CCAMP Working Group H. Zheng Internet-Draft A. Guo Intended status: Standards Track I. Busi Expires: September 12, 2019 Huawei Technologies A. Snitser Sedona F. Lazzeri Ericsson Y. Xu CAICT Y. Zhao China Mobile X. Liu Volta Networks G. Fioccola Huawei Technologies March 11, 2019 A YANG Data Model for Transport Network Client Signals draft-zheng-ccamp-client-signal-yang-06 Abstract A transport network is a server-layer network to provide connectivity services to its client. The topology and tunnel information in the transport layer has already been defined by generic Traffic- engineered models and technology-specific models (e.g., OTN, WSON). However, how the client signals are accessing to the network has not been described. These information is necessary to both client and provider. This draft describes how the client signals are carried over transport network and defines YANG data models which are required during configuration procedure. More specifically, several client signal (of transport network) models including ETH, STM-n, FC and so on, are defined in this draft. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Zheng, et al. Expires September 12, 2019 [Page 1] Internet-Draft Transport Client Signals YANG Model March 2019 Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on September 12, 2019. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Prefixs in Model Names . . . . . . . . . . . . . . . . . 3 2. Terminology and Notations . . . . . . . . . . . . . . . . . . 4 3. Transport Network Client Signal Overview . . . . . . . . . . 4 3.1. Overview of Service Request and Network Configuration Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2. Applicability of Proposed Model . . . . . . . . . . . . . 7 4. YANG Model for Transport Network Client Signal . . . . . . . 8 4.1. YANG Tree for Ethernet Service . . . . . . . . . . . . . 8 4.2. YANG Tree for other Transport Network Client Signal Model 12 5. YANG Code for Transport Network Client Signal . . . . . . . . 12 5.1. The ETH Service YANG Code . . . . . . . . . . . . . . . . 12 5.2. YANG Code for ETH transport type . . . . . . . . . . . . 30 5.3. Other Transport Network client signal YANG Code . . . . . 39 6. Considerations and Open Issue . . . . . . . . . . . . . . . . 44 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 44 8. Manageability Considerations . . . . . . . . . . . . . . . . 45 9. Security Considerations . . . . . . . . . . . . . . . . . . . 45 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 45 11. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 45 12. References . . . . . . . . . . . . . . . . . . . . . . . . . 46 12.1. Normative References . . . . . . . . . . . . . . . . . . 46 12.2. Informative References . . . . . . . . . . . . . . . . . 47 Zheng, et al. Expires September 12, 2019 [Page 2] Internet-Draft Transport Client Signals YANG Model March 2019 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 48 1. Introduction 1.1. Overview A transport network is a server-layer network designed to provide connectivity services for a client-layer network to carry the client traffic transparently across the server-layer network resources. Currently the topology and tunnel models which have been defined for transport networks, such as [I-D.ietf-ccamp-otn-topo-yang] and [I-D.ietf-ccamp-otn-tunnel-model], provide server-layer topology abstraction and tunnel configuration between PEs. However, there is a missing piece for configuring how the PEs should map the client- layer traffic, received from the CE, over the server-layer-tunnels: this gap is expected to be solved in this document. This document defines a data model of all transport network client signals, using YANG language defined in [RFC7950]. The model can be used by applications exposing to a transport controller via a RESTconf interface. Furthermore, it can be used by an application for the following purposes (but not limited to): o To request/update an end-to-end service by driving a new tunnel to be set up to support this service; o To request/update an end-to-end service by using an existing tunnel; o To receive notification with regard to the information change of the given service; The YANG module ietf-otn-topology defined in this document conforms to the Network Management Datastore Architecture (NMDA) defined in [RFC8342]. 1.2. Prefixs in Model Names In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, including [RFC6991], [RFC8294] and [I-D.ietf-ccamp-otn-tunnel-model], which are shown as follow. Zheng, et al. Expires September 12, 2019 [Page 3] Internet-Draft Transport Client Signals YANG Model March 2019 +------------+---------------------------+----------------------+ | Prefix | YANG module | Reference | +------------+---------------------------+----------------------+ | yang | ietf-yang-types | [RFC6991] | | te-types | ietf-te-types |[ietf-teas-yang-te-types]| | rt-types | ietf-routing-types | [RFC8294] | | otn-types | ietf-otn-types |[ietf-ccamp-otn-tunnel-model]| | etht-types | ietf-eth-tran-types | This Document | | clntsvc | ietf-trans-client-service | This Document | | ethtsvc | ietf-eth-tran-service | This Document | +------------+---------------------------+----------------------+ 2. Terminology and Notations A simplified graphical representation of the data model is used in this document. The meaning of the symbols in the YANG data tree presented later in this document is defined in [RFC8340]. They are provided below for reference. o Brackets "[" and "]" enclose list keys. o Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only). o Symbols after data node names: "?" means an optional node, "!" means a presence container, and "*" denotes a list and leaf-list. o Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":"). o Ellipsis ("...") stands for contents of subtrees that are not shown. 3. Transport Network Client Signal Overview 3.1. Overview of Service Request and Network Configuration Scenarios A global view of a multi-domain service can be described as the Figure 1 . The customer is usually responsible to configure the CE nodes and to request to the provider the service intent, from the CE nodes perspective, while the provider is responsible to configure the whole network (including the PE nodes) to support the customer service intent. Generally speaking, the network configurations required to support a customer service can be split into two different groups: CE-PE and PE-PE. The CE-PE configuration deals with the client layer one-hop access link, while PE-PE configuration deals with the server layer tunnel. In Figure 1 we mark the Zheng, et al. Expires September 12, 2019 [Page 4] Internet-Draft Transport Client Signals YANG Model March 2019 intermediate nodes as 'P', which has same switching capability of PE but just not the 'end-point'. In this example, the link P-P and PE-P are a server-layer intra-domain or inter-domain link. +----+ +----+ | CE | | CE | +--+-+ +--+-+ | | | ------------- -------------| //|/ \\\\ ///// |\\\\ // | \\ // | \\ | +--+-+ +---+ +---+ | | +---+ +---+ +--+-+ | | | PE +----+ P +--+ P +---+-----+--+ P +---+ P +---+ PE | | | +----+ +---+ +---+ | | +---+ +---+ +----+ | \\ // \\ // \\\\ //// \\\\\ ///// ------------- ------------- Domain 1 Domain 2 Figure 1: Global view of Client Service with the Network Provider According to the