
core P. van der Stok
Internet-Draft A. Sehgal
Intended status: Informational Consultant
Expires: September 16, 2016 March 15, 2016

 Patch Method for Constrained Application Protocol (CoAP)
 draft-vanderstok-core-patch-03

Abstract

 The existing Constrained Application Protocol (CoAP) PUT method only
 allows a complete replacement of a resource. This does not permit
 applications to perform partial resource modifications. In case of
 resources with larger or complex data, or in situations where a
 resource continuity is required, replacing a resource is not an
 option. Several applications using CoAP will need to perform partial
 resource modifications. This proposal adds new CoAP methods, PATCH
 and iPATCH, to modify an existing CoAP resource partially.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 16, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

van der Stok & Sehgal Expires September 16, 2016 [Page 1]

Internet-Draft CoAP Patch March 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 1.2. Terminology and Acronyms 3
 2. PATCH (iPATCH) Method . 3
 2.1. A Simple PATCH (iPATCH) Example 4
 2.2. Response Codes . 7
 2.3. Option Numbers . 7
 3. Error Handling . 8
 4. Security Considerations 9
 5. IANA Considerations . 10
 6. Acknowledgements . 10
 7. Change log . 10
 8. References . 11
 8.1. Normative References 11
 8.2. Informative References 12
 Authors’ Addresses . 12

1. Introduction

 This specification defines the new Constrained Application Protocol
 (CoAP) [RFC7252] methods, PATCH and iPATCH, which are used to apply
 partial modifications to a resource.

 PATCH is also specified for HTTP in [RFC5789]. Most of the
 motivation for PATCH described in [RFC5789] also applies here. iPATCH
 is the idem-potent version of PATCH.

 The PUT method exists to overwrite a resource with completely new
 contents, and cannot be used to perform partial changes. When using
 PUT for partial changes, proxies and caches, and even clients and
 servers, may get confused as to the result of the operation. PATCH
 was not adopted in an early design stage of CoAP, however, it has
 become necessary with the arrival of applications that require
 partial updates to resources (e.g. [I-D.vanderstok-core-comi]).
 Using PATCH avoids transferring all data associated with a resource
 in case of modifications, thereby not burdening the constrained
 communication medium.

 This document relies on knowledge of the PATCH specification for HTTP
 [RFC5789]. This document provides extracts from [RFC5789] to make
 independent reading possible.

van der Stok & Sehgal Expires September 16, 2016 [Page 2]

Internet-Draft CoAP Patch March 2016

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Terminology and Acronyms

 This document uses terminology defined in [RFC5789] and [RFC7252].

2. PATCH (iPATCH) Method

 The PATCH (iPATCH) method requests that a set of changes described in
 the request payload is applied to the target resource of the request.
 The set of changes is represented in a format identified by a media
 type. If the Request-URI does not point to an existing resource, the
 server MAY create a new resource with that URI, depending on the
 patch document type (whether it can logically modify a null resource)
 and permissions, etc. Creation of a new resource would result in a
 2.01 (Created) Response Code dependent of the patch document type.

 Restrictions to a PATCH (iPATCH) can be made by including the If-
 Match or If-None-Match options in the request (see Section 5.10.8.1
 and 5.10.8.2 of [RFC7252]). If the resource could not be created or
 modified, then an appropriate Error Response Code SHOULD be sent.

 The difference between the PUT and PATCH requests is extensively
 documented in [RFC5789].

 PATCH is not safe and not idempotent conformant to HTTP PATCH
 specified in [RFC5789].

 iPATCH is not safe but idempotent conformant to CoAP PUT specified in
 [RFC7252], Section 5.8.3.

 An iPATCH request is idempotent to prevent bad outcomes from
 collisions between two iPATCH requests on the same resource in a
 similar time frame. These collisions can be detected with the
 MessageId and the source end-point provided by the CoAP protocol (see
 section 4.5 of [RFC7252].

