ETT-R&D Publications E. Terrell
IT Professional, Author / Researcher April 2002

Internet Draft

Category: Proposed Standard

Document: draft-terrell-internet-protocol-t1-t2-ad-sp-04.pdf

Expires October 15, 2002

INTERNET PROTOCOL t1 and t2 ADDRESS SPACE

Status of this Memo

This document is an Internet-Draft, and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsolete by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress". The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Conventions

Please note, the font size for the Tables are smaller than the expected 12 pts. However, if you are using the most current Web Browser, the View Section of the Title bar provides you with the option to either increase or decrease the font size for comfort level of viewing. That is, provided that this is the HTML or PDF version.

E Terrell [Page 1]

IPt1 and IPt2 ADDRESS SPACE

TABLE OF CONTENTS

Abstract

Chapter I: Analysis IPv4, IPt1, and IPt2 address space using the HD-Ratio

Chapter II: Suggestion for the IPt1 and IPt2 Internet Protocol Address Space, Supernetting and the New 'CIDR' Notation

Chapter III: IPt1 and IPt2; The APRA and IN-ADD.APRA Addresses

Chapter IV: Security

Appendix I: IPt1 Internet Protocol Address Space

Appendix II: Mathematical Analysis of the Structure, and the Definition of the IPtX Protocol(s) Addressing System. And the Future, which suggest a Different Reality regarding the Internet, and Networking, using the IPtX Protocol Specification.

(Parts 1 and 2)

References

E Terrell [Page 2]

IPt1 and IPt2 ADDRESS SPACE

This paper Defines the 'IPtX Protocol Specification', and provides a visualization of the lack of IP Address Control, a Blunder, which may be excused partly because of the impossibility of Predicting the Current, as well as the Future use and growth of the Internet. However, this requires an investigation, or Analysis for the Current use of the HD-Ratio in the IPv4 and IPv6 IP Specifications. Moreover, while the IPv4 IP Specification, is indeed the primary focus of this investigation. To provide a fair comparison however, this Analysis requires, if not mandates, the use of the IPt1 and IPt2 specifications as well. The reasoning here nevertheless, is the difference in the respective Addressing Schematics. Where by, the Addressing Scheme of the former focuses primarily on the HOST IP Address (Assignment), while the focus of the latter emphasizes only the Network IP Address. Nevertheless, it shall be concluded, the Addressing Methods used in the Schematic also affects the Efficiency; 'the RATIO of Total Number of Nodes that can be attached to Service the Global Networking Community, and the Number of available IP Addresses used for the Connection'.

In other words, this 'Analysis is Argument', whose focus upon the 'HD-Ratio' and the 'CIDR Notation' establishes the foundation defining the 'INTERNET PROTOCOL t1 and t2 ADDRESS SPACE' for the IPt1 and IPt2 Protocol Specifications. Which moreover, exceeds the Mandate Defining a New IP Addressing System specified as the Requirements outlined in RFC1550.

"This work is Dedicated to my first and only child, 'Yahnay', who is; the Mover of Dreams, the Maker of Reality, and the 'Princess of the New Universe'. (E.T.)"

E Terrell [Page 3]

Introduction: Analysis and Impact of the IPv4 Internet Protocol Address Space, which Questions the Current Use of and Application of the 'CIDR Notation'

The mathematical learning curve regarding an understanding of such concepts as 'Bit Mapping' the 'Network, or Host Portion of an IP Address' can be long and arduous. And this is seen especially true, when trying to grasp the 'How-To's' and functional purpose of 'CIDR'. And while I have read the works from only a few authors whose approach makes a distinction, as would be a noted difference in the interpretation of the definition of 'CIDR'. I have noted moreover, their approach is not a pronounced separation, as would be the unquestionable distinction used in the 'Water and Oil' analogy from Chemistry. However, the beginner, would understand quite clearly the difference between the 'Front-End' and 'Back-End' approaches used in "Supernetting of an IP Address". Where by the 'Bit Mapping' of the 'Network Portion', would represent the 'Front-End' approach, and the 'Bit Mapping' of the 'Host Portion' would represent the 'Back-End' approach, in what is defined, or called the "Supernetting of an IP Address", or 'CIDR'. Nevertheless, while the mathematical operation involved in either the 'Front-End' or 'Back-End' usage of 'CIDR' is not, by itself, confusing or conflicting operations. Still, a lot remains the Wishful Dream, or on the 'Wish List' of the hopeful, regarding a greater Specificity in the definition and distinction of the functional 'Parameters' associated with the conventions used in the 'CIDR' notation representing a Network IP Address. Needless to say, this becomes even more evident when trying to understand the "INTERNET PROTOCOL V4 ADDRESS SPACE", which was developed and used by IANA as a guide, or scheme, Denoting some Method used to determine IP Address Availability, Special Assignment, and Allocation.

In other words, TABLE 1, the "IPv4 Internet Protocol Address Space", according to the current standards and definition of 'CIDR', one would conclude that there is a great number of IP Addresses wasted on HOST Assignments. And this is apparent from the 'Bit Map' definition assigned to the notation "/8". Where in any 32 Bit IP Addressing format, this 'Bit Mapping' notation accounts for (Class A = 126 x 254^3) 2,064,770,064 IP Addresses under the current IPv4 specification, that is, without using the 'Front-End' indicator, specified number of addresses, from Class A. And then, when it is used, it would it would account, (again using the current definitions of 'CIDR') an assignment, or allocation of more than 16 Million IP Address (1 X 245^3). Which, to say the very least, amounts to IP Address waste, because this has the effect of providing a Host with Network Status. 'Not to mention that most of the companies, who has such an arrangement are not "IPS's".

E Terrell [Page 4]

Nevertheless, the Mathematical Problem(s) encompassing these definitions far out weight the problems associated with IP Address Waste. In other words, the Current Methods and Definitions of 'CIDR', regarding its use in 'Bit Mapping' an IP Address, is Mathematically Incorrect. Or just plain Wrong! In other words, an '8 Bit Mapping' Designation under the Current '32 Bit IP Specification', can only account for '255' IP Addresses (And NO more than that!). To be more specific however, what this means Mathematically, is that, there is only '1' of the '4' '8 Bit Quadrants' being used, which sets the Parameters for the Total Number of IP Addresses Assigned. Moreover, the use of only '1' Quadrant, as a means for specification regarding the total number of IP Addresses assigned, is an Error. Which can not be used to Account for the 'Diversity in Number', regarding the Total Number Combinations Derived from the Calculation of the Total Number of IP Addresses Contained in the IP Address Class.

