-----------+

 Figure 3: Interactions involving Resource Directory

Zotti, et al. Expires March 31, 2016 [Page 11]

Internet-Draft Sleepy Nodes September 2015

5. Synchronize interface

 The functions of the synchronize interface implemented by the Proxy
 are described in this section.

5.1. Sleepy Node discovers proxy

 A Sleepy Node can discover the proxy in two ways:

 - via the CoAP interface [RFC7390] by sending a multicast message
 to discover an endpoint with rt=core.sp.

 - via RD as already described in Section 4.

 The following example shows a sleeping endpoint discovering a proxy
 using this interface, thus learning that the base Proxy resource,
 where the Sleepy Node resources are registered, is at /sp.

 Sleepy Proxy
 | |
 | ----- GET /.well-known/core?rt=core.sp ------> |
 | |
 | |
 | <---- 2.05 Content "</sp>; rt="core.sp" ------ |
 | |

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.sp
 Res: 2.05 Content
 </sp>;rt="core.sp"

 The use of /sp is recommended and not compulsory.

5.2. Registration at a Proxy

 Once a Sleepy Node has discovered a Proxy by means of one of the
 procedures described in Section 5.1, the registration step can be
 performed. To perform registration, a Sleepy Node sends to the Proxy
 Node a CoAP POST request containing a description of the resources to
 be delegated to the Proxy as the message payload in the CoRE Link
 Format [RFC6690]. The description of the resource includes the
 Sleepy Node identifier, its domain and the lifetime of the
 registration.

 Upon successful registration a Proxy creates a new delegated resource
 or updates an existing delegated resource and returns its location.
 The resources specified by the Sleepy Node during registration are
 created with path that has as prefix the base Proxy resource path
 (e.g. /sp). The registration interface MUST be implemented to be

Zotti, et al. Expires March 31, 2016 [Page 12]

Internet-Draft Sleepy Nodes September 2015

 idempotent, so that registering twice with the same endpoint
 parameter does not create multiple delegated resources. The
 delegated resource SHOULD implement the Interface Type CoRE Link List
 defined in [I-D.ietf-core-interfaces]. A GET request on this
 resource MUST return the list of delegated resources for the
 corresponding Sleepy Node.

 After successful registration, a Proxy SHOULD enable resource
 discovery for the new resources by updating its "/.well-known/core"
 resource. A Proxy MUST wait for the initial representation of a
 resource before it can be visible during resource discovery. The top
 level delegated resource MUST be published in "/.well-known/core" to
 enable the discovery of the resources via RD as described in
 Section 4. Resources of a delegated container SHOULD be discoverable
 either directly in "/.well-known/core" or indirectly through gradual
 reveal from the delegated resource. The Web Link of a delegated
 resource MUST contain an "ep" attribute with the value of the End-
 Point parameter received during registration.

 A Proxy MAY be configured to register the Sleepy Node’s resources in
 a RD. In this case, a Sleepy Node MUST NOT register the resources in
 a RD by itself since it is the responsibility of the Proxy to perform
 the registration in the RD on behalf of the Sleepy Node. Since each
 Sleepy Node may register resources with different lifetimes, a Proxy
 MUST register the resources of a given Sleepy Node in a dedicated
 path of the RD.

 In case a Sleepy Node delegates its own resources to more than one
 Proxy and each Proxy registers the Sleepy Node’s resource in a RD,
 the RD entries from the different Proxies for the same Sleepy Node
 risk to overlap.

 To avoid this problem, a Proxy MUST create its own resource path to
 register the resources of a Sleepy Node on the RD.

 The new path name is typically formed by concatenating the Proxy’s
 endpoint identifier with the path in use. This precaution ensures
 that the ep identifier of a Sleepy Node is unique for each resource
 path in the RD.

 Implementation note: It is not recommended to reuse the value of the
 ep parameter in the URI of the delegated resource. This parameter
 may be a relatively long identifier to guarantee global uniqueness
 (e.g. EUI64) and would generate inefficient URIs on the Proxy where
 only a local handler is necessary.

 The following example shows a Sleepy Node registering with a Proxy.

