
TCP Maintenance and Minor Extensions (tcpm) A. Zimmermann
Internet-Draft R. Scheffenegger
Intended status: Standards Track NetApp, Inc.
Expires: January 21, 2016 July 20, 2015

 Using the TCP Echo Option for Spurious Retransmission Detection
 draft-zimmermann-tcpm-spurious-rxmit-00

Abstract

 The Spurious Retransmission Detection (SRD) algorithm allows a TCP
 sender to always detect if it has entered loss recovery
 unnecessarily. It requires that both the TCP Echo option defined in
 [I-D.zimmermann-tcpm-echo-option], and the SACK option [RFC2018] be
 enabled for a connection. The SRD algorithm makes use of the fact
 that the TCP Echo option, used in conjunction with the SACK feedback,
 can be used to completely eliminate the retransmission ambiguity in
 TCP. Based on the reflected data contained in the first acceptable
 ACK that arrives during loss recovery, it decides whether loss
 recovery was entered unnecessarily. The SRD mechanism further
 enables improvements in loss recovery. This includes a TCP
 enhancement to detect and quickly resend lost retransmissions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 1]

Internet-Draft Spurious Retransmission Detection July 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. The Spurious Retransmission Detection Algorithm 3
 3.1. Motivation . 4
 3.2. Basic Idea . 5
 3.3. The Algorithm . 6
 4. Examples . 7
 5. IANA Considerations . 12
 6. Security Considerations 12
 7. Acknowledgements . 13
 8. References . 13
 8.1. Normative References 13
 8.2. Informative References 13
 Authors’ Addresses . 14

1. Introduction

 Using only the sequence number, a TCP sender is not able to
 distinguish whether the first ACK, acknowledging new data, that
 arrives after a retransmit, was sent in response to the original
 transmit or the retransmission. This effect is known as the
 retransmission ambiguity problem [Zh86], [KP87]. Spurious
 retransmissions, where a segment is sent multiple times, can be
 caused by packet reordering, packet duplication, or a sudden delay
 increase in the data or the ACK path. All these cases are preceded
 by either a fast retransmit or a timeout-based retransmit.

 The Eifel Detection Algorithm [RFC3522] aims to address these
 occurrences, but falls short to completely solve the ambiguity
 problem due to limitations in how the TCP Timestamps option is
 processed by the receiver.

 The TCP Timestamps option already provides a means of marking
 retransmitted segments differently. However, the method used by a
 TCP receiver when a Timestamp option is reflected precludes the use
 of this option in most cases. The notable exception is the recovery
 of lost segments, when none of the retransmissions is lost or
 reordered in turn. Similarly, spurious retransmissions can also only

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 2]

Internet-Draft Spurious Retransmission Detection July 2015

 be detected and recovered from, when all of the retransmitted packets
 are delivered in-order and without leaving any gaps in the receive-
 buffer. Elsewise, the Timestamp option does not allow a solid
 discrimination between original or retransmitted segments, that
 triggered subsequent duplicate ACKs.

 The semantics of the TCP Echo option, and their treatment by a
 receiver are different from those of the TCP Timestamps option. That
 allows a complete solution to disambiguate between all
 retransmissions, including multiple retransmissions of the same
 segment, packet duplication, and reordering events.

 Enhancements in the area of TCP loss recovery and spurious
 retransmission detection are allowed by using synergistic signaling
 between the TCP Echo option and the selective acknowledgment (SACK)
 option. This allows to completely address any retransmission
 ambiguity.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words only have such normative significance when in ALL CAPS, not
 when in lower case.

 Acceptable ACK: is an ACK that acknowledges previously unacknowledged
 data. See [RFC0793].

 Forward Acknowledgement (FACK): is the the highest sequence number
 known to have reached the receiver, plus one, using SACK information.
 See [MM96].

 Lost Retransmission Detection (LRD): is a mechanism to timely detect
 lost retransmissions during loss recovery, and quickly send the lost
 segment anew instead of waiting for a retransmission timeout. A
 simple and limited variant, that is not formally specified, is
 currently in use by the Linux TCP stack.

