
BUPT T. Pan
Internet-Draft M. Gao
Intended status: Informational E. Song
Expires: April 28, 2021 Z. Bian
 X. Lin
 Beijing University of Posts and Telecommunications
 October 25, 2020

 In-band Network-Wide Telemetry
 draft-tian-bupt-inwt-mechanism-policy-01

Abstract

 This document describes INT-path, a cost-effective network-wide
 telemetry framework based on INT (In-band Network Telemetry), by
 decoupling the network monitoring system into a routing mechanism and
 a routing path generation policy. INT-path embeds SR (Source
 Routing) into INT probes to allow specifying the route that the probe
 packet takes through the network. Above this probing path control
 mechanism, an Euler trail-based path planning policy is developed to
 generate non-overlapped INT paths that cover the entire network with
 a minimum path number, reducing the overall telemetry overhead. INT-
 path is very suitable for deployment in data center networks thanks
 to their symmetric topologies.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Pan, et al. Expires April 28, 2021 [Page 1]

Internet-Draft In-band Network-Wide Telemetry October 2020

 This Internet-Draft will expire on April 28, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Problem Statement . 4
 3. Source Routing-based Path Monitoring (Mechanism) 4
 3.1. Packet Header Format 5
 3.2. Forwarding Behaviors 6
 4. DFS-based path planning algorithm 8
 4.1. Algorithm Outline . 8
 4.2. Example . 9
 5. Euler trail-based path planning algorithm 10
 5.1. Algorithm Outline . 10
 5.2. Example . 12
 6. IANA Considerations . 13
 7. Security Considerations 14
 8. References . 14
 8.1. Normative References 14
 8.2. Informative References 14
 Authors’ Addresses . 14

1. Introduction

 At present, conducting fine-grained, network-wide traffic monitoring
 plays an increasingly significant role in maintaining large-scale
 computer networks. It enables fine-grained network-wide visibility
 to ease the fast detection and localization of network gray
 failures[Jia]. It also improves the network traffic load balancing
 with the prior knowledge of link congestion. The network-wide
 traffic monitoring can be well applied to all types of networks,
 especially data center networks, where traffic is highly dynamic and

Pan, et al. Expires April 28, 2021 [Page 2]

Internet-Draft In-band Network-Wide Telemetry October 2020

 network failures occur silently, while user perception of network
 latency is expected to be bounded.

 In traditional network monitoring, management protocols, such as SNMP
 (Simple Network Management Protocol)[RFC1157]are coarse-grained and
 involve a large device query latency due to the constant interaction
 between the control plane and the data plane. To ameliorate the
 performance issue, INT is proposed to achieve fine-grained network
 monitoring. INT allows packets to query device-internal states such
 as queue depth, queuing latency when they pass through the data plane
 pipeline, without requiring additional intervention from the control
 plane CPU. At the last hop of the path, the packet containing the
 end-to-end monitoring data can be sent to a remote central controller
 for data analysis. INT can print device-internal states to either
 specified flows of traffic or additionally introduced probe packets.
 In this document, our proposal relies on INT’s probe packet mode.

 INT is essentially an underlying primitive that need the support of
 special hardware for device-internal state exposure. To achieve
 network-wide traffic monitoring, INT further requires a high-level
 orchestration built upon it. In our proposal, multiple controllable
 probing paths are generated to monitor the entire network. To reduce
 the telemetry overhead of additional probe packets for the original
 network, such orchestration should be better follow the following
 design principles:

 o It should use non-overlapped probing paths to completely cover all
 network edges to reduce unnecessary bandwidth occupation.

 o It should keep the path number as small as possible to lessen the
 processing overhead of the telemetry workload sent to the
 controller.

 This document addresses the problem of "In-band Network-wide
 Telemetry", and proposes INT-path, a telemetry framework to achieve
 lightweight network-wide traffic monitoring. Specifically, we embed
 SR into INT probes to allow specifying the route the probe packet
 takes through the network. Based on the routing mechanism, we design
 two path planning policies to generate multiple non-overlapped INT
 paths that cover the entire network. The first is based on DFS
 (Depth-First Search) which is straightforward but computationally-
 efficient. The second is an Euler trail-based algorithm that can
 optimally generate non-overlapped INT paths with a minimum path
 number.

