TCP Mai ntenance and M nor Extensions (TCPM WG A.  Zi mrer mann

Internet-Draft Net App, Inc

bsol etes: 4653 (if approved) L. Schulte
I nt ended status: Experinental Aalto University
Expires: May 14, 2015 C WIff

A. Hannenmann
credativ GrbH
Novenber 10, 2014

Maki ng TCP Adaptively Robust to Non-Congestion Events
draft-zi mermann-tcpmreordering-reaction-02

Abst r act

Thi s docunment specifies an adaptive Non-Congesti on Robustness (aNCR)
mechani sm for TCP. In the absence of explicit congestion
notification fromthe network, TCP uses only packet |oss as an

i ndi cation of congestion. One of the signals TCP uses to determne
loss is the arrival of three duplicate acknow edgnents. However,
this heuristic is not always correct, notably in the case when paths
reorder packets. This results in degraded performance.

TCP-aNCR i s designed to nmitigate this performance degradation by
adaptively increasing the nunber of duplicate acknow edgnents
required to trigger |oss recovery, based on the current state of the
connection, in an effort to better disanbiguate true segnent |oss
from segment reordering. This docunment specifies the changes to TCP
and TCP-NCR (on which this specification is build on) and di scusses
the costs and benefits of these nodifications.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on May 14, 2015.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 1]



I nternet-Draft TCP- aNCR Novenber 2014

Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction 3
2. Term nol ogy . 6
3. Basic Concept . 7
4. Appropriate Detectlon and Cpantlflcatlon Algorlthns . 7
5.  The TCP-aNCR Al gorithm 8
5.1. Initialization during Cbnnectlon Establlshnent 8
5.2. Initializing Extended Limted Transmnit 9
5.3. Executing Extended Limted Transmit 10
5.4. Termnating Extended Limted Transmt 11
5.5. Entering Loss Recovery 13
5.6. Reordering Extent e A
5.7. Retransnmission Timeout . . . . . . . . . . . . . . . . . 13
6. Protocol Steps in Detail . 14
7. Discussion of TCP-aNCR . . . 16
7.1. Variable Duplicate Acknomﬁedgnent Threshold . 16
7.2 Rel ati ve Reordering Extent . 17
7.3 Reordering during Slow Start 18
7.4. Preventing Bursts . . 18
7.5. Persistent receiving of Selectlve Acknomﬁedgnents ... . 19
8. Interoperability Issues . . . . . . . . . . . . . . .. ... 21
8.1 Early Retransmit . 2
8.2 Congesti on W ndow Valldatlon . 2
8.3. Reactive Response to Packet Reorder|ng e e e e 22
8.4. Buffer Auto-Tuning . . . . . . . . . . . . . . . . . . . 22
9. Related Wrk . . X
10. 1 ANA Cbn3|derat|ons -
11. Security Considerations . . . . . . . . . . . . . . . . ... 24
12. Acknow edgnents . . . . . . . . . . . . . . . . . . . . ... 25
13. References . . A<
13.1. Normative References A<
13.2. Informative References . . . . . . . . . . . . . . . . . 26

Zi mrer mann, et al. Expires May 14, 2015 [ Page 2]



I nternet-Draft TCP- aNCR Novenber 2014

Appendi x A.  Changes fron1preV|ous versions of the draft . . . 28
A. 1. Changes fromdraft-zi nmermann-tcpmreordering-reaction- 01 28
A. 2. Changes fromdraft-zi nmermann-tcpmreordering-reaction-00 28

Authors’ Addresses . . . . . . . . . . . . . . . . . . . ... . 28

1. I nt roduction

One strength of the Transnission Control Protocol (TCP) [ RFC0793]
lies inits ability to adjust its sending rate according to the
perceived congestion in the network [ RFC5681]. In the absence of
explicit notification of congestion fromthe network, TCP uses
segment | oss as an indication of congestion (i.e., assum ng queue
overflow). A TCP receiver sends cunul ati ve acknow edgnents (ACKs)

i ndi cating the next sequence nunber expected fromthe sender for
arriving segnents [RFC0793]. When segnents arrive out of order
duplicate ACKs are generated. As specified in [RFC5681], a TCP
sender uses the arrival of three duplicate ACKs as an indication of
segrment |l oss. The TCP sender retransmits the segnent assuned | ost
and reduces the sending rate, based on the assunption that the |oss
was caused by resource contention on the path. The TCP sender does
not assume |loss on the first or second duplicate ACK, but waits for
three duplicate ACKs to account for minor packet reordering.
However, the use of this constant threshold of duplicate ACKs | eads
to performance degradation if the extent of the packet reordering in
the network increases [ RFC4653].

Whenever interoperability with the TCP congestion control and | oss
recovery standard [ RFC5681] is a prerequisite, increasing the
dupl i cate acknow edgnent threshold (DupThresh) is the nethod of
choice to a priori prevent any negative inmpact - in particular, a
spurious Fast Retransmit and Fast Recovery phase - that packet
reordering has on TCP. However, this procedure also delays a Fast
Retransmit by increasing the DupThresh, and therefore has costs and
risks, too. According to [ZKFP03], these are: (1) a del ayed response
to congestion in the network, (2) a potential expiration of the
retransmssion tiner, and (3) a significant increase in the end-to-
end delay for |ost segnents.

In the current TCP standard, congestion control and | oss recovery are
tightly coupl ed: when the ol dest outstanding segnent is declared
lost, a retransnission is triggered, and the sending rate is reduced
on the assunption that the loss is due to resource contention

[ RFC5681]. Therefore, any change to DupThresh causes not only a
change to the | oss recovery, but also to the congestion contro
response. TCP-NCR [ RFC4653] addresses this problemby defining two
extensions to TCP's Limted Transmit [RFC3042] schenme: Careful and
Aggressive Extended Linited Transmt.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 3]



I nternet-Draft TCP- aNCR Novenber 2014

The first variant of the two, Careful Limted Transmit, sends one
previously unsent segnment in response to duplicate acknow edgnents
for every two segnments that are known to have left the network. This
effectively halves the sending rate, since nornmal TCP operation sends
one new segnent for every segnment that has left the network.

Further, the halving starts immediately and is not del ayed until a
retransmssion is triggered. In the case of packet reordering (i.e.
not segnent | oss), TCP-NCR restores the congestion control state to
its previous state after the event.

The second variant, Aggressive Limted Transnmit, transmits one

previ ously unsent data segment in response to duplicate

acknow edgments for every segnment known to have | eft the network

Wth this variant, while waiting to disanbiguate the loss froma
reordering event, ACK-clocked transm ssion continues at roughly the
sane rate as before the event started. Retransmission and the
sendi ng rate reduction happen per [RFC5681] [RFC6675], albeit after a
del ay caused by the increased DupThresh. Al though this approach
delays legitimate rate reductions (possibly slightly, and tenporarily
aggravating overall congestion on the network), the schene has the
advant age of not reducing the transmssion rate in the face of packet
reor deri ng.

A basic requirenment for preventing an avoi dable expiration of the
retransmssion tiner is to generally ensure that an increased
DupThresh can potentially be reached in tine so that Fast Retransmt
is triggered and Fast Recovery is conpl eted before the RTO expires.
Sinmply increasing DupThresh before retransnmitting a segnent can make
TCP brittle to packet or ACK | oss, since such | oss reduces the nunber
of duplicate ACKs that will arrive at the sender fromthe receiver.
For instance, if cwnd is 10 segnents and one segnent is lost, a
DupThresh of 10 will never be net, because duplicate ACKs
corresponding to at nost 9 segnents will arrive at the sender. To
mtigate this issue, the TCP-NCR [ RFC4653] nodification makes two
fundamental changes to the way [ RFC5681] [RFC6675] currently
oper at es.

First, as nentioned above, TCP-NCR [ RFC4653] extends TCP's Linited
Transmit [ RFC3042] schene to allow for the sending of new data
segnment while the TCP sender stays in the 'disorder’ state and

di sanbi guate | oss and reordering. This new data serves to increase
the likelihood that enough duplicate ACKs arrive at the sender to
trigger loss recovery, if it is appropriate. Second, DupThresh is
increased fromthe current fixed value of three [ RFC5681] to a val ue
i ndi cating that approxinately a congestion wi ndow s worth of data has
left the network. Since cwnd represents the anount of data a TCP
sender can transmit in one round-trip tine (RTT), this corresponds to

Zi mrer mann, et al. Expires May 14, 2015 [ Page 4]



I nternet-Draft TCP- aNCR Novenber 2014

approxi mately the |largest anount of time a TCP sender can wait before
the costly retransm ssion tineout may be triggered.

