
CoRE P. van der Stok
Internet-Draft consultant
Intended status: Standards Track A. Bierman
Expires: May 3, 2017 YumaWorks
 M. Veillette
 Trilliant Networks Inc.
 A. Pelov
 Acklio
 October 30, 2016

 CoAP Management Interface
 draft-vanderstok-core-comi-10

Abstract

 This document describes a network management interface for
 constrained devices and networks, called CoAP Management Interface
 (CoMI). The Constrained Application Protocol (CoAP) is used to
 access data resources specified in YANG, or SMIv2 converted to YANG.
 CoMI uses the YANG to CBOR mapping and converts YANG identifier
 strings to numeric identifiers for payload size reduction. CoMI
 extends the set of YANG based protocols NETCONF and RESTCONF with the
 capability to manage constrained devices and networks.

Note

 Discussion and suggestions for improvement are requested, and should
 be sent to core@ietf.org.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2017.

van der Stok, et al. Expires May 3, 2017 [Page 1]

Internet-Draft CoMI October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. CoMI Architecture . 5
 2.1. Major differences between RESTCONF and CoMI 7
 2.2. Compression of data node instance identifier 8
 3. Example syntax . 8
 4. CoAP Interface . 8
 5. /c Function Set . 10
 5.1. Using the ’k’ query parameter 11
 5.2. Data Retrieval . 13
 5.2.1. Using the ’c’ query parameter 13
 5.2.2. Using the ’d’ query parameter 14
 5.2.3. GET . 14
 5.2.4. FETCH . 16
 5.3. Data Editing . 17
 5.3.1. Data Ordering . 17
 5.3.2. POST . 17
 5.3.3. PUT . 18
 5.3.4. iPATCH . 19
 5.3.5. DELETE . 20
 5.4. Full Data Store access 20
 5.4.1. Full Data Store examples 21
 5.5. Notify functions . 22
 5.5.1. Notify Examples 23
 5.6. RPC statements . 23
 5.6.1. RPC Example . 24
 6. Access to MIB Data . 24
 7. Use of Block . 26
 8. Resource Discovery . 26
 9. Error Return Codes . 28
 10. Error Handling . 29

van der Stok, et al. Expires May 3, 2017 [Page 2]

Internet-Draft CoMI October 2016

 11. Security Considerations 30
 12. IANA Considerations . 31
 13. Acknowledgements . 31
 14. Changelog . 32
 15. References . 35
 15.1. Normative References 35
 15.2. Informative References 37
 Appendix A. YANG example specifications 38
 A.1. ietf-system . 39
 A.2. server list . 40
 A.3. interfaces . 40
 A.4. Example-port . 41
 A.5. ipNetToMediaTable . 42
 Appendix B. Comparison with LWM2M 43
 B.1. Introduction . 43
 B.2. Defining Management Resources 44
 B.3. Identifying Management Resources 45
 B.4. Encoding of Management Resources 45
 Authors’ Addresses . 45

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is designed for
 Machine to Machine (M2M) applications such as smart energy and
 building control. Constrained devices need to be managed in an
 automatic fashion to handle the large quantities of devices that are
 expected in future installations. The messages between devices need
 to be as small and infrequent as possible. The implementation
 complexity and runtime resources need to be as small as possible.

 This draft describes the CoAP Management Interface which uses CoAP
 methods to access structured data defined in YANG [RFC6020]. This
 draft is complementary to the draft [I-D.ietf-netconf-restconf] which
 describes a REST-like interface called RESTCONF, which uses HTTP
 methods to access structured data defined in YANG.

 The use of standardized data sets, specified in a standardized
 language such as YANG, promotes interoperability between devices and
 applications from different manufacturers. A large amount of
 Management Information Base (MIB) [RFC3418] [mibreg] specifications
 already exists for monitoring purposes. This data can be accessed in
 RESTCONF or CoMI if the server converts the SMIv2 modules to YANG,
 using the mapping rules defined in [RFC6643].

 CoMI and RESTCONF are intended to work in a stateless client-server
 fashion. They use a single round-trip to complete a single editing
 transaction, where NETCONF needs up to 10 round trips.

van der Stok, et al. Expires May 3, 2017 [Page 3]

Internet-Draft CoMI October 2016

 To promote small packets, CoMI uses a YANG to CBOR mapping
 [I-D.ietf-core-yang-cbor] and an additional "data-identifier string-
 to-number conversion" to minimize CBOR payloads and URI length.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Readers of this specification should be familiar with all the terms
 and concepts discussed in [RFC3410], [RFC3416], and [RFC2578].

 The following terms are defined in the NETCONF protocol [RFC6241]:
 client, configuration data, datastore, and server.

 The following terms are defined in the YANG data modelling language
 [RFC6020]: container, data node, key, key leaf, leaf, leaf-list, and
 list.

 The following terms are defined in RESTCONF protocol
 [I-D.ietf-netconf-restconf]: data resource, datastore resource, edit
 operation, query parameter, and target resource.

 The following terms are defined in this document:

 data node instance: An instance of a data node specified in a YANG
 module present in the server. The instance is stored in the
 memory of the server.

 Notification instance: An instance of a schema node of type
 notification, specified in a YANG module present in the server.
 The instance is generated in the server at the occurrence of the
 corresponding event and appended to a stream.

 YANG schema item identifier: Numeric identifier which replaces the
 name identifying a YANG item (see section 6.2 of [RFC7950]) (data
 node, RPC, Action, Notification, Identity, Module name, Submodule
 name, Feature).

 list instance identifier: Handle used to identify a YANG data node
 that is an instance of a YANG "list" specified with the values of
 the key leaves of the list.

 single instance identifier: Handle used to identify a specific data
 node which can be instantiated only once. This includes data
 nodes defined at the root of a YANG module or submodule and data

van der Stok, et al. Expires May 3, 2017 [Page 4]

Internet-Draft CoMI October 2016

 nodes defined within a container. This excludes data nodes
 defined within a list or any children of these data nodes.

 instance identifier: List instance identifier or single instance
 identifier.

 data node value: Value assigned to a data node instance. Data node
 values are encoded based on the rules defined in section 4 of
 [I-D.ietf-core-yang-cbor].

 set of data node instances: Represents the payload of CoAP methods
 when a collection is sent or returned. There are two
 possibilities, dependent on Request context :

 1. CBOR array of pair(s) <instance identifier, data node value >

 2. CBOR map of pair(s) <instance identifier, data node value >

 The following list contains the abbreviations used in this document.

 SID: YANG Schema Item iDentifier.

2. CoMI Architecture

 This section describes the CoMI architecture to use CoAP for the
 reading and modifying of instrumentation variables used for the
 management of the instrumented node.

van der Stok, et al. Expires May 3, 2017 [Page 5]

Internet-Draft CoMI October 2016

 Client
 +--+
 | +----------------+ +----------------+ |
 | | SMIv2 | > | YANG | > COAP |
 | |specification(2)| |specification(1)| Request(3) |
 | +----------------+ +----------------+[* |
 +-----------------------------*-----------[---------*----------+
 * [*
 * [+-----------+
 mapping * security[| Network |
 * (8) [| packet(4) |
 * [+-----------+
 Server * [*
 +-----------------------------*-----------[---------*----------+
 | * [* |
 | * Retrieval, |
 | * Modification(5) |
 | */ * |
 | +---*--------+ |
	+--------------+ +------------+					
		configuration		Operational		
		(6b)		state(6a)		
	+--------------+ +------------+					
	datastore (6) *					
+---*--------+						
*						
Variable						
Instrumentation(7)						
 +--+

 Figure 1: Abstract CoMI architecture

 Figure 1 is a high level representation of the main elements of the
 CoAP management architecture. A client sends requests as payload in
 packets over the network to a managed constrained node.

 The different numbered components of Figure 1 are discussed according
 to component number.

 (1) YANG specification: contains a set of named and versioned
 modules.