Zotti, et al. Expires March 31, 2016 [Page 13]

Internet-Draft Sleepy Nodes September 2015

 Sleepy Proxy
 | |
 | --- POST /sp?ep=0224e8fffe925dcf;rt=sensor "</dev..."---> |
 | |
 | |
 | <-- 2.01 Created Location: /sp/0 ----------------------- |
 | |

 Req: POST coap://sp.example.org/sp?ep=0224e8fffe925dcf;rt=sensor
 Etag: 0x3f
 Payload:
 </dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </dev/n>;rt="ipso.dev.n";if="core.p",
 </sen/temp>;rt="ucum.Cel";if="core.s"

 Res: 2.01 Created
 Location: /sp/0

 The delegated resource has been created with path /sp/0 on the Proxy
 in the example above. The path to the ep can be discovered as shown
 below:

 Req: GET coap://sp.example.org/.well-known/core
 Res: 2.05 Content
 </sp>;rt="core.sp",
 </sp/0>;ep="0224e8fffe925dcf";rt="sensor"

 A node can discover the delegated resources of the ep as shown below:

 Req: GET coap://sp.example.org/sp/0
 Res: 2.05 Content
 Payload:
 </sp/0/dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </sp/0/dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </sp/0/dev/n>;rt="ipso.dev.n";if="core.p",
 </sp/0/sen/temp>;rt="ucum.Cel";if="core.s"

 Once the resources are registered in the Proxy, the Proxy registers
 the delegated resources in the RD.

Zotti, et al. Expires March 31, 2016 [Page 14]

Internet-Draft Sleepy Nodes September 2015

 Proxy RD
 | |
 | --- POST /rd?ep=0224e8fffe925dcf "</sp/0..." --------> |
 | |
 | |
 | <-- 2.01 Created Location: /rd/6534 ------------------- |
 | |

 Req: POST coap://rd.example.org/rd?ep=0224e8fffe925dcf
 Etag: 0x6a
 Payload:
 </sp/0/dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </sp/0/dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </sp/0/dev/n>;rt="ipso.dev.n";if="core.p",
 </sp/0/sen/temp>;rt="ucum.Cel";if="core.s"

 Res: 2.01 Created
 Location: /rd/6534

5.3. De-registration at a Proxy

 Sleepy Node resources in the Proxy are kept active for the period
 indicated by the lifetime parameter. The Sleepy Node is responsible
 for refreshing the delegated resource within this period using either
 the registration or update function (see Section 5.5 of the
 Synchronize interface). Once a delegated resource has expired, the
 Proxy deletes all resources associated to that resource and updates
 its "/.well-known/core" resource. When the Proxy resources are also
 registered in a RD, the RD and delegated resources are supposed to
 have the same lifetime. Consequently, when the delegated resource
 expires, a Proxy MAY let the RD resource expire too instead of
 explicitly deleting it. When the delegated resource is deleted by
 means of explicit de-registration operation then also the RD resource
 MUST be explicitly removed.

 A Proxy could lose or delete the delegated resource associated to a
 Sleepy Node without sending an explicit notification (e.g. after
 reboot). A Sleepy Node SHOULD be able to detect this situation by
 processing the response code while using the Sleepy Node Operation or
 Update interface. Especially an error code "4.04 Not Found" SHOULD
 cause the Sleepy Node to register again. A Sleepy Node MAY also
 register with multiple proxies to alleviate the risk of interruption
 of service.

Zotti, et al. Expires March 31, 2016 [Page 15]

Internet-Draft Sleepy Nodes September 2015

5.4. Initialization of delegated resource

 Once registration has been successfully performed, the Sleepy Node
 must initialize the delegated resource. To send the initial contents
 (e.g. values, device name, manufacturer name) of the delegated
 resources to the Proxy, the Sleepy Node uses CoAP PUT repeatedly.

 The basic interface is specified as follows:

 Interaction: Sleepy -> Proxy

 Method: PUT

 URI Template: /{+location}{+resource}{?lt}

 URI Template Variables:

 location := This is the Location path returned by the Proxy as a
 result of a successful registration.

 resource := This is the relative path to a delegated resource
 managed by the registered Sleepy Node.

 lt := Lifetime (optional). The number of seconds by which the
 lifetime of the whole delegated resource is extended. Range of
 1-4294967295. If no lifetime is included, the current
 remaining lifetime stays unchanged.

 Request Content-Type: Defined at registration

 Response Content-Type: Defined at registration for GET method.
 application/link-format for PUT method if at least one of the
 mutable resources has been updated since the last PUT request.