Unfortunately however, the above argument leads to a mathematical Proof, which revives an Old Argument regarding the Method of Enumeration using the Binary Numbering System. In other words, the Total, or Inclusive Count, which would represent the '8 Bit Mapping' notation, '/8', would not yield the Binary Number '255'. It would in fact represent '256', because Zero, under the Current Binary Specification, is indeed a Binary Number (0000). Furthermore, it should be understood, that this does serve not only the explanation for the ongoing argument, but the Current Definition of the Modern Binary System as well. Which is to say, under the Current, or Modern Binary System, {11111111} = '8 Bits' = '255', does not follow from the Definition of '2', representing Base, in what is clearly (Defining the Binary Representation in the 32 Bit Addressing) an Exponential Equation, represented by the equation, 2^N. In which case, the Total, or Inclusive Count for an '8 Bit' translation of a Binary Number representing an Integer, would be given by the equation, $'2^8 = 256**'$. This moreover, Mathematically implies the equation, 8^32 = 256^4, which would be interpreted as meaning; 'There are '32' Bits used to represent the '4,294,967,296' Integers, which represents the Total Number of IP Addresses contained in the IPv4 Addressing Specification. Nevertheless, while the counting methods used in the Binary System remain in Dispute, an adequate representation for the 'CIDR' Notation can be determined using the Current Binary Methods for Enumeration. That is, given by TABLE 2, we have:

E Terrell [Page 5]

TABLE 1

IPv4 Internet Protocol Address Space

Address Blo	ock Registry - Purpose	Dat	te
000/8	IANA - Reserved	Sep	81
001/8	IANA - Reserved	Sep	81
002/8	IANA - Reserved	Sep	81
003/8	General Electric Company	May	94
004/8	Bolt Beranek and Newman Inc.	Dec	92
005/8	IANA - Reserved	Jul	95
006/8	Army Information Systems Center	Feb	94
007/8	IANA - Reserved	Apr	95
008/8	Bolt Beranek and Newman Inc.	Dec	92
009/8	IBM	Aug	92
010/8	IANA - Private Use	Jun	95
011/8	DoD Intel Information Systems	May	
012/8	AT&T Bell Laboratories	Jun	95
013/8	Xerox Corporation	Sep	91
014/8	IANA - Public Data Network	Jun	91
015/8	Hewlett-Packard Company	Jul	94
016/8	Digital Equipment Corporation	Nov	94
017/8	Apple Computer Inc.	Jul	92
018/8	MIT	Jan	94
019/8	Ford Motor Company	May	
020/8	Computer Sciences Corporation	Oct	94
021/8	DDN-RVN	Jul	91
022/8	Defense Information Systems Agency	May	93
023/8	IANA - Reserved	Jul	95
024/8	ARIN - Cable Block	May	01
	(Formerly IANA - Jul 95)		
025/8	Royal Signals and Radar Establishment	Jan	
026/8	Defense Information Systems Agency	May	
027/8	IANA - Reserved	Apr	95
028/8	DSI-North	Jul	92
029/8	Defense Information Systems Agency	Jul	
030/8	Defense Information Systems Agency	Jul	
031/8	IANA - Reserved	Apr	
032/8	Norsk Informasjonsteknologi	Jun	
033/8	DLA Systems Automation Center	Jan	91
034/8	Halliburton Company	Mar	-
035/8	MERIT Computer Network	Apr	
036/8	IANA - Reserved	Jul	00
	(Formerly Stanford University - Apr 93)		

E Terrell [Page 6]

037/8	IANA - Reserved	Apr	95
038/8	Performance Systems International	Sep	94
039/8	IANA - Reserved	Apr	95
040/8	Eli Lily and Company	Jun	94
041/8	IANA - Reserved	May	95
042/8	IANA - Reserved	Jul	95
043/8	Japan Inet	Jan	91
044/8	Amateur Radio Digital Communications	Jul	92
045/8	Interop Show Network	Jan	95
046/8	Bolt Beranek and Newman Inc.	Dec	92
047/8	Bell-Northern Research	Jan	91
048/8	Prudential Securities Inc.	May	95
049/8	Joint Technical Command	May	94
	Returned to IANA	Mar	98
050/8	Joint Technical Command	May	94
	Returned to IANA	Mar	98
051/8	Deparment of Social Security of UK	Aug	94
052/8	E.I. duPont de Nemours and Co., Inc.	Dec	91
053/8	Cap Debis CCS	Oct	93
054/8	Merck and Co., Inc.	Mar	92
055/8	Boeing Computer Services	Apr	95
056/8	U.S. Postal Service	Jun	94
057/8	SITA	May	95
058/8	IANA - Reserved	Sep	81
059/8	IANA - Reserved	Sep	81
060/8	IANA - Reserved	Sep	81
061/8	APNIC - Pacific Rim	Apr	97
062/8	RIPE NCC - Europe	Apr	97
063/8	ARIN	Apr	97
064/8	ARIN	Jul	99
065/8	ARIN	Jul	00
066/8	ARIN	Jul	00
067/8	ARIN	May	01
068/8	ARIN	Jun	01
069-079/8	IANA - Reserved	Sep	81
080/8	RIPE NCC	Apr	01
081/8	RIPE NCC	Apr	01
082-095/8	IANA - Reserved	Sep	
096-126/8	IANA - Reserved	Sep	
127/8	IANA - Reserved	Sep	
128-191/8	Various Registries	May	93

E Terrell [Page 7]

192/8	Various Registries - MultiRegional	May	
193/8	RIPE NCC - Europe	May	
194/8	RIPE NCC - Europe	May	
195/8	RIPE NCC - Europe	May	
196/8	Various Registries	May	93
197/8	IANA - Reserved	May	93
198/8	Various Registries	May	93
199/8	ARIN - North America	May	93
200/8	ARIN - Central and South America	May	93
201/8	Reserved - Central and South America	May	93
202/8	APNIC - Pacific Rim	May	93
203/8	APNIC - Pacific Rim	May	93
204/8	ARIN - North America	Mar	94
205/8	ARIN - North America	Mar	94
206/8	ARIN - North America	Apr	95
207/8	ARIN - North America	Nov	95
208/8	ARIN - North America	Apr	96
209/8	ARIN - North America	Jun	96
210/8	APNIC - Pacific Rim	Jun	96
211/8	APNIC - Pacific Rim	Jun	96
212/8	IPE NCC - Europe	Oct	97
213/8	RIPE NCC - Europe	Mar	99
214/8	US-DOD	Mar	98
215/8	US-DOD	Mar	98
216/8	ARIN - North America	Apr	98
217/8	RIPE NCC - Europe	Jun	00
218/8	APNIC - Pacific Rim	Dec	00
219/8	APNIC	Sep	01
220/8	APNIC	Dec	01
221-223/8	IANA - Reserved	Sep	81
224-239/8	IANA - Multicast	Sep	81
240-255/8		Sep	
· -		1	-