 (2) SMIv2 specification: A named module specifies a set of variables
 and "conceptual tables". There is an algorithm to translate SMIv2
 specifications to YANG specifications.

van der Stok, et al. Expires May 3, 2017 [Page 6]

Internet-Draft CoMI October 2016

 (3) CoAP request: The CoAP request needs a Universal Resource
 Identifier (URI). The CoMI client sends request messages and
 receives response messages.

 (4) Network packet: The payload contains CBOR encoded YANG data node
 instances.

 (5) Retrieval, modification: The server needs to parse the CBOR
 encoded message and identify the corresponding instances in the
 datastore.

 (6) Datastore: The store is composed of two parts: Operational state
 and Configuration datastore.

 (7) Variable instrumentation: This code depends on implementation of
 drivers and other node specific aspects.

 (8) Security: The server MUST prevent unauthorized users from
 reading or writing any data resources. CoMI relies on the
 security measures specified for CoAP such as DTLS [RFC6347].

2.1. Major differences between RESTCONF and CoMI

 CoMI uses CoAP/UDP as transport protocol and CBOR as payload format
 [I-D.ietf-core-yang-cbor]. RESTCONF uses HTTP/TCP as transport
 protocol and JSON [RFC7159] or XML [XML] as payload formats. CoMI
 encodes YANG identifier strings as numbers, where RESTCONF does not.

 CoMI uses the methods FETCH and iPATCH, not used by RESTCONF.
 RESTCONF uses the HTTP methods HEAD, and OPTIONS, which are not used
 by CoMI.

 CoAP servers MUST maintain the order of user-ordered data. CoMI does
 not support insert-mode (first, last, before, after) and insertion-
 point (before, after) which are supported by RESTCONF. Many CoAP
 servers will not support date and time functions. For that reason
 CoMI does not support the start, stop options for events.

 CoMI servers only implement the efficient "trim" mode for default
 values

 The CoMI servers do not support the following RESTCONF functionality:

 o The "fields" query parameter to query multiple instances.

 o The ’filter’ query that involves XML parsing, ’content’, and
 ’depth’, query parameters.

van der Stok, et al. Expires May 3, 2017 [Page 7]

Internet-Draft CoMI October 2016

2.2. Compression of data node instance identifier

 In the YANG specification the nodes are identified with a name
 string. The name string contains the module name, hierarchy of
 container/list names, and the leaf name.

 In order to significantly reduce the size of identifiers used in
 CoMI, numeric object identifiers are used instead of these strings.
 The specific encoding of the object identifiers is not hard-wired in
 the protocol.

 Examples of object identifier encoding formats are described in
 [I-D.somaraju-core-sid].

3. Example syntax

 This section presents the notation used for the examples. The YANG
 specifications that are used throughout this document are shown in
 Appendix A. The example specifications are taken over from existing
 modules and annotated with SIDs. The values of the SIDs are taken
 over from [yang-cbor].

 CBOR is used for the payload of the request- and the return-packets.
 The CBOR syntax of the YANG payloads is specified in [RFC7049]. The
 payload examples are notated in Diagnostic notation (defined in
 section 6 of [RFC7049]) that can be automatically converted to CBOR.

 A YANG leaf (YANG item identifier, YANG item value) pair is mapped to
 a CBOR(key, value) pair. The YANG leaf value is encoded as specified
 in [I-D.ietf-core-yang-cbor]. The YANG leaf identifier can be a SID
 or a CBOR array with the structure [SID, key1, key2], where SID is a
 list identifier and the key values specify the list instance. The
 YANG leaf value can be a simple value, a CBOR array, or a CBOR map.

 Delta encoding is used for the SIDs. The notation +n is used when
 the SID has the value PREC+n where PREC is the SID of the parent
 container, or PREC is the SID of the preceding entity in a CBOR
 array.

 In all examples the resource path in the URI is expressed as a SID,
 represented as a base64 number. SIDs in the payload are represented
 as decimal numbers.

4. CoAP Interface

 In CoAP a group of links can constitute a Function Set. The format of
 the links is specified in [I-D.ietf-core-interfaces]. This note
 specifies a Management Function Set. CoMI end-points that implement

van der Stok, et al. Expires May 3, 2017 [Page 8]

Internet-Draft CoMI October 2016

 the CoMI management protocol support at least one discoverable
 management resource of resource type (rt): core.c, with path: /c,
 where c is short-hand for CoMI. The path root /c is recommended but
 not compulsory (see Section 8).

 The path prefix /c has resources accessible with the following three
 paths:

 /c: YANG-based data with path "/c" and using CBOR content encoding
 format. This path represents a datastore resource which contains
 YANG data resources as its descendant nodes. The data nodes are
 identified with their SID with format /c/SID.

 /c/mod.uri: URI identifying the location of the server module
 information, with path "/c/mod.uri" and CBOR content format. This
 YANG data is encoded with plain identifier strings, not YANG
 encoded values. An Entity Tag MUST be maintained for this
 resource by the server, which MUST be changed to a new value when
 the set of YANG modules in use by the server changes.

 /c/s: String identifying the default stream resource to which YANG
 notification instances are appended. Notification support is
 optional, so this resource will not exist if the server does not
 support any notifications.

 The mapping of YANG data node instances to CoMI resources is as
 follows: A YANG module describes a set of data trees composed of YANG
 data nodes. Every root of a data tree in a YANG module loaded in the
 CoMI server represents a resource of the server. All data root
 descendants represent sub-resources.

 The resource identifiers of the instances of the YANG specifications
 are encoded YANG identifier strings. When multiple instances of a
 list node exist, instance selection is possible as described in
 Section 5.2.4 and Section 5.2.3.1.

 The profile of the management function set, with IF=core.c, is shown
 in the table below, following the guidelines of
 [I-D.ietf-core-interfaces]:

van der Stok, et al. Expires May 3, 2017 [Page 9]

Internet-Draft CoMI October 2016

 +----------------+-------------+----------------+-------------------+
 | name | path | rt | Data Type |
 +----------------+-------------+----------------+-------------------+
Management	/c	core.c	n/a
Data	/c	core.c.data	application/cbor
Module Set URI	/c/mod.uri	core.c.moduri	application/cbor
Events	/c/s	core.c.stream	application/cbor
 +----------------+-------------+----------------+-------------------+

5. /c Function Set

 The /c Function Set provides a CoAP interface to manage YANG servers.

 The methods used by CoMI are:

 +-----------+---+
 | Operation | Description |
 +-----------+---+
 | GET | Retrieve the datastore resource or a data resource |
 | | |
 | FETCH | Retrieve partial data resources |
 | | |
 | POST | Create a data resource, invoke RPC |
 | | |
 | PUT | Create or replace a data resource |
 | | |
 | iPATCH | Idem-potently replace a data resource partially |
 | | |
 | DELETE | Delete a data resource |
 +-----------+---+

 There is one query parameters for the GET, PUT, POST, and DELETE
 methods.

 +-----------------+------------------------------------+
 | Query Parameter | Description |
 +-----------------+------------------------------------+
 | k | Select an instance of a list node |
 +-----------------+------------------------------------+

 This parameter is not used for FETCH and iPATCH, because their
 request payloads support list instance selection.

van der Stok, et al. Expires May 3, 2017 [Page 10]

Internet-Draft CoMI October 2016

5.1. Using the ’k’ query parameter

 The "k" (key) parameter specifies the instance of a list node. The
 SID in the URI is followed by the (?k=key1, key2,..). Where SID
 identifies a list node, and key1, key2 are the values of the key
 leafs that specify an instance of the list.