 Etag: The Etag option MAY be included to allow clients to validate a
 resource on multiple Proxies.

 Success: 2.01 "Created", the request MUST include the initial
 representation of the delegated resource.

 Success: 2.04 "Changed", the request MUST include the new
 representation of the delegated resource.

 Success: 2.05 "Content", the response MUST include the current
 representation of the delegated resource.

 Failure: 4.00 "Bad Request". Malformed request.

Zotti, et al. Expires March 31, 2016 [Page 16]

Internet-Draft Sleepy Nodes September 2015

 Failure: 5.03 "Service Unavailable". Service could not perform the
 operation.

 The following example describes how a Sleepy Node can initialize the
 resource containing its manufacturer name just after registration.

 Sleepy Proxy
 | |
 | --- PUT /sp/0/dev/mfg "acme" ---------------> |
 | |
 | |
 | <-- 2.01 Created ----------------------------- |
 | |

 Req: PUT /sp/0/dev/mfg
 Payload: acme
 Res: 2.01 Created

 The example below shows how a Sleepy Node can indicate that it is
 supposed to send a temperature value at least every hour to keep its
 delegated resource active.

 Sleepy Proxy
 | |
 | --- PUT /sp/0/sen/temp?lt=3600 "22" --------> |
 | |
 | |
 | <-- 2.04 Changed ----------------------------- |
 | |

 Req: PUT /sp/0/sen/temp?lt=3600
 Payload: 22
 Res: 2.04 Changed

 The use of repeated CoAP PUT can be avoided by writing all relevant
 resources into the Proxy in one operation by means of the Batch
 interface described in [I-D.ietf-core-interfaces]. After successful
 initialization, a Proxy SHOULD enable resource discovery for the new
 delegated resources by updating its /.well-known/core resource.

5.5. Sleepy Node updates delegated resource at Proxy

 A Sleepy Node can update a delegated resource at the Proxy (REPORT A)
 using standard CoAP PUT requests on the delegated resource as shown
 in Section 5.4.

 When a Sleepy Node sends a PUT request to update its resources, the
 response MAY contain a link-format payload. The payload does not

Zotti, et al. Expires March 31, 2016 [Page 17]

Internet-Draft Sleepy Nodes September 2015

 directly relate to the target resource of the PUT request. Instead,
 it is a list of web links to resources that have been modified by
 clients since either the last PUT request or the last call to the
 modification check interface (see Section 5.6).

5.6. Sleepy Node READs resource updates from Proxy

 This function allows a Sleepy Node to retrieve a list of delegated
 resources that have been modified at the Proxy by other nodes. The
 interface format for GET is the same as the one specified for PUT in
 Section 5.4.

 A configuring Node (EP) can update a resource in the Proxy. The
 Sleepy Node receives an indication of the changed resources as
 specified in Section 5.5.

 The Sleepy Node can send GET requests to its Proxy on each delegated
 resource in order to receive their updated representation. The
 example in Figure 4 shows a configuration node which changes the name
 of a Sleepy Node at the Proxy. The Sleepy Node can then check and
 read the modification in its resource.

 Sleepy Proxy EP
 | | <---PUT /sp/0/dev/n----|
 | | Payload: Sensor1 |
 Wake-up |---2.04 Changed-------->|
 event | |
 | | |
 |--POST /sp/0/dev/.. -->| |
 |<----2.04 Changed------| |
 | Payload: <sp/0/dev/n> | |
 | | |
 |---GET /sp/0/dev/n---->| |
 |<-----2.05 Content-----| |
 | Payload: Sensor1 | |
 | | |

 Figure 4: Example: A Sleepy Node READs resource updates from his
 Proxy

6. Delegate Interface

 This section details the functions belonging to the delegate
 interface.

Zotti, et al. Expires March 31, 2016 [Page 18]

Internet-Draft Sleepy Nodes September 2015

6.1. Discovering Endpoint discovers Sleepy Node at Proxy

 Through this function, a Discovering Endpoint can discover one or
 more Sleepy Node(s) at a Proxy. In case a Resource Directory is not
 present, this is the only way to discover Sleepy Nodes. A CoAP
 client discovers resources owned by the Sleepy Node but hosted on the
 Proxy using typical mechanisms such as one or more GETs on the
 resource /.well-known/core [RFC6690].