O vital inportance is that TCP-NCR [ RFC4653] hol ds DupThresh not
constant, but dynamically adjusts it on each SACK to the current
anount of outstanding data, which depends not only on the congestion
wi ndow, but also on the receiver’s advertised window. Thus, it is
guaranteed that the outstanding data generates a sufficient nunber of
duplicate ACKs for reaching DupThresh and a transition to the
"recovery’ state. This is inportant in cases where there is no new
data avail able to send.

Regardi ng the probl em of packet reordering, TCP-NCR s [ RFC4653]
decision of waiting to receive notice that cwnd bytes have left the
net wor k before deciding whether the root cause is |oss or reordering
is essentially a trade-off between naking the best decision regarding
the cause of the duplicate ACKs and responsiveness, and represents a
good conprom se between avoi di ng spurious Fast Retransmts and
avoi di ng unnecessary RTGs. On the other hand, if there is no visible
packet reordering on the network path - which today is the rule and
not the exception - or the delay caused by the reordering is very

| ow, delaying Fast Retransmit is unnecessary in the case of
congestion, and data is delivered to the application up to one RTT
later. Especially for delay-sensitive applications, such as a

term nal session over SSH, this is generally undesirable. By
dynani cal | y adapting DupThresh not only to the anpbunt of outstanding
data but also to the perceived packet reordering on the network path,
this issue can be offset. This is the key idea behind the TCP-aNCR
al gorithm

Thi s docunment specifies a set of TCP nodifications to provide an
adapti ve Non-Congesti on Robustness (aNCR) mechanismfor TCP. The
TCP-aNCR nodi fications |lend thensel ves to increnental depl oynent.
Only the TCP inplenentation on the sender side requires nodification
The changes thensel ves are nodest. TCP-aNCR is built on top of the
TCP Sel ective Acknow edgnents Option [ RFC2018] and the SACK-based

| oss recovery schenme given in [ RFC6675] and represents an enhancenent
of the original TCP-NCR nechani sm[RFC4653]. Currently, TCP-aNCR is
an i ndependent approach of nmaking TCP nore robust to packet
reordering. It is not clear if upconing versions of this draft TCP-
aNCR wi || obsol ete TCP-NCR or not.

It should be noted that the TCP-aNCR al gorithmin this docunment could
be easily adapted to the Stream Control Transm ssion Protocol (SCTP)
[ RFC2960], since SCTP uses congestion control algorithns sinilar to
TCP (and thus has the sane reordering robustness issues).

Zi mrer mann, et al. Expires May 14, 2015 [ Page 5]



I nternet-Draft TCP- aNCR Novenber 2014

The remai nder of this docunent is organized as follows. Section 3
provi des a high-1evel description of the TCP-aNCR nmechani sm

Section 4 defines TCP-aNCR s requirenents for an appropriate
detection and quantification algorithm Section 5 specifies the TCP-
aNCR al gorithm and Section 6 discusses each step of the algorithmin
detail. Section 7 provides a discussion of several design decisions
behi nd TCP-aNCR. Section 8 discusses interoperability issues related
to introducing TCP-aNCR. Finally, related work is presented in
Section 9 and security concerns in Section 11.

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described [ RFC2119].

The reader is expected to be fanmiliar with the TCP state vari abl es
described in [RFC0O793] (SND. NXT), [RFC5681] (cwnd, rwnd, ssthresh
FlightSize, IW, [RFC6675] (pipe, DupThresh, SACK scoreboard), and

[ RFC6582] (recover). Further, the term ' acceptabl e acknow edgnent’
is used as defined in [RFC0793]. That is, an ACK that increases the
connection’s cunul ative ACK point by acknow edgi ng previously
unacknowl edged data. The term ’'duplicate acknow edgnent’ is used as
defined in [ RFC6675], which is different fromthe definition of
dupl i cate acknow edgnent in [ RFC5681].

This specification defines the four TCP sender states ’'open’
"disorder’, 'recovery’, and 'loss’ as follows. As long as no
duplicate ACK is received and no segnent is considered |lost, the TCP
sender is in the 'open’ state. Upon the reception of the first
consecutive duplicate ACK, TCP will enter the ’'disorder’ state.

After receiving DupThresh duplicate ACKs, the TCP sender switches to
the "recovery’ state and executes standard | oss recovery procedures
li ke Fast Retransmit and Fast Recovery [RFC5681]. Upon a

retransm ssion tinmeout, the TCP sender enters the 'loss’ state. The
"recovery’ state can only be reached by a transition fromthe
"disorder’ state, the 'loss’ state can be reached from any ot her

st ate.

The foll owi ng specification depends on the standard TCP congestion
control and loss recovery algorithnms and the SACK-based | oss recovery
schene given in [ RFC5681], respectively [RFC6675]. The al gorithm
presents an enhancenent of TCP-NCR [ RFC4653]. The reader is assuned
to be famliar with the algorithns specified in these docunents.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 6]



I nternet-Draft TCP- aNCR Novenber 2014

3. Basic Concept

The general idea behind the TCP-aNCR al gorithmis to extend the TCP-
NCR al gorithm [ RFC4653], so that - based on an appropriate packet
reordering detection and quantification algorithm (see Section 4) -
TCP congestion control and | oss recovery [RFC5681] is adaptively
adjusted to the actual perceived packet reordering on the network
pat h.

TCP- NCR [ RFC4653] increases DupThresh fromthe current fixed val ue of
three duplicate ACKs [ RFC5681] to approximately until a congestion

wi ndow of data has left the network. Since cwnd represents the
anount of data a TCP sender can transmit in one RTT, the choice to
trigger a retransm ssion only after a cwnd’s worth of data is known
to have left the network represents roughly the | argest anount of
time a TCP sender can wait before the RTO may be triggered. The
approach chosen in TCP-aNCR is to take TCP-NCR s DupThresh as an
upper bound for an adjustnent of the DupThresh that is adaptive to
the actual packet reordering on the network path.

Usi ng TCP-NCR s DupThresh as an upper bound decoupl es the avoi dance
of spurious Fast Retransnmits fromthe avoi dance of unnecessary
retransm ssion tineouts. Therefore, the adaptive adjustnent of the
DupThresh to current perceived packet reordering can be conducted

wi t hout taking any retransm ssion tinmeout avoidance strategy into
account. This independence allows TCP-aNCR to quickly respond to
percei ved packet reordering by setting its DupThresh so that it

al ways corresponds to the m ni num of the maxi mum possi ble (TCP-NCR s
DupThresh) and the maxi num nmeasured reordering extent since the |ast
RTO. The reordering extent used by TCP-aNCR is by itself not a
static absolute reordering extent, but a relative reordering extent
(see Section 4).

4. Appropriate Detection and Quantification Al gorithns

If the TCP-aNCR algorithmis inplenented at the TCP sender, it MJST
be inplemented together with an appropri ate packet reordering
detection and quantification algorithmthat is specified in a
standards track or experinental RFC.

Desi gners of reordering detection algorithns who want their
algorithms to work together with the TCP-aNCR al gorithm SHOULD reuse
the variable 'ReorExtR (relative reordering extent) with the
semanti cs and defined val ues specified in

[1-D. zi mernmann-tcpmreordering-detection]. A 'ReorExtR given by
the detection algorithmholds a value ranging fromO to 1 which holds
the new neasured reordering sanple as a fraction of the data in

Zi mrer mann, et al. Expires May 14, 2015 [ Page 7]



I nternet-Draft TCP- aNCR Novenber 2014

flight. TCP-aNCR then saves this new fraction if it is greater than
the current val ue.

5. The TCP-aNCR Al gorithm

When both the Nagl e al gorithm [RFC0896] [RFC1122] and the TCP

Sel ective Acknow edgnent Option [RFC2018] are enabled for a
connection, a TCP sender MAY enploy the followi ng TCP-aNCR al gorithm
to dynanically adapt TCP' s congestion control and | oss recovery

[ RFC5681] to the currently perceived packet reordering on the network
pat h.