 Recover: When in fast recovery, this variable records the send
 sequence number that must be acknowledged before the fast recovery
 procedure is declared to be over. See [RFC6582].

3. The Spurious Retransmission Detection Algorithm

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 3]

Internet-Draft Spurious Retransmission Detection July 2015

3.1. Motivation

 In order to detect spurious retransmissions, the sender requires
 information to uniquely identify each retransmission of every segment
 sent. TCP Eifel [RFC3522] uses additional information from the TCP
 Timestamps option [RFC7323] for this purpose. This can remove some
 ambiguity, but only under limited circumstances - it only works in
 the absence of additional impediments like ACK reordering or multiple
 loss.

 However, the semantics used by the receiver when reflecting back a
 received timestamp is such that this approach only works for the
 first retransmission in a window, every subsequent retransmission
 cannot be disambiguated from a received original transmission using
 timestamps in most cases.

 When a segment is retransmitted without the timestamp clock
 increasing, Eifel detection also has no signal to differentiate if a
 spurious retransmission had occurred. This is of particular concern
 at high data rates and when the RTT is low.

 Retransmission ambiguity detection during loss recovery (as opposed
 to the first retransmission in a window) allows an additional level
 of loss recovery control without reverting to timer-based methods.
 As with the deployment of SACK, separating "what" to send from "when"
 to send it, is driven one step further. In particular, less
 conservative loss recovery schemes, which do not trade the principle
 of packet conservation against timeliness, require a reliable way of
 prompt and best possible feedback from the receiver about any
 delivered segment and the ordering in which they got delivered.

 SACK signaling [RFC2018] goes quite a long way, but does not suffice
 in all circumstances, e.g. when retransmissions are lost. Further,
 DSACK [RFC2883] does indicate if spurious retransmissions occured,
 but that signal is delayed by one RTT [RFC3708]. However, loss
 recovery is likely to have ended at that time. Furthermore, the
 DSACK option by itself will not yield the information, if the late
 arrived segment was the original or retransmitted segment.

 Using the facility provided by the TCP Echo option a TCP sender is
 able to differentiate between original and retransmitted segments,
 even within the same TCP Timestamps options clock tick (i.e. when RTT
 is shorter than the TCP timestamp clock interval). In addition, as
 the TCP Echo option is reflected back with the most recently observed
 value by the receiver, all instances where Eifel detection [RFC3522]
 is not able to detect reliably can be addressed. Furthermore, as the
 sender is immediately notified which segment triggered the ACK, no
 delay is induced when deducting if a retransmission was spurious.

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 4]

Internet-Draft Spurious Retransmission Detection July 2015

3.2. Basic Idea

 Using the TCP Echo option, which has different semantics from the TCP
 Timestamps option, it is possible to uniquely identify and
 disambiguate each segment, including every retransmission. However,
 the value carried with the TCP Echo option does not need to be unique
 by itself (e.g. every segment having a different TCP Echo option
 value), as other information contained in the TCP Header and TCP
 options, namely the acknowledgment number and the SACK blocks,
 differentiate already between segments in the TCP stream space.
 Thus, it is only necessary to differentiate between segments (of the
 same size) covering the same sequence space.

 One simple approach would be to have a per-segment counter, which is
 set to zero for each new transmission, and incremented whenever that
 same segment is retransmitted anew. However, this approach would
 require per-segment state in the sender. To reduce the complexity in
 the sender, and not require per-segment state, a simpler approach is
 to use a single global counter, that is increased whenever a segment
 has to be resent. In ECN environments, an increase of the
 retransmission counter is expected to typically coincide with CWR-
 marked segments.

 Apart from simplifying the design, this also yields additional
 benefits when the reorder delay is larger than one RTT, and when
 Acknowledgments are lost or reordered. Note that the wire
 representation of this counter SHOULD NOT be as simplistic as
 described here (see Section 6).