Pan, et al. Expires April 28, 2021 [Page 3]

Internet-Draft In-band Network-Wide Telemetry October 2020

2. Problem Statement

 This document proposes INT-path to solve the following technical
 challenges of building a network-wide telemetry system based on INT:

 o Uncontrollable probing path. As an underlying primitive, INT only
 defines how to extract device-internal states using probe packets.
 However, the probe packet itself cannot proactively decide which
 path to monitor since it does not have any path-related prior
 knowledge. If the INT header is embedded in an IP packet, the
 probing path will be passively decided by its destination IP
 address together with the routing table in each network device,
 leaving probing path totally uncontrollable by the INT packet
 sender. Given the uncontrollable probing path, it is not easy to
 work out purposive strategies to optimally generate multiple
 probing paths for achieving cost-effective network-wide telemetry.

 o Telemetry overhead. During traffic monitoring, we need
 periodically perform the INT operation at all devices and notify
 the controller about the underlying traffic status. However,
 straightforwardly conducting INT at each device or device chain
 incurs significant performance overhead: (1) INT will inject
 probes into the network, which will occupy a fraction of link
 bandwidth (the finer INT sampling granularity, the more bandwidth
 will be consumed). (2) INT agents must be deployed for probe
 generation and collection as the extra cost (the higher number of
 separated INT paths, the more INT agents need to be deployed).
 (3) Besides, as the INT agent number grows, the controller will
 suffer from a performance penalty for handling increased telemetry
 workload sent from those INT agents.

 To tackle these problems, this document proposes INT-path, a
 framework for network-wide telemetry, by decoupling the system into a
 routing mechanism and a route generation policy. The underlying
 mechanism allows network operators or INT agents to specify a
 particular path for monitoring, addressing the uncontrollable path
 issue (see section3 for details). The policy built upon the
 mechanism generates multiple INT paths to cover the entire network
 and a good policy is expected to minimize the telemetry overhead with
 the least path overlapping as well as the minimized total path number
 (see section4 and section5 for details).

3. Source Routing-based Path Monitoring (Mechanism)

 This document addresses the uncontrollable path issue via the
 technique of SR. Figure 1 shows the SR-based telemetry architecture
 as well as the probe packet format. Although SR is not a new
 technique, we innovate to couple it with the INT probe using the P4

Pan, et al. Expires April 28, 2021 [Page 4]

Internet-Draft In-band Network-Wide Telemetry October 2020

 language [P4] to implement user-specified or on demand path
 monitoring.

 |<-- Variable length -->|
 | 22B |
 +------+------+------+------+
 | INTn | | INT2 | INT1 |
 +------+------+------+------+
 \ /
 \ /
 \ /
 \ /
 +-------+------+------+-------+-------+
 | ETH | IP | SR | INT | UDP |
 +-------+------+------+-------+-------+
 / \
 / \
 / \
 / \
 +-------+------+-------+-------+
 | Portn | | Port2 | Port1 |
 +-------+------+-------+-------+
 | 4b |
 |<---------- 512b --------->|

 Figure 1. Probe packet format

3.1. Packet Header Format

 Theoretically, the SR label stack and the INT label stack can be
 placed above either the IP header or the UDP header. If placed above
 the UDP header, they need to occupy an extra port number, which is
 likely to conflict with the port number chosen by the end hosts for a
 certain application. While, if placed above the IP header, they only
 occupy an IP protocol number, and then we can choose an unused
 protocol number according to existing RFC specifications. Therefore,
 the program chosen by this document is to place the SR label stack
 and the INT label stack above the IP header as shown in Figure1. One
 thing to declare is that although we design a customized header
 format as follows for the probe packets, the network devices can
 still correctly forward these packets provided that protocol-
 independent forwarding is supported.

 o DP: DP means Destination Port which is set to "SR_INT_PORT" to
 inform the packet parser that it is an SR-INT probe (i.e., INT
 probe packet with an SR label stack).