 Key values are encoded using the rules defined in the following
 table:

van der Stok, et al. Expires May 3, 2017 [Page 11]

Internet-Draft CoMI October 2016

 +-----------------------+------------------+------------------------+
 | YANG datatype | Binary | Text representation |
 | | representation | |
 +-----------------------+------------------+------------------------+
uint8,uint16,unit32,	CBOR unsigned	int_to_text(number)
uint64	integer	
int8, int16,int32,	CBOR negative	Base64 (CBOR
int64	integer	representation)
	CBOR unsigned	
	integer	
decimal64	CBOR decimal	base64 (CBOR
	fractions	representation
string	CBOR text or	text
	string	
boolean	CBOR false or	"0" or "1"
	true	
enumeration	CBOR unsigned	int_to_text (number)
	integer	
bits	CBOR byte string	Base64 (CBOR
		representation)
binary	CBOR byte string	Base64 (CBOR
		representation)
identityref	CBOR unsigned	int_to_text (number)
	integer	
union		Base64 (CBOR
		representation)
List instance	CBOR unsigned	Base64 (CBOR
identifier	integer	representation)
List instance	CBOR array	Base64 (CBOR
identifier		representation)
 +-----------------------+------------------+------------------------+

van der Stok, et al. Expires May 3, 2017 [Page 12]

Internet-Draft CoMI October 2016

5.2. Data Retrieval

 One or more data node instances can be retrieved by the client. The
 operation is mapped to the GET method defined in section 5.8.1 of
 [RFC7252] and to the FETCH method defined in section 2 of
 [I-D.vanderstok-core-etch].

 It is possible that the size of the payload is too large to fit in a
 single message. In the case that management data is bigger than the
 maximum supported payload size, the Block mechanism from [RFC7959] is
 used, as explained in more detail in Section 7.

 CoMI uses the FETCH payload for filtering sub-trees and retrieving
 only a subset that a managing application is interested in.

 There is one additional query parameters for the GET and FETCH
 methods.

 +-------------+---+
 | Query | Description |
 | Parameter | |
 +-------------+---+
c	Request to select configuration and non-
	configuration nodes (GET and FETCH)
d	Control retrieval of default values.
 +-------------+---+

5.2.1. Using the ’c’ query parameter

 The ’c’ (content) parameter controls how descendant nodes of the
 requested data nodes will be processed in the reply.

 The allowed values are:

 +-------+--+
 | Value | Description |
 +-------+--+
 | c | Return only configuration descendant data nodes |
 | | |
 | n | Return only non-configuration descendant data nodes |
 | | |
 | a | Return all descendant data nodes |
 +-------+--+

 This parameter is only allowed for GET and FETCH methods on datastore
 and data resources. A 4.00 Bad Request error is returned if used for
 other methods or resource types.

van der Stok, et al. Expires May 3, 2017 [Page 13]

Internet-Draft CoMI October 2016

 If this query parameter is not present the default value is "a".

5.2.2. Using the ’d’ query parameter

 The "d" (with-defaults) parameter controls how the default values of
 the descendant nodes of the requested data nodes will be processed.

 The allowed values are:

 +-------+---+
 | Value | Description |
 +-------+---+
a	All data nodes are reported	Defined as ’report-all’ in
	section 3.1 of [RFC6243].	
t	Data nodes set to the YANG default are not reported.	
	Defined as ’trim’ in section 3.2 of [RFC6243].	
 +-------+---+

 If the target of a GET or FETCH method is a data node that represents
 a leaf that has a default value, and the leaf has not been given a
 value yet, the server MUST return the leaf.

 If the target of a GET method is a data node that represents a
 container or list that has any child resources with default values,
 for the child resources that have not been given value yet, the
 server MUST not return the child resource if this query parameter is
 set to ’t’ and MUST return the child resource if this query parameter
 is set to ’a’.

 If this query parameter is not present, the default value is ’t’.

5.2.3. GET

 A request to read the values of instances of a management object is
 sent with a confirmable CoAP GET message. A single object is
 specified in the URI path prefixed with /c.

 FORMAT:
 GET /c/<instance identifier>

 2.05 Content (Content-Format: application/cbor)
 <data node value>

 The specified object MUST be a complete object. Accordingly, the
 returned payload is composed of all the leaves associated with the
 object.

van der Stok, et al. Expires May 3, 2017 [Page 14]

Internet-Draft CoMI October 2016

 The instance identifier is a SID or a SID followed by the "k" query
 parameter.

5.2.3.1. GET Examples

 Using for example the current-datetime leaf from Appendix A.1, a
 request is sent to retrieve the value of system-state/clock/current-
 datetime specified in container system-state. The ID of system-
 state/clock/current-datetime is 1719, encoded in base64 this yields
 a3. The answer to the request returns a <value>, transported as a
 single CBOR string item.

 REQ: GET example.com/c/a3

 RES: 2.05 Content (Content-Format: application/cbor)
 "2014-10-26T12:16:31Z"

 For example, the GET of the clock node (ID = 1717; base64: a1), sent
 by the client, results in the following returned value sent by the
 server, transported as a CBOR map containing 2 pairs:

 REQ: GET example.com/c/a1

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 +2 : "2014-10-26T12:16:51Z", # ID 1719
 +1 : "2014-10-21T03:00:00Z" # ID 1718
 }

 A "list" node can have multiple instances. Accordingly, the returned
 payload of GET is composed of all the instances associated with the
 selected list node.

 For example, look at the example in Appendix A.3. The GET of the
 /interfaces/interface/ (with identifier 1533, base64: Bf0) results in
 the following returned payload, transported as a CBOR array with 2
 elements.

van der Stok, et al. Expires May 3, 2017 [Page 15]

Internet-Draft CoMI October 2016

 REQ: GET example.com/c/Bf0

 RES: 2.05 Content (Content-Format: application/cbor)
 [
 {+4 : "eth0", # name (ID 1537)
 +1 : "Ethernet adaptor", # description (ID 1534)
 +5 : 1179, # type, (ID 1538)identity
 # ethernetCsmacd (ID 1179)
 +2 : true # enabled (ID 1535)
 },
 {+4 : "eth1", # name
 +1 : "Ethernet adaptor", # description
 +5 : 1179, # type, identity ethernetCsmacd (ID 1179)
 +2 : false # enabled
]

 It is equally possible to select a leaf of one instance of a list or
 a complete instance container with GET. The instance identifier is
 the numeric identifier of the list followed by the specification of
 the values for the key leafs that uniquely identify the list
 instance. The instance identifier looks like: SID?k=key-value. The
 key of "interface" is the "name" leaf. The example below requests
 the description leaf of the instance with name="eth0" (ID=1534,
 base64: Bf4). The value of the description leaf is returned.

 REQ: GET example.com/c/Bf4?k="eth0"

 RES: 2.05 Content (Content-Format: application/cbor)
 "Ethernet adaptor"

5.2.4. FETCH

 The FETCH is used to retrieve a list of data node values. The FETCH
 Request payload contains a CBOR list of instance identifiers.

 FORMAT:
 FETCH /c/ Content-Format (application/YANG-fetch+cbor)
 <CBOR array of instance identifiers>

 2.05 Content (Content-Format: application/YANG-patch+cbor)
 <CBOR array of data node values>

 The instance identifier is a SID or a CBOR array containing the SID
 followed by key values that identify the list instance (sec 5.13.1 of
 [I-D.ietf-core-yang-cbor]. In the payload of the returned data node
 values, delta encoding is used as described in
 [I-D.ietf-core-yang-cbor].

van der Stok, et al. Expires May 3, 2017 [Page 16]

Internet-Draft CoMI October 2016

5.2.4.1. FETCH examples

 The example uses the current-datetime leaf and the interface list
 from Appendix A.1. In the following example the value of current-
 datetime (ID 1719)and the interface list (ID 1533) instance
 identified with name="eth0" are queried.

 FETCH /c Content-Format (application/YANG-fetch+cbor)
 [1719, # ID 1719
 [-186, "eth0"] # ID 1533 with name = "eth0"
]

 2.05 Content Content-Format (application/YANG-patch+cbor)
 [
 "2014-10-26T12:16:31Z",
 {
 +4 : "eth0", # name (ID 1537)
 +1 : "Ethernet adaptor", # description (ID 1534)
 +5 : 1179, # type (ID 1538), identity ethernetCsmacd
 +2 : true # enabled (ID 1535)
 }

5.3. Data Editing

 CoMI allows datastore contents to be created, modified and deleted
 using CoAP methods.