responsibilities of each controller in [RFC8453], the controllers have different views of the service request and network configuration. The duty of CNC is to give the MDSC a description of the customer service intent: candidate YANG models include L1CSM [I-D.ietf-ccamp-l1csm-yang], L2SM [RFC8466] and L3SM [RFC8299], which are classified as customer service models, according to [RFC8309]. These models provide necessary attributes to describe the customer service intent from the customer/CE perspective, and do not provide any specific network configuration. These models also implies that the customer service description can be considered in a separate manner rather than integratig with network configurations, which also enable the controllers to abstract/virtualize the network resource to make them visible to the customer and also easier to manage. In other words, the network knowledge is not necessary at CNC and CMI, which is seen in an abstracted form as shown in Figure 2. Zheng, et al. Expires September 12, 2019 [Page 5] Internet-Draft Transport Client Signals YANG Model March 2019 /---------\ /// \\\ +----+ | | +----+ | CE |--------------+ NETWORK +----------------| CE | +----+ | | +----+ \\\ /// \---------/ Figure 2: CNC Viewpoint on the Client Service The functionalities of MDSC have been described in [RFC8453], which include the customer mapping/translation and multi-domain coordination. By receiving the request from CNC, MDSC need to understand what network configuration can support the customer service intent and turn to the corresponding PNCs for configuration. The service request is therefore decomposed by MDSC into a few network configurations and forwarded to one or multiple PNCs respectively in single-domain and multi-domain scenario. In general, the MDSC has the view of both PE and CE nodes and of some abstract information regarding the P nodes, as shown in Figure 3. It is worth noting that this MDSC view is different with Figure 1 at the intra- domain link. Usually these details are hidden, for scalability purposes, and therefore the MDSC has only an abstract view of each domain internal topology. ------ ----- //// \\\\ ///- -\\\ // \\ // \\ +----+ | +----+ +---+ | |+---+ +----+ | +----+ | CE |-----+-| PE |-----| P |-+--+| P |-----| PE |-+-----| CE | +----+ | +----+ +---+ | |+---+ +----+ | +----+ \\ // \\ // \\\\ //// \\\- -/// ------ ----- Domain 1 Domain 2 Figure 3: MDSC view of both Client Service and Network Abstraction PNC is the controller that configure the physical devices, based on the network configuration received from the MDSC. Each PNC has the detailed view of its own domain, the example of view from PNC in domain 1 is shown in Figure 4. The PNC has all the detailed topology information on PE and P nodes and on the intra-domain links. The PNC configures the tunnel/tunnel segment within its domain based on the network configuration provided by the MDSC. The PNC also configures Zheng, et al. Expires September 12, 2019 [Page 6] Internet-Draft Transport Client Signals YANG Model March 2019 the network part of the CE-PE access links as well as the mapping of the client-layer traffic and the server-layer tunnels, based on the network configuration provided by the MDSC. The interaction between PNC and MDSC for the client-layer network configuration is accomplished by the models defined in this draft. | | | | ------------- | -------------| //|/ \\\\ | ///// |\\\\ // | \\ | // | \\ | +--+-+ +---+ +---+ | | | +---+ +---+ +--+-+ | | | PE +----+ P +--+ P +---+--+--+--+ P +---+ P +---+ PE | | | +----+ +---+ +---+ | | | +---+ +---+ +----+ | \\ // | \\ // \\\\ //// | \\\\\ ///// ------------- | ------------- PNC View in Domain 1 | PNC View in Domain 2 | Figure 4: PNC view on Network Configuration 3.2. Applicability of Proposed Model Existing TE and technology-specific models, such as topology models and tunnel models, support the network configuration among PEs and Ps. The customer service models, such as L1CSM, L2SM and L3SM, focus on describing the attributes among CEs. However, there is a missing piece on how to configure the CE-PE session. The models defined in this document provide the configuration on CE-PE when the provider server-layer network is TE-based technology. In the example of OTN as the server-layer transport network, a full list of G-PID was summarized in [RFC7139], which can be divided into a few categories. The G-PID signals can be categorized into transparent and non-transparent. Examples of transparent signals may include Ethernetphysical interfaces, FC, STM-n and so on. In this approach the OTN devices is not aware of the client signal type, and this information is only necessary among the controllers. Once the OTN tunnel is set up, there is no switching requested on the client layer, and therefore only signal mapping is needed, without a client tunnel set up. The models that supporting the configuration of transparent signals are defined in Section 4.2. The other category would be non-transparent, such as Carrier Ethernet and MPLS-TP, with a switching request on the client layer. Once the OTN tunnel is set up, a corresponding tunnel in the client layer has to be set up to Zheng, et al. Expires September 12, 2019 [Page 7] Internet-Draft Transport Client Signals YANG Model March 2019 carry services. The models that supporting the configuration of transparent signals are defined in Section 4.1. It is also worth noting that some client signal can be carried over multiple types of networks. For example, the Ethernet services can be carried over either OTN or Ethernet TE tunnels (over optical or microwave networks). The model specified in this document allows the support from networks with different technologies. 4. YANG Model for Transport Network Client Signal 4.1. YANG Tree for Ethernet Service module: ietf-eth-tran-service +--rw etht-svc +--rw globals | +--rw named-bandwidth-profiles* [bandwidth-profile-name] | +--rw bandwidth-profile-name string | +--rw bandwidth-profile-type? etht-types:bandwidth-profile-type | +--rw CIR? uint64 | +--rw CBS? uint64 | +--rw EIR? uint64 | +--rw EBS? uint64 | +--rw color-aware? boolean | +--rw coupling-flag? boolean +--rw etht-svc-instances* [etht-svc-name] +--rw etht-svc-name string +--rw etht-svc-id? string +--rw etht-svc-descr? string +--rw etht-svc-customer? string +--rw etht-svc-type? etht-types:service-type +--rw etht-svc-lifecycle? etht-types:lifecycle-status +--rw te-topology-identifier | +--rw provider-id? te-global-id | +--rw client-id? te-global-id | +--rw topology-id? te-topology-id +--rw resilience +--rw etht-svc-end-points* [etht-svc-end-point-name] | +--rw etht-svc-end-point-name string | +--rw etht-svc-end-point-id? string | +--rw etht-svc-end-point-descr? string | +--rw topology-role? identityref | +--rw resilience | +--rw etht-svc-access-points* [access-point-id] | | +--rw access-point-id string | | +--rw access-node-id? te-types:te-node-id | | +--rw access-ltp-id? te-types:te-tp-id Zheng, et al. Expires September 12, 2019 [Page 8] Internet-Draft Transport Client Signals YANG Model March 2019 | | +--rw access-role? identityref | | +--rw pm-config | | | +--rw pm-enable? boolean | | | +--rw sending-rate-high? uint64 | | | +--rw sending-rate-low? uint64 | | | +--rw receiving-rate-high? uint64 | | | +--rw receiving-rate-low? uint64 | | +--ro state | | | +--ro operational-state? identityref | | | +--ro provisioning-state? identityref | | +--ro performance? identityref | +--rw service-classification-type? identityref | +--rw (service-classification)? | | +--:(port-classification) | | +--:(vlan-classification) | | +--rw outer-tag! | | | +--rw tag-type? etht-types:eth-tag-classify | | | +--rw (individual-bundling-vlan)? | | | +--:(individual-vlan) | | | | +--rw vlan-value? etht-types:vlanid | | | +--:(vlan-bundling) | | | +--rw vlan-range? etht-types:vid-range-type | | +--rw second-tag! | | +--rw tag-type? etht-types:eth-tag-classify | | +--rw (individual-bundling-vlan)? | | +--:(individual-vlan) | | | +--rw vlan-value? etht-types:vlanid | | +--:(vlan-bundling) | | +--rw vlan-range? etht-types:vid-range-type | +--rw split-horizon-group? string | +--rw (direction)? | | +--:(symmetrical) | | | +--rw ingress-egress-bandwidth-profile | | | +--rw (style)? | | | +--:(named) | | | | +--rw bandwidth-profile-name? string | | | +--:(value) | | | +--rw bandwidth-profile-type? etht-types:bandwidth-profile-type | | | +--rw CIR? uint64 | | | +--rw CBS? uint64 | | | +--rw EIR? uint64 | | | +--rw EBS? uint64 | | | +--rw color-aware? boolean | | | +--rw coupling-flag? boolean | | +--:(asymmetrical) | | +--rw ingress-bandwidth-profile | | | +--rw (style)? | | | +--:(named) Zheng, et al. Expires September 12, 2019 [Page 9] Internet-Draft Transport Client Signals YANG Model March 2019 | | | | +--rw bandwidth-profile-name? string | | | +--:(value) | | | +--rw bandwidth-profile-type? etht-types:bandwidth-profile-type | | | +--rw CIR? uint64 | | | +--rw CBS? uint64 | | | +--rw EIR? uint64 | | | +--rw EBS? uint64 | | | +--rw color-aware? boolean | | | +--rw coupling-flag? boolean | | +--rw egress-bandwidth-profile | | +--rw (style)? | | +--:(named) | | | +--rw bandwidth-profile-name? string | | +--:(value) | | +--rw bandwidth-profile-type? etht-types:bandwidth-profile-type | | +--rw CIR? uint64 | | +--rw CBS? uint64 | | +--rw EIR? uint64 | | +--rw EBS? uint64 | | +--rw color-aware? boolean | | +--rw coupling-flag? boolean | +--rw vlan-operations | +--rw (direction)? | +--:(symmetrical) | | +--rw symmetrical-operation | | +--rw pop-tags? uint8 | | +--rw push-tags | | +--rw outer-tag! | | | +--rw tag-type? etht-types:eth-tag-type | | | +--rw vlan-value? etht-types:vlanid | | | +--rw default-pcp? uint8 | | +--rw second-tag! | | +--rw tag-type? etht-types:eth-tag-type | | +--rw vlan-value? etht-types:vlanid | | +--rw default-pcp? uint8 | +--:(asymmetrical) | +--rw asymmetrical-operation | +--rw ingress | | +--rw pop-tags? uint8 | | +--rw push-tags | | +--rw outer-tag! | | | +--rw tag-type? etht-types:eth-tag-type | | | +--rw vlan-value? etht-types:vlanid | | | +--rw default-pcp? uint8 | | +--rw second-tag! | | +--rw tag-type? etht-types:eth-tag-type | | +--rw vlan-value? etht-types:vlanid | | +--rw default-pcp? uint8 Zheng, et al. Expires September 12, 2019 [Page 10] Internet-Draft Transport Client Signals YANG Model March 2019 | +--rw egress | +--rw pop-tags? uint8 | +--rw push-tags | +--rw outer-tag! | | +--rw tag-type? etht-types:eth-tag-type | | +--rw vlan-value? etht-types:vlanid | | +--rw default-pcp? uint8 | +--rw second-tag! | +--rw tag-type? etht-types:eth-tag-type | +--rw vlan-value? etht-types:vlanid | +--rw default-pcp? uint8 +--rw etht-svc-tunnels* [tunnel-name] | +--rw tunnel-name string | +--rw (svc-multiplexing-tag)? | | +--:(other) | | +--:(none) | | +--:(vlan-tag) | | +--:(pw-segment) | | +--rw pw-id? string | | +--rw pw-name? string | | +--rw transmit-label? rt-types:mpls-label | | +--rw receive-label? rt-types:mpls-label | | +--rw encaplate-type? identityref | | +--ro oper-status? identityref | | +--rw ingress-bandwidth-profile | | +--rw (style)? | | +--:(named) | | | +--rw bandwidth-profile-name? leafref | | +--:(value) | | +--rw bandwidth-profile-type? etht-types:bandwidth-profile-type | | +--rw CIR? uint64 | | +--rw CBS? uint64 | | +--rw EIR? uint64 | | +--rw EBS? uint64 | +--rw src-split-horizon-group? string | +--rw dst-split-horizon-group? string +--rw admin-status? identityref +--ro state +--ro operational-state? identityref +--ro provisioning-state? identityref +--ro creation-time? yang:date-and-time +--ro last-updated-time? yang:date-and-time Zheng, et al. Expires September 12, 2019 [Page 11] Internet-Draft Transport Client Signals YANG Model March 2019 4.2. YANG Tree for other Transport Network Client Signal Model module: ietf-trans-client-service +--rw client-svc +--rw client-svc-instances* [client-svc-name] +--rw client-svc-name string +--rw client-svc-id? string +--rw client-svc-descr? string +--rw client-svc-customer? string +--rw resilience +--rw te-topology-identifier | +--rw provider-id? te-types:te-global-id | +--rw client-id? te-types:te-global-id | +--rw topology-id? te-types:te-topology-id +--rw admin-status? identityref +--rw src-access-ports | +--rw access-node-id? te-types:te-node-id | +--rw access-ltp-id? te-types:te-tp-id | +--rw client-signal? identityref +--rw dst-access-ports | +--rw access-node-id? te-types:te-node-id | +--rw access-ltp-id? te-types:te-tp-id | +--rw client-signal? identityref +--rw svc-tunnels* [tunnel-name] | +--rw tunnel-name string +--ro operational-state? identityref +--ro provisioning-state? identityref +--ro creation-time? yang:date-and-time +--ro last-updated-time? yang:date-and-time 5. YANG Code for Transport Network Client Signal 5.1. The ETH Service YANG Code This module imports typedefs and modules from [RFC6991], [RFC8294], [I-D.ietf-teas-yang-te-types]. file "ietf-eth-tran-service.yang" module ietf-eth-tran-service { namespace "urn:ietf:params:xml:ns:yang:ietf-eth-tran-service"; prefix "ethtsvc"; Zheng, et al. Expires September 12, 2019 [Page 12] Internet-Draft Transport Client Signals YANG Model March 2019 import ietf-yang-types { prefix "yang"; //reference "RFC 6991 - Common YANG Data Types"; } import ietf-te-types { prefix "te-types"; //reference "RFC XXXX - Traffic Engineering Common YANG Types"; } import ietf-eth-tran-types { prefix "etht-types"; //reference "RFC XXXX - This Document."; } import ietf-routing-types { prefix "rt-types"; //reference "RFC 8294 - Common YANG Data Types for the // Routing Area"; } organization "Internet Engineering Task Force (IETF) CCAMP WG"; contact " WG List: ID-draft editor: Haomian Zheng (zhenghaomian@huawei.com); Italo Busi (italo.busi@huawei.com); Aihua Guo (aihuaguo@huawei.com); Anton Snitser (antons@sedonasys.com); Francesco Lazzeri (francesco.lazzeri@ericsson.com); Yunbin Xu (xuyunbin@ritt.cn); Yang Zhao (zhaoyangyjy@chinamobile.com); Xufeng Liu (Xufeng_Liu@jabil.com); Giuseppe Fioccola (giuseppe.fioccola@huawei.com); "; description "This module defines a YANG data model for describing the Ethernet services. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Zheng, et al. Expires September 12, 2019 [Page 13] Internet-Draft Transport Client Signals YANG Model March 2019 Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info)."; revision 2019-03-11 { description "version -06 as an I-D"; reference "draft-zheng-ccamp-client-signal-yang"; } /* * Groupings */ grouping vlan-classification { description "A grouping which represents classification on an 802.1Q VLAN tag."; leaf tag-type { type etht-types:eth-tag-classify; description "The tag type used for VLAN classification."; } choice individual-bundling-vlan { description "VLAN based classification can be individual or bundling."; case individual-vlan { leaf vlan-value { type etht-types:vlanid; description "VLAN ID value."; } } case vlan-bundling { leaf vlan-range { type etht-types:vid-range-type; description "List of VLAN ID values."; } } } Zheng, et al. Expires September 12, 2019 [Page 14] Internet-Draft Transport Client Signals YANG Model March 2019 } grouping vlan-write { description "A grouping which represents push/pop operations of an 802.1Q VLAN tag."; leaf tag-type { type etht-types:eth-tag-type; description "The VLAN tag type to push/swap."; } leaf vlan-value { type etht-types:vlanid; description "The VLAN ID value to push/swap."; } /* * To be added: this attribute is used when: * a) the ETH service has only one CoS (as in current version) * b) as a default when a mapping between a given CoS value * and the PCP value is not defined (in future versions) */ leaf default-pcp { type uint8 { range "0..7"; } description "The default Priority Code Point (PCP) value to push/swap"; } } grouping vlan-operations { description "A grouping which represents VLAN operations."; leaf pop-tags { type uint8 { range "1..2"; } description "The number of VLAN tags to pop (or swap if used in conjunction with push-tags)"; } container push-tags { description "The VLAN tags to push (or swap if used in conjunction with pop-tags)"; Zheng, et al. Expires September 12, 2019 [Page 15] Internet-Draft Transport Client Signals YANG Model March 2019 container outer-tag { presence "Indicates existence of the outermost VLAN tag to push/swap"; description "The outermost VLAN tag to push/swap."; uses vlan-write; } container second-tag { must '../outer-tag/tag-type = "etht-types:s-vlan-tag-type" and ' + 'tag-type = "etht-types:c-vlan-tag-type"' { error-message " When pushing/swapping two tags, the outermost tag must be specified and of S-VLAN type and the second outermost tag must be of C-VLAN tag type. "; description " For IEEE 802.1Q interoperability, when pushing/swapping two tags, it is required that the outermost tag exists and is an S-VLAN, and the second outermost tag is a C-VLAN. "; } presence "Indicates existence of a second outermost VLAN tag to push/swap"; description "The second outermost VLAN tag to push/swap."; uses vlan-write; } } } grouping named-or-value-bandwidth-profile { description "A grouping to configure a bandwdith profile either by referencing a named bandwidth profile or by configuring the values of the bandwidth profile attributes."; Zheng, et al. Expires September 12, 2019 [Page 16] Internet-Draft Transport Client Signals YANG Model March 2019 choice style { description "Whether the bandwidth profile is named or defined by value"; case named { description "Named bandwidth profile."; leaf bandwidth-profile-name { type "string"; description "Name of the bandwidth profile."; } } case value { description "Bandwidth profile configured by value."; uses etht-types:etht-bandwidth-profiles; } } } grouping bandwidth-profiles { description "A grouping which represent bandwidth profile configuration."; choice direction { description "Whether the bandwidth profiles are symmetrical or asymmetrical"; case symmetrical { description "The same bandwidth profile is used to describe both the ingress and the egress bandwidth profile."; container ingress-egress-bandwidth-profile { description "The bandwdith profile used in both directions."; uses named-or-value-bandwidth-profile; } } case asymmetrical { description "Ingress and egress bandwidth profiles can be specified."; container ingress-bandwidth-profile { description "The bandwdith profile used in the ingress direction."; uses named-or-value-bandwidth-profile; } container egress-bandwidth-profile { Zheng, et al. Expires September 12, 2019 [Page 17] Internet-Draft Transport Client Signals YANG Model March 2019 description "The bandwdith profile used in the egress direction."; uses named-or-value-bandwidth-profile; } } } } grouping etht-svc-access-parameters { description "ETH services access parameters"; leaf access-node-id { type te-types:te-node-id; description "The identifier of the access node in the ETH topology."; } leaf access-ltp-id { type te-types:te-tp-id; description "The TE link termination point identifier, used together with access-node-id to identify the access LTP."; } leaf access-role { type identityref { base etht-types:access-role; } description "Indicate the role of access, e.g., working or protection. "; } container pm-config { uses pm-config-grouping; description "This grouping is used to set the threshold value for performance monitoring. "; } container state { config false; description "The state is used to monitor the status of service. "; leaf operational-state { type identityref { base te-types:tunnel-state-type; } Zheng, et al. Expires September 12, 2019 [Page 18] Internet-Draft Transport Client Signals YANG Model March 2019 description "Indicating the operational state of client signal. "; } leaf provisioning-state { type identityref { base te-types:lsp-state-type; } description "Indicating the provisional state of client signal, especially when there is a change, i.e., revise, create. "; } } leaf performance { type identityref { base etht-types:performance; } config false; description "Performance Monitoring for the service. "; } } grouping etht-svc-tunnel-parameters { description "ETH services tunnel parameters"; leaf tunnel-name { type string; description "TE service tunnel instance name."; } choice svc-multiplexing-tag { description "Service multiplexing is optional and flexible."; case other { /* placeholder to support proprietary multiplexing (for further discussion) */ } case none { /* no additional information is needed */ } Zheng, et al. Expires September 12, 2019 [Page 19] Internet-Draft Transport Client Signals YANG Model March 2019 case vlan-tag { /* No additional information is needed The C-Tag or S-Tag used for service mulitplexing is defined by the VLAN classification and operations configured in the etht-svc-access-parameters grouping */ } case pw-segment { uses pw-segment-grouping; } } /* * Open issue: can we constraints it to be used only with mp services? */ leaf src-split-horizon-group { type string; description "Identify a split horizon group at the Tunnel source TTP"; } leaf dst-split-horizon-group { type string; description "Identify a split horizon group at the Tunnel destination TTP"; } } grouping etht-svc-pm-threshold_config { description "Configuraiton parameters for Ethernet service PM thresholds."; leaf sending-rate-high { type uint64; description "High threshold of packet sending rate in kbps."; } leaf sending-rate-low { type uint64; description "Low threshold of packet sending rate in kbps."; } leaf receiving-rate-high { type uint64; description "High threshold of packet receiving rate in kbps."; } Zheng, et al. Expires September 12, 2019 [Page 20] Internet-Draft Transport Client Signals YANG Model March 2019 leaf receiving-rate-low { type uint64; description "Low threshold of packet receiving rate in kbps."; } } grouping etht-svc-pm-stats { description "Ethernet service PM statistics."; leaf sending-rate-too-high { type uint32; description "Counter that indicates the number of times the sending rate is above the high threshold"; } leaf sending-rate-too-low { type uint32; description "Counter that indicates the number of times the sending rate is below the low threshold"; } leaf receiving-rate-too-high { type uint32; description "Counter that indicates the number of times the receiving rate is above the high threshold"; } leaf receiving-rate-too-low { type uint32; description "Counter that indicates the number of times the receiving rate is below the low threshold"; } } grouping etht-svc-instance_config { description "Configuraiton parameters for Ethernet services."; leaf etht-svc-name { type string; description "Name of the ETH service."; } leaf etht-svc-id { type string; description "The Identifier of the ETH service."; } Zheng, et al. Expires September 12, 2019 [Page 21] Internet-Draft Transport Client Signals YANG Model March 2019 leaf etht-svc-descr { type string; description "Description of the ETH service."; } leaf etht-svc-customer { type string; description "Customer of the ETH service."; } leaf etht-svc-type { type etht-types:service-type; description "Type of ETH service (p2p, mp2mp or rmp)."; /* Add default as p2p */ } leaf etht-svc-lifecycle { type etht-types:lifecycle-status; description "Lifecycle state of ETH service."; /* Add default as installed */ } uses te-types:te-topology-identifier; uses resilience-grouping; list etht-svc-end-points { key etht-svc-end-point-name; description "The logical end point for the ETH service. "; uses etht-svc-end-point-grouping; } list etht-svc-tunnels { key tunnel-name; description "List of the TE Tunnels supporting the ETH service."; uses etht-svc-tunnel-parameters; } leaf admin-status { type identityref { Zheng, et al. Expires September 12, 2019 [Page 22] Internet-Draft Transport Client Signals YANG Model March 2019 base te-types:tunnel-admin-state-type; } default te-types:tunnel-admin-state-up; description "ETH service administrative state."; } } grouping etht-svc-instance_state { description "State parameters for Ethernet services."; leaf operational-state { type identityref { base te-types:tunnel-state-type; } default te-types:tunnel-state-up; description "ETH service operational state."; } leaf provisioning-state { type identityref { base te-types:lsp-state-type; } description "ETH service provisioning state."; } leaf creation-time { type yang:date-and-time; description "Time of ETH service creation."; } leaf last-updated-time { type yang:date-and-time; description "Time of ETH service last update."; } } /* * Data nodes */ container etht-svc { description "ETH services."; container globals { description "Globals Ethernet configuration data container"; Zheng, et al. Expires September 12, 2019 [Page 23] Internet-Draft Transport Client Signals YANG Model March 2019 list named-bandwidth-profiles { key bandwidth-profile-name; description "List of named bandwidth profiles used by Ethernet services."; leaf bandwidth-profile-name { type string; description "Name of the bandwidth profile."; } uses etht-types:etht-bandwidth-profiles; } } list etht-svc-instances { key etht-svc-name; description "The list of p2p ETH service instances"; uses etht-svc-instance_config; container state { config false; description "Ethernet Service states."; uses etht-svc-instance_state; } } } grouping resilience-grouping { description "Grouping for resilience configuration. "; container resilience { description "To configure the data plane protection parameters, currently a placeholder only, future candidate attributes include, Revert, WTR, Hold-off Timer, ..."; } } grouping etht-svc-end-point-grouping { description "Grouping for the end point configuration."; leaf etht-svc-end-point-name { type string; Zheng, et al. Expires September 12, 2019 [Page 24] Internet-Draft Transport Client Signals YANG Model March 2019 description "The name of the logical end point of ETH service. "; } leaf etht-svc-end-point-id { type string; description "The identifier of the logical end point of ETH service."; } leaf etht-svc-end-point-descr { type string; description "The description of the logical end point of ETH service. "; } leaf topology-role { type identityref { base etht-types:topology-role; } description "Indicating the underlay topology role, e.g., hub,spoke, any-to-any "; } container resilience { description "Placeholder for resilience configuration, for future study. "; } list etht-svc-access-points { key access-point-id; min-elements "1"; /* Open Issue: Is it possible to limit the max-elements only for p2p services? max-elements "2"; */ description "List of the ETH trasport services access point instances."; leaf access-point-id { type string; description "ID of the service access point instance"; } uses etht-svc-access-parameters; } Zheng, et al. Expires September 12, 2019 [Page 25] Internet-Draft Transport Client Signals YANG Model March 2019 leaf service-classification-type { type identityref { base etht-types:service-classification-type; } description "Service classification type."; } choice service-classification { description "Access classification can be port-based or VLAN based."; case port-classification { /* no additional information */ } case vlan-classification { container outer-tag { presence "The outermost VLAN tag exists"; description "Classifies traffic using the outermost VLAN tag."; uses vlan-classification; } container second-tag { must '../outer-tag/tag-type = "etht-types:classify-s-vlan" and ' + 'tag-type = "etht-types:classify-c-vlan"' { error-message " When matching two tags, the outermost tag must be specified and of S-VLAN type and the second outermost tag must be of C-VLAN tag type. "; description " For IEEE 802.1Q interoperability, when matching two tags, it is required that the outermost tag exists and is an S-VLAN, and the second outermost tag is a C-VLAN. "; } presence "The second outermost VLAN tag exists"; description "Classifies traffic using the second outermost VLAN tag."; Zheng, et al. Expires September 12, 2019 [Page 26] Internet-Draft Transport Client Signals YANG Model March 2019 uses vlan-classification; } } } /* * Open issue: can we constraints it to be used only with mp services? */ leaf split-horizon-group { type string; description "Identify a split horizon group"; } uses bandwidth-profiles; container vlan-operations { description "Configuration of VLAN operations."; choice direction { description "Whether the VLAN operations are symmetrical or asymmetrical"; case symmetrical { container symmetrical-operation { uses vlan-operations; description "Symmetrical operations. Expressed in the ingress direction, but the reverse operation is applied to egress traffic"; } } case asymmetrical { container asymmetrical-operation { description "Asymmetrical operations"; container ingress { uses vlan-operations; description "Ingress operations"; } container egress { uses vlan-operations; description "Egress operations"; } } } } } } Zheng, et al. Expires September 12, 2019 [Page 27] Internet-Draft Transport Client Signals YANG Model March 2019 grouping pm-config-grouping { description "Grouping used for Performance Monitoring Configuration. "; leaf pm-enable { type boolean; description "Whether to enable the performance monitoring."; } leaf sending-rate-high { type uint64; description "The upperbound of sending rate."; } leaf sending-rate-low { type uint64; description "The lowerbound of sending rate."; } leaf receiving-rate-high { type