Pan, et al. Expires April 28, 2021 [Page 5]

Internet-Draft In-band Network-Wide Telemetry October 2020

 o DIP: DIP means destination IP address of the probe packet which is
 set using controller’s IP to guarantee that the probe packet will
 finally be forwarded to the controller for further analysis.

 o SR: A 512-bit space is reserved for the SR label stack above the
 IP header. A 4-bit space is allocated for each SR label to denote
 the router output port ID thus can maximally support 16 output
 ports for each router.

 o INT: Above the fixed-length SR label stack, a variable-length INT
 label stack is allocated. Each INT label occupies 22B containing
 the information such as device ID, ingress/egress port, egress
 queue depth. Since P4 currently does not well support parsing
 double variable length stacks in the packet header, the SR label
 stack with a fixed length is statically allocated and the right
 shift operation is used to perform the "stack pop" behavior.

3.2. Forwarding Behaviors

 In the SR-based telemetry architecture, three types of logic routers
 are proposed with different functionalities: the INT generator, the
 INT forwarder and the INT collector (as shown in Figure 2).

Pan, et al. Expires April 28, 2021 [Page 6]

Internet-Draft In-band Network-Wide Telemetry October 2020

 +--------+ +--------+
 |End Host| |End Host|
 +--------+ +--------+
 | |
 | |
 +---------+ +---------+
 | INT | | INT |
 |generator| |collector|
 +---------+ +---------+
 | | +---------+ | | | |
 | | | INT | | |
 | | |forwarder| | |
 | | +---------+ | |
 | | / \ | |
 | | / \ | |
 | +---------+ +---------+ |
 | | INT | | INT | |
 | |forwarder| |forwarder| |
 | +---------+ +---------+ |
 | \ / |
 | \ / |
 | +---------+ |
 | | INT | |
 | |forwarder| |
 | +---------+ |
 | |
 +---+
 | Controller |
 +---+

 Figure 2. Source routing-based path monitoring

 o INT generator: The INT generator is responsible for spawning the
 SR-INT probe packets at the first hop of the monitoring path.
 Since packet generation directly from the data plane is currently
 undefined in P4, we consider a workaround to periodically generate
 "empty" probes from the outside by either the router/switch CPU or
 a host attached to the network device. When the probe arrives at
 the data plane, the INT generator will rewrite its packet header
 to allocate the SR label stack and add its local INT information
 using header.setValid() in P4 before forwarding the packet.
 Specifically, the INT generator will push the output port IDs into
 the SR label stack in the packet header. The sequence of the
 output port IDs (i.e., how to forward the packet across the
 network) is predetermined at the controller via centralized route
 calculation.

Pan, et al. Expires April 28, 2021 [Page 7]

Internet-Draft In-band Network-Wide Telemetry October 2020

 o INT forwarder: The INT forwarder performs packet forwarding of
 either the SR-INT probes or the background traffic, according to
 the DP number of the incoming traffic. If the DP is
 "SR_INT_PORT", the INT forwarder will perform label switching and
 forward the packet only according to the output port ID popped
 from the SR label stack. The SR label is popped once at a router
 by right shifting the SR header by 4 bits at each hop. Besides,
 the INT forwarder will also push its local INT information into
 the INT label stack before forwarding the probe.

 o INT collector: At the last hop of the monitoring path, since the
 DIP is filled with controller’s IP address, the INT collector will
 finally forward the probe packet to the controller for further
 analysis.

4. DFS-based path planning algorithm

4.1. Algorithm Outline

 In this section, we propose a simple algorithm based on DFS.

 When traversing a tree or a graph, DFS starts at the root and
 explores as far as possible along each branch before backtracking.
 The basic idea of the DFS-based path planning algorithm is to
 consecutively add the visited vertices into the current path before
 backtracking; if we have nowhere to go and have to backtrack, we just
 create a new path and add the fork vertex (the first vertex along the
 backtracking path that has unvisited edges) as the first node of the
 new path. After all the edges are visited in the DFS order, we can
 extract multiple non-overlapped paths covering the entire graph.