5.3.1. Data Ordering

 A CoMI server SHOULD preserve the relative order of all user-ordered
 list and leaf-list entries that are received in a single edit
 request. These YANG data node types are encoded as arrays so
 messages will preserve their order.

5.3.2. POST

 Data resource instances are created with the POST method. The CoAP
 POST operation is used in CoMI for creation of data resources and the
 invocation of "ACTION" and "RPC" resources. Refer to Section 5.6 for
 details on "ACTION" and "RPC" resources.

 A request to create the values of an instance of a container or leaf
 is sent with a confirmable CoAP POST message. A single SID is
 specified in the URI path prefixed with /c.

van der Stok, et al. Expires May 3, 2017 [Page 17]

Internet-Draft CoMI October 2016

 FORMAT:
 POST /c/<instance identifier> Content-Format(application/cbor)
 <data node value>

 2.01 Created (Content-Format: application/cbor)

 If the data resource already exists, then the POST request MUST fail
 and a "4.09 Conflict" status-line MUST be returned

 The instance identifier is a SID or a SID followed by the "k" query
 parameter.

5.3.2.1. Post example

 The example uses the interface list from Appendix A.1. Example is
 creating a new version of the container interface (ID = 1533):

 FORMAT:
 POST /c/Bf0 Content-Format(application/cbor)
 {
 +4 : "eth0", # name (ID 1537)
 +1 : "Ethernet adaptor", # description (ID 1534)
 +5 : 1179, # type (ID 1538), identity
 # ethernetCsmacd (ID 1179)
 +2 : true # enabled (ID 1535)
 }
 2.01 Created (Content-Format: application/cbor)

5.3.3. PUT

 Data resource instances are created or replaced with the PUT method.
 The PUT operation is supported in CoMI. A request to set the value
 of an instance of data node is sent with a confirmable CoAP PUT
 message.

 FORMAT:
 PUT /c/<instance identifier> Content-Format(application/cbor)
 <data node value>

 2.01 Created

 The instance identifier is a SID or a SID followed by the "k" query
 parameter.

van der Stok, et al. Expires May 3, 2017 [Page 18]

Internet-Draft CoMI October 2016

5.3.3.1. PUT example

 The example uses the interface list from Appendix A.1. Example is
 renewing an instance of the list interface (ID = 1533) with key
 name="eth0":

 FORMAT:
 PUT /c/Bf0?k="eth0" Content-Format(application/cbor)
 {
 +4 : "eth0", # name (ID 1537)
 +1 : "Ethernet adaptor", # description (ID 1534)
 +5 : 1179, # type (ID 1538), identity
 # ethernetCsmacd (ID 1179)
 +2 : true # enabled (ID 1535)
 }
 2.04 Changed

5.3.4. iPATCH

 One or multiple data resource instances are replaced with the idem-
 potent iPATCH method [I-D.vanderstok-core-etch]. A request to set
 the values of instances of a subset of the values of the resource is
 sent with a confirmable CoAP iPATCH message.

 There are no query parameters for the iPATCH method.

 The processing of the iPATCH command is specified by the CBOR
 payload. The CBOR patch payload describes the changes to be made to
 target YANG data nodes REF TO BE DEFINED. If the CBOR patch payload
 contains data node instances that are not present in the target,
 these instances are added or silently ignored dependent of the
 payload information. If the target contains the specified instance,
 the contents of the instances are replaced with the values of the
 payload. Null values indicate the removal of existing values.

 FORMAT:
 iPATCH /c Content-Format(application/YANG-patch+cbor)
 <set of data node instances>

 2.04 Changed

5.3.4.1. iPATCH example

 The example uses the interface list from Appendix A.3, and the
 timezone-utc-offset leaf from Appendix A.1. In the example one leaf
 (timezone-utc-offset) and one container (interface) instance are
 changed.

van der Stok, et al. Expires May 3, 2017 [Page 19]

Internet-Draft CoMI October 2016

 iPATCH /c Content-Format(application/YANG-patch+cbor)
 [
 [1533, "eth0"] , # interface (ID = 1533)
 {
 +4 : "eth0", # name (ID 1537)
 +1 : "Ethernet adaptor", # description (ID 1534)
 +5 : 1179, # type (ID 1538),
 # identity ethernetCsmacd
 +2 : true # enabled (ID 1535)
 }
 +203 , 60 # timezone-utc-offset (delta = 1736 - 1533)
]

 2.04 Changed

5.3.5. DELETE

 Data resource instances are deleted with the DELETE method. The
 RESTCONF DELETE operation is supported in CoMI.

 FORMAT:
 Delete /c/<instance identifier>

 2.02 Deleted

 The instance identifier is a SID or a SID followed by the "k" query
 parameter.

5.3.5.1. DELETE example

 The example uses the interface list from Appendix A.3. Example is
 deleting an instance of the container interface (ID = 1533):

 FORMAT:
 DELETE /c/Bf0?k="eth0"

 2.02 Deleted

5.4. Full Data Store access

 The methods GET, PUT, POST, and DELETE can be used to return,
 replace, create, and delete the whole data store respectively.

van der Stok, et al. Expires May 3, 2017 [Page 20]

Internet-Draft CoMI October 2016

 FORMAT:
 GET /c
 2.05 Content (Content-Format: application/cbor)
 <array of data node instances>

 PUT /c
 (Content-Format: application/cbor)
 <array of data node instances>
 2.04 Changed

 POST /c
 (Content-Format: application/cbor)
 <array of data node instances>
 2.01 Created

 DELETE /c
 (Content-Format: application/cbor)
 <array of data node instances>
 2.02 Deleted

 The array of data node instances represents an array of all root
 nodes in the data store after the PUT, POST and GET method
 invocations.

5.4.1. Full Data Store examples

 The example uses the interface list and the clock container from
 Appendix A.3. Assume that the data store contains two root objects:
 the list interface (ID 1533) with one instance and the container
 Clock (ID 1717). After invocation of GET an array with these two
 objects is returned:

van der Stok, et al. Expires May 3, 2017 [Page 21]

Internet-Draft CoMI October 2016

 GET /c
 2.05 Content Content-Format (application/YANG-patch+cbor)
 [
 1717:
 { +1: "2016-10-26T12:16:31Z", # current-datetime (ID 501)
 +2: "2014-10-05T09:00:00Z" # boot-datetime (ID 502)
 }
 -186: # clock (ID 1533)
 {
 +4 : "eth0", # name (ID 1537)
 +1 : "Ethernet adaptor", # description (ID 1534)
 +5 : 1179, # type (ID 1538), identity:
 # ethernetCsmacd (ID 1179)
 +2 : true # enabled (ID 1535)
 }
]

5.5. Notify functions

 Notification by the server to a selection of clients when an event
 occurs in the server is an essential function for the management of
 servers. CoMI allows events specified in YANG [RFC5277] to be
 notified to a selection of requesting clients. The server appends
 newly generated events to a stream. There is one, so-called
 "default", stream in a CoMI server. The /c/s resource identifies the
 default stream. The server MAY create additional stream resources.
 When a CoMI server generates an internal event, it is appended to the
 chosen stream, and the content of a notification instance is ready to
 be sent to all CoMI clients which observe the chosen stream resource.

 Reception of generated notification instances is enabled with the
 CoAP Observe [RFC7641] function. The client subscribes to the
 notifications by sending a GET request with an "Observe" option,
 specifying the /c/s resource when the default stream is selected.

 Every time an event is generated, the chosen stream is cleared, and
 the generated notification instance is appended to the chosen
 stream(s). After appending the instance, the contents of the
 instance is sent to all clients observing the modified stream.