E Terrell [Page 8]

TABLE 2

IPv4 'Bit Mapped' IP Address Distribution Derived from the Modern Method for Binary Enumeration Using the 'CIDR' Notation

1		2		3		4
Network IP Address Class Range /Starting Network Prefix: Number of Bits V "/New 'CIDR' Notation"	A	Number of addresses Iss /for the Oct Representinthe IP Address Range V	ued et ig ess	Exponent equatio yieldin Total Nu IP Addres Issued V	n g mbei	Number of IP Addresses
		CLASS A	7			
0-126/00:8	=	0/8	=	2^0	=	1
0-126/00:8	=	1/8	=	2^1	=	2
0-126/00:8	=	2/8	=	2^2 	=	4
0-126/00:8	=	V 6/8 	=	V 2^6 	=	V 64
0-126/00:8	=	V X/8	=	V 2^X	=	V 126
			. – – – .			
		CLASS E	3			
128-191/10:16	=	0/16	=	2^0	=	1
128-191/10:16	=		=	2 ^ 1	=	2
128-191/10:16	=	V X/16	=	V 2^X	=	V 16,256

E Terrell [Page 9]

CLASS C

$$192-223/110:24 = 0/24 = 2^0 = 1$$
 $192-223/110:24 = 1/24 = 2^1 = 2$
 $\begin{vmatrix} & & & & & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & &$

Nevertheless, while Table 2 provides a better description and use of the 'CIDR' notation, it falls extricably short from the full exploitation, and the actual representation regarding the True Value of 'CIDR'. In other words, the real Value for the use of 'CIDR', would be seen to take advantage of the Total Number of IP Addresses contained in the IPv4 specification, and not just the limited number of IP Addresses contained in 'Class C'. Where by, it should be very clear, that while Table 1 does provide an easily discernable explanation of the IP Addresses Allocated. Now. It also shows the IP Address waste, because it does nothing to change, nor fix the Loss of more than 16 Million IP Addresses, for every IP Address issued, which represents the Number IP Addresses wasted on HOST Address assignment. Nonetheless, Re-Defining the CIDR' Notation as depicting the 'Network Prefix' and the 'Bit Range it Uses', as used in Table 2, under column '1', does indeed provide the necessary foundation for its full exploitation, and establishes a smooth Transition, which is required by the 'IPtX IP Addressing Specification' (See Chapter II). Needless to say, this method clearly follows from the definition of 'CIDR', and builds upon the existing foundation, which was logically derived and used in the IPv4 specification.

E Terrell [Page 10]

Chapter I: Analysis IPv4, IPt1, and IPt2 address space using the HD-Ratio

As shown in RFC1715, and RFC3194, the HD-ratio proved to be a Dismal Failure for use as an indicator to determine IP Address use and Distribution Efficiencies. In fact, it can easily be concluded that the IPt1 and IPt2 IP Specification are the only Addressing Protocols which meet the All of the Requirements outlined in RFC1550, especially since, they were Logically Derived from the IPv4 IP Specification. In other words, the IPt1 and IPt2 Protocol Specifications not only meet the Transitional requirements, as would be viewed as meeting all of the Engineering considerations required under RFC1550, but it also offers a more Gradual, and yet Infinite Expansion Possibilities, to meet the challenge that only the Colonization of the Universe could provide.

Needless to say, when examining the benefits of using the HD-Ratio, one would discover, that is has absolutely No application regarding the determination of the Efficiency Rating for the IPv4, IPv6, and especially not the IPt1 and IPt2 Addressing Protocol Specification(s), because these protocols makes use of more than 99.999+% of the IP Addresses contained in this Addressing System. And while some of the additional protocol definitions and specifications, which increased the benefits of the IPv4 foundation, has been remarked, or viewed as being unnecessary Growing Pains. These remarks should not be considered as being anything but unintelligent babblings. As an example, the use of 'CIDR', while not fully exploited, follows logically, from the foundation of the IPv4 Specification, and paved the way for the Mathematical and Logical derivation of a 2 New IP Addressing Systems. These Specifications moreover, Completely exploit the Solid Foundation provided by the IPv4 Specification. In other words, at best, the H-Ratio, Unlike the HD-Ratio, is a Beguilement, whose only purpose is to deceive, because surely the Logarithmic Equation described in RFC1715 could not serve any vital purpose. In which case, the author would have been better off using the elementary method for calculating the actual Efficiency Rating (see Eq. 1). Because taking the Log to the Base 10, using this equation, would not have derived any practical meaning, at least not one which could be translated into some actuate determination for some Efficiency Rating regarding the IP Addressing Systems. And this becomes even more apparent, when it is realized that the Number of Bits used to represent an IP Address does not account for the Total Number of IP Addresses available in the IP Addressing System.

E Terrell [Page 11]

log (number of objects) H = ----available bits

Furthermore, while RFC3194 provides a more actuate Logarithmic Equation for Efficiency Determination, HD-Ratio, its usage would be more applicable in a Current Use scenario (See Eq. 2). This becomes even more apparent when it is realized that the 'Numerator' used in the equation 'can' represent a 'Constant', or Specified Value, and not the result derived from some 'Sampling Related to a Statistical Analyses of the World's Population Growth or Decline Patterns.

Eq. 2

log(number of allocated objects)
HD = -----log(maximum number of allocatable objects)

Even still, suppose for a moment that Eq. 2 were a valid representation for the determination of the Efficiency Rating for an IP Addressing System. And suppose even further, that a test was needed to determine the value of the IPtl Addressing Specification, then the results from the Calculations using this equation would be 'Startling', because the 'HD-Ratio' would approach NEARLY a VALUE of 'l'. This is because all of the available IP Addresses, which are available in this IP Addressing Specification are used for Network Assignment, the point of 'Demarcation', that excludes the use of a viable Network IP Address for Host Address Assignment. Which also emphasizes the point regarding its functional use; Analysis of the Percentage of Network Addresses vs. Host, or Nodes Connected vs. Number of Available IP Addresses used for the Connection. And if you would note Table 3, and the Currently Acceptable IP Network Addressing Practices, then it would be realized, that the Entire World could Actually be Networked using only Section 'A-1' from Class A of IPtl IP Addressing Specification.