 A recursive version of the DFS-based path planning algorithm is as
 follows:

 o Step1: Choose v0 as the first vertex of the depth-first traversal
 and start the algorithm.

 o Step2: Select one of v0’s adjacency vertices v1 and mark the edge
 between v0 and v1 as visited, add v0 and v1 into the current INT
 path; continue to search for v1’s adjacency vertex v2 and mark the
 edge between v1 and v2 as visited, add v2 into the current INT
 path; continue to search for v2’s adjacency vertex v3 and mark the
 edge between v2 and v3 as visited, add v3 into the current INT
 path; and continue until a vertex vi has no adjacency vertices
 that has unvisited edges, then mark the vertex vi as visited, and
 store the current INT path into set INT path.

Pan, et al. Expires April 28, 2021 [Page 8]

Internet-Draft In-band Network-Wide Telemetry October 2020

 o Step3: Backtrack at the visited vertex vi until a previous vertex
 that has unvisited edges is found, and find an adjacency vertex of
 the previous vertex and mark the edge between them as visited,
 then add the previous vertex and the adjacency vertex into a new
 current INT path, that is, continue as step2. If all the
 adjacency vertices of the previous vertex have been accessed, then
 mark the previous vertex as visited. Step3 continues until all of
 the vertices that are reachable by backtracking from vi are
 visited.

 o Step4: If there are any unvisited vertices, this algorithm selects
 one of them as a new source and repeats step2 and step3 from that
 vertex. Step4 continues until every edge and every vertex has
 been visited. Then the set INT path is the multiple non-
 overlapped paths covering the entire graph.

4.2. Example

 We show an algorithm example on a network graph of five devices as
 shown in Figure 3.

 +----+ +----+ +----+
 | v0 |-----| v1 |-----| v2 |
 +----+ +-+--+ +--+-+
 | / |
 | / |
 | / |
 | / |
 | / |
 +-+--+ +--+-+
 | v3 |-----| v4 |
 +----+ +----+

 Figure 3. Depth-first graph traversal

 At the beginning, v0 is pushed into the call stack, path1 = {v0, v1}
 and the edge between v0 and v1 is marked as visited. The path1
 expands as more and more vertices are visited in the DFS order. When
 path1 expands to {v0, v1, v2, v3, v1}, we have nowhere to go and have
 to find the fork vertex. At this time, we pop v1 from the stack and
 return to v3, which has an unvisited edge to v4 (notice that the call
 stack push/pop operations are implicitly performed during recursion).
 Then, we identify v3 as the fork vertex because it is the first
 vertex along the backtracking path that has unvisited edges. Based
 on v3, we create a new path as path2 = {v3, v4}. When path2 expands
 to {v3, v4, v2}, we have again nowhere to go and have to backtrack.
 But at this time, although we check all the vertices popped from the
 call stack, we still cannot find any fork vertex. The recursion

Pan, et al. Expires April 28, 2021 [Page 9]

Internet-Draft In-band Network-Wide Telemetry October 2020

 halts when the call stack finally becomes empty. At last, we extract
 two non-overlapped INT probing paths (i.e., path1 and path2).

5. Euler trail-based path planning algorithm

5.1. Algorithm Outline

 Although the DFS-based path planning algorithm is computationally-
 efficient, it has no guarantee to minimize the number of generated
 paths, which will potentially increase the telemetry overhead,
 especially the telemetry workload at the centralized. Here, we
 propose an optimal path planning algorithm taking advantage of the
 mathematical properties of the Euler trail/circuit.

 In fact, the mathematical properties of the Euler trail/circuit
 already indicated the theoretical value of the minimum non-overlapped
 path number for covering a given graph. To achieve the theoretical
 minimum, each extracted path from a graph should start from one odd
 vertex and end at another odd vertex. In other words, removing one
 such path from a graph will eliminate a pair of odd vertices from
 that graph. According to the above observation, we devise an Euler
 trail-based algorithm to iteratively extract a path between a pair of
 odd vertices until all the vertices/edges are extracted from the
 original graph.