 FORMAT:
 Get /<stream-resource>
 Content-Format(application/YANG-patch+cbor) Observe(0)

 2.05 Content Content-Format(application/YANG-patch+cbor)
 <set of data node instances>

van der Stok, et al. Expires May 3, 2017 [Page 22]

Internet-Draft CoMI October 2016

 TODO: addition of generic information

5.5.1. Notify Examples

 Suppose the server generates the event specified in Appendix A.4. By
 executing a GET on the /c/s resource the client receives the
 following response:

 GET /c/s Observe(0) Token(0x93)

 2.05 Content Content-Format(application/YANG-patch+cbor)
 Observe(12) Token(0x93)
 {
 2600 : # example-port-fault (ID 2600)
 {
 +1 : "0/4/21", # port-name (ID 2601)
 +2 : "Open pin 2", # port-fault (ID 2602)
 },
 2600 : # example-port-fault (ID 2600)
 {
 +1 : "1/4/21", # port-name (ID 2601)
 +2 : "Open pin 5", # port-fault (ID 2602)
 }

 }

 In the example, the request returns a success response with the
 contents of the last two generated events. Consecutively the server
 will regularly notify the client when a new event is generated.

 To check that the client is still alive, the server MUST send
 confirmable notifications once in a while. When the client does not
 confirm the notification from the server, the server will remove the
 client from the list of observers [RFC7641].

 In the registration request, the client MAY include a "Response-To-
 Uri-Host" and optionally "Response-To-Uri-Port" option as defined in
 [I-D.becker-core-coap-sms-gprs]. In this case, the observations
 SHOULD be sent to the address and port indicated in these options.
 This can be useful when the client wants the managed device to send
 the trap information to a multicast address.

5.6. RPC statements

 The YANG "action" and "RPC" statements specify the execution of a
 Remote procedure Call (RPC) in the server. It is invoked using a
 POST method to the "Action" or "RPC" identifier. The Request payload

van der Stok, et al. Expires May 3, 2017 [Page 23]

Internet-Draft CoMI October 2016

 contains the values assigned to the input container when specified
 with the action station. The Response payload contains the values of
 the output container when specified with the action statement.

 The returned success response code is 2.05 Content.

 FORMAT:
 POST /c/<instance identifier>
 Content-Format(application/YANG-patch+cbor)
 <input node value>

 2.05 Content Content-Format (application/YANG-patch+cbor)
 <output node value>

 There "k" query parameter is allowed for the POST method when used
 for RPC invocation.

5.6.1. RPC Example

 The example is based on the YANG action specification of
 Appendix A.2. A server list is specified and the action "reset",
 that is part of a "server instance" with key value "myserver", is
 invoked.

 POST /c/B24?k="myserver"
 Content-Format(application/YANG-patch+cbor)
 {
 +1 : "2016-02-08T14:10:08Z09:00" # reset-at (ID 1903)
 }

 2.05 Content Content-Format(application/YANG-patch+cbor)
 {
 +2 : "2016-02-08T14:10:08Z09:18" # reset-finished-at (ID 1904)
 }

6. Access to MIB Data

 Appendix A.5 shows a YANG specification mapped from the SMI
 specification "ipNetToPhysicalTable". The following example shows
 the YANG "ipNetToPhysicalTable" with 2 instances, using diagnostic
 notation encoding and annotating the leaf names with SID numbers.

van der Stok, et al. Expires May 3, 2017 [Page 24]

Internet-Draft CoMI October 2016

 {
 "IP-MIB/ipNetToPhysicalTable/ipNetToPhysicalEntry" : # ID 302
 [
 {
 "ipNetToPhysicalIfIndex" : 1, # ID 303
 "ipNetToPhysicalNetAddressType" : "ipv4", # ID 304
 "ipNetToPhysicalNetAddress" : "10.0.0.51", # ID 305
 "ipNetToPhysicalPhysAddress" : "00:00:10:01:23:45", # ID 306
 "ipNetToPhysicalLastUpdated" : "2333943", # ID 307
 "ipNetToPhysicalType" : "static", # ID 308
 "ipNetToPhysicalState" : "reachable", # ID 309
 "ipNetToPhysicalRowStatus" : "active" # ID 310
 },
 {
 "ipNetToPhysicalIfIndex" : 1, # ID 303
 "ipNetToPhysicalNetAddressType" : "ipv4", # ID 304
 "ipNetToPhysicalNetAddress" : "9.2.3.4", # ID 305
 "ipNetToPhysicalPhysAddress" : "00:00:10:54:32:10",# ID 306
 "ipNetToPhysicalLastUpdated" : "2329836", # ID 307
 "ipNetToPhysicalType" : "dynamic", # ID 308
 "ipNetToPhysicalState" : "unknown", # ID 309
 "ipNetToPhysicalRowStatus" : "active" # ID 310
 }
]
 }

 In the following example exactly one instance is requested from the
 ipNetToPhysicalEntry. The CBOR payload, here represented with
 diagnostic JSON, permits to transport the selected instance and
 nothing more.

 REQ: FETCH example.com/c/
 (Content-Format: application/YANG-fetch+cbor)
 [
 302,1,"ipv4",9.2.3.4
]

 RES: 2.05 Content (Content-Format: application/YANG-patch+cbor)
 {
 +1 : 1, (ID 303)
 +2 : "ipv4", (ID 304)
 +3 : "9.2.3.4", (ID 305)
 +4 : "00:00:10:54:32:10", (ID 306)
 +5 : "2329836", (ID 307)
 +6 : "dynamic", (ID 308)
 +7 : "unknown", (ID 309)
 +8 : "active" (ID 310)
 }

van der Stok, et al. Expires May 3, 2017 [Page 25]

Internet-Draft CoMI October 2016

 In this example one instance of ipNetToPhysicalTable/
 ipNetToPhysicalEntry that matches the key values (1,"ipv4",9.2.3.4)
 is returned.

7. Use of Block

 The CoAP protocol provides reliability by acknowledging the UDP
 datagrams. However, when large pieces of text need to be transported
 the datagrams get fragmented, thus creating constraints on the
 resources in the client, server and intermediate routers. The block
 option [RFC7959] allows the transport of the total payload in
 individual blocks of which the size can be adapted to the underlying
 fragment sizes such as: (UDP datagram size ˜64KiB, IPv6 MTU of 1280,
 IEEE 802.15.4 payload of 60-80 bytes). Each block is individually
 acknowledged to guarantee reliability.

 Notice that the Block mechanism splits the data at fixed positions,
 such that individual data fields may become fragmented. Therefore,
 assembly of multiple blocks may be required to process the complete
 data field.

 Beware of race conditions. Blocks are filled one at a time and care
 should be taken that the whole data representation is sent in
 multiple blocks sequentially without interruption. In the server,
 values are changed, lists are re-ordered, extended or reduced. When
 these actions happen during the serialization of the contents of the
 variables, the transported results do not correspond with a state
 having occurred in the server; or worse the returned values are
 inconsistent. For example: array length does not correspond with
 actual number of items. It may be advisable to use CBOR maps or CBOR
 arrays of undefined length which are foreseen for data streaming
 purposes.

8. Resource Discovery

 The presence and location of (path to) the management data are
 discovered by sending a GET request to "/.well-known/core" including
 a resource type (RT) parameter with the value "core.c" [RFC6690].
 Upon success, the return payload will contain the root resource of
 the management data. It is up to the implementation to choose its
 root resource, but it is recommended that the value "/c" is used,
 where possible. The example below shows the discovery of the
 presence and location of management data.

van der Stok, et al. Expires May 3, 2017 [Page 26]

Internet-Draft CoMI October 2016

 REQ: GET /.well-known/core?rt=core.c

 RES: 2.05 Content </c>; rt="core.c"

 Management objects MAY be discovered with the standard CoAP resource
 discovery. The implementation can add the encoded values of the
 object identifiers to /.well-known/core with rt="core.c.data". The
 available objects identified by the encoded values can be discovered
 by sending a GET request to "/.well-known/core" including a resource
 type (RT) parameter with the value "core.c.data". Upon success, the
 return payload will contain the registered encoded values and their
 location. The example below shows the discovery of the presence and
 location of management data.