Furthermore, since the Prefixes used in the IPt2 IP Protocol Specification can not be used in any calculation, which would be required for the Determination of the Efficiency Rating regarding the use of the Total Number of IP Address. Then their use within the IPt2 Protocol Specification is indeed an Enhancement, which can only be viewed as a Magnification Freebie. That is, without question, IPt2 allows a more Gradual Growth that can quite easily be Expanded to Infinity (See Tables 4 and 5). In which case, Population Growth really does not matter, because it is now a Variable that has been removed from the Equation.

E Terrell [Page 12]

Nevertheless, while there was some mention of a comparison to other Addressing Systems, there was No mention regarding the way these Numbering Systems were used or even Allocated (i.e. The telephony System). In other words, their mention was pointless, because no clear foundation, that could be viewed as having establish the Point upon which an Argument could be based was ever mentioned or shown to exist. In a word; 'I actually did not understand the point, nor purpose of either RFC1715 nor RFC3194, because it seems that these RFCs were focused more upon the Logarithmic Equation, rather than the reported objective regarding the Efficiency Rating, and the Determination of the most efficient IP Addressing scheme that should be used. And clearly, if a Viable Network Connection, Network IP Address, is used for Host Address Assignment, which is behind the Demarcation Line, then this is a Waste that would affect the Calculation of Efficiency. Furthermore, while I have read some mention regarding the 'Address Space Allocation Table(s), it was never pointed out, that the 'Address Allocation Table' (Or "INTERNET PROTOCOL ADDRESS SPACE") could quite literally invalidate any calculation regarding efficiency, because such a TABLE can also be INEFFICIENT.

E Terrell [Page 13]

Table 3

- "Reality of the Mathematical Addressing Schematic for the 'IPt1' Addressing System Using the Modern Binary System."
 (Where the Value for the variable 'Y' is given by the Laws of the Octet, and the System contains 4.145 x 10^9 Addresses.)
- - Class A-1, 1 126, Default Subnet Mask 255.y.x.x: 1,040,514,048 Networks and 8,129,016 Hosts: 0
 - Class A-2, 1 126, Default Subnet Mask 255.255.y.x: 516,160,512 Networks and 32,004 Hosts
 - Class A-3, 1 126, Default Subnet Mask 255.255.255.y: 256.048,128 Networks and 126 Hosts
 - Class A-4, 1 126, Default Subnet Mask 255.255.255.255: 252,047,376 Network / MultiCast IP Addresses / AnyCast
- - Class B-1, 128 191, Default Subnet Mask 255.y.x.x: 784,514,560 Networks and 4,129,024 Hosts: 10
 - Class B-2, 128 191, Default Subnet Mask 255.255.y.x: 197,672,960 Networks and 16,256 Hosts
 - Class B-3, 128 191, Default Subnet Mask 255.255.255.y: 49,807,360 Networks and 64 Hosts
 - Class B-4, 128 191, Default Subnet Mask 255.255.255.255: 16,777,216 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 14]

3. Total IP Addresses for Class C = 32 x 254³ = 524,386,048 Total available IP Addresses for Class C = 32 x 254³ Total available IP Host Addresses Equals 32 x 254^N (Where N = Number of Octet, and 'Y' equals the Address Range '254 - Q'; 192 - 223 is not included in the Address Range Represented by the equation 'Y = 254 - 32.)

Class C-1, 192 - 223, Default Subnet Mask 255.y.x.x: 458,321,664 Networks and 2,064,512 Hosts: 110

Class C-2, 192 - 223, Default Subnet Mask 255.255.y.x: 57,741,312 Networks and 8,128 Hosts

Class C-3, 192 - 223, Default Subnet Mask 255.255.255.y: 7,274,496 Networks and 32 Hosts

Class C-4, 192 - 223, Default Subnet Mask 255.255.255.255: 1,048,576 Network / MultiCast IP Addresses / AnyCast

4. Total IP Addresses for Class D = 16 x 254^3 = 262,193,024 Total available IP Addresses for Class D = 16 x 254^3 Total available IP Host Addresses Equals 16 x 254^N (Where N = Number of Octet, and 'Y' equals the Address Range '254 - Q'; 224 - 239 is not included in the Address Range Represented by the equation 'Y = 254 - 16'.)

Class D-1, 224 - 239, Default Subnet Mask 255.y.x.x: 245,676,928 Networks and 1,032,256 Hosts: 1110

Class D-2, 224 - 239, Default Subnet Mask 255.255.y.x: 15,475,712 Networks and 4,064 Hosts

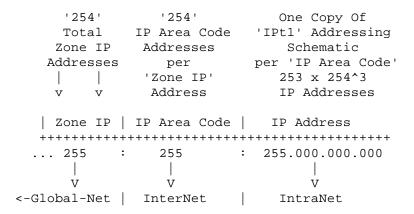
Class D-3, 224 - 239, Default Subnet Mask 255.255.255.y: 974,848 Networks and 16 Hosts

Class D-4, 224 - 239, Default Subnet Mask 255.255.255.255: 65,536 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 15]

5. Total IP Addresses for Class E = 15 x 254³ = 245,805,960 Total available IP Addresses for Class E = 15 x 254³ Total available IP Host Addresses Equals 15 x 254^N (Where N = Number of Octet, and 'Y' equals the Address Range '254 - Q'; 240 - 254 is not included in the Address Range Represented by the equation 'Y = 254 - 15'.)

Class E-1, 240 - 254, Default Subnet Mask 255.y.x.x: 231,289,860 Networks and 967,740 Hosts: 1111


Class E-2, 240 - 254, Default Subnet Mask 255.255.y.x: 13,658,850 Networks and 3,810 Hosts

Class E-3, 240 - 254, Default Subnet Mask 255.255.255.y: 806,625 Networks and 15 Hosts

Class E-4, 240 - 254, Default Subnet Mask 255.255.255.255: 50,625 Network / MultiCast IP Addresses / AnyCast

Table 4

Reality of the Structure of the Addressing Schematic Design for the IPt2 Protocol Specification Using The Modern Binary System Which yields a Combined Total of 2.67 x 10^{14} IP Addresses

E Terrell [Page 16]

Table 5

"Reality of the Structure of the Schematic for the 'IPt2' IP Specification Using the Modern Binary System."(Where the Value for the variable 'Y' is given by the Laws of the Octet, and Total Number of Available IP Addresses Equals 2.67 x 10^14.)