 Although the algorithm sounds rather straightforward as an iterative
 path extraction process, the devil lies in the detail of dealing with
 several boundary cases. To be more specific, the devil lies in the
 possibility that an extracted path can split one connected graph into
 multiple subgraphs, which definitely complicates the iterative path
 extraction process.

 Next we explain the optimal algorithm in detail. We use G to
 represent the network graph, which is initialized to be one connected
 graph and may also become multiple disconnected subgraphs caused by
 path extraction during algorithm iteration. We use Q to represent
 the path set which is initialized as an empty set and will finally
 contain the generated non-overlapped INT paths. We use G-p to
 represent extracting a path p from the graph G which will possibly
 further split the graph(s) G into more subgraphs.

 Actually, without considering the complexity of graph split, for a
 given connected graph, there are mainly three different cases for
 path extraction. We propose solutions in each of these three cases
 as follows:

 o The first case is: The graph does not contain any odd vertex. We
 can extract an Euler circuit from the graph, which will traverse

Pan, et al. Expires April 28, 2021 [Page 10]

Internet-Draft In-band Network-Wide Telemetry October 2020

 every vertex of the graph. The Euler circuit can be found with
 the Hierholzer’s algorithm [Hierholzer] and inserted into Q. The
 Hierholzer’s algorithm is an efficient algorithm for finding Euler
 trails and Euler circuits.

 o The second case is: The graph contains two odd vertices. We just
 find an Euler trail between the two odd vertices as the path to be
 extracted. Under this circumstance, an Euler trail can also be
 found with the Hierholzer’s algorithm and inserted into Q.

 o The last case is: The graph contains more than two odd vertices.
 We should extract an Euler trail between any pair of odd vertices.
 In this case, the specific algorithm is as follows:

 Step1: If G is not empty, perform the following steps. Otherwise
 the algorithm terminates.

 Step2: Choose two odd vertices randomly and find a path p to
 connect the pair of odd vertices with the Dijkstra’s algorithm or
 any other algorithms. Then delete the edges along path p from G,
 and add path p into Q. After this, if the graph(s) in G have been
 broken into multiple disconnected subgraphs, then go to step3. If
 the graph in G has not been broken into multiple disconnected
 subgraphs, then go to step1.

 Step3: Use S to store the disconnected subgraphs split from G.
 Then, select graphs with no odd vertex from S and store them into
 T. If neither set T nor set Q is an empty set, then go to step4.
 If set T is not empty and set Q is empty, each subgraph in the set
 T is processed in the same way as in the first case, that is,
 using Hierholzer’s algorithm to extract an Euler circuit from the
 subgraph, then delete the edges along the Euler circuit from G and
 add the Euler circuit into Q. For each subgraph in set S, if it
 has two odd vertices, the subgraph is processed in the same way as
 in the second case, that is, using Hierholzer’s algorithm to find
 an Euler trail between the two odd vertices as the path to be
 extracted, then delete the edges along the Euler trail from G and
 add the Euler trail into Q. For each subgraph in set S, if it has
 more than two odd vertices, then go to step2.

 Step4: For each graph in set T, generate an Euler circuit
 T_circuit for its full edge coverage. Then search the current Q
 to find a path T_path having at least a same vertex with
 T_circuit. Then, connect T_circuit with T_path to create a longer
 new path, and replace the original T_path with the new path in Q,
 and delete the edges along path T_circuit from G.