 The retransmission counter has to be large enough to cater for all
 expected RTOs before a TCP sender gives up and terminates a
 connection (see [RFC1122], section 4.2.3.5, variable R2), plus all
 the fast retransmissions of that segment that may have happened
 before triggering the chain of exponential back-off RTOs. In
 general, a single octet is enough to convey the retransmission
 counter.

 The sender has to transmit every segment with a TCP Echo option.
 Sending the Echo option only with retransmission has the issue of
 adding option space, thereby potentially requiring the sender to
 segment the TCP payload differently (and sending an additional
 segment) than the original segment. A sender SHOULD therefore add
 the echo option to every sent segment to simplify the implementation.
 Sending the TCP Echo option with every segment has the added benefit
 to make the mechanism tolerate ACK losses.

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 5]

Internet-Draft Spurious Retransmission Detection July 2015

3.3. The Algorithm

 Spurious Retransmission Detection (SRD) utilizes the TCP Echo option
 [I-D.zimmermann-tcpm-echo-option], which is used with at least one
 octet of payload. If another algorithm deployed on the sender also
 uses the TCP Echo option on a TCP connection, it is up to the
 implementer to combine the necessary signaling of these mechanisms to
 fit into a single TCP Echo option (e.g. by mapping the Echo option
 codepoints into a translation table, or extending the length of the
 TCP Echo option and matching parts of the data to the different
 mechanisms).

 The TCP sender maintains a single, connection-global counter. This
 retransmission counter MUST be increased by one whenever the sender
 enters loss recovery, experiences a Retransmission Timeout (RTO), or
 re-sends a previously already retransmitted segment once more. Care
 must be taken to limit a malicious receivers ability make genuine
 retransmissions appear as spurious retransmissions to the sender (see
 Section 6), when encoding the internal counter value to the wire
 representation.

 Every transmitted segment carries a TCP Echo option, where the data
 reflects the current value of the sender’s retransmission counter.
 When the sender receives an ACK, the TCP Echo option data is
 extracted and checked against the current value of the retransmission
 counter, together with a check if the ACK is acceptable. Note that
 information from not acceptable ACKs MUST be evaluated too.

 After a retransmission has been sent, either due to a Fast
 Retransmission or an RTO, the first acceptable ACK is checked. If
 the received retransmission counter is equal to the current counter
 value maintained by the sender, a valid retransmission was sent. If
 the received value is less than the current retransmission counter, a
 spurious retransmission was sent, and if no valid retransmissions are
 detected until the end of the loss recovery phase, the TCP sender MAY
 restore the congestion control state to the state prior to entering
 loss recovery. Even if some of the retransmissions of this loss
 recovery phase may have been spurious, the TCP sender MUST NOT react
 by restoring the congestion control state to the state before
 entering loss recovery, if any of the retransmissions are deduced to
 be valid.

 A TCP sender MAY retain the congestion control state for up to two
 RTTs since entering the loss recovery state. {TODO: Not after exiting
 loss recovery?} If all retransmissions that were performed in this
 period are later found to have been spurious - either by evaluating
 the retransmission counter values of received unacceptable (first
 duplicate) ACKs, or a DSACK [RFC3708] indication - the TCP sender MAY

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 6]

Internet-Draft Spurious Retransmission Detection July 2015

 revert to the stored congestion control state, e.g. by following the
 Eifel Response algorithm [RFC4015].

4. Examples

 This section shows a few examples, from simple to increasingly
 complex. Some of these scenarios are addressed by exising mechanisms
 like Eifel, and DSACK; in particular, corner cases that are not
 adressed with existing mechanisms are demonstrated.

 In the following examples, each set of three lines starting with
 "ack#", "sack:", and "sent:" represent one RTT. It is assumed that
 the sender has sent segments 1 to 8 in the prior RTT, and for
 readability, the numbers show represent full segments rather than
 sequence numbers.