 REQ: GET /.well-known/core?rt=core.c.data

 RES: 2.05 Content </c/BaAiN>; rt="core.c.data",
 </c/CF_fA>; rt="core.c.data"

 Lists of encoded values may become prohibitively long. It is
 discouraged to provide long lists of objects on discovery.
 Therefore, it is recommended that details about management objects
 are discovered by reading the YANG module information stored in the
 "ietf-YANG-library" module [I-D.ietf-netconf-restconf]. The resource
 "/c/mod.uri" is used to retrieve the location of the YANG module
 library.

 TODO: additional references using SIDs

 The module list can be stored locally on each server, or remotely on
 a different server. The latter is advised when the deployment of
 many servers are identical.

van der Stok, et al. Expires May 3, 2017 [Page 27]

Internet-Draft CoMI October 2016

 Local in example.com server:

 REQ: GET example.com/c/mod.uri

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "mod.uri" : "example.com/c/modules"
 }

 Remote in example-remote-server:

 REQ: GET example.com/c/mod.uri

 RES: 2.05 Content (Content-Format: application/cbor)
 {
 "moduri" : "example-remote-server.com/c/group17/modules"
 }

 Within the YANG module library all information about the module is
 stored such as: module identifier, identifier hierarchy, grouping,
 features and revision numbers.

9. Error Return Codes

 The RESTCONF return status codes defined in section 7 of
 [I-D.ietf-netconf-restconf] are used in CoMI error responses, except
 they are converted to CoAP error codes.

van der Stok, et al. Expires May 3, 2017 [Page 28]

Internet-Draft CoMI October 2016

 +-------------------------------+------------------+
 | RESTCONF Status Line | CoAP Status Code |
 +-------------------------------+------------------+
 | 100 Continue | none? |
 | | |
 | 200 OK | 2.05 |
 | | |
 | 201 Created | 2.01 |
 | | |
 | 202 Accepted | none? |
 | | |
 | 204 No Content | 2.04 Changed |
 | | |
 | 304 Not Modified | 2.03 |
 | | |
 | 400 Bad Request | 4.00 |
 | | |
 | 403 Forbidden | 4.03 |
 | | |
 | 404 Not Found | 4.04 |
 | | |
 | 405 Method Not Allowed | 4.05 |
 | | |
 | 409 Conflict | none? |
 | | |
 | 412 Precondition Failed | 4.12 |
 | | |
 | 413 Request Entity Too Large | 4.13 |
 | | |
 | 414 Request-URI Too Large | 4.00 |
 | | |
 | 415 Unsupported Media Type | 4.15 |
 | | |
 | 500 Internal Server Error | 5.00 |
 | | |
 | 501 Not Implemented | 5.01 |
 | | |
 | 503 Service Unavailable | 5.03 |
 +-------------------------------+------------------+

10. Error Handling

 In case a request is received which cannot be processed properly, the
 CoMI server MUST return an error message. This error message MUST
 contain a CoAP 4.xx or 5.xx response code, and SHOULD include
 additional information in the payload.

van der Stok, et al. Expires May 3, 2017 [Page 29]

Internet-Draft CoMI October 2016

 Such an error message payload is encoded in CBOR, using the following
 structure:

 errorMsg : ErrorMsg;

 *ErrorMsg {
 errorCode : uint;
 ?errorText : tstr;
 }

 The variable "errorCode" has one of the values from the table below,
 and the OPTIONAL "errorText" field contains a human readable
 explanation of the error.

 TODO: Alternatives?

 +----------------+----------------+---------------------------------+
 | CoMI Error | CoAP Error | Description |
 | Code | Code | |
 +----------------+----------------+---------------------------------+
0	4.00	General error
1	4.00	Malformed CBOR data
2	4.00	Incorrect CBOR datatype
3	4.00	Unknown MIB variable
4	4.00	Unknown conversion table
5	4.05	Attempt to write read-only
		variable
0..2	5.01	Access exceptions
0..18	5.00	SMI error status
 +----------------+----------------+---------------------------------+

 The CoAP error code 5.01 is associated with the exceptions defined in
 [RFC3416] and CoAP error code 5.00 is associated with the error-
 status defined in [RFC3416].

11. Security Considerations

 For secure network management, it is important to restrict access to
 configuration variables only to authorized parties. This requires

van der Stok, et al. Expires May 3, 2017 [Page 30]

Internet-Draft CoMI October 2016

 integrity protection of both requests and responses, and depending on
 the application encryption.

 CoMI re-uses the security mechanisms already available to CoAP as
 much as possible. This includes DTLS [RFC6347] for protected access
 to resources, as well suitable authentication and authorization
 mechanisms.

 Among the security decisions that need to be made are selecting
 security modes and encryption mechanisms (see [RFC7252]). This
 requires a trade-off, as the NoKey mode gives no protection at all,
 but is easy to implement, whereas the X.509 mode is quite secure, but
 may be too complex for constrained devices.

 In addition, mechanisms for authentication and authorization may need
 to be selected.

 CoMI avoids defining new security mechanisms as much as possible.
 However some adaptations may still be required, to cater for CoMI’s
 specific requirements.

12. IANA Considerations

 ’rt="core.c"’ needs registration with IANA.

 ’rt="core.c.data"’ needs registration with IANA.

 ’rt="core.c.moduri"’ needs registration with IANA.

 ’rt="core.c.stream"’ needs registration with IANA.

 Content types to be registered:

 o application/YANG-patch+cbor

 o application/YANG-fetch+cbor

13. Acknowledgements

 We are very grateful to Bert Greevenbosch who was one of the original
 authors of the CoMI specification and specified CBOR encoding and use
 of hashes.

 Mehmet Ersue and Bert Wijnen explained the encoding aspects of PDUs
 transported under SNMP. Carsten Bormann has given feedback on the
 use of CBOR.

 Timothy Carey has provided the text for Appendix B.

van der Stok, et al. Expires May 3, 2017 [Page 31]

Internet-Draft CoMI October 2016

 The draft has benefited from comments (alphabetical order) by Rodney
 Cummings, Dee Denteneer, Esko Dijk, Michael van Hartskamp, Juergen
 Schoenwaelder, Anuj Sehgal, Zach Shelby, Hannes Tschofenig, Michael
 Verschoor, and Thomas Watteyne.

14. Changelog

 Changes from version 00 to version 01

 o Focus on MIB only

 o Introduced CBOR, JSON, removed BER

 o defined mappings from SMI to xx

 o Introduced the concept of addressable table rows

 Changes from version 01 to version 02

 o Focus on CBOR, used JSON for examples, removed XML and EXI

 o added uri-query attributes mod and con to specify modules and
 contexts

 o Definition of CBOR string conversion tables for data reduction

 o use of Block for multiple fragments

 o Error returns generalized

 o SMI - YANG - CBOR conversion

 Changes from version 02 to version 03

 o Added security considerations

 Changes from version 03 to version 04

 o Added design considerations section

 o Extended comparison of management protocols in introduction

 o Added automatic generation of CBOR tables

 o Moved lowpan table to Appendix

 Changes from version 04 to version 05

van der Stok, et al. Expires May 3, 2017 [Page 32]

Internet-Draft CoMI October 2016

 o Merged SNMP access with RESTCONF access to management objects in
 small devices

 o Added CoMI architecture section

 o Added RESTCONf NETMOD description

 o Rewrote section 5 with YANG examples

 o Added server and payload size appendix

 o Removed Appendix C for now. It will be replaced with a YANG
 example.