Wthout the Nagle algorithm there is no straightforward way to
accurately cal cul ate the nunber of outstanding segnents in the
network (and, therefore, no good way to derive an appropriate
DupThresh) without adding state to the TCP sender. A TCP connection
that does not use the Nagle al gorithm SHOULD NOT use TCP-aNCR. The
adaptation of TCP-aNCR to an inplenmentation that carefully tracks the
sequence nunbers transmtted in each segnent is considered future

wor K.

A necessary prerequisite for TCP-aNCR s adaptability is that a TCP
sender has enabl ed an appropriate detection and quantification
algorithmthat conplies with the requirenents defined in Section 4.
If such an algorithmis either non-existent or not used, the behavior
of TCP-aNCR is conpletely anal ogous to the TCP-NCR al gorithm as
defined in [RFC4653]. |If a TCP sender does inplenment TCP-aNCR, the

i mpl ementati on MUST fol l ow the various specifications provided in
Sections 5.1 to 5.7.

5.1. Initialization during Connection Establishnent
After the conpletion of the TCP connection establishment, the
followi ng state constants and variables MJST be initialized in the
TCP transm ssion control block for the given TCP connection
(C.1) Depending on which variant of Extended Limited Transmt should
be executed, the constant LT _F MJUST initialized as foll ows.
For Careful Extended Limited Transnit:
LT F =2/3
For Aggressive Extended Limted Transmt:

LT F =1/2

This constant reflects the fraction of outstanding data
(including data sent during Extended Limted Transmit) that

Zi mrer mann, et al. Expires May 14, 2015 [ Page 8]



I nternet-Draft TCP- aNCR Novenber 2014

must be SACKed before a retransmission is at the | atest
triggered.

(C.2) |If TCP-aNCR should adaptively adjust the DupThresh to the
current perceived packet reordering on the network path, then
the variable "ReorExtR, which stores the maxinmumrel ative
reordering extent, MJST initialized as:

ReorExtR = 0

O herwi se the dynanically adaptation of TCP-aNCR SHOULD be
di sabl ed by setting

ReorEXtR = -1

A relative reordering extent of O results in the standard
DupThresh of three duplicate ACKs, as defined in [ RFC5681]. A
fixed relative reordering extent of -1 results in the TCP-NCR
behavi or from [ RFC4653] .

5.2. Initializing Extended Limted Transmnit
If the SACK scoreboard is enpty upon the receipt of a duplicate ACK
(i.e., the TCP sender has received no SACK information fromthe
receiver), a TCP sender MJST enter Extended Limted Transnmit by

initialize the following five state variables in the TCP Transm ssion
Control Bl ock

(1.1) The TCP sender MJST save the current outstandi ng data:
Fl i ght Si zePrev = FlightSize

(1.2) The TCP sender MJST save the hi ghest sequence nunber
transmtted so far:

recover = SND. NXT - 1
Note: The state variable 'recover’ from|[RFC6582] can be
reused, since NewReno TCP uses 'recover’ at the initialization

of a loss recovery procedure, whereas TCP-aNCR uses 'recover’
*pef ore* | oss recovery.

(1.3) The TCP sender MUST initialize the variable ’skipped that
tracks the nunber of segnents for which an ACK does not
trigger a transm ssion during Careful Limted Transnmit:

skipped = 0

Zi mrer mann, et al. Expires May 14, 2015 [ Page 9]



I nternet-Draft TCP- aNCR Novenber 2014

During Aggressive Limted Transmt, ’skipped is not used.

(I.4) The TCP sender MJST set DupThresh based on the current
Fl i ght Si ze:

DupThresh = max (LT_F * (FlightSize / SM5S), 3)

The | ower bound of DupThresh = 3 is kept from [ RFC5681]
[ RFC6675] .

(1.5) If (ReorExtR != -1) holds, then the TCP sender MJST set
DupThresh based on the relative reordering extent 'ReorExtR :

DupThresh =
max (mn (DupThresh,
Reor ExtR * (FlightSizePrev /| SM5S)), 3)

In addition to the above steps, the incom ng ACK MIST be processed
with the (E) series of steps in Section 5.3.

5.3. Executing Extended Limted Transmnit

On each ACK that a) arrives after TCP-aNCR has entered the Extended
Limted Transmit phase (as outlined in Section 5.2) *and* b) carries
new SACK i nformation, *and* c) does *not* advance the cumnul ative ACK
poi nt, the TCP sender MJST use the follow ng procedure.

(E.1) The TCP sender MJST update the SACK scoreboard and uses the
Set Pi pe() procedure from[RFC6675] to set the 'pipe’ variable
(which represents the nunber of bytes still considered "in the
network”). Note: the current value of DupThresh MJST be used
by Set Pi pe() to produce an accurate assessnent of the anount
of data still considered in the network.

(E.2) The TCP sender MJST initialize the variable 'burst’ that
tracks the nunber of segnents that can at nost be sent per ACK
to the size of the Initial Wndow (IW [RFC5681]:

burst = IW

(E.3) If a) (cwnd - pipe - skipped >= 1 * SMSS) holds, *and* b) the
recei ve wi ndow (rwnd) allows to send SMSS bytes of previously
unsent data, *and* c) there are SM5SS bytes of previously
unsent data available for transm ssion, then the TCP sender
MUST transnmit one segnent of SMSS bytes. Oherw se, the TCP
sender MUST skip to step (E. 7).

Zi mrer mann, et al. Expires May 14, 2015 [ Page 10]



I nternet-Draft TCP- aNCR Novenber 2014

(E.4) The TCP sender MJST increnent ’pipe by SMSS bytes and MJST
decrenent 'burst’ by SMSS bytes to reflect the newy
transmitted segnent:

pi pe = pi pe + SM5S
burst = burst - SMsS

(E.5) If Careful Limted Transmt is used, 'skipped MJIST be
i ncrenmented by SMSS bytes to ensure that the next SMSS bytes
of SACKed data processed do not trigger a Limted Transnmit
transm ssi on.

ski pped = ski pped + SMSS

(E.6) If (burst > 0) holds, the TCP sender MJST return to step (E. 3)
to ensure that as many bytes as appropriate are transnitted.
O herwise, if nore than | Wbytes were SACKed by a single ACK
the TCP sender MJST skip to step (E. 7). The additional anmount
of data beconmes avail abl e again by the next received duplicate
ACK and the re-execution of SetPipe().

(E.7) The TCP sender MJST save the maxi mum anount of data that is
considered to have been in the network during the last RTT:

pi pe_max = max (pipe, pipe_max)

(E.8) The TCP sender MJST set DupThresh based on the current
Fl i ght Si ze:

DupThresh = max (LT_F * (FlightSize / SM5S), 3)

The | ower bound of DupThresh = 3 is kept from [ RFC5681]
[ RFC6675] .

(E-9) If (ReorExtR!= -1) holds, then the TCP sender MJST set
DupThresh based on the relative reordering extent 'ReorExtR :

DupThresh =
max (mn (DupThresh,
Reor ExtR * (FlightSizePrev /| SM5S)), 3)

5.4. Termnating Extended Limted Transmt
On the receipt of a duplicate ACK that a) arrives after TCP-aNCR has
entered the Extended Limted Transnit phase (as outlined in

Section 5.2) *and* b) advances the cunul ati ve ACK point, the TCP
sender MUST use the foll owi ng procedure.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 11]



I nternet-Draft TCP- aNCR Novenber 2014

The arrival of an acceptable ACK that advances the cumul ative ACK
point while in Extended Limted Transnit, but before |oss recovery is
triggered, signals that a series of duplicate ACKs was caused by
reordering and not congestion. Therefore, Extended Limited Transmit
will be either terminated or re-entered.

(T.1) If the received ACK extends not only the cumul ati ve ACK poi nt,
but *al so* carries new SACK information (i.e., the ACKis both
an acceptable ACK and a duplicate ACK), the TCP sender MJST
restart Extended Linmted Transmit and MJUST go to step (T.2).

O herwi se, the TCP sender MJST ternminate it and MJUST skip to
step (T.3).