 Resource discovery between an Endpoint and a proxy or an Endpoint and
 a RD needs special care to take into account the fact that resources
 from a Sleepy Node might appear duplicated. EPs SHOULD employ 2-step
 resource discovery by looking up Sleepy Nodes AND resource types to
 detect duplicate resources. EPs MAY use single-step resource
 discovery only if the Sleepy Node can register with no more than one
 Proxy. An EP can use the "ep" link attribute as a filter on the
 "/.well-known/core" resource to retrieve a list of endpoints and
 detect duplicate Sleepy Nodes registered on multiple proxies. An EP
 can use the "ep" type of lookup to do the same on a RD. The result
 of endpoint discovery is then used to filter out duplicate resources
 returned from simple resource discovery.

 The following example shows a client discovering the Sleepy Nodes and
 learning that the Sleepy Node 0224e8fffe925dcf is registered on two
 Proxies.

 EP proxy1 proxy2
 | | |
 | ----- GET /.well-known/core?ep=* ------->|------>|
 | | |
 | | |
 | <---- 2.05 Content "</sp/0>..." --------| |
 | | |
 | <---- 2.05 Content "</sp/0>..." --------|-------|

 Req: GET coap://[ff02::1]/.well-known/core?ep=*
 Res: 2.05 Content
 </sp/0>;ep="0224e8fffe925dcf"
 Res: 2.05 Content
 </sp/0>;ep="02004cfffe4f4f50"
 </sp/1>;ep="0224e8fffe925dcf"

 From the previous exchange and the next resource discovery request,
 the EP can infer that the resources coap://sp1/sp/0/sen/temp and
 coap://sp2/sp/1/sen/temp actually come from the same Sleepy Node with
 ep=0224e8fffe925dcf.

Zotti, et al. Expires March 31, 2016 [Page 19]

Internet-Draft Sleepy Nodes September 2015

 EP proxy1 proxy2
 | | |
 | - GET /.well-known/core?rt=ipso:ucum.Cel ->|------>|
 | | |
 | | |
 | <---- 2.05 Content "</sp/0>..." ----------| |
 | | |
 | <---- 2.05 Content "</sp/1>..." ----------|-------|

 Req: GET coap://[ff02::1]/.well-known/core?rt=ucum.Cel
 &ep=0224e8fffe925dcf
 Res: 2.05 Content
 </sp/0/sen/temp;rt="ucum.Cel"
 Res: 2.05 Content
 </sp/1/sen/temp>;rt="ucum.Cel"

6.2. Proxy REPORTs events to Endpoint

 This interface can be used by the Endpoint to receive event report
 message to Proxy (REPORT A) which further notifies it to interested
 Destination Endpoint(s)(REPORT B). This indirect reporting is useful
 for a scalable solution, e.g. there may be many interested
 subscribers but the Sleepy Node itself can only support a limited
 number of subscribers given its limits on battery energy. A client
 interested in the events related with a specific resource may send a
 CoAP GET to the Proxy, to obtain the last published state. If a
 Reading node is interested in receiving updates whenever the Sleepy
 Node reports new event to its Proxy, it can use observe
 [I-D.ietf-core-observe] at the Proxy for that specific resource.

 A proxy using the CoAP protocol [RFC7252] SHOULD accept to establish
 a CoAP observation relationship between the delegated resource and a
 client as defined in [I-D.ietf-core-observe].

 A Sleepy Node may stop updating its delegated resources without
 explicitly removing its delegated resource (e.g. transition to
 another proxy after network unreachability detection). An Endpoint
 can detect this situation when the corresponding delegated resource
 has expired. Upon receipt of a response with error code 4.04 "Not
 Found", an Endpoint SHOULD restart resource discovery to determine if
 the resources are now delegated to another proxy.

 The interface function is specified as follows:

 Interaction: EP -> Proxy

 Method: Defined at registration

Zotti, et al. Expires March 31, 2016 [Page 20]

Internet-Draft Sleepy Nodes September 2015

 URI Template: /{+location}{+resource}

 URI Template Variables:

 location := This is the Location path returned by the Proxy as a
 result of a successful registration.

 resource := This is the relative path to a delegated resource
 managed by a Sleepy Node.

 Content-Type: Defined at registration

 In the example below an EP observes the changes of temperature
 through the Proxy.