- 1. Total IP Addresses for 'Class A' having '254' 'Zone IP' Addresses
 - $= 254 \times 254 \times 126 \times 254^3$
 - $= 254 \times 254 \times 2,064,770,064$
 - $= 1.332107 \times 10^{14}$

Total of 254 IP 'IP Area Code' Addresses per 'Zone IP' Address

- $= 254 \times 126 \times 254^3$
- $= 254 \times 2,064,770,064$
- $= 5.244516 \times 10^{11}$

Distribution per 'Zone IP' Address yielding the 'IP Area Code' Addresses

Class A-1, 1 - 126, Default Subnet Mask 255.y.x.x: 2.642906×10^{11} Networks and 8,129,016 Hosts: 0

Class A-2, 1 - 126, Default Subnet Mask 255.255.y.x: 1.311048×10^{11} Networks and 32,004 Hosts

Class A-3, 1 - 126, Default Subnet Mask 255.255.255.y: 6.503622×10^{10} Networks and 126 Hosts

Class A-4, 1 - 126, Default Subnet Mask 255.255.255.255: 6.4020034 x 10^10 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 17]

2. Total IP Addresses for 'Class B' having '254' 'Zone IP' Addresses

= 254 x 254 x 64 x 254³ = 254 x 254 x 1,048,772,096 = 6.766258 x 10¹3

Total of 254 IP 'IP Area Code' Addresses per 'Zone IP' Address

= 254 x 64 x 254³ = 254 x 1,048,772,096 = 2.663881 x 10¹1

Distribution per 'Zone IP' Address yielding the 'IP Area Code' Addresses

Class B-1, 128 - 191, Default Subnet Mask 255.y.x.x: $1.992667 \times 10^{11} \text{ Networks}$ and 4,129,024 Hosts: 10

Class B-2, 128 - 191, Default Subnet Mask 255.255.y.x: 5.0208932×10^{10} Networks and 16,256 Hosts

Class B-3, 128 - 191, Default Subnet Mask 255.255.255.y: 1.2651069 x 10^10 Networks and 64 Hosts

Class B-4, 128 - 191, Default Subnet Mask 255.255.255.255: 4.2614129 x 10^9 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 18]

3. Total IP Addresses for 'Class C' having '254' 'Zone IP' Addresses

 $= 254 \times 254 \times 32 \times 254^3$ $= 254 \times 254 \times 524,386,048$

 $= 3.383129 \times 10^{13}$

Total of 254 IP 'IP Area Code' Addresses per 'Zone IP' Address

 $= 254 \times 32 \times 256^3$

 $= 254 \times 524,386,048$

 $= 1.331941 \times 10^{11}$

Distribution per 'Zone IP' Address yielding the 'IP Area Code' Addresses

Class C-1, 192 - 223, Default Subnet Mask 255.y.x.x: 1.164137×10^{11} Networks and 2,064,512 Hosts: 110

Class C-2, 192 - 223, Default Subnet Mask 255.255.y.x: 1.466629 x 10^10 Networks and 8,128 Hosts

Class C-3, 192 - 223, Default Subnet Mask 255.255.255.y: 1.8477220×10^9 Networks and 32 Hosts

Class C-4, 192 - 223, Default Subnet Mask 255.255.255.255: 2.663383 x 10^8 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 19]

4. Total IP Addresses for 'Class D' having '254' 'Zone IP' Addresses

= 254 x 254 x 16 x 254^3 = 254 x 254 x 262,193,024 = 1.691558 x 10^13

Total of 254 IP 'IP Area Code' Addresses per 'Zone IP' Address

= 254 x 16 x 254³ = 254 x 262,193,024 = 6.659677 x 10¹0

Distribution per 'Zone IP' Address yielding the 'IP Area Code' Addresses

Class D-1, 224 - 239, Default Subnet Mask 255.y.x.x: 6.240194 x 10^10 Networks and 1,032,256 Hosts: 1110

Class D-2, 224 - 239, Default Subnet Mask 255.255.y.x: 3.930831 x 10^9 Networks and 4,064 Hosts

Class D-3, 224 - 239, Default Subnet Mask 255.255.255.y: 2.476114×10^8 Networks and 16 Hosts

Class D-4, 224 - 239, Default Subnet Mask 255.255.255.255: 1.6646144 x 10^7 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 20]

5. Total IP Addresses for 'Class E' having '254' 'Zone IP' Addresses

 $= 254 \times 254 \times 15 \times 254^3$ $= 254 \times 254 \times 245,805,960$

 $= 1.585842 \times 10^{13}$

Total of 254 IP 'IP Area Code' Addresses per 'Zone IP' Address

 $= 254 \times 15 \times 254^3$ = 254 \times 245,805,960

 $= 6.243471 \times 10^{10}$

Distribution per 'Zone IP' Address yielding the 'IP Area Code' Addresses

Class E-1, 240 - 254, Default Subnet Mask 255.y.x.x: $5.874762 \times 10^{10} \text{ Networks}$ and 967,740 Hosts: 1111

Class E-2, 240 - 254, Default Subnet Mask 255.255.y.x: 3.4693479 x 10^9 Networks and 3,810 Hosts

Class E-3, 240 - 254, Default Subnet Mask 255.255.255.y: 2.0488275×10^8 Networks and 15 Hosts

Class E-4, 240 - 254, Default Subnet Mask 255.255.255.255: 1.285875 x 10^7 Network / MultiCast IP Addresses / AnyCast

E Terrell [Page 21]

Chapter II: Suggestion for the IPt1 and IPt2 Internet Protocol Address Space, Supernetting and the New 'CIDR' Notation

The "Internet Protocol v4 Address Space" allocation Table, as noted in 'Table 1' above, can retain the same IP Address Allocation, in the 'IPt1 IP Protocol Specification'. In fact, the only guidelines that would be different, and appropriated, are those governing the 'Host' Address Allocation, whose distribution is Defined by 'The Laws of the Octet'. Furthermore, noting Table 2, it should be understood that it represents an 'IP Address Allocation / Translation Guide', which would be used to determine the total Number of Available IP Addresses when converting from the IPv4 to the IPt1 Addressing Specifications. This Table represents the IP Address conversion, which should be viewed as extremely important, because the IPt1 Specification makes use of nearly all of the total number of IP Addresses for use as the Network IP Address. And while there are Host Addresses Assigned, there are No Viable network IP Addresses wasted or used for this purpose (See The Laws of the Octet.).