 PATCH and iPATCH are both atomic. The server MUST apply the entire
 set of changes atomically and never provide a partially modified
 representation to a concurrently executed GET request. Given the
 constrained nature of the servers, most servers will only execute
 CoAP requests consecutively, thus preventing a concurrent partial
 overlapping of request modifications. Resuming, modifications MUST
 NOT be applied to the server state when an error occurs or only a

van der Stok & Sehgal Expires September 16, 2016 [Page 3]

Internet-Draft CoAP Patch March 2016

 partial execution is possible on the resources present in the server.
 When the PATCH request is over-specified (i.e. Request specifies
 modifications to attributes which do not exist in the server), The
 server MAY execute all modifications to existing attributes and
 return a response code 2.02 Accepted.

 The atomicity applies to a single server. When a PATCH (iPATCH)
 request is multicast to a set of servers, each server can either
 execute all required modifications or not. It is not required that
 all servers execute all modifications or none. An Atomic Commit
 protocol that provides multiple server atomicity, is out of scope.

 A PATCH (iPATCH) response can invalidate a cache conformant with the
 PUT response. Caching behaviour as function of the valid 2.xx
 response codes for PATCH (iPATCH) are:

 A 2.01 (Created) response invalidates any cache entry for the
 resource indicated by the Location-* Options; the payload is a
 representation of the action result.

 A 2.04 (Changed) response invalidates any cache entry for the
 target resource; the payload is a representation of the action
 result.

 There is no guarantee that a resource can be modified with PATCH
 (iPATCH). Servers are required to support a subset of the content
 formats as specified in sections 12.3 and 5.10.3 of [RFC7252].
 Servers MUST ensure that a received PATCH payload is appropriate for
 the type of resource identified by the target resource of the
 request.

 Clients MUST choose to use PATCH (iPATCH) rather than PUT when the
 request affects partial updates of a given resource.

 PATCH (iPATCH) MUST not be used to restore default values to resource
 attributes which are not specified in the payload. PATCH (iPATCH)
 specifically guarantees that unspecified resource attributes are not
 changed.

2.1. A Simple PATCH (iPATCH) Example

 The example is taken over from [RFC6902], which specifies a JSON
 notation for PATCH operations. A resource located at
 www.example.com/object contains a target JSON document.

van der Stok & Sehgal Expires September 16, 2016 [Page 4]

Internet-Draft CoAP Patch March 2016

 JSON document original state
 {
 "x-coord": 256,
 "y-coord": 45",
 "foo": ["bar","baz"]
 }

 REQ:
 iPATCH CoAP://www.example.com/object
 Content-Format: application/json-patch+json
 [
 { "op":"replace","path":"x-coord","value":45}
]
 RET:
 CoAP 2.04 Changed

 JSON document final state
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 This example illustrates use of an idempotent modification to the
 x-coord attribute of the existing resource "object". The 2.04
 (Changed) response code is conform with the CoAP PUT method.

 The same example using the Content-Format application/merge-
 patch+json from [RFC7396] looks like:

van der Stok & Sehgal Expires September 16, 2016 [Page 5]

Internet-Draft CoAP Patch March 2016

 JSON document original state
 {
 "x-coord": 256,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 REQ:
 iPATCH CoAP://www.example.com/object
 Content-Format: application/merge-patch+json
 { "x-coord":45}
 RET:
 CoAP 2.04 Changed

 JSON document final state
 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","baz"]
 }

 The examples show the use of the iPATCH method, but the use of the
 PATCH method must have led to the same result. Below a non-
 idempotent modification is shown. Because the action is non-
 idempotent, iPATCH returns an error, while PATCH executes the action.

van der Stok & Sehgal Expires September 16, 2016 [Page 6]

Internet-Draft CoAP Patch March 2016

 JSON document original state
 {
 "x-coord": 256,
 "y-coord": 45",
 "foo": ["bar","baz"]
 }