 Sleepy Proxy EP
 | | |
 | | <- GET /sp/0/sen/temp - |
 | | (observe) |
 | | |
 | | -- 2.05 Content "22" -> |
 | | |
 | - PUT /sp/0/sen/temp "23" -> | |
 | | |
 | <- 2.04 Changed ------------ | |
 | | |
 | | -- 2.05 Content "23" -> |

6.3. A Node WRITEs to Sleepy Node via Proxy

 A Configuring Node uses CoAP PUT to write information (such as
 configuration data) to the Proxy, where the information is destined
 for a Sleepy Node. Upon change of a delegated resource, an internal
 flag is set in the Proxy that the specific resource has changed.
 Next time the Sleepy Node wakes up, the Sleepy Node checks the Proxy
 for any modification of its delegated resources and reads those
 changed resources using CoAP GET requests, as shown in Figure 4. The
 allowed resources that a Configuring Node can write to, and the CoAP
 Content-Format of those CoAP resources, is determined in the initial
 registration phase.

 The following example shows a commissioning tool (EP) changing the
 name of a Sleepy Node through a Proxy. The Sleepy Node detects this
 change right after updating its current temperature.

Zotti, et al. Expires March 31, 2016 [Page 21]

Internet-Draft Sleepy Nodes September 2015

 Sleepy Proxy EP
 | | |
 | | <-- PUT /sp/0/dev/n --- |
 | | |
 | | -- 2.04 Changed ------> |
 | | |
 | - PUT /sp/0/sen/temp ---> | |
 | <- 2.04 Changed --------- | |
 | Payload: <sp/0/dev/n> --- | |
 | | |
 | - GET /sp/0/dev/n ------> | |
 | | |
 | <- 2.05 Content --------- | |
 | | |

 Req: PUT /sp/0/dev/n
 Payload: "sensor-1"
 Res: 2.04 Changed

 Req: PUT /sp/0/sen/temp
 Payload: "24"
 Res: 2.04 Changed, Content-Type: application/link-format
 Payload: "</sp/0/dev/n>"

 Req: GET /sp/0/dev/n
 Res: 2.05 Content
 Payload: "sensor-1"

6.4. A Node READs information from Sleepy Node via Proxy

 A Reading Node uses standard CoAP GET to read information of a Sleepy
 Node via a Proxy. However, not all information/resources from the
 Sleepy Node may be copied to the Proxy. In that case, the Reading
 Node cannot get direct access to resources that are not delegated to
 the Proxy. The strategy to follow in that case is to first WRITE to
 the Sleepy Node (via the Proxy, Section 6.3) a request for reporting
 this missing information; where the request can be fulfilled by the
 Sleepy Node the next time the Sleepy Node wakes up.

7. Direct Interface

 This section details the functions belonging to the direct interface.

7.1. Sleepy Node REPORTs events directly to Destination Node

 When the Sleepy Node needs to report an event to Destination nodes or
 groups of Destination nodes present in the subscribers list, it

Zotti, et al. Expires March 31, 2016 [Page 22]

Internet-Draft Sleepy Nodes September 2015

 becomes Awake and then it can use standard CoAP POST unicast or
 multicast requests to report the event.

 TODO: MC example

7.2. A Sleepy Node READs information from a Server Node

 A Sleepy Node while Awake uses standard CoAP GET to read any
 information from a Server Node. While the Sleepy Node awaits a CoAP
 response containing the requested information, it remains awake. To
 increase battery life of Sleepy Nodes, such an operation should not
 be performed frequently.

8. Realization with PubSub broker

 The PubSub broker [I-D.koster-core-coap-pubsub] can be used to
 implement the REPORT function of the Sleepy Node proxy specified in
 this document. However, there are some differences to be taken into
 account:

 - The PubSub broker handles topics. In the case of the proxy the
 topics must be equated to resources.

 - Clients publish anonymously updates to a topic. In the case of
 the proxy, a delegated resource is bound to one given node that is
 allowed to update it. For the same functionality, the PubSub
 broker must restrict topic updates to one client only. The client
 linked to the topic must be visible to the clients which subscribe
 to the topic.

 In addition, some other functionality needs to be added to the PubSub
 broker to satisfy the interaction model shown in Figure 1:

 - the READ function from Sleepy Node to proxy is not covered by
 the PubSub broker. The PubSub broker needs to piggy-back a "check
 topic" on the confirmation of a publication by the proxy. The
 proxy can then perform a Read on the signalled topic.