(T.2) If the Cunul ative Acknow edgrment field of the received ACK
covers nore than 'recover’ (i.e., SEG ACK > recover), Extended
Limted Transmit has transmtted one cwnd worth of data
wi t hout any | osses and the TCP sender MJST update the
followi ng state vari abl es by

Fl i ght Si zePrev = pi pe_nax
pi pe_nmax = 0

and MJUST go to step (1.2) to re-start Extended Linited
Transmit. Oherwise if (SEG ACK <= recover) holds, the TCP
sender MJST go to step (1.3). This ensures that in the event
of a loss the cwnd reduction is based on a current val ue of
Fl i ght Si zePr ev.

The followi ng steps are executed only if the received ACK does *not*
carry SACK information. Extended Limted Transmit will be
t er m nat ed.
(T.3) A TCP sender MJUST set ssthresh to:
ssthresh = max (cwnd, ssthresh)
This step provides TCP-aNCR with a sense of "history". If the
next step (T.4) reduces the congestion window, this step
ensures that TCP-aNCR will slowstart back to the operating
point that was in effect before Extended Limited Transmit.
(T.4) A TCP sender MJIST reset cwnd to:
cwnd = FlightSize + SMSS
This step ensures that cwnd is not significantly larger than

the amount of data outstanding, a situation that woul d cause a
line rate burst.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 12]



I nternet-Draft TCP- aNCR Novenber 2014

(T.5) A TCPis nowpernmtted to transmt previously unsent data as
all owed by cwnd, FlightSize, application data availability,
and the receiver’s advertised w ndow

5.5. Entering Loss Recovery

The receipt of an ACK that results in deem ng the ol dest outstanding
segnent is lost via the algorithns in [ RFC6675] term nates Extended
Limted Transmit and initializes the | oss recovery according to

[ RFC6675]. One slight change to either [RFC6675], or, if
Proportional Rate Reduction (PRR) algorithmis used, to [ RFC6937]
MUST be nade, however.

(Ret) If the PRR algorithmis used to cal cul ate how nmany bytes
shoul d be sent in response to each ACK, the initalization of
"RecoverFS' in Section 3 of [ RFC6937] MJST be changed to:

Recover FS = Fl i ght Si zePrev

O herwise, if the standard Fast Recovery algorithmis used
step (4.2) of [RFC6675] MJUST be changed in Section 5 to:

ssthresh = cwnd = (FlightSizePrev / 2)

Thi s change ensures that the congestion control nodifications

are nade with respect to the anpbunt of data in the network

before FlightSize was increased by Extended Limted Transnit.
Once the algorithmin [ RFC6675] takes over from Extended Linited
Transmit, the DupThresh val ue MJUST be held constant until the |oss
recovery phase term nates

5.6. Reordering Extent

Whenever the additional detection and quantification algorithm(see
Section 4) detects and quantifies a new reordering event, the TCP
sender MJST update the state variable 'ReorExtR .

(Ext) Let 'ReorExtR New the newy deternined relative reordering
extent:

ReorExtR = min (max (Reor Ext R, Reor Ext R_New), 1)
5.7. Retransnission Tineout
The expiration of the retransm ssion tinmer SHOULD be interpreted as

an indication of a path characteristics change, and the TCP sender
SHOULD reset DupThresh to the default value of three

Zi mrer mann, et al. Expires May 14, 2015 [ Page 13]



I nternet-Draft TCP- aNCR Novenber 2014

6

(RTO If an RTO occurs and (ReorExtR = -1) (i.e. TCP-aNCR is used
and not TCP-NCR), then a TCP sender SHOULD reset 'ReorExtR :

ReorExtR = 0
Prot ocol Steps in Detai

Upon the receipt of the first duplicate ACK in the 'open’ state (the
SACK scoreboard is enpty), the TCP sender starts to execute TCP-aNCR
by entering the 'disorder’ state and the initialization of Extended
Limted Transnmit. First, the TCP sender saves the current anount of
out standi ng data as well as the highest sequence nunber transnitted
so far (SND.NXT - 1) (steps (l1.1) and (1.2)). In addition, if the
TCP connection uses the careful variant of the Extended Carefu
Limted Transmit (step (C. 1)), the ’'skipped variable, which tracks
t he nunber of segnents for which an ACK does not trigger a

transm ssion during Careful Limted Transnmit, is initialized with
zero (step (1.3)). The last step during the initialization is the
determ nati on of DupThresh. Depending on whether TCP-aNCR has been
configured during the connection establishnment to adaptively adjust
to the currently perceived packet reordering on the path (step
(C.2)), DupThresh is either deternined exclusively based on the
current FlightSize (as TCP- NCR [ RFC4653] does) or, in addition, also
based on the relative extent reordering (steps (1.4) and (1.5)).

Dependi ng on which variant of Extended Limted Transnmit should be
executed, the constant LT_F nust be set accordingly (step (C 1)).
This constant reflects the fraction of outstanding data (including
data sent during Extended Limted Transnmit) that must be SACKed
before a retransmission is triggered at the latest (which is the case
when a DupThresh that is based on relative reordering extent is

| arger then TCP-NCR s DupThresh). Since Aggressive Limted Transmt
sends a new segnment for every segnent known to have left the network,
a total of approximately cwnd segnents will be sent, and therefore
ideally a total of approximately 2*cwnd segnents will be outstanding
when a retransnission is finally triggered. DupThresh is then set to
LT F = 1/2 of 2*cwnd (or about 1 RTT's worth of data) (see step
(1.4)). The factor is different for Careful Limted Transnit,
because the sender only transnits one new segnent for every two
segnents that are SACKed and therefore will ideally have a total of
maxi mum of 1.5*cwnd segnents outstanding when the retransmission is
triggered. Hence, the required threshold is LT F=2/3 of 1.5*cwnd to
del ay the retransnmission by roughly 1 RTT.

For each duplicate ACK received in the 'disorder’ state, which is not
an acceptable ACK, i.e., it carries new SACK i nformation, but does
not advance the cunul ati ve ACK point, Extended Linited Transmt is
executed. First, the SACK scoreboard is updated and based on the

Zi mrer mann, et al. Expires May 14, 2015 [ Page 14]



I nternet-Draft TCP- aNCR Novenber 2014

current value of DupThresh, the amount of outstanding data (step
(E.1)). Furthernore, the state variable 'burst’ that indicates the
nunber of segments that can be sent at nost for of each received ACK
is initialized to the size of the initial w ndow [ RFC6928] (step
E.2)). If nore than |Wbytes were SACKed by a single ACK, the
addi ti onal amount of data becones avail abl e again by the next

recei ved duplicate ACK and the re-execution of SetPipe() (step

(E. 1)).

Next, if new data is available for transm ssion and both the
congestion wi ndow and the receiver window allow to send SMSS bytes of
previously unsent data, a segment of SMSS bytes is sent (step (E 3)).
Subsequently, the corresponding state variables 'pipe , ’burst’ and -
optionally - ’'skipped are updated (steps (E.4) and (E.5)). [If, due
to the current size of the congestion and receiver w ndows (step
(E.2)), due to the current value of 'burst’ (step (E.5)), no further
segrment may be sent, the processing of the ACK is term nated.

Provi ded that the amount of data that is currently considered to be
in the network is greater than the previously stored one, this new
value is stored for later use (step (E.7)). Finally, to take into
account the new data sent, DupThresh is updated (steps (E 6) and

(E.7)).

The arrival of an acceptable ACK in the 'disorder’ state that
advances the cumul ati ve ACK point during Extended Limted Transmt
signals that a series of duplicate ACKs was caused by reordering and
not congestion. Therefore, the receipt of an acceptable ACK that
does not carry any SACK information terninates Extended Linmted
Transmit (step (T.1)). The slow start threshold is set to the

maxi mum of its current value and the current value of cwnd (step
(T.3)). Ownd itself is set to the current value of FlightSize plus
one segnent (step (T.4)). As a result, the congestion w ndow is not
significantly larger than the current anount of outstanding data, so
that a burst of data is effectively prevented. |If newdata is
avai |l abl e for transnission and both the new val ues of cwnd and rwnd
all ow to send SMSS bytes of previously unsent data, a segment is send
(step (T.5)).