uint64; description "The upperbound of receiving rate."; } leaf receiving-rate-low { type uint64; description "The lowerbound of receiving rate."; } } grouping pw-segment-grouping { description "Grouping used for PW configuration. "; leaf pw-id { type string; description "The Identifier information of pseudowire. "; } leaf pw-name { type string; description "The name information of pseudowire."; } Zheng, et al. Expires September 12, 2019 [Page 28] Internet-Draft Transport Client Signals YANG Model March 2019 leaf transmit-label { type rt-types:mpls-label; description "Transmit label information in PW. "; } leaf receive-label { type rt-types:mpls-label; description "Receive label information in PW. "; } leaf encaplate-type { type identityref { base etht-types:encaplate-type; } description "The encapsulation type, raw or tag. "; } leaf oper-status { type identityref { base te-types:tunnel-state-type; } config false; description "The operational state of the PW segment. "; } container ingress-bandwidth-profile { description "Bandwidth Profile for ingress. "; uses pw-segment-named-or-value-bandwidth-profile; } } grouping pw-segment-named-or-value-bandwidth-profile { description "A grouping to configure a bandwdith profile either by referencing a named bandwidth profile or by configuring the values of the bandwidth profile attributes."; choice style { description "Whether the bandwidth profile is named or defined by value"; case named { description "Named bandwidth profile."; leaf bandwidth-profile-name { Zheng, et al. Expires September 12, 2019 [Page 29] Internet-Draft Transport Client Signals YANG Model March 2019 type leafref { path "/ethtsvc:etht-svc/ethtsvc:globals/ethtsvc:named-bandwidth-profiles/ethtsvc:bandwidth-profile-name"; } description "Name of the bandwidth profile."; } } case value { description "Bandwidth profile configured by value."; uses etht-types:pw-segement-bandwidth-profile-grouping; } } } } 5.2. YANG Code for ETH transport type This module references a few documents including [RFC2697], [RFC2698], [RFC4115], [IEEE802.1ad], [IEEE802.1q] and [MEF10]. file "ietf-eth-tran-types.yang" module ietf-eth-tran-types { namespace "urn:ietf:params:xml:ns:yang:ietf-eth-tran-types"; prefix "etht-types"; organization "Internet Engineering Task Force (IETF) CCAMP WG"; contact " WG List: ID-draft editor: Haomian Zheng (zhenghaomian@huawei.com); Italo Busi (italo.busi@huawei.com); Aihua Guo (aihuaguo@huawei.com); Anton Snitser (antons@sedonasys.com); Francesco Lazzeri (francesco.lazzeri@ericsson.com); Yunbin Xu (xuyunbin@ritt.cn); Yang Zhao (zhaoyangyjy@chinamobile.com); Xufeng Liu (Xufeng_Liu@jabil.com); Giuseppe Fioccola (giuseppe.fioccola@huawei.com); "; Zheng, et al. Expires September 12, 2019 [Page 30] Internet-Draft Transport Client Signals YANG Model March 2019 description "This module defines the ETH transport types. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info)."; revision 2019-03-11 { description "version -06 as an I-D"; reference "draft-zheng-ccamp-client-signal-yang"; } /* * Identities */ identity eth-vlan-tag-type { description "ETH VLAN tag type."; } identity c-vlan-tag-type { base eth-vlan-tag-type; description "802.1Q Customer VLAN"; } identity s-vlan-tag-type { base eth-vlan-tag-type; description "802.1Q Service VLAN (QinQ)"; } identity service-classification-type { description "Service classification."; } identity port-classification { base service-classification-type; Zheng, et al. Expires September 12, 2019 [Page 31] Internet-Draft Transport Client Signals YANG Model March 2019 description "Port classification."; } identity vlan-classification { base service-classification-type; description "VLAN classification."; } identity eth-vlan-tag-classify { description "VLAN tag classification."; } identity classify-c-vlan { base eth-vlan-tag-classify; description "Classify 802.1Q Customer VLAN tag. Only C-tag type is accepted"; } identity classify-s-vlan { base eth-vlan-tag-classify; description "Classify 802.1Q Service VLAN (QinQ) tag. Only S-tag type is accepted"; } identity classify-s-or-c-vlan { base eth-vlan-tag-classify; description "Classify S-VLAN or C-VLAN tag-classify. Either tag is accepted"; } identity bandwidth-profile-type { description "Bandwidth Profile Types"; } identity mef-10-bwp { base bandwidth-profile-type; description "MEF 10 Bandwidth Profile"; } identity rfc-2697-bwp { Zheng, et al. Expires September 12, 2019 [Page 32] Internet-Draft Transport Client Signals YANG Model March 2019 base bandwidth-profile-type; description "RFC 2697 Bandwidth Profile"; } identity rfc-2698-bwp { base bandwidth-profile-type; description "RFC 2698 Bandwidth Profile"; } identity rfc-4115-bwp { base bandwidth-profile-type; description "RFC 4115 Bandwidth Profile"; } identity service-type { description "Type of Ethernet service."; } identity p2p-svc { base service-type; description "Ethernet point-to-point service (EPL, EVPL)."; } identity rmp-svc { base service-type; description "Ethernet rooted-multitpoint service (E-TREE, EP-TREE)."; } identity mp2mp-svc { base service-type; description "Ethernet multipoint-to-multitpoint service (E-LAN, EP-LAN)."; } identity lifecycle-status { description "Lifecycle Status."; } identity installed { base lifecycle-status; description Zheng, et al. Expires September 12, 2019 [Page 33] Internet-Draft Transport Client Signals YANG Model March 2019 "Installed."; } identity planned { base lifecycle-status; description "Planned."; } identity pending-removal { base lifecycle-status; description "Pending Removal."; } /* * Type Definitions */ typedef eth-tag-type { type identityref { base eth-vlan-tag-type; } description "Identifies a specific ETH VLAN tag type."; } typedef eth-tag-classify { type identityref { base eth-vlan-tag-classify; } description "Identifies a specific VLAN tag classification."; } typedef vlanid { type uint16 { range "1..4094"; } description "The 12-bit VLAN-ID used in the VLAN Tag header."; } typedef vid-range-type { type string { pattern "([1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?" + "(,[1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?)*)"; } Zheng, et al. Expires September 12, 2019 [Page 34] Internet-Draft Transport Client Signals YANG Model March 2019 description "A list of VLAN Ids, or non overlapping VLAN ranges, in ascending order, between 1 and 4094. This type is used to match an ordered list of VLAN Ids, or contiguous ranges of VLAN Ids. Valid VLAN Ids must be in the range 1 to 4094, and included in the list in non overlapping ascending order. For example: 1,10-100,50,500-1000"; } typedef bandwidth-profile-type { type identityref { base bandwidth-profile-type; } description "Identifies a specific Bandwidth Profile type."; } typedef service-type { type identityref { base service-type; } description "Identifies the type of Ethernet service."; } typedef lifecycle-status { type identityref { base lifecycle-status; } description "Identifies the lLifecycle Status ."; } /* * Grouping Definitions */ grouping etht-bandwidth-profiles { description "Bandwidth profile configuration paramters."; leaf bandwidth-profile-type { type etht-types:bandwidth-profile-type; description "The type of bandwidth profile."; } Zheng, et al. Expires September 12, 2019 [Page 35] Internet-Draft Transport Client Signals YANG Model March 2019 leaf CIR { type