 Changes from version 04 to version 05

 o Extended examples with hash representation

 o Added keys query parameter text

 o Added select query parameter text

 o Better separation between specification and instance

 o Section on discovery updated

 o Text on rehashing introduced

 o Elaborated SMI MIB example

 o YANG library use described

 o use of BigEndian/LittleEndian in Hash generation specified

 Changes from version 05 to version 06

 o Hash values in payload as hexadecimal and in URL in base64 numbers

 o Streamlined CoMI architecture text

 o Added select query parameter text

 o Data editing optional

 o Text on Notify added

 o Text on rehashing improved with example

van der Stok, et al. Expires May 3, 2017 [Page 33]

Internet-Draft CoMI October 2016

 Changes from version 06 to version 07

 o reduced payload size by removing JSON hierarchy

 o changed rehash handling to support small clients

 o added LWM2M comparison

 o Notification handling as specified in YANG

 o Added Patch function

 o Rehashing completely reviewed

 o Discover type of YANG name encoding

 o Added new resource types

 o Read-only servers introduced

 o Multiple updates explained

 Changes from version 07 to version 08

 o Changed YANG Hash algorithm to use module name instead of prefix

 o Added rehash bit to allow return values to identify rehashed nodes
 in the response

 o Removed /c/mod.set resource since this is not needed

 o Clarified that YANG Hash is done even for unimplemented objects

 o YANG lists transported as CBOR maps of maps

 o Adapted examples with more CBOR explanation

 o Added CBOR code examples in new appendix

 o Possibility to use other than default stream

 o Added text and examples for Patch payload

 o Repaired some examples

 o Added appendices on hash clash probability and hash clash storage
 overhead

van der Stok, et al. Expires May 3, 2017 [Page 34]

Internet-Draft CoMI October 2016

 Changes from version 08 to version 09

 o Removed hash and YANG to CBOR sections

 o removed hashes from examples.

 o Added RPC

 o Added content query parameter.

 o Added default handling.

 o Listed differences with RESTCONF

 Changes from version 09 to version 10. This is the merge of cool-01
 with comi-09.

 o Merged with CoOL SIDs

 o Introduced iPATCH, PATCH and FETCH

 o Update of LWM2M comparison

 o Added appendix with module examples

 o Removed introductory text

 o Removed refernces

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

van der Stok, et al. Expires May 3, 2017 [Page 35]

Internet-Draft CoMI October 2016

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [I-D.becker-core-coap-sms-gprs]
 Becker, M., Li, K., Kuladinithi, K., and T. Poetsch,
 "Transport of CoAP over SMS", draft-becker-core-coap-sms-
 gprs-05 (work in progress), August 2014.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <http://www.rfc-editor.org/info/rfc7959>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-18 (work in
 progress), October 2016.

 [I-D.vanderstok-core-etch]
 Stok, P., Bormann, C., and A. Sehgal, "Patch and Fetch
 Methods for Constrained Application Protocol (CoAP)",
 draft-vanderstok-core-etch-00 (work in progress), March
 2016.

 [I-D.somaraju-core-sid]
 Somaraju, A., Veillette, M., Pelov, A., Turner, R., and A.
 Minaburo, "Structure Identifier (SID)", draft-somaraju-
 core-sid-01 (work in progress), July 2016.

van der Stok, et al. Expires May 3, 2017 [Page 36]

Internet-Draft CoMI October 2016

 [I-D.ietf-core-yang-cbor]
 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",
 draft-ietf-core-yang-cbor-02 (work in progress), July
 2016.

15.2. Informative References

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578,
 DOI 10.17487/RFC2578, April 1999,
 <http://www.rfc-editor.org/info/rfc2578>.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410,
 DOI 10.17487/RFC3410, December 2002,
 <http://www.rfc-editor.org/info/rfc3410>.

 [RFC3416] Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,
 <http://www.rfc-editor.org/info/rfc3416>.

 [RFC3418] Presuhn, R., Ed., "Management Information Base (MIB) for
 the Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, DOI 10.17487/RFC3418, December 2002,
 <http://www.rfc-editor.org/info/rfc3418>.

 [RFC4293] Routhier, S., Ed., "Management Information Base for the
 Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293,
 April 2006, <http://www.rfc-editor.org/info/rfc4293>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
 <http://www.rfc-editor.org/info/rfc6243>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

van der Stok, et al. Expires May 3, 2017 [Page 37]

Internet-Draft CoMI October 2016

 [RFC6643] Schoenwaelder, J., "Translation of Structure of Management
 Information Version 2 (SMIv2) MIB Modules to YANG
 Modules", RFC 6643, DOI 10.17487/RFC6643, July 2012,
 <http://www.rfc-editor.org/info/rfc6643>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [I-D.ietf-core-interfaces]
 Shelby, Z., Vial, M., Koster, M., and C. Groves, "Reusable
 Interface Definitions for Constrained RESTful
 Environments", draft-ietf-core-interfaces-06 (work in
 progress), October 2016.

 [XML] "Extensible Markup Language (XML)",
 Web http://www.w3.org/xml.

 [OMA] "OMA-TS-LightweightM2M-V1_0-20131210-C", Web
 http://technical.openmobilealliance.org/Technical/
 current_releases.aspx.

 [OMNA] "Open Mobile Naming Authority (OMNA)", Web
 http://http://technical.openmobilealliance.org/Technical/
 technical-information/omna.

 [netconfcentral]
 "NETCONF Central: library of YANG modules",
 Web http://www.netconfcentral.org/modulelist.

 [mibreg] "Structure of Management Information (SMI) Numbers (MIB
 Module Registrations)", Web
 http://www.iana.org/assignments/smi-numbers/
 smi-numbers.xhtml/.

 [yang-cbor]
 "yang-cbor Registry", Web https://github.com/core-wg/yang-
 cbor/tree/master/registry/.

Appendix A. YANG example specifications

 This appendix shows 5 YANG example specifications taken over from as
 many existing YANG modules. The YANG modules are available from
 [netconfcentral]. Each YANG item identifier is accompanied by its
 SID shown after the "#" character, taken from [yang-cbor].

van der Stok, et al. Expires May 3, 2017 [Page 38]

Internet-Draft CoMI October 2016

A.1. ietf-system

 Taken over from the module ietf-system.

 module ietf-system {
 container system-state{ # ID 1716
 container clock { # ID 1717
 leaf current-datetime{ # ID 1719
 type YANG:date-and-time
 }
 leaf boot-datetime{ # ID 1718
 type YANG:date-and-time
 }
 ...
 container system {
 leaf timezone-name
 leaf timezone-utc-offset{ # ID 1736
 type int16
 }
 ...
 container ntp { # ID 1750
 leaf enabled { # ID 1751
 type boolean;
 }
 list server { # ID 1752
 key name;
 leaf name { # ID 1755
 type string;
 }
 choice transport {
 case udp {
 container udp { # ID 1757
 leaf address { # ID 1758
 type inet:host;
 }
 leaf port { # ID 1759
 type inet:port-number;
 }
 }
 }
 }
 leaf association-type { # ID 1753
 type enumeration {
 enum server {}
 enum peer {}
 enum pool {}
 }
 }

van der Stok, et al. Expires May 3, 2017 [Page 39]

Internet-Draft CoMI October 2016

 leaf iburst { # ID 1754
 type boolean;
 }
 leaf prefer { # ID 1756
 type boolean;
 }
 }
 }
 ...
 }
 }

A.2. server list

 Taken over from module

 list server # ID = 1901
 {
 key name;
 leaf name {
 type string;
 }
 action reset { # ID = 1902
 input {
 leaf reset-at { # ID = 1903
 type YANG:date-and-time;
 mandatory true;
 }
 }
 output {
 leaf reset-finished-at { # ID = 1904
 type YANG:date-and-time;
 mandatory true;
 }
 }
 }
 }

A.3. interfaces

 Taken over from module ietf-interfaces.

van der Stok, et al. Expires May 3, 2017 [Page 40]