Nevertheless, the description shown in Table 6 provides an Example, which describes the 'Supernetting of an IP Address' when using the 'IPt1' specification, which also uses the New Notation for 'CIDR'. However, this is a Practice, 'Supernetting of an IP Address', that can only be used BEHIND the 'Point of Demarcation' (The 'VIABLE Network IP Address'), for the purpose of Subnet / Host creation. Because to do so otherwise would not only be in violation of 'The Laws of the Octet', but it would create an Addressing Conflict within the IP Addressing Scheme itself. Even still, is should nevertheless be very clear, that the 'CIDR' Notation represents the 'Bit Mapped Displacement' of the Network IP Address, and nothing more.

Moreover, since the IPt1 specification uses the same IP Addressing methods for enumeration, as used in IPv4. It can quite easily be employed, and replace, in every scenario now occupied and used by the IPv4 Specification. There is an exception however, which translates into recovery of wasted IP Addresses that can be recovered from the "Internet Protocol v4 Address Space". In other words, as previously mentioned, the primary difference between these IP Specifications, beyond the Schematic itself, is the way they each use and assign 'Host IP Addresses'. Where by, the assignment of '1' IP Address, is just that, because there are No 16 Million Host IP Addresses that will accompany this assignment under the IPt1 specification (See Appendix I). And while this may be viewed as a problem with the IPt1 specification, it certainly does not become a consideration for the implementation of the IPt2 Addressing Specification. In fact, the IPt2 Addressing Specification not only provides foundation for the possibility for Unlimited IP Addresses, it simplifies the "Internet Protocol Address Space" Table, (See Table 7) while reducing the Management Burden associated with the Allocation of IP Addresses.

E Terrell [Page 22]

TABLE 6

IPt1 'Bit Mapped' IP Address Distribution

Derived from the Modern Method for Binary Enumeration

Using the 'CIDR' Notation

1 3 2 Network IP Address Number of Exponential Total equation Number of yielding HOST Class Range BITS /Starting Point of the Network Total Number IP Addresses Prefix: HOST Number of Bits IP Addresses Ÿ V V V "/New 'CIDR' Notation" CLASS A Class A-1 $0-126/00:8 = 8/8 = 2^X = 8,129,016$ Class A-2 $0-126/00:16 = 16/8 = 2^X = 32,004$

E Terrell [Page 23]

IPt1 and IPt2 ADDRESS SPACE

Class A-3

 $0-126/00:24 = 24/8 = 2^X = 126$

Class A-4

0-126/00:25	=	25/8 V	=	2^7 = V	128
0-126/00:30	=	30/8	=	2^2 =	V 4
0-126/00:31	=	31/8	=	2^1 =	2
0-126/00:32	=	32/8	=	2^0 =	0*

CLASS B

Class B-1

 $0-126/10:8 = 8/16 = 2^X = 4,129,024$

E Terrell [Page 24]

IPt1 and IPt2 ADDRESS SPACE October 15, 2002

Class B-2

128-191/10:16 = 16/16 = 2^X = 16,256

Class B-3

 $128-191/10:24 = 24/16 = 2^X = 32$

Class B-4

E Terrell [Page 25]

CLASS C

Class C-1

 $192-223/110:8 = 8/24 = 2^X = 2,064,512$

Class C-2

192-223/110:16 = 16/24 = 2^x = 8,128

Class C-3

192-223/110:24 = 24/24 = 2^x = 32

E Terrell [Page 26]

IPt1 and IPt2 ADDRESS SPACE

Class C-4

CLASS D

Class D-1

 $224-239/1110:8 = 8/28 = 2^X = 1,032,256$

Class D-2

 $224-239/1110:16 = 16/28 = 2^X = 4,064$

E Terrell [Page 27]

IPt1 and IPt2 ADDRESS SPACE October 15, 2002

Class D-3

 $224-239/1110:24 = 24/28 = 2^X = 16$

Class D-4

224-239/1110:25	=	25/28 	=	2 ^ 7 =	128
224-239/1110:30	=	V 30/28	=	V 2^2 =	V 4
224-239/1110:31	=	31/28	=	2^1 =	2
224-239/1110:32	=	32/28	=	2^0 =	0*

CLASS E

Class E-1

 $240-254/1111:8 = 8/\sim 29 = 2^X = 967,740$

E Terrell [Page 28]

IPt1 and IPt2 ADDRESS SPACE October 15, 2002

Class E-2

 $240-254/1111:16 = 16/\sim29 = 2^X = 3,810$

Class E-3

 $240-254/1111:24 = 24/\sim29 = 2^X = 15$

Class E-4

240-254/1111:25	=		=	2^7 	=	128
240-254/1111:30	=	V 30/~29	=	v 2^2	=	V 4
240-254/1111:31	=	31/~29	=	2^1	=	2
240-254/1111:32	=	32/~29	=	2^0	=	0*

*Note: Using the Current or Modern Method for Binary Enumeration, the solution here, regarding the Supernetting function and 'CIDR', is the Correct answer. However, under the New Binary System, the solution would be; 2^0 = 1, and this would be True because, 'In the New Binary System, the Supernetting of a 32 Bit number would yield a Host having another digit. As in; Host IP = '254.254.254.254', when the Subnet Address is; 254.254.254.253.