On the other hand, if the received ACK acknow edges new data not only
cumul atively but also selectively - the ACK carries new SACK
information - Extended Linited Transmit is not terminated but re-
entered (step (T.1)). |If the Cumul ative Acknow edgnent field of the
recei ved ACK covers nore than ’recover’, one cwnd worth of data has
been transnmitted during Extended Limted Transmit w thout any packet

| oss. Therefore, FlightSizePrev, the anmount of outstanding data
saved at the beginning of Extended Limited Transnit (step (1.1)), is
consi dered outdated (step (T.2)). This step ensures that in the
event of packet loss, the reduction of the cwnd is based on an up-to-

Zi mrer mann, et al. Expires May 14, 2015 [ Page 15]



I nternet-Draft TCP- aNCR Novenber 2014

date val ue, which reflects the nunber of bytes outstanding in the
network (see Section 7). Finally, regardl ess of whether or not
"recover’ is covered, Extended Linited Transmt is re-entered.

The second case that leads to a ternination of Extended Limted
Transmit is the receipt of an ACK that signals via the algorithmin

[ RFC6675] that the ol dest outstanding segnent is considered lost. |If
ei ther DupThresh or nore duplicate ACKs are received, or the ol dest
out st andi ng segnment is deened |ost via the function IsLost() of

[ RFC6675], Extended Limited Transnit is term nated and SACK-based

| oss recovery is entered [ RFC6675]. Once the algorithmin [ RFC6675]
takes over from Extended Linmited Transmt, the DupThresh val ue MJST
be held constant until loss recovery is term nated. The process of

| oss recovery itself is not changed by TCP-aNCR  The only exception
is a slight change to either RFC 6675 [ RFC6675] or RFC 6937

[ RFC6937], depending on whether the PRR algorithmor the traditiona
Fast Recovery algorithmis used during | oss recovery. This change
ensures that the adjustment made by the congestion control - the cwnd
reducation - is made with respect to the initial anount of
outstanding data while Linmted Transmt Extended is executed (step
(Ret)). The use of FlightSize at this point would no | onger be valid
since the anmobunt of outstanding data may doubl e by executing Extended
Limted Transnit.

7. Di scussi on of TCP-aNCR

The specification of TCP-aNCR represents an increnmental update of RFC
4653 [ RFC4653]. Al changes nade by TCP-aNCR can be divided into two
categories. On one hand, they inplement TCP-aNCR s ability to
dynani cal | y adapted TCP congestion control and | oss recovery

[ RFC5681] to the currently perceived packet reordering on the network
path. These include the use of a variable DupThresh and the use of a
relative reordering extent. On the other hand, the changes that
basically correct weaknesses of the original TCP-NCR al gorithm and
whi ch are independent of TCP-aNCR adaptability. These include packet
reordering during slow start, the prevention of bursts, and the

persi stent receipt of SACKs.

7.1. Variable Duplicate Acknow edgrment Threshol d

The central point of the TCP-aNCR algorithmis the usage of a
DupThresh that is adaptable to the perceived packet reordering on the
networ k path. Based on the actual anmpbunt of outstanding data, TCP-
NCR s DupThresh represents roughly the | argest anmount of tine a Fast
Retransmit can safely be del ayed before a costly retransmni ssion
timeout may be triggered. Therefore, to avoid an RTO, TCP-aNCR s
reordering-aware DupThresh is an upper bound of the one calculated in
TCP-NCR (steps (1.5) and (E.9)). This decouples the avoi dance of

Zi mrer mann, et al. Expires May 14, 2015 [ Page 16]



I nternet-Draft TCP- aNCR Novenber 2014

spurious Fast Retransmits fromthe avoidance of RTGs. It allows TCP-
aNCR to react fast and efficiently to packet reordering. The
DupThresh al ways corresponds to the m ni num of the |argest possible
and | argest detected reordering. Wth constant packet reordering in
terns of the rate and del ay, TCP-aNCR gives a DupThresh based on the
relative reordering extent with an optinmal delay for every bandw dt h-
del ay-product. |If TCP-aNCR shoul d not adaptively adjust the
DupThresh to the current perceived packet reordering on the network
pat h (because for exanple an appropriate detection and quantification
algorithmis not inplenented), the dynanically adaptation of TCP-aNCR
can be disabled, so that TCP-aNCR behaves |ike TCP-NCR [ RFC4653].

7.2. Relative Reordering Extent

Whenever a new reordering event is detected and presented to TCP-aNCR
inthe formof a relative reordering extend 'ReorExtR , TCP-aNCR
saves and uses the new 'ReorExtR if it is larger than the old one
(step (EXT)). The upper bound of 1 assures that no excessively |arge
value is used. A 'ReorExtR |arger than one neans that nore than

Fl i ght Si ze bytes woul d have been received out-of-order before the
reordered segnent is received. The delay caused by the reordering is
thus longer than the RTT of the TCP connection. Since the RTIT is
roughly the time a Fast Retransnmit can safely be del ayed before the
retransm ssion has to be to avoid an RTO a maxi mum’ Reor Ext R of one
seens to be a suitable val ue.

The expiration of the retransm ssion tiner is interpreted by TCP-aNCR
as an indication of a change in path characteristics, hence, the
saved 'ReorExtR is assunmed to be outdated and will be invalidated
(step (RTO). As a consequence, the relative reordering extent
"Reor Ext R increases nmonotonically between two successive

retransm ssion tineouts and corresponds to the nmaxi num nmeasured
reordering extent since the last RTO. Oher approaches would be an
exponenti al | y-wei ght ed novi ng average (EWVA) or a histogram of the
last n reordering extents. The nmain drawback of an BEWVA is however
that on average half of the detected reordering events woul d be

| arger than the saved reordering extend. Thus, only half of the
spurious retransmits could be avoided. Applying an histogram could
| argely avoid the di sadvantages of an EWMA, however, it would result
in a not acceptable increase in nmenory usage.

In conbination with the invalidation after an RTO the advantage of
using maximumis the | ow conplexity as well as its fast convergence
to the actual nmaxi mumreordering on the network path. As a result,
the negative inpact that packet reordering has on TCP' s congestion
control and | oss recovery can be avoi ded. A disadvantage of using a
maxi mumis that if the delay caused by the reordering decreases over
the lifetime of the TCP connection, a Fast Retransmt is

Zi mrer mann, et al. Expires May 14, 2015 [ Page 17]



I nternet-Draft TCP- aNCR Novenber 2014

unnecessarily long del ayed. Nevertheless, since the negative inmpact
reordering has on TCP's congestion control and | oss recovery is nore
substantial than the disadvantage of a | onger delay, a decrease of

t he Reor Ext R between RTGs is considered i nappropriate.

7.3. Reordering during Slow Start

The arrival of an acceptable ACK during Extended Limted Transnmit
signals that previously received duplicate ACKs are the result of
packet reordering and not congestion, so that Extended Linited
Transmit is conpleted accordingly. Upon the ternination of Extended
Limted Transmit, and especially when using the Careful variant, TCP-
NCR (as well as TCP-aNCR) may be in a situation where the entire cwnd
is not being utilized. Therefore, to nmtigate a potential burst of
segnments, in step (T.2) TCP-NCR sets the slow start threshold to the
FlightSize that was saved at the begi nning of Extended Limted
Transmit [ RFC4653]. This step should ensure that TCP-NCR slow starts
back to the operating point in use before Extended Linmited Transmt.

Unfortunately, the assignment in step (T.2) is only correct if the
TCP sender already was in congestion avoidance at the time Extended
Limited Transnit was entered. OQherwise, if the TCP sender was
instead in slow start, the value of ssthresh is greater than the
saved FlightSize so that slow start prematurely concludes. This
behavi or can | eave nmuch of the network resources idle, and a | ong
time may needed in order to use the full capacity. To mtigate this

i ssue, TCP-aNCR sets the slow start threshold to the maxi mumof its
current value and the current cwnd (step (T.3)). This continues slow
start after a reordering event happening during slow start.