uint64; description "Committed Information Rate in Kbps"; } leaf CBS { type uint64; description "Committed Burst Size in in KBytes"; } leaf EIR { type uint64; /* Need to indicate that EIR is not supported by RFC 2697 must '../bw-profile-type = "mef-10-bwp" or ' + '../bw-profile-type = "rfc-2698-bwp" or ' + '../bw-profile-type = "rfc-4115-bwp"' must '../bw-profile-type != "rfc-2697-bwp"' */ description "Excess Information Rate in Kbps In case of RFC 2698, PIR = CIR + EIR"; } leaf EBS { type uint64; description "Excess Burst Size in KBytes. In case of RFC 2698, PBS = CBS + EBS"; } leaf color-aware { type boolean; description "Indicates weather the color-mode is color-aware or color-blind."; } leaf coupling-flag { type boolean; /* Need to indicate that Coupling Flag is defined only for MEF 10 must '../bw-profile-type = "mef-10-bwp"' */ description "Coupling Flag."; } } Zheng, et al. Expires September 12, 2019 [Page 36] Internet-Draft Transport Client Signals YANG Model March 2019 identity topology-role { description "The rold of underlay topology, e.g., hub, spoke, any-to-any. "; } identity resilience { description "Placeholder for resilience information in data plane, for future study. "; } identity access-role { description "Indicating whether the access is a working or protection access."; } identity performance { description "Placeholder for performace information, for future study."; } identity encaplate-type { description "Indicating how the service is encapsulated (to PW), e.g, raw or tag. "; } grouping pw-segement-bandwidth-profile-grouping { description "bandwidth profile grouping for PW segment. "; leaf bandwidth-profile-type { type etht-types:bandwidth-profile-type; description "The type of bandwidth profile."; } leaf CIR { type uint64; description "Committed Information Rate in Kbps"; } leaf CBS { type uint64; description "Committed Burst Size in in KBytes"; } leaf EIR { type uint64; /* Need to indicate that EIR is not supported by RFC 2697 must Zheng, et al. Expires September 12, 2019 [Page 37] Internet-Draft Transport Client Signals YANG Model March 2019 '../bw-profile-type = "mef-10-bwp" or ' + '../bw-profile-type = "rfc-2698-bwp" or ' + '../bw-profile-type = "rfc-4115-bwp"' must '../bw-profile-type != "rfc-2697-bwp"' */ description "Excess Information Rate in Kbps In case of RFC 2698, PIR = CIR + EIR"; } leaf EBS { type uint64; description "Excess Burst Size in KBytes. In case of RFC 2698, PBS = CBS + EBS"; } } grouping eth-bandwidth { description "Available bandwith for ethernet."; leaf eth-bandwidth { type uint64{ range "0..10000000000"; } units "Kbps"; description "Available bandwith value expressed in kilobits per second"; } } grouping eth-label-restriction { description "Label Restriction for ethernet."; leaf tag-type { type etht-types:eth-tag-type; description "VLAN tag type."; } leaf priority { type uint8; description "priority."; } } grouping eth-label { description "Label for ethernet."; leaf vlanid { Zheng, et al. Expires September 12, 2019 [Page 38] Internet-Draft Transport Client Signals YANG Model March 2019 type etht-types:vlanid; description "VLAN tag id."; } } grouping eth-label-step { description "Label step for Ethernet VLAN"; leaf eth-step { type uint16 { range "1..4095"; } default 1; description "Label step which represent possible increments for an Ethernet VLAN tag."; reference "IEEE 802.1ad: Provider Bridges."; } } } 5.3. Other Transport Network client signal YANG Code This module imports typedefs and modules from [RFC6991], [I-D.ietf-ccamp-otn-tunnel-model], [I-D.ietf-teas-yang-te-types]. file "ietf-trans-client-service.yang" module ietf-trans-client-service { /* TODO: FIXME */ //yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-trans-client-service"; prefix "clntsvc"; import ietf-te-types { prefix "te-types"; //reference "RFC XXXX - Traffic Engineering Common YANG Types"; } import ietf-otn-types { prefix "otn-types"; //reference "RFC XXXX - OTN Tunnel YANG Model"; } Zheng, et al. Expires September 12, 2019 [Page 39] Internet-Draft Transport Client Signals YANG Model March 2019 import ietf-yang-types { prefix "yang"; //reference "RFC 6991 - Common YANG Data Types"; } organization "Internet Engineering Task Force (IETF) CCAMP WG"; contact " ID-draft editor: Haomian Zheng (zhenghaomian@huawei.com); Aihua Guo (aihuaguo@huawei.com); Italo Busi (italo.busi@huawei.com); Anton Snitser (antons@sedonasys.com); Francesco Lazzeri (francesco.lazzeri@ericsson.com); Yunbin Xu (xuyunbin@ritt.cn); Yang Zhao (zhaoyangyjy@chinamobile.com); Xufeng Liu (Xufeng_Liu@jabil.com); Giuseppe Fioccola (giuseppe.fioccola@huawei.com); "; description "This module defines a YANG data model for describing transport client services. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info)."; revision 2019-03-11 { description "version -06 as an I-D"; reference "draft-zheng-ccamp-client-signal-yang"; } /* * Groupings */ grouping client-svc-access-parameters { description "Transport client services access parameters"; Zheng, et al. Expires September 12, 2019 [Page 40] Internet-Draft Transport Client Signals YANG Model March 2019 leaf access-node-id { type te-types:te-node-id; description "The identifier of the access node in the underlying transport topology."; } leaf access-ltp-id { type te-types:te-tp-id; description "The TE link termination point identifier, used together with access-node-id to identify the access LTP."; } leaf client-signal { type identityref { base otn-types:client-signal; } description "Identifiies the client signal type associated with this port"; } } grouping client-svc-tunnel-parameters { description "Transport client services tunnel parameters"; leaf tunnel-name { type string; description "TE service tunnel instance name."; } } grouping client-svc-instance_config { description "Configuraiton parameters for client services."; leaf client-svc-name { type string; description "Identifier of the p2p transport client service."; } leaf client-svc-id { type string; description "Name of the p2p transport client service."; } Zheng, et al. Expires September 12, 2019 [Page 41] Internet-Draft Transport Client Signals YANG Model March 2019 leaf client-svc-descr { type string; description "Description of the transport client service."; } leaf client-svc-customer { type string; description "Customer of the transport client service."; } container resilience { description ""; } uses te-types:te-topology-identifier; leaf admin-status { type identityref { base te-types:tunnel-admin-state-type; } default te-types:tunnel-admin-state-up; description "Client service administrative state."; } container src-access-ports { description "Source access port of a client service."; uses client-svc-access-parameters; } container dst-access-ports { description "Destination access port of a client service."; uses client-svc-access-parameters; } list svc-tunnels { key tunnel-name; description "List of the TE Tunnels supporting the client service."; uses client-svc-tunnel-parameters; } } grouping client-svc-instance_state { description Zheng, et al. Expires September 12, 2019 [Page 42] Internet-Draft Transport Client Signals YANG Model March 2019 "State parameters for client services."; leaf operational-state { type identityref { base te-types:tunnel-state-type; } config false; description "Client service operational state."; } leaf