E Terrell [Page 29]

IPt1 and IPt2 ADDRESS SPACE

Table 7

INTERNET PROTOCOL t2 (64 Bit) ADDRESS SPACE

Resei BIT		IPt2 I / CIDR Network	IP Address Zone IP 	Prefix \ IP Area Code	IPt1 Address /Schematic\ IP Address Assignment	Distribution /Purpose\	Date / \
/		Descripto	or V			V	V
	· 	+	-+	+	' 	-+	+
8	8	None	000:	000:	000.000.000.000	None	4/2002
8	8	All	001:	All:	XXX.XXX.XXX	NA	4/2002
8	8	All	002:	All:	XXX.XXX.XXX	SA	4/2002
8	8	All	003:	All:	XXX.XXX.XXX	EU	4/2002
8	8	All	004:	All:	XXX.XXX.XXX	OS	4/2002
8	8	All	005:	All:	XXX.XXX.XXX	AU	4/2002
8	8	All	006:	All:	XXX.XXX.XXX	AF	4/2002
8	8	All	007-254:	All:	XXX.XXX.XXX	IANA/RESERVED	4/2002
8	8	All	001-254:	000-254:	000.000.000.000	IANA/EMERGENCY	4/2002
8	8	/00:8	255:	255:	127.000.000.000	IANA/LoopBack	4/2002

IPt2 64 Bit Mapped Address Space

Prefix Address <:	> (Or Trunk Identifier)		CIDR
/	\	32 Bit IPt1	Network
8 Bits 8 Bits	8 Bits 8 Bits	Address Space	Descriptor
Reserved: Reserved:	Zone IP: IP Area Code:	xxx.xxx.xxx	/xxxx:xx

E Terrell [Page 30]

INTERNET PROTOCOL t2 ADDRESS SPACE INDEX

CONTIENTS /ZONE IP\	COUNTRIES / \	IP AREA CODE DISTRIBUTION	DATE / \	COMMENTS /
'NA' NORTH	+ '3' UNITED	'60'	4/2002	NONE
AMERICA 001:	STATES		4/2002	NONE
IP AREA CODE	MEXICO 	'051 - 054:'	4/2002	NONE
CONTIENT SURPLUS '194'	CANADA 	'055 - 060:'	4/2002	NONE
'SA' SOUTH	 '38' 	' 88 '	4/2002	
AMERICA 002:	 Brazil 	'001 - 050:'	4/2002	NONE
IP AREA CODE CONTIENT	Antigua and Barbuda	'051 - 052:'	4/2002	NONE
SURPLUS	Aruba	'053:'	4/2002	NONE
	Bahamas	'054:'	4/2002	NONE
	 Barbados 	'055:'	4/2002	NONE
	Cayman Islan	ds '056:'	4/2002	NONE
	Cuba	'057:'	4/2002	NONE
	Dominica	'058:'	4/2002	NONE
	Dominican Re	public '059:'	4/2002	NONE
	 Grenada 	'060:'	4/2002	NONE
	Guadeloupe	'061:'	4/2002	NONE
	Jamaica	'062:'	4/2002	NONE
	Haiti	'063:'	4/2002	NONE
	Martinique	'064:'	4/2002	NONE

E Terrell [Page 31]

IPt1 and IPt2 ADDRESS SPACE

ı				
 	Puerto Rico	'065:'	4/2002	NONE
 	Saint Kitts and Nevis	'066:'	4/2002	NONE
 	Saint Lucia	'067:'	4/2002	NONE
 	Trinidad and Tobago	'068:'	4/2002	NONE
 	Virgin Islands	'069:'	4/2002	NONE
 	Belize	'070:'	4/2002	NONE
 	Costa Rica	'071:'	4/2002	NONE
 	El Salvador	'072:'	4/2002	NONE
 	Guatemala	'073:'	4/2002	NONE
 	Honduras	'074:'	4/2002	NONE
 	Nicaragua	'075:'	4/2002	NONE
 	Panama	'076:'	4/2002	NONE
 	Argentina	'077:'	4/2002	NONE
 	Bolivia	'078:'	4/2002	NONE
 	Chile	'079:'	4/2002	NONE
 	Colombia	'080:'	4/2002	NONE
 	Ecuador	'081:'	4/2002	NONE
 	French Guiana	'082:'	4/2002	NONE
 	Guyana	'083:'	4/2002	NONE
	Paraguay	'084:'	4/2002	NONE

[Page 32] E Terrell October 15, 2002

IPt1 and IPt2 ADDRESS SPACE

	1			
	Peru	'085:'	4/2002	NONE
	Suriname	'086:'	4/2002	NONE
	Uruguay	'087:'	4/2002	NONE
	Venezuela	'088:'	4/2002	NONE
'EU' EUROPE	'45'	'74'	4/2002	NONE
003:	Belarus	'001'	4/2002	NONE
IP AREA CODE	Russian Federation	'002 - 031:'	4/2002	NONE
SURPLUS '180'	Bulgaria	'032:'	4/2002	NONE
100	Czech Republic	'033:'	4/2002	NONE
	Hungary	'034:'	4/2002	NONE
	Moldova	'035:'	4/2002	NONE
	Poland	'036:'	4/2002	NONE
	Romania	'037:'	4/2002	NONE
	Slovakia	'038:'	4/2002	NONE
	Ukraine	'039:'	4/2002	NONE
	Denmark	'040:'	4/2002	NONE
	Estonia	'041:'	4/2002	NONE
	Faeroe Islands	'042:'	4/2002	NONE
	Finland	'043:'	4/2002	NONE
	Iceland	'044:'	4/2002	NONE
	Ireland	'045:'	4/2002	NONE

E Terrell [Page 33]

IPt1 and IPt2 ADDRESS SPACE

	Latvia	'046:'	4/2002	NONE
 	Lithuania	'047:'	4/2002	NONE
 	Norway	'048:'	4/2002	NONE
 	Sweden	'049:'	4/2002	NONE
 	United Kingdom	'050:'	4/2002	NONE
 	Albania	'051:'	4/2002	NONE
 	Andorra	'052:'	4/2002	NONE
 	Bosnia and Herzegowina	'053:'	4/2002	NONE
 	Croatia (Hrvatska)	'054:'	4/2002	NONE
 	Gibraltar	'055:'	4/2002	NONE
 	Greece	'056:'	4/2002	NONE
 	Vatican City State	'057:'	4/2002	NONE
 	Italy	'058:'	4/2002	NONE
 	Macedonia	'059:'	4/2002	NONE
 	Malta	'060:'	4/2002	NONE
 	Portugal	'061:'	4/2002	NONE
 	San Marino	'062:'	4/2002	NONE
 	Slovenia	'063:'	4/2002	NONE
 	Spain	'064:'	4/2002	NONE
 	Yugoslavia	'065:'	4/2002	NONE
 	Austria	'066:'	4/2002	NONE
 	Belgium	'067:'	4/2002	NONE
	France	'068:'	4/2002	NONE

E Terrell [Page 34]