 The two lines following ("ack#" and "sack:") indicate what ACK is
 being triggered on the receiver. The ACK number is the sequence
 number of the next expected segment, followed by a dot and the value
 of the received TCP Echo option value - again for simpilicty, the
 internal representation of the global retransmission counter value
 (initially set to zero) is shown, not the wire representation.

 In the line "sack:" the relevant SACK blocks are depicted, again with
 a single number representative of an entire segment. When these ACKs
 are seen by the sender, it will start sending the segment depicted in
 the line "sent:", again together with the retransmission counter
 value.

 Further assumptions in these examples are that the sender is using
 proportional rate reduction [RFC6937], limited transmit [RFC3042],
 and selective acknowledgments (SACK) [RFC2018] and [RFC2883], is not
 application limited when sending data and has a congestion window of
 9 segments.

 1. Fast Retransmission

 ack# X 1.0 1.0 1.0 1.0 1.0 1.0 1.0
 sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
 sent: 9.0 10.0 1.1 11.1 12.1

 ack# 1.0 1.0 11.1 12.1 13.1
 sack: 2-9 2-10

 detected as valid retransmission, as for the first acceptable ACK
 (11.1) after the retransmission the Echo Tag is equal to the
 retransmission counter.

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 7]

Internet-Draft Spurious Retransmission Detection July 2015

 2. Multiple loss

 ack# X 1.0 1.0 1.0 1.0 1.0 1.0 X
 sack: 2 2-3 2-4 2-5 2-6 2-7
 sent: 9.0 10.0 1.1 11.1

 ack# 1.0 1.0 8.1 8.1
 sack: 2-7,9 2-7,9-10 9-10 9-11
 sent: 12.1 8.1 ...

 SRD detectes this as valid retransmission, as for the first
 acceptable ACK (8.1) and every other retransmission after the first
 retransmission the Echo Tag is equal to the retransmission counter.
 Retransmission counter is not increased when sending (8.1) as loss
 recovery was not yet exited at the time of sending that
 retransmission.

 3. Retransmission Timeout (RTO)

 ack# X X X X X X X X
 sack:
 sent: ----- RTO -->

 ack#
 sack:
 sent: ----- RTO --> 1.1

 ack# 1.1
 sack:

 detected as valid retransmission, as the first acceptable ACK (1.1)
 after the retransmission contains the Echo Tag of the retransmission.

 4. Retransmission loss

 ack# X 1.0 1.0 1.0 1.0 1.0 1.0 1.0
 sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
 sent: 9.0 10.0 1.1 11.1 12.1
 X
 ack# 1.0 1.0 1.1 1.1
 sack: 2-9 2-10 2-11 2-12

 no acceptable ack, but a jump on the counter tag to the current
 counter. (see {TODO: LRD document}), also FACK is larger than
 Recovery Point (The condition of FACK > RP will trigger linux LRD).

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 8]

Internet-Draft Spurious Retransmission Detection July 2015

 Note: without LRD, the lost retransmission will NOT be retried before
 an RTO. Can not be detected by Eifel due to TCP Timestamps
 semantics.

 5. Multiple loss, first retransmission lost

 ack# X X 1.0 1.0 1.0 1.0 1.0 1.0
 sack: 3 3-4 3-5 3-6 3-7 3-8
 sent: 9.0 1.1 2.1 10.1
 X
 ack# 1.0 1.1 1.1
 sack: 3-9 2-9 2-10
 sent: 11.1 1.2 12.2

 no acceptable ack, but a jump on the counter tag to the current
 counter. see {TODO: LRD document}. Linux LRD would delay the sending
 of 1.2 until after FACK passes RP (in this example, the last two sent
 segments was be swapped). Not detectable by Eifel.