 REQ:
 iPATCH CoAP://www.example.com/object
 Content-Format: application/json-patch+json
 [
 { "op":"add","path":"foo/1","value":"bar"}
]
 RET:
 CoAP 4.12 Precondition Failed

 JSON document final state is unchanged

 REQ:
 PATCH CoAP://www.example.com/object
 Content-Format: application/json-patch+json
 [
 { "op":"add","path":"foo/1","value":"bar"}
]
 RET:
 CoAP 2.04 Changed

 JSON document final state

 {
 "x-coord": 45,
 "y-coord": 45,
 "foo": ["bar","bar","baz"]
 }

2.2. Response Codes

 PATCH (iPATCH) for CoAP adopt the response codes as specified in
 sections 5.9 and 12.1.2 of [RFC7252].

2.3. Option Numbers

 PATCH for CoAP adopts the option numbers as specified in sections
 5.10 and 12.2 of [RFC7252].

van der Stok & Sehgal Expires September 16, 2016 [Page 7]

Internet-Draft CoAP Patch March 2016

3. Error Handling

 A PATCH (iPATCH) request may fail under certain known conditions.
 These situations should be dealt with as expressed below.

 Malformed PATCH (iPATCH) payload: If a server determines that the
 payload provided with a PATCH (iPATCH) request is not properly
 formatted, it can return a 4.00 (Bad Request) CoAP error. The
 definition of a malformed payload depends upon the CoAP Content-
 Format specified with the request.

 Unsupported PATCH (iPATCH) payload: In case a client sends payload
 that is inappropriate for the resource identified by the Request-
 URI, the server can return a 4.15 (Unsupported Content-Format)
 CoAP error. The server can determine if the payload is supported
 by checking the CoAP Content-Format specified with the request.

 Unprocessable request: This situation occurs when the payload of a
 PATCH request is determined as valid, i.e. well-formed and
 supported, however, the server is unable to or incapable of
 processing the request. The server can return a 4.22
 (Unprocessable Entity) CoAP error. More specific scenarios might
 include situations when:

 * the server has insufficient computing resources to complete the
 request successfully -- 4.13 (Request Entity Too Large) CoAP
 Response Code,

 * the resource specified in the request becomes invalid by
 applying the payload -- 4.06 (Not Acceptable) CoAP Response
 Code,

 In case there are more specific errors that provide more insight
 into the problem, then those should be used.

 Resource not found: The 4.04 (Not Found) error should be returned in
 case the payload of a PATCH request cannot be applied to a non-
 existent resource.

 Failed precondition: In case the client uses the conditional If-
 Match or If-None-Match option to define a precondition for the
 PATCH request, and that precondition fails, then the server can
 return the 4.12 (Precondition Failed) CoAP error.

 Request too large: If the payload of the PATCH request is larger
 than a CoAP server can process, then it can return the 4.13
 (Request Entity Too Large) CoAP error.

van der Stok & Sehgal Expires September 16, 2016 [Page 8]

Internet-Draft CoAP Patch March 2016

 Conflicting state: If the modification specified by a PATCH (iPATCH)
 request causes the resource to enter an inconsistent state that
 the server cannot resolve, the server can return the 4.09
 (Conflict) CoAP response. The server SHOULD generate a payload
 that includes enough information for a user to recognize the
 source of the conflict. The server MAY return the actual resource
 state to provide the client with the means to create a new
 consistent resource state. Such a situation might be encountered
 when a structural modification is applied to a configuration data-
 store, but the structures being modified do not exist.

 Concurrent modification: Resource constrained devices might need to
 process requests in the order they are received. In case requests
 are received concurrently to modify the same resource but they
 cannot be queued, the server can return a 5.03 (Service
 unavailable) CoAP response code.

 Conflict handling failure: If the modification implies the
 reservation of resources or the waiting on conditions to become
 true, leading to a too long request execution time, the server can
 return 5.03 (service unavailable) response code.