7.4. Preventing Bursts

In cases where a new single SACK covers nore than one segnent - this
can happen either due to packet |oss or packet reordering on the ACK
path - TCP-NCR [ RFC4653] sends an undesirable burst of data. TCP-
aNCR solves this problemby liniting the burst size - the maxi mum of
data that can send in response to a single SACK - to the Initia

W ndow [ RFC5681] whil e executing Extended Limted Transmit (steps
(E.2), (E 4), and (E.6)). Since IWrepresents the anount of data
that a TCP sender is able to send into the network safely without
knowi ng its characteristics, it is a reasonable value for the burst
size, too. If nmore than |Wbytes were SACKed by a single ACK, the
addi ti onal amount of data becones avail abl e again by the next

recei ved duplicate ACK. Thus, the transm ssion of new segnents is
spread over the next received ACKs, so that micro bursts - a
characteristic of packet reordering in the reverse path - are largely
conpensat ed.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 18]



I nternet-Draft TCP- aNCR Novenber 2014

Anot her situation that causes undesired bursts of segnents with TCP-
NCR is the recei pt of an acceptable ACK during Careful Extended
Limted Transmit. |If nultiple segnents froma single wi ndow of data
are del ayed by packet reordering, typically the first acceptable ACK
after entering the 'disorder’ state acknow edges data not only

curmul atively but also selectively. Hence, Extended Limted Transmt
is not termnated but re-started. |If the segnents are del ayed by the
reordering for alnobst one RTT, then the anpbunt of outstanding data in
the network (' pipe’) is approximately half the anount of data saved
at the beginning of Extended Linited Transmit (FlightSizePrev). |If
the sequence nunbers of the del ayed segnents are close to each other
in the sequence nunber space, the acceptabl e ACK acknow edges only a
smal | amount of data, so that FlightSize is still large. As a
result, TCP-NCR sets the cwnd to FlightSizePrev in step (T.1). Since
"pipe’ is only half of FlightSizePrev due to Careful Extended Limted
Transmit, TCP-NCR sends a burst of alnost half a cwnd worth of data
in the subsequent step (T.3).

Note: Even in the case the sequence nunbers of the del ayed segnents
are not close to each other in the sequence nunber space and cwnd is
set in step (T.1) to FlightSize + SM5S, a burst of data will energe
due to re-entering Extended Linited Transmit, because TCP-NCR sets
"skipped to zero in step (1.2) and uses FlightSizePrev in step

(E. 2).

TCP-aNCR prevents such a burst by making a clear differentiation
between terninating Extended Linted Transnit and a restarting
Extended Limted Transnmit (step T.1). Only the first case causes the
congestion window to be set to the current FlightSize plus one
segment. In the latter case, when re-entering Extended Limted
Transmit, the congestion wi ndow is not adjusted and the origina

(T.1) of the TCP-NCR specification is omtted. The transnission of
new data is then only perforned after re-entering Extended Linmted
Transmit in step (E 2) of the TCP-aNCR specification, where the
actual burst mitigation takes place.

7.5. Persistent receiving of Selective Acknow edgnments

In sone inconvenient cases it could happen that a TCP sender
persistently receives SACK information due to reordering on the
network path, e.g., if the segnents are often and/or |engthy del ayed
by the packet reordering. Wth TCP-NCR, the persistent reception of
SACKs causes Extended Linmited Transmit to be entered with the first
recei ved duplicate ACK but never to be termnated if no packet |oss
occurs - for every received ACK, TCP-NCR either follows steps (E. 1)
to (E.6) or steps (T.1) to (T.4). In particular, TCP-NCR executes a)
for every acceptable ACK step (T.4) and b) at any time step (1.1)

Zi mrer mann, et al. Expires May 14, 2015 [ Page 19]



I nternet-Draft TCP- aNCR Novenber 2014

again. Hence, the amount of outstanding data saved at the begi nning
of Extended Limted Transnit, FlightSizePrev, is never updated.

An emerging problemin this context is that during Extended Limted
Transmit TCP-NCR deternines the transm ssion of new segnents in step
(E.2) solely on the basis of FlightSizePrev, so that an interim

i ncrease of the cwnd is not considered (according to [ RFC5681], the
congestion window is increased for every received acceptabl e ACK t hat
advances the cunul ative ACK point, no matter if it carries SACK
information or not). As a result, TCP-NCR can only very slowy
determine the avail able capacity of the comunication path.

TCP- aNCR addresses this problemby Iimting the anount of data that
is allowed to be sent into the network during Extended Linited
Transmit not on the basis of FlightSizePrev, but on the size of the
congestion wi ndow. The equation in step E. 3 of the TCP-aNCR
specification is therefore equal to the one used in [RFC6675] (except
for the ’skipped variable). |If an acceptable ACK is received during
the execution of Extended Limted Transmit, re-entering Extended
Limted Transnmit nekes any increase in cwnd i nmedi ately avail abl e.
Hence, even in the case when persistently receiving SACKs, the
avai |l abl e capacity of the communication path can be determ ned

qui ckl y.

Anot her problemresulting frompersistently receiving SACKs, and
which is related to the increase in cwnd in response to received
acceptable ACKs, is the reduction of cwnd due to a packet |oss. Wen
a packet is considered | ost, the congestion control adjustnent is
done with respect to the anobunt of outstanding data at the beginning
of Extended Limted Transnit, FlightSizePrev (step (Ret)). As in the
previ ous case, an increase in cwnd is again not taken into account.

A sinmple solution to the problemwould be to performthe w ndow
reduction not on the basis of FlightSizePrev but anal ogous to step
(E.2) based on the current size of cwnd

A problemwith this solution is that cwnd can potentially be

i ncreased, although the TCP connection is limted by the application
and not by cwnd. Although [ RFC2861] specifies that an increase of
cwnd is only applicable if cwnd is fully utilized, this behavior is
not specified by any standards track docunent. But even this
conservative increase behavior is guaranteed to not be conservative
enough. If, froma single wi ndow of data, both segnents are del ayed
but also lost, cwnd would first be increased in response to each
recei ved acceptabl e ACKs, whil e subsequently reduced due to the | ost
segnments, which would not result in a halving of the cwnd any nore.

The sol ution proposed by TCP-aNCR reuses the state variable 'recover’
from[ RFC6582] and adapts the approach taken by NewReno TCP and SACK

Zi mrer mann, et al. Expires May 14, 2015 [ Page 20]



I nternet-Draft TCP- aNCR Novenber 2014

TCP to detect, with help of the state variable, the end of one |oss
recovery phase properly, allowing to recover nmultiple | osses froma
singl e window of data efficiently. Therefore, by entering the
"disorder’ state and the starting Extended Linmited Transmit, TCP-aNCR
saves the hi ghest sequence number sent so far in 'recover’. |If a
recei ved acceptabl e ACK covers nore than ’'recover’, one cwnd' s worth
of data has been transmitted during Extended Limted Transmit w thout
any packet |loss. Hence, FlightSizePrev can be updated by ’pipe_nax’,
whi ch reflects the maxi num amount of data that is considered to have
been in the network during the last RTT. This update takes an
interimincrease in cwnd into account, so that in case of packet

| oss, the reduction in cwnd can be based on the current val ue of

Fl i ght Si zePrev.

8. Interoperability |ssues

TCP- aNCR requires that both the TCP Sel ective Acknow edgnent Option
[ RFC2018] as well as a SACK-based | oss recovery scheme conpatible to
one given in [RFC6675] are used by the TCP sender. Hence,
conpatibility to both specifications is REQU RED

8.1. Early Retransnit

The specification of TCP-aNCR in this docunent and the Early
Retransmit algorithmspecified in [ RFC5827] define orthogonal nethods
to nodify DupThresh. Early Retransnit allows the TCP sender to
reduce the nunber of duplicate ACKs required to trigger a Fast
Retransmit bel ow the standard DupThresh of three, if FlightSize is

| ess than 4*SMSS and no new segnent can be sent. |n contrast, TCP-
aNCR al l ows, starting fromthe mninumof three duplicate ACKs, to

i ncrease the DupThresh beyond the standard of three duplicate ACKs to
make TCP nore robust to packet reordering, if the anount of
outstanding data is sufficient to reach the increased DupThresh to
trigger Fast Retransnit and Fast Recovery.