 6. RTT > Reordering delay > DupThresh

 r
 ack# R 1.0 1.0 1.0 1.0 6.0 7.0 8.0
 sack: 2 2-3 2-4 2-5
 sent: 8.0 9.0 1.1 10.1 11.1 12.1

 ack# 9.0 10.0 10.1 11.1 12.1 13.1
 sack: 1

 detected as spurious retransmission, as the first acceptable ACK
 (6.0) after the retransmission is received with the Echo Tag unequal
 the current retransmission counter; DSACK detects this 1 RTT later;
 Eifel detects this at the same time using timestamps

 7. Reordering delay > RTT

 ack# R 1.0 1.0 1.0 1.0 1.0 1.0 1.0
 sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
 sent: 9.0 10.0 1.1 11.1 12.1
 r
 ack# 1.0 1.0 11.1 12.1 12.0 13.1
 sack: 2-9 2-10 1

 detected as valid retransmission, as the first acceptable ACK (11.1)
 after the retransmission contains the Echo Tag of the retransmission.

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 9]

Internet-Draft Spurious Retransmission Detection July 2015

 Note that at (12.0), with the retransmission counter always counting
 up, this detection becomes possible, by seeing 2nd ACK with lower
 retransmission counter (SRD) one RTT later: DSACK and SRD both detect
 at the same time

 8. Packet duplication

 SACK is mandatory for SRD, and SACK detects this as duplication
 event, with no further action

 9. Reordering and loss

 r
 ack# R X 1.0 1.0 1.0 2.0 2.0 2.0
 sack: 3 3-4 3-5 3-5 3-6 3-7
 sent: 8.0 9.0 1.1 2.1

 ack#: 2.0 2.0 2.1 10.1
 sack 3-8 3-9 1,3-9

 detected as spurious retransmission, as the first acceptable ACK
 (2.0) after the retransmission is received with the Echo Tag unequal
 the current retransmission counter; no undo at that point, since
 still in recovery. DSACK detects this 1 RTT later; Eifel detects
 this at the same time using timestamps.
 Detected as valid retransmission, as for the second acceptable ACK
 (10.1) after the retransmission the Echo Tag is equal to the
 retransmission counter, prior to leaving loss recovery

 10. Loss and reordering (reordered retransmission)

 ack# X 1.0 1.0 1.0 1.0 1.0 1.0 1.0
 sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
 sent: 9.0 10.0 1.1 11.1 12.1
 R
 r
 ack# 1.0 1.0 1.1 12.1 13.1
 sack: 2-9 2-10 2-11
 sent: 13.1 1.2 14.2 15.2

 ack# 14.1 14.2 15.2 16.2
 sack: 1

 reordered retransmission

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 10]

Internet-Draft Spurious Retransmission Detection July 2015

 LRD triggered (no acceptable ack, when retransmission count increases
 - {TODO: LRD document}), also FACK > Recovery Point (Linux LRD)
 Detected as spurious retransmission, as the first acceptable ACK
 (12.1) after the 2nd retransmission is received with the Echo Tag
 unequal the current retransmission counter; undo at that point, since
 recovery is exited at the same time. DSACK detects this 1 RTT later;
 Eifel detects this at the same time using timestamps.

 11. ACK reordering after loss

 ack# X 1.0 1.0 1.0 1.0 1.0 1.0 1.0
 sack: 2 2-3 2-4 2-5 2-6 2-7 2-8
 sent: 9.0 10.0 1.1 11.1 12.1
 R
 r
 ack# 1.0 1.0 1.1 11.1 13.1
 sack: 2-9 2-10 2-11
 sent: 13.1 1.2 14.2 15.2

 valid retransmission, as first acceptable ack (11.1) after
 retransmission has same retransmission counter as the current value.
 Reordered ACK has still same (not lower!) retransmission counter.