Pan, et al. Expires April 28, 2021 [Page 11]

Internet-Draft In-band Network-Wide Telemetry October 2020

5.2. Example

 Figure 4 shows a path extraction process of the Euler trail-based
 algorithm. At the start, there is only one connected graph G1
 {1,2,3,4,5,6,7} with 4 odd vertices. Since the number of the odd
 vertices is larger than 2, we randomly choose two odd vertices (1 and
 3), extract a path 1-4-3 from G1 and insert the path into Q. The
 above path extraction behavior will split the original G1 into two
 subgraphs G1 {1,2,3} and G2 {4,5,6,7}. Since G1 has no odd vertex
 and set Q is not empty, we paste the path 1-4-3 in Q with the Euler
 circuit 1-2-3-1 generated from G1 to create a new path 1-2-3-1-4-3.
 The new path will replace the original path 1-4-3 in Q. After the
 path paste, there is only one graph G1 {4,5,6,7} with 2 odd vertices.
 We use the Hierholzer’s algorithm to find its Euler trail 5-4-6-5-7-6
 as the second INT path in Q. The algorithm halts after all the paths
 are extracted.

Pan, et al. Expires April 28, 2021 [Page 12]

Internet-Draft In-band Network-Wide Telemetry October 2020

 +----+3+----+ +----+6+----+
 / + \ / + \
 + | + | +
 2 | 4 | 7
 + | + | +
 \ + / \ + /
 +----+1+----+ +----+5+----+
 (a)
 G1={1,2,3,4,5,6,7};
 S={G1}, T=Empty;
 odd_num=4>2;
 Q={1-4-3};

 +----+3 +----+6+----+
 / + / + \
 + | + | +
 2 | 4 | 7
 + | + | +
 \ + \ + /
 +----+1 +----+5+----+
 (b)
 G1={1,2,3},G2={4,5,6,7};
 S={G1,G2}, T={G1};
 T_path=1-4-3,T_circuit=1-2-3-1;
 path=1-2-3-1-4-3;
 Q={1-2-3-1-4-3};

 +----+6+----+
 / + \
 + | +
 4 | 7
 + | +
 \ + /
 +----+5+----+
 (c)
 G1={4,5,6,7};
 S={G2}, T=Empty;
 odd_num=2;
 Q={1-2-3-1-4-3,5-4-6-5-7-6};

 Figure 4. Path extraction process of the Euler trail-based algorithm

6. IANA Considerations

 This document introduces no new security issues.

Pan, et al. Expires April 28, 2021 [Page 13]

Internet-Draft In-band Network-Wide Telemetry October 2020

7. Security Considerations

 This document makes no request of IANA.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [Hierholzer]
 Hierholzer, H. and W. Wiener, "Ueber die Moeglichkeit,
 einen Linienzug ohne Wiederholung und ohne Unterbrechung
 zu umfahren", March 1873,
 <https://doi.org/10.1007/BF01442866>.

 [Jia] Jia, CH., Pan, T., Bian, ZZ., Lin, XC., Song, EG., Xu, C.,
 Huang, T., and YJ. Liu, "Rapid Detection and Localization
 of Gray Failures in Data Centers via In-band Network
 Telemetry", April 2020,
 <https://doi.org/10.1109/NOMS47738.2020.9110326>.

 [P4] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N.,
 Rexford, J., Schlesinger, C., and D. Talayco, "P4:
 programming protocol-independent packet processors", July
 2014, <https://doi.org/10.1145/2656877.2656890>.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M., and J. Davin,
 "Simple Network Management Protocol (SNMP)", RFC 1157,
 DOI 10.17487/RFC1157, May 1990,
 <https://www.rfc-editor.org/info/rfc1157>.

Authors’ Addresses

Pan, et al. Expires April 28, 2021 [Page 14]

Internet-Draft In-band Network-Wide Telemetry October 2020

 Tian Pan
 Beijing University of Posts and Telecommunications
 Beijing
 China

 Email: pan@bupt.edu.cn

 Minglan Gao
 Beijing University of Posts and Telecommunications
 China

 Email: gml@bupt.edu.cn

 Enge Song
 Beijing University of Posts and Telecommunications
 China

 Email: songenge@bupt.edu.cn

 Zizheng Bian
 Beijing University of Posts and Telecommunications
 China

 Email: zizheng_bian@bupt.edu.cn

 Xingchen Lin
 Beijing University of Posts and Telecommunications
 China

 Email: linxchen3907@163.com

Pan, et al. Expires April 28, 2021 [Page 15]