provisioning-state { type identityref { base te-types:lsp-state-type; } config false; description "Client service provisioning state."; } leaf creation-time { type yang:date-and-time; config false; description "The time of the service be created."; } leaf last-updated-time { type yang:date-and-time; config false; description "The time of the service's latest update."; } } /* * Data nodes */ container client-svc { description "Transport client services."; list client-svc-instances { key client-svc-name; description "The list of p2p transport client service instances"; uses client-svc-instance_config; uses client-svc-instance_state; } } } Zheng, et al. Expires September 12, 2019 [Page 43] Internet-Draft Transport Client Signals YANG Model March 2019 6. Considerations and Open Issue Editor Notes: This section is used to note temporary discussion/ conclusion that to be fixed in the future version, and will be removed before publication. We currently categorize all the client signal types into transparent and non-transparent, with separate models. There was consensus that no common model is needed for these two categories. Further Alignment with RFC8407 would be required before publication. 7. IANA Considerations It is proposed that IANA should assign new URIs from the "IETF XML Registry" [RFC3688] as follows: URI: urn:ietf:params:xml:ns:yang:ietf-eth-tran-service Registrant Contact: The IESG XML: N/A; the requested URI is an XML namespace. URI: urn:ietf:params:xml:ns:yang:ietf-trans-client-service Registrant Contact: The IESG XML: N/A; the requested URI is an XML namespace. URI: urn:ietf:params:xml:ns:yang:ietf-eth-tran-types Registrant Contact: The IESG XML: N/A; the requested URI is an XML namespace. This document registers following YANG modules in the YANG Module Names registry [RFC7950]. name: ietf-eth-tran-service namespace: urn:ietf:params:xml:ns:yang:ietf-eth-tran-service prefix: ethtsvc reference: RFC XXXX: A YANG Data Model for Transport Network Client Signals name: ietf-eth-tran-types namespace: urn:ietf:params:xml:ns:yang:ietf-eth-tran-types prefix: etht-types reference: RFC XXXX: A YANG Data Model for Transport Network Client Signals name: ietf-trans-client-service namespace: urn:ietf:params:xml:ns:yang:ietf-trans-client-service prefix: clntsvc reference: RFC XXXX: A YANG Data Model for Transport Network Client Signals Zheng, et al. Expires September 12, 2019 [Page 44] Internet-Draft Transport Client Signals YANG Model March 2019 8. Manageability Considerations TBD. 9. Security Considerations The data following the model defined in this document is exchanged via, for example, the interface between an orchestrator and a network domain controller. The YANG module defined in this document can be accessed via the RESTCONF protocol defined in [RFC8040], or maybe via the NETCONF protocol [RFC6241]. There are a number of data nodes defined in the YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., POST) to these data nodes without proper protection can have a negative effect on network operations. 10. Acknowledgements We would like to thank Igor Bryskin and Daniel King for their comments and discussions. 11. Contributors Yanlei Zheng China Unicom Email: zhengyl@dimpt.com Zhe Liu Huawei Technologies, Email: liuzhe123@huawei.com Sergio Belotti Nokia, Email: sergio.belotti@nokia.com Yingxi Yao Shanghai Bell, yingxi.yao@nokia-sbell.com Zheng, et al. Expires September 12, 2019 [Page 45] Internet-Draft Transport Client Signals YANG Model March 2019 12. References 12.1. Normative References [I-D.ietf-ccamp-l1csm-yang] Fioccola, G., Lee, K., Lee, Y., Dhody, D., and D. Ceccarelli, "A YANG Data Model for L1 Connectivity Service Model (L1CSM)", draft-ietf-ccamp-l1csm-yang-09 (work in progress), March 2019. [I-D.ietf-ccamp-otn-topo-yang] Zheng, H., Guo, A., Busi, I., Sharma, A., Liu, X., Belotti, S., Xu, Y., Wang, L., and O. Dios, "A YANG Data Model for Optical Transport Network Topology", draft-ietf- ccamp-otn-topo-yang-06 (work in progress), February 2019. [I-D.ietf-ccamp-otn-tunnel-model] Zheng, H., Guo, A., Busi, I., Sharma, A., Rao, R., Belotti, S., Lopezalvarez, V., Li, Y., and Y. Xu, "OTN Tunnel YANG Model", draft-ietf-ccamp-otn-tunnel-model-06 (work in progress), February 2019. [I-D.ietf-teas-yang-te-topo] Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and O. Dios, "YANG Data Model for Traffic Engineering (TE) Topologies", draft-ietf-teas-yang-te-topo-19 (work in progress), February 2019. [I-D.ietf-teas-yang-te-types] Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin, "Traffic Engineering Common YANG Types", draft-ietf-teas- yang-te-types-06 (work in progress), February 2019. [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, . [RFC7139] Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D., and K. Pithewan, "GMPLS Signaling Extensions for Control of Evolving G.709 Optical Transport Networks", RFC 7139, DOI 10.17487/RFC7139, March 2014, . Zheng, et al. Expires September 12, 2019 [Page 46] Internet-Draft Transport Client Signals YANG Model March 2019 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . [RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, December 2017, . 12.2. Informative References [IEEE802.1ad] IEEE, 802., "IEEE 802.1ad - Provider Bridges.", IEEE 802.1ad , May 2006. [IEEE802.1q] IEEE, 802., "IEEE 802.1q - Virtual Bridged Local Area Networks", IEEE 802.1q , June 2005. [MEF10] MEF, 10., "Ethernet Services Attributes Phase 1", MEF10 , November 2004. [RFC2697] Heinanen, J. and R. Guerin, "A Single Rate Three Color Marker", RFC 2697, DOI 10.17487/RFC2697, September 1999, . [RFC2698] Heinanen, J. and R. Guerin, "A Two Rate Three Color Marker", RFC 2698, DOI 10.17487/RFC2698, September 1999, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . [RFC4115] Aboul-Magd, O. and S. Rabie, "A Differentiated Service Two-Rate, Three-Color Marker with Efficient Handling of in-Profile Traffic", RFC 4115, DOI 10.17487/RFC4115, July 2005, . [RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data Model for L3VPN Service Delivery", RFC 8299, DOI 10.17487/RFC8299, January 2018, . Zheng, et al. Expires September 12, 2019 [Page 47] Internet-Draft Transport Client Signals YANG Model March 2019 [RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018, . [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, . [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for Abstraction and Control of TE Networks (ACTN)", RFC 8453, DOI 10.17487/RFC8453, August 2018, . [RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October 2018, . Authors' Addresses Haomian Zheng Huawei Technologies H1-1-A043S Huawei Industrial Base, Songshanhu Dongguan, Guangdong P.R.China Email: zhenghaomian@huawei.com Aihua Guo Huawei Technologies Email: aihuaguo@huawei.com Italo Busi Huawei Technologies Email: Italo.Busi@huawei.com Zheng, et al. Expires September 12, 2019 [Page 48] Internet-Draft Transport Client Signals YANG Model March 2019 Anton Snitser Sedona Email: antons@sedonasys.com Francesco Lazzeri Ericsson Email: francesco.lazzeri@ericsson.com Yunbin Xu CAICT Email: xuyunbin@ritt.cn Yang Zhao China Mobile Email: zhaoyangyjy@chinamobile.com Xufeng Liu Volta Networks Email: xufeng.liu.ietf@gmail.com Giuseppe Fioccola Huawei Technologies Email: giuseppe.fioccola@huawei.com Zheng, et al. Expires September 12, 2019 [Page 49]