 12. ACK reordering after reordering

 rR
 ack# R 1.0 1.0 1.0 1.0 7.0 6.0 8.0
 sack: 2 2-3 2-4 2-5
 sent: 8.0 9.0 1.1 10.1 11.1

 ack# 9.0 10.0 10.1 11.1 12.1
 sack: 1

 detected as spurious retransmission, as the first acceptable ACK
 (7.0) after the retransmission is received with the Echo Tag unequal
 the current retransmission counter; DSACK detects this 1 RTT later;
 Eifel detects this at the same time using timestamps

 13. ACK loss after reordering

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 11]

Internet-Draft Spurious Retransmission Detection July 2015

 r
 ack# R 1.0 1.0 1.0 1.0 (6.0) 7.0 8.0
 sack: 2 2-3 2-4 2-5
 sent: 8.0 9.0 1.1 10.1 11.1

 ack# 9.0 10.0 10.1 11.1 12.1
 sack: 1

 detected as spurious retransmission, as the first acceptable ACK
 (7.0) after the retransmission is received with the Echo Tag unequal
 the current retransmission counter; DSACK detects this 1 RTT later;
 Eifel detects this at the same time using timestamps
 Note that retransmission counter only increasing helps this case to
 work both with reordering (spurious retransmission) and
 retransmission ACK loss - the relevant information is conveyed for
 about 1RTT thus single ACK loss does not impact the detection.

 14. TODO: delay ACK

 Todo: Example necessary?

5. IANA Considerations

 This document contains no requests to IANA, as only a new combined
 use of TCP options is described.

6. Security Considerations

 This document describes a new use for the TCP Echo option.
 Transporting the retransmission counter in the clear may pose a
 security problem when the TCP sender uses SRD to restore the TCP
 state. A malicious receiver could game the sender to always restore
 the congestion control state to the one preceding the lost recovery
 episode, thereby making the sender not back off its transmission
 rate.

 As the sender can put any data into the TCP Echo option, the
 transmission counter value can be masked in various ways. A TCP
 sender can map the same counter value to multiple TCP Echo option
 data values, and track which of these data values would be expected
 for a given acknowledgement. Alternatively, the TCP Echo option data
 could be a (secure) hash of the sequence number of the sent segment,
 a random, per-connection secret, and the retransmission counter. The
 TCP Echo data would look rather as random sequence of octets in both
 cases, making it very hard for a malicious receiver to obtain an
 unfair share of bandwidth by masking genuine retransmissions as
 spurious.

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 12]

Internet-Draft Spurious Retransmission Detection July 2015

7. Acknowledgements

 The authors like to thank Bob Briscoe and Brian Trammel for their
 invaluable input.

 Alexander Zimmermann the European Union’s Horizon 2020 research and
 innovation program 2014-2018 under grant agreement No. 644866
 (SSICLOPS). This document reflects only the authors’ views and the
 European Commission is not responsible for any use that may be made
 of the information it contains.

8. References

8.1. Normative References

 [I-D.zimmermann-tcpm-echo-option]
 Zimmermann, A., Scheffenegger, R., and B. Briscoe, "The
 TCP Echo and TCP Echo Reply Options", draft-zimmermann-
 tcpm-echo-option-00 (work in progress), June 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [KP87] Karn, P. and C. Partridge, "Estimating Round-Trip Times in
 Reliable Transport Protocols", Proc. SIGCOMM ’87, August
 1987.

 [MM96] Mathis, M. and J. Mahdavi, "Forward Acknowledgement:
 Refining TCP Congestion Control", ACM SIGCOMM 1996
 Proceedings, in ACM Computer Communication Review 26 (4),
 pp. 281-292, October 1996.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 13]

Internet-Draft Spurious Retransmission Detection July 2015

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, April 2003.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 February 2004.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, April 2012.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP", RFC 6937, May 2013.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance", RFC
 7323, September 2014.

 [Zh86] Zhang, L., "Why TCP timers don’t work well", Proc. SIGCOMM
 ’86, Sep 1986.

Authors’ Addresses

 Alexander Zimmermann
 NetApp, Inc.
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 89 900594712
 Email: alexander.zimmermann@netapp.com

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 14]

Internet-Draft Spurious Retransmission Detection July 2015

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 Vienna 1120
 Austria

 Email: rs@netapp.com

Zimmermann & ScheffeneggExpires January 21, 2016 [Page 15]