Internet-Draft CoMI October 2016

 container interfaces {
 list interface { # ID = 1533
 key "name";
 leaf name { # ID = 1537
 type string;
 }
 leaf description { # ID = 1534
 type string;
 }

 leaf type { # ID = 1538
 type identityref {
 base interface-type;
 }
 mandatory true;
 }
 leaf enabled { # ID = 1535
 type boolean;
 default "true";
 }

 leaf link-up-down-trap-enable {
 if-feature if-mib;
 type enumeration {
 enum enabled {
 value 1;
 }
 enum disabled {
 value 2;
 }
 }
 } } } }

A.4. Example-port

 Taken over from module example-port.

van der Stok, et al. Expires May 3, 2017 [Page 41]

Internet-Draft CoMI October 2016

 module example-port {
 ...
 prefix ep;
 ...
 notification example-port-fault { # ID 2600
 description
 "Event generated if a hardware fault on a
 line card port is detected";
 leaf port-name { # ID 2601
 type string;
 description "Port name";
 }
 leaf port-fault { # ID 2601
 type string;
 description "Error condition detected";
 }
 }
 }

A.5. ipNetToMediaTable

 The YANG translation of the SMI specifying the
 ipNetToMediaTable [RFC4293], extended with example SID numbers,
 yields:

van der Stok, et al. Expires May 3, 2017 [Page 42]

Internet-Draft CoMI October 2016

 container IP-MIB {
 container ipNetToPhysicalTable { # ID 301
 list ipNetToPhysicalEntry { # ID 302
 key "ipNetToPhysicalIfIndex
 ipNetToPhysicalNetAddressType
 ipNetToPhysicalNetAddress";
 leaf ipNetToMediaIfIndex { # ID 303
 type: int32;
 }
 leaf ipNetToPhysicalIfIndex { # ID 304
 type if-mib:InterfaceIndex;
 }
 leaf ipNetToPhysicalNetAddressType { # ID 305
 type inet-address:InetAddressType;
 }
 leaf ipNetToPhysicalPhysAddress { # ID 306
 type YANG:phys-address {
 length "0..65535";
 }
 }
 leaf ipNetToPhysicalLastUpdated { # ID 307
 type YANG:timestamp;
 }
 leaf ipNetToPhysicalType { # ID 308
 type enumeration { ... }
 }
 leaf ipNetToPhysicalState { # ID 309
 type enumeration { ... }
 }
 leaf ipNetToPhysicalRowStatus { # ID 310
 type snmpv2-tc:RowStatus;
 }
 }
 }

Appendix B. Comparison with LWM2M

B.1. Introduction

 CoMI and LWM2M [OMA], both, provide RESTful device management
 services over CoAP. Differences between the designs are highlighted
 in this section.

 The intent of the LWM2M protocol is to provide a single protocol to
 control and manage IoT devices. This means the IoT device implements
 and uses the same LWM2M agent function for the actuation and sensing
 features of the IoT device as well as for the management of the IoT
 device. The intent of CoMI Interface as described in the Abstract

van der Stok, et al. Expires May 3, 2017 [Page 43]

Internet-Draft CoMI October 2016

 section of this document is to provide management of constrained
 devices and devices in constrained networks using RESTCONF and YANG.
 This implies that the device, although reusing the CoAP protocol,
 would need a separate CoAP based agent in the future to control the
 actuation and sensing features of the device and another CoMI agent
 that performs the management functions.

 It should be noted that the mapping of a LWM2M server to YANG is
 specified in [YANGlwm2m]. The converted server can be invoked with
 CoMI as specified in this document.

 For the purposes of managing IoT devices the following points related
 to the protocols compare how management resources are defined,
 identified, encoded and updated.

B.2. Defining Management Resources

 Management resources in LWM2M (LWM2M objects) are defined using a
 standardized number. When a new management resource is defined,
 either by a standards organization or a private enterprise, the
 management resource is registered with the Open Mobile Naming
 Authority [OMNA] in order to ensure different resource definitions do
 not use the same identifier. CoMI, by virtue of using YANG as its
 data modeling language, allows enterprises and standards
 organizations to define new management resources (YANG nodes) within
 YANG modules without having to register each individual management
 resource. Instead YANG modules are scoped within a registered name
 space. As such, the CoMI approach provides additional flexibility in
 defining management resources. Likewise, since CoMI utilizes YANG,
 existing YANG modules can be reused. The flexibility and reuse
 capabilities afforded to CoMI can be useful in management of devices
 like routers and switches in constrained networks. However for
 management of IoT devices, the usefulness of this flexibility and
 applicability of reuse of existing YANG modules may not be warranted.
 The reason is that IoT devices typically do not require complex sets
 of configuration or monitoring operations required by devices like a
 router or a switch. To date, OMA has defined approximately 15
 management resources for constrained and non-constrained mobile or
 fixed IoT devices while other 3rd Party SDOs have defined another 10
 management resources for their use in non-constrained IoT devices.
 Likewise, the Constrained Object Language [I-D.somaraju-core-sid]
 which is used by CoMI when managing constrained IoT devices uses YANG
 schema item identifiers, which are registered with IANA, in order to
 define management resources that are encoded using CBOR when
 targeting constrained IoT Devices.

van der Stok, et al. Expires May 3, 2017 [Page 44]

Internet-Draft CoMI October 2016

B.3. Identifying Management Resources

 As LWM2M and CoMI can similarly be used to manage IoT devices,
 comparison of the CoAP URIs used to identify resources is relevant as
 the size of the resource URI becomes applicable for IoT devices in
 constrained networks. LWM2M uses a flat identifier structure to
 identify management resources and are identified using the LWM2M
 object’s identifier, instance identifier and optionally resource
 identifier (for access to and object’s attributes). For example,
 identifier of a device object (object id = 3) would be "/3/0" and
 identification of the device object’s manufacturer attribute would be
 "/3/0/0". Effectively LWM2M identifiers for management resources are
 between 4 and 10 bytes in length.

 CoMI is expected to be used to manage constrained IoT devices. CoMI
 utilizes the YANG schema item identifier[SID] that identify the
 resources. CoMI recommends that IoT device expose resources to
 identify the data stores and event streams of the CoMI agent.
 Individual resources (e.g., device object) are not directly
 identified but are encoded within the payload. As such the
 identifier of the CoMI resource is smaller (4 to 7 bytes) but the
 overall payload size isn’t smaller as resource identifiers are
 encoded on the payload.

B.4. Encoding of Management Resources

 LWM2M provides a separation of the definition of the management
 resources from how the payloads are encoded. As of the writing of
 this document LWM2M encodes LWM2M encodes payload data in Type-
 length-value (TLV), JSON or plain text formats. JSON encoding is the
 most common encoding scheme with TLV encoding used on the simplest
 IoT devices. CoMI’s use of CBOR provides a more efficient transfer
 mechanism [RFC7049] than the current LWM2M encoding formats.

 In situations where resources need to be modified, CoMI uses the CoAP
 PATCH operation resources only require a partial update. LWM2M does
 not currently use the CoAP PATCH operation but instead uses the CoAP
 PUT and POST operations which are less efficient.

Authors’ Addresses

 Peter van der Stok
 consultant

 Phone: +31-492474673 (Netherlands), +33-966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

van der Stok, et al. Expires May 3, 2017 [Page 45]

Internet-Draft CoMI October 2016

 Andy Bierman
 YumaWorks
 685 Cochran St.
 Suite #160
 Simi Valley, CA 93065
 USA

 Email: andy@yumaworks.com

 Michel Veillette
 Trilliant Networks Inc.
 610 Rue du Luxembourg
 Granby, Quebec J2J 2V2
 Canada

 Phone: +14503750556
 Email: michel.veillette@trilliantinc.com

 Alexander Pelov
 Acklio
 2bis rue de la Chataigneraie
 Cesson-Sevigne, Bretagne 35510
 France

 Email: a@ackl.io

van der Stok, et al. Expires May 3, 2017 [Page 46]