8.2. Congestion W ndow Validation

The increase of the congestion wi ndow during application-linted
periods can lead to an invalidation of the congestion wi ndow, in that
it no longer reflects current information about the state of the
network, if the congestion wi ndow nmi ght never have been fully
utilized during the last RTT. According to [ RFC2861], the congestion
wi ndow shoul d, first, only be increased during slowstart or
congestion avoidance if the cwnd has been fully utilized by the TCP
sender and, second, gradually be reduced during each RTT in which the
cwnd was not fully used

Zi mrer mann, et al. Expires May 14, 2015 [ Page 21]



I nternet-Draft TCP- aNCR Novenber 2014

A problemthat arises in this context is that during Careful Extended
Limted Transmit, cwnd is not fully utilized due to the variable

"ski pped’ (see step (E.3)), so that - strictly follow ng [ RFC2861] -
t he congesti on wi ndow shoul d not be increased upon the receipt of an
acceptable ACK. A trivial solution of this problemis to include the
vari abl e ’'skipped’ in the calculation of [RFC2861] to determn ne

whet her the congestion windowis fully utilized or not.

8.3. Reactive Response to Packet Reordering

As a proactive scheme with the aimto a priori prevent the negative

i mpact that packet reordering has on TCP, TCP-aNCR can conceptual |y
be conmbined with any reactive response to packet reordering, which
attenpts to nmitigate the negative effects of reordering a posteriori
This is because the nodifications of TCP-aNCR to the standard TCP
congestion control and | oss recovery [ RFC6675] are inplenented in the
"disorder’ state and are perforned by the TCP sender before it enters
| oss recovery, while reactive responses to packet reordering operate
generally after entering | oss recovery, by undoing the unnecessarily
changes to the congestion control state.

I f unnecessary changes to the congestion control state are undone
after loss recovery, which is typically the case if a spurious Fast
Retransmit is detected based on the DSACK option [ RFC3708] [ RFC4015],
since first ACK carrying a DSACK option usually arrives at a TCP
sender only after |oss recovery has already ternminated, it night
happen that the restoring of the original value of the congestion
wi ndow is done at a tinme at which the TCP sender is already back in
again in the 'disorder’ state and executing Extended Linited
Transmit. VWile this is basically conpatible with the TCP-aNCR
specification - the undo sinply represents an increase of the
congesti on wi ndow - however, sone care nust be taken that the

conbi nation of the algorithns does not |ead to unwanted behavi or

8.4. Buffer Auto-Tuning

Al t hough all nodifications of the TCP-aNCR al gorithm are inpl emented
in the TCP sender, the receiver also potentially has a part to play.
If sone segnents froma single window of data are del ayed by the
packet reordering in the network, all segnents that are received in
out - of -order have to be queued in the receive buffer until the holes
i n sequence nunmber space have been closed and the data can be
delivered to the receiving application. 1In the worst case, which
occurs if the TCP sender uses Aggressive Linmted Transmt and the
reordering delay is close to the RTT, TCP-aNCR i ncreases the
receiver’'s buffering requirenment by up to an extra cwnd. Therefore,
to maxinize the benefits from TCP-aNCR, receivers should advertise a
| arge wi ndow - ideally by using buffer auto-tuning algorithnms - to

Zi mrer mann, et al. Expires May 14, 2015 [ Page 22]



I nternet-Draft TCP- aNCR Novenber 2014

absorb the extra out-of-order data. |In the case that the additiona
buffer requirenents are not net, the use of the above al gorithmtakes
into account the reduced advertised wi ndow - with a correspondi ng

| oss in robustness to packet reordering.

9. Rel ated Wrk

Over the past few years, several solutions have been proposed to

i mprove the perfornmance of TCP in the face of packet reordering.
These schenes generally fall into one of two categories (with some
overlap): mechanisnms that try to prevent spurious retransmts from
happeni ng (proactive schenes) and nmechanisns that try to detect
spurious retransmits and undo the needl ess congestion control state
changes that have been taken (reactive schenes).

[1-D. blanton-tcp-reordering], [ZKFP0O3] and [LM)5] attenpt to prevent
packet reordering fromtriggering spurious retransmits by using
various algorithns to approximate the DupThresh required to

di sanbi guate | oss and reordering over a given network path at a given
time. This basic principle is also used in TCP-aNCR. Wil e

[1-D. blanton-tcp-reordering] describes four basic approaches on how
to increase the DupThresh and di scusses pros and cons of these
approaches, presents [ZKFP0O3] a relatively conplex al gorithmthat
saves the reordering extents in a histogram and cal cul ates the
DupThresh in a way that a certain percentage of sanples is snmaller
then the DupThresh. [LM)5] uses an EWVA for the same purpose. Both
al gorithnms do not prevent all the spurious retransm ssions by design

In contrast to the above nentioned al gorithms Linux [Linux]

i mpl ements a proactive schenme by setting the DupThresh to the hi ghest
detected reordering and resets only upon an RTO To avoid a costly
retransm ssion tineout due to the increased DupThresh Li nux

i mpl ements first an extension of the Limted Transnit al gorithm
second limts the DupThresh to an upper bound of 127 duplicate ACKs,
and third prematurely enters |oss recovery if too few segnents are
in-flight to reach the DupThresh and no additional segnents can send.
Especially the |l ast change is comrendabl e since, besides TCP-NCR
none of the described algorithns in this section nention a simlar
concern

[ BHLLOO6] and [ BSRV04] presents proactive schenes based on timers by
whi ch the DupThresh is ignored altogether. After the timer is
expired TCP initialize the |loss recovery. In [BSRV04] this timer has
a length of one RIT and is started when the first duplicate ACK is
recei ved, whereas the approach taken in [BHLLQ06] solely relies on
timers to detect packet |oss without taking into account any other
congestion signals such as duplicate ACKs. It assigns each segnent

Zi mrer mann, et al. Expires May 14, 2015 [ Page 23]



I nternet-Draft TCP- aNCR Novenber 2014

send a tinestanp and retransnmts the segnent if the corresponding
tinmer fires.

TCP-NCR [ RFC4653] tries to prevent spurious retransmits sinilar to
[1-D.blanton-tcp-reordering] or [ZKFP0O3] as it del ays a

retransm ssion to di sanbi guate | oss and reordering. However, TCP-NCR
takes a sinplified approach by sinply delay a retransmi ssion by an
anount based on the current cwnd (in conparison to standard TCP)
whil e the other schenes use relatively conplex algorithns in an
attenpt to derive a nore precise value for DupThresh that depends on
the current patterns of packet reordering. Mny of the features

of fered by TCP-NCR have been taken into account while designing TCP-
aNCR.

Besi des the proactive schenes, several other schenes have been

devel oped to detect and mitigate needl ess retransmi ssions after the
fact. The Eifel detection algorithm][RFC3522], the detection based
on DSACKs [ RFC3708], and F-RTO schene [ RFC5682] represent approaches
to detect spurious retransm ssions, while the Eifel response

al gorithm [ RFC4015], [I-D. blanton-tcp-reordering], and Linux [Linux]
present respectively inplenment algorithnms to mitigate the changes
these events made to the congestion control state. As discussed in
Section 8.3 TCP-aNCR coul d be used in conjunction with these
algorithms, with TCP-aNCR attenpting to prevent spurious retransnits
and sone other schene kicking in if the prevention failed.

10. | ANA Consi derations
This meno includes no request to | ANA
11. Security Considerations

By taking dedicated actions so that the perceived packet reordering
in the network is either underestimating or overestimating by the use
of an relative and absolute reordering, an attacker or nisbehaving
TCP receiver has in regards to TCP' s congestion control two options
to bias a TCP-aNCR sender. An underestimation of the present packet
reordering in the network occursi, if for exanple, a m sbehaving TCP
recei ver al ready acknow edges segnents while they are actually stil
in-flight, causing holes premature are closed in the sequence numnber
space of the SACK scoreboard. Wth regard to TCP-aNCR the result of
an underesti mated packet reordering is a too small DupThresh
resulting in a premature | oss recovery execution. In context of
TCP' s congestion control the effects of such attacks are linmted
since the | ower bound of TCP-aNCR s DupThresh is the default val ue of
three duplicate ACKs [ RFC5681], so that in worst case TCP-aNCR
behaves equal to TCP SACK [ RFC6675] .

Zi mrer mann, et al. Expires May 14, 2015 [ Page 24]



I nternet-Draft TCP- aNCR Novenber 2014

12.

13.

13.