 - The interaction "register resources" from proxy to Resource
 Directory, shown in Figure 3, is not part of the PubSub broker.

9. IANA Considerations

 The new Resource Type (rt=) Link Target Attribute, ’core.sp’ needs to
 be registered in the "Resource Type (rt=) Link Target Attribute
 Values" sub registry under the "Constrained RESTful Environments
 (CoRE) Parameters" registry.

Zotti, et al. Expires March 31, 2016 [Page 23]

Internet-Draft Sleepy Nodes September 2015

10. Security Considerations

 For the communication between Sleepy Node and Proxy it MAY be
 sufficient to use Layer 2 (MAC) security without the recommended use
 of DTLS. However, it must be ascertained that the Sleepy Node can
 communicate only with a given secured Proxy. A Sleepy Node may
 obtain the Layer 2 network key using the bootstrapping mechanism
 described in [I-D.kumar-6lo-selective-bootstrap]. DTLS MUST be used
 over link-layer security for further transport-layer protection of
 messages between Regular Nodes and Proxies in the network. There are
 no special adaptations needed of the DTLS handshake to support Sleepy
 Nodes. During the whole handshake, Sleepy Nodes are required to
 remain awake to avoid that, in case of small retransmission timers,
 the other node may think the handshake message was lost and starts
 retransmitting. In view of this, the only key point, therefore, is
 that DTLS handshakes are not performed frequently to save on battery
 power. Based on the DTLS authentication, also an authorization
 method could be implemented so that only authorized nodes can e.g.

 - Act as a Proxy for a Sleepy Node. (The Proxy shall be a trusted
 device given its important role of storing values of parameters
 for the delegated resources);

 - READ data from Sleepy Nodes;

 - WRITE data to Sleepy Nodes (via the Proxy);

 - Receive REPORTs from Sleepy Nodes (direct or via Proxy).

11. Acknowledgements

 Much of the text and examples in this document are copied from
 [I-D.vial-core-mirror-server]. Matthieu Vial has generously
 authorized us to use his text. Rahman Akbar has pointed out the CoAP
 dependency of earlier versions.

12. Changelog

 RFC editor, please delete this section before publication.

 From version 2 to version 3:

 Introduced interfaces and copied examples and text from mirror
 server draft.

 From version 3 to version 4:

 Comparison with PubSub Broker completed.

Zotti, et al. Expires March 31, 2016 [Page 24]

Internet-Draft Sleepy Nodes September 2015

 Mistakes in examples removed.

 Less dependence on 6LowPAN networks.

 Added Design motivation section.

13. References

13.1. Normative References

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-16 (work in progress), December 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7390] Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
 the Constrained Application Protocol (CoAP)", RFC 7390,
 DOI 10.17487/RFC7390, October 2014,
 <http://www.rfc-editor.org/info/rfc7390>.

13.2. Informative References

 [I-D.ietf-core-interfaces]
 Shelby, Z., Vial, M., and M. Koster, "CoRE Interfaces",
 draft-ietf-core-interfaces-03 (work in progress), July
 2015.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-04
 (work in progress), July 2015.

Zotti, et al. Expires March 31, 2016 [Page 25]

Internet-Draft Sleepy Nodes September 2015

 [I-D.koster-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-koster-core-coap-pubsub-02 (work in
 progress), July 2015.

 [I-D.kumar-6lo-selective-bootstrap]
 Kumar, S. and P. Stok, "Security Bootstrapping over IEEE
 802.15.4 in selective order", draft-kumar-6lo-selective-
 bootstrap-00 (work in progress), March 2015.

 [I-D.vial-core-mirror-server]
 Vial, M., "CoRE Mirror Server", draft-vial-core-mirror-
 server-01 (work in progress), April 2013.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

Authors’ Addresses

 Teresa Zotti
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Phone: +31 6 21175346
 Email: teresa.zotti@philips.com

 Peter van der Stok
 Consultant

 Phone: +31 492474673
 Email: consultancy@vanderstok.org

 Esko Dijk
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Phone: +31 6 55408986
 Email: esko.dijk@philips.com

Zotti, et al. Expires March 31, 2016 [Page 26]