 It is possible that other error situations, not mentioned here, are
 encountered by a CoAP server while processing the PATCH request. In
 these situations other appropriate CoAP status codes can also be
 returned.

4. Security Considerations

 This section analyses the possible threats to the CoAP PATCH (iPATCH)
 protocol. It is meant to inform protocol and application developers
 about the security limitations of CoAP PATCH (iPATCH) as described in
 this document. The security consideration of section 15 of
 [RFC2616], section 11 of [RFC7252], and section 5 of [RFC5789] also
 apply.

 The security considerations for PATCH (iPATCH) are nearly identical
 to the security considerations for PUT ([RFC7252]). The mechanisms
 used for PUT can be used for PATCH (iPATCH) as well.

 PATCH (iPATCH) is secured following the CoAP recommendations as
 specified in section 9 of [RFC7252]. When more appropriate security
 techniques are standardized for CoAP, PATCH (iPATCH) can also be
 secured by those new techniques.

van der Stok & Sehgal Expires September 16, 2016 [Page 9]

Internet-Draft CoAP Patch March 2016

5. IANA Considerations

 The entry with name PATCH in the sub-registry, "CoAP Method Codes",
 is 0.05. The entry with name iPATCH in the sub-registry, "CoAP
 Method Codes", is 0.06. The additions will follow the "IETF Review
 or IESG Approval" procedure as described in [RFC5226].

 A new response code must be entered to the sub-registry "CoAP
 response codes" which apply to the methods PATCH and iPATCH.

 Code 4.09 with Description "Conflict" and described in this
 specification.

 The addition to this sub-registry will follow the "IETF Review or
 IESG Approval" as described in [RFC5226].

 Additions to the sub-registry "CoAP Content-Formats", within the
 "CoRE Parameters" registry are needed for the following media type
 formats: "application/json-patch+json" [RFC6902], and "application/
 merge-patch+json" [RFC7396].

6. Acknowledgements

 Klaus Hartke has pointed out some essential differences between CoAP
 and HTTP. We are grateful for discussions with Christian Amsuss,
 Carsten Bormann, Timothy Carey, Paul Duffy, Kovatsch Matthias, Michel
 Veillette, Michael Verschoor, Thomas Watteyne, and Gengyu Wei.

7. Change log

 When published as a RFC, this section needs to be removed.

 Version 0 to version 1:

 o Changed patch motivation text.

 o Removed sub-resource concept.

 o Updated cache handling.

 o Extended example.

 o Update of error handling.

 Version 1 to version 2

 o section 3 rephrased use of error 4.09

van der Stok & Sehgal Expires September 16, 2016 [Page 10]

Internet-Draft CoAP Patch March 2016

 o added conflict handling failure

 o added idempotent iPATCH method

 Version 2 to version 3

 o added line about default values

 o content-Type to content_Format

 o extended Patch example with non-idempotent request

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <http://www.rfc-editor.org/info/rfc5789>.

 [RFC6902] Bryan, P., Ed. and M. Nottingham, Ed., "JavaScript Object
 Notation (JSON) Patch", RFC 6902, DOI 10.17487/RFC6902,
 April 2013, <http://www.rfc-editor.org/info/rfc6902>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <http://www.rfc-editor.org/info/rfc7396>.

van der Stok & Sehgal Expires September 16, 2016 [Page 11]

Internet-Draft CoAP Patch March 2016

8.2. Informative References

 [I-D.vanderstok-core-comi]
 Stok, P. and A. Bierman, "CoAP Management Interface",
 draft-vanderstok-core-comi-09 (work in progress), March
 2016.

Authors’ Addresses

 Peter van der Stok
 Consultant

 Email: consultancy@vanderstok.org

 Anuj Sehgal
 Consultant

 Email: anuj@iurs.org

van der Stok & Sehgal Expires September 16, 2016 [Page 12]