In contrast to an underestimation, an overestimation of the packet
reordering in the network occurs, if for exanple, a m sbhehaving TCP
receiver still further send SACKs for subsequent segnments before it
sends an acceptable ACK for the actually already received del ayed
segrment, so that the hole in the sequence nunber space of the SACK
scoreboard is later closed. |In the context of TCP-aNCR the result of
such an overestimation is a too |large DupThresh, so that in the case
of a packet loss TCP's | oss recovery is executed |ater than
necessary. Similar to the previous case, the effects of del ayed
entry into the loss recovery are linited because on the one hand TCP-
NCR s DupThresh is used as an upper bound for TCP-aNCR s vari abl e
DupThresh so that the entrance to the | oss recovery and the
adaptati on of the congestion wi ndow may be del ayed at npbst one RITT.
On the other hand, such a limted delay of the congestion contro

adj ustnent has even in the worst case only a linmted inpact on the
performance of TCP connection and has generally been regarded as safe
for use on the Internet [BBFSO1].

Acknow edgnent s

The authors would like to thank Daniel Slot for his TCP-NCR

i mpl ementation in Linux. W also thank the flowgrind [Fl owgrind]

aut hors and contributors for here perfornmance neasurenent tool, which
give us a powerful tool to analyze TCP's congestion control and |oss
recovery behavior in detail

Ref er ences
1. Nornmtive References

[1-D.zi mrer mann-t cpm r eor deri ng-det ecti on]
Zi mrermann, A., Schulte, L., WIff, C, and A Hannermann
"Detection and Quantification of Packet Reordering wth
TCP", draft-zinmrermann-tcpmreordering-detection-01 (work
in progress), Novenber 2013

[ RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[ RFC2018] Mathis, M, Mhdavi, J., Floyd, S., and A Ronmanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, COctober 1996

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[ RFC3042] Al lman, M, Bal akrishnan, H, and S. Floyd, "Enhancing
TCP's Loss Recovery Using Linmited Transmit", RFC 3042,
January 2001.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 25]



I nternet-Draft TCP- aNCR Novenber 2014

[ RFC4653] Bhandarkar, S., Reddy, A, Allman, M, and E. Bl anton,
"I mprovi ng the Robustness of TCP to Non-Congestion
Events", RFC 4653, August 2006.

[ RFC5681] Al lman, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

[ RFC6582] Henderson, T., Floyd, S., @Qurtov, A, and Y. N shida, "The
NewReno Modification to TCP's Fast Recovery Al gorithni,
RFC 6582, April 2012.

[ RFC6675] Blanton, E., Allman, M, Wang, L., Jarvinen, |., Kojo, M,
and Y. Nishida, "A Conservative Loss Recovery Algorithm
Based on Sel ective Acknow edgnent (SACK) for TCP', RFC
6675, August 2012.

[ RFC6928] Chu, J., Dukkipati, N, Cheng, Y., and M Mathis,
"Increasing TCP's Initial Wndow', RFC 6928, April 2013.

[ RFC6937] Mathis, M, Dukkipati, N, and Y. Cheng, "Proportional
Rat e Reduction for TCP', RFC 6937, My 2013.

13.2. Infornmtive References

[ BBFS01] Bansal, D., Bal akrishnan, H, Floyd, S., and S. Shenker,
"Dynami ¢ Behavior of Slowy Responsive Congestion Control
Al gorithns", Proceedings of the Conference on
Applications, Technol ogi es, Architectures, and Protocols
for Computer Conmunication (SIGCOW 01) pp. 263-274,
Sept enber 2001.

[ BHLLOO6] Bohacek, S., Hespanha, J., Lee, J., Lim C, and K
Cbraczka, "A New TCP for Persistent Packet Reordering",
| EEE/ ACM Tr ansacti ons on Networking vol. 2, no. 14, pp.
369-382, April 2006.

[ BSRV04] Bhandar kar, S., Sadry, N., Reddy, A, and N. Vaidya, "TCP-
DCR: A Novel Protocol for Tolerating Wrel ess Channel
Errors", | EEE Transactions on Mobile Conputing vol. 4, no.
5., pp. 517-529, Septenber 2005.

[ Fl owgri nd]
"Fl owgri nd Home Page", <http://ww.fl owgrind. net>.

[1-D. blanton-tcp-reordering]
Bl anton, E., Dinond, R, and M Allman, "Practices for TCP
Senders in the Face of Segment Reordering", draft-blanton-
tcp-reordering-00 (work in progress), February 2003.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 26]



I nternet-Draft TCP- aNCR Novenber 2014

[ LMD5] Leung, C. and C. Ma, "Enhancing TCP Perfornmance to
Persi stent Packet Reordering", KICS Journal of
Conmuni cati ons and Networks vol. 7, no. 3, pp. 385-393,
Sept enber 2005.

[ Li nux] "The Linux Project", <http://ww.kernel.org>.

[ RFC0896] Nagle, J., "Congestion control in | P/ TCP internetworks",
RFC 896, January 1984.

[ RFC1122] Braden, R, "Requirenents for Internet Hosts -
Conmuni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[ RFC2861] Handl ey, M, Padhye, J., and S. Floyd, "TCP Congestion
W ndow Val i dation", RFC 2861, June 2000.

[ RFC2960] Stewart, R, Xie, Q, Mrneault, K, Sharp, C,
Schwar zbauer, H., Taylor, T., Rytina, I., Kalla, M,
Zhang, L., and V. Paxson, "Stream Control Transm ssion
Protocol ", RFC 2960, Cctober 2000.

[ RFC3522] Ludwig, R and M Meyer, "The Eifel Detection Al gorithm
for TCP', RFC 3522, April 20083.

[ RFC3708] Blanton, E. and M Al lman, "Using TCP Duplicate Sel ective
Acknowl edgenent (DSACKs) and Stream Control Transm ssion
Prot ocol (SCTP) Duplicate Transm ssion Sequence Nunbers
(TSNs) to Detect Spurious Retransm ssions", RFC 3708,
February 2004.

[ RFC4015] Ludwig, R and A Gurtov, "The Eifel Response Al gorithm
for TCP', RFC 4015, February 2005.

[ RFC5682] Sarolahti, P., Kojo, M, Yamanoto, K, and M Hata,
"Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransm ssion Timeouts with TCP", RFC 5682,
Sept enber 2009.

[ RFC5827] Al man, M, Avrachenkov, K., Ayesta, U, Blanton, J., and
P. Hurtig, "Early Retransnmit for TCP and Stream Control
Transm ssion Protocol (SCTP)", RFC 5827, My 2010.

[ ZKFPO3] Zhang, M, Karp, B., Floyd, S., and L. Peterson, "RR-TCP:
A Reordering- Robust TCP wi th DSACK", Proceedings of the
11th I EEE I nternational Conference on Network Protocols
(ICNP' 03) pp. 95-106, Novenber 2003.

Zi mrer mann, et al. Expires May 14, 2015 [ Page 27]



I nternet-Draft TCP- aNCR Novenber 2014

Appendi x A.  Changes from previ ous versions of the draft

Thi s appendi x should be renoved by the RFC Editor before publishing
this docunment as an RFC

A.1. Changes fromdraft-zi nmermann-tcpmreordering-reaction-01
0 Specify interaction between TCP-aNCR and PRR
0 Fix typo in DupThresh calculation (steps |I.5 and E. 9).

A. 2. Changes fromdraft-zi nmer mann-tcpmreordering-reaction-00
0 |Inproved the wording throughout the docunent.
0 Replaced and updated sone references.

Aut hors’ Addresses

Al exander Zi mrer mann
Net App, I nc.
Sonnenal l ee 1

Ki rchhei m 85551

Ger many

Phone: +49 89 900594712
Enai | : al exander. zi nmer mann@et app. com

Lennart Schul te
Aalto University
O akaari 5 A
Espoo 02150

Fi nl and

Phone: +358 50 4355233
Email: |l ennart.schulte@alto.fi

Carsten Wl ff

credativ GrbH
Hohenzol | ernstrasse 133
Mbenchengl adbach 41061
Cer many

Phone: +49 2161 4643 182
Enmmil : carsten.wol ff @redativ. de

Zi mrer mann, et al. Expires May 14, 2015 [ Page 28]



I nternet-Draft TCP- aNCR Novenber 2014

Arnd Hannemann

credativ GrbH

Hohenzol | er nstrasse 133
Moenchengl adbach 41061
Ger many

Phone: +49 2161 4643 134
Emai | : arnd. hannemann@r edati v. de

Zi mrer mann, et al. Expires May 14, 2015 [ Page 29]