IPt1 and IPt2 ADDRESS SPACE

1					
	Germany	'069:'	4/2002	NONE	
	Liechtenstein	'070:'	4/2002	NONE	
	Luxembourg	'071:'	4/2002	NONE	
	Monaco	'072:'	4/2002	NONE	
	Netherlands	'073:'	4/2002	NONE	
	Switzerland	'074:'	4/2002	NONE	
+			++		
'OS' OCEANIA		'23'	4/2002		
STATES	Australia	'001:'	4/2002	NONE	
IP AREA CODE	Wallis and Futuna Islands	'002:'	4/2002	NONE	
CONTIENT	and rutuna islands				
SURPLUS	New Zealand	'003:'	4/2002	NONE	
	Fiji	'004:'	4/2002	NONE	
	Papua New Guinea	'005:'	4/2002	NONE	
	New Caledonia	'006:'	4/2002	NONE	
	Solomon Islands	'007:'	4/2002	NONE	
	Vanuatu	'008:'	4/2002	NONE	
	Guam '009:'	'009:'	4/2002	NONE	
	Kiribati	'010:'	4/2002	NONE	
	Marshall Islands	'011:'	4/2002	NONE	
	Micronesia	'012:'	4/2002	NONE	
	Nauru	'013:'	4/2002	NONE	
	Palau	'014:'	4/2002	NONE	

E Terrell [Page 35]

IPt1 and IPt2 ADDRESS SPACE

	American Samoa	'015:'	4/2002	NONE	
	Northern Mariana Islands	'016:'	4/2002	NONE	
	Cook Islands	'017:'	4/2002	NONE	
	French Polynesia (Tahiti)	'018:'	4/2002	NONE	
	Niue	'019:'	4/2002	NONE	
	Pitcairn	'020:'	4/2002	NONE	
	Samoa	'021:'	4/2002	NONE	
	Tonga	'022:'	4/2002	NONE	
	Tuvalu	'023:'	4/2002	NONE	
			_+	.	
'AU' AFRICAN	' 55 '	' 55 '	4/2002	NONE	
UNION 005:	Burundi	'001'	4/2002	NONE	
IP AREA CODE CONTIENT	Democratic '002:' 4/2002 NONE Republic of the Congo				
SURPLUS	Djibouti	'003:'	4/2002	NONE	
199	Eritrea	'004:'	4/2002	NONE	
	Ethiopia	'005:'	4/2002	NONE	
	Kenya	'006:'	4/2002	NONE	
	Madagascar	'007:'	4/2002	NONE	
	Malawi	'008:'	4/2002	NONE	
	Mauritania	'009:'	4/2002	NONE	
	Mozambique	'010:'	4/2002	NONE	

E Terrell [Page 36]

IPt1 and IPt2 ADDRESS SPACE

ı				
 	Réunion	'011:'	4/2002	NONE
 	Rwanda	'012:'	4/2002	NONE
 	Seychelles	'013:'	4/2002	NONE
 	Somalia	'014:'	4/2002	NONE
 	Tanzania	'015:'	4/2002	NONE
 	Uganda	'016:'	4/2002	NONE
 	Zambia	'017:'	4/2002	NONE
 	Zimbabwe	'018:'	4/2002	NONE
 	Angola	'019:'	4/2002	NONE
 	Cameroon	'020:'	4/2002	NONE
 	Chad	'021:'	4/2002	NONE
 	Congo	'022:'	4/2002	NONE
 	Equatorial Guinea	'023:'	4/2002	NONE
 	Central African Republic	'024:'	4/2002	NONE
 	Gabon	'025:'	4/2002	NONE
 	Sao Tome and Principe	'026:'	4/2002	NONE
 	Algeria	'027:'	4/2002	NONE
 	Egypt	'028:'	4/2002	NONE
 	Libyan Arab Jamahiriya	'029:'	4/2002	NONE
 	Morocco	'030:'	4/2002	NONE
 	Sudan	'031:'	4/2002	NONE
	Tunisia	'032:'	4/2002	NONE

E Terrell [Page 37]

IPt1 and IPt2 ADDRESS SPACE

Western Sahara	'033:'	4/2002	NONE
Botswana	'034:'	4/2002	NONE
Lesotho	'035:'	4/2002	NONE
Namibia	'036:'	4/2002	NONE
South Africa	'037:'	4/2002	NONE
Swaziland	'038:'	4/2002	NONE
Benin	'039:'	4/2002	NONE
Burkina Faso	'040:'	4/2002	NONE
Cape Verde	'041:'	4/2002	NONE
Côte d'Ivoire	'042:'	4/2002	NONE
Gambia, The	'043:'	4/2002	NONE
Ghana	'044:'	4/2002	NONE
Guinea	'045:'	4/2002	NONE
Guinea-Bissau	'046:'	4/2002	NONE
Liberia	'047:'	4/2002	NONE
Mali	'048:'	4/2002	NONE
Mauritania	'049:'	4/2002	NONE
Niger	'050:'	4/2002	NONE
Nigeria	'051:'	4/2002	NONE
Saint Helena	'052:'	4/2002	NONE
Senegal	'053:'	4/2002	NONE
Sierra Leone	'054:'	4/2002	NONE
Togo	'055:'	4/2002	NONE

E Terrell [Page 38]

IPt1 and IPt2 ADDRESS SPACE

'AF'	' 55 '	'151'	4/2002	NONE
ASIAN FEDERATION 006:	China	'001-051'	4/2002	NONE
	Japan	'052:'	4/2002	NONE
IP AREA CODE CONTIENT SURPLUS	Korea (North)	'053:'	4/2002	NONE
'103'	Korea (South)	'054:'	4/2002	NONE
	Macau	'055:'	4/2002	NONE
	Mongolia	'056:'	4/2002	NONE
	Taiwan	'057:'	4/2002	NONE
	Afghanistan	'058:'	4/2002	NONE
	Bangladesh	'059:'	4/2002	NONE
	Bhutan	'060:'	4/2002	NONE
	India	'061-111'	4/2002	NONE
	Iran	'112:'	4/2002	NONE
	Kazakhstan	'113:'	4/2002	NONE
	Kyrgyzstan	'114:'	4/2002	NONE
	Maldives	'115:'	4/2002	NONE
	Nepal	'116:'	4/2002	NONE
	Pakistan	'117:'	4/2002	NONE
	Sri Lanka	'118:'	4/2002	NONE
	Tajikistan	'119:'	4/2002	NONE
	Turkmenistan	'120:'	4/2002	NONE
'				

E Terrell [Page 39]

IPt1 and IPt2 ADDRESS SPACE

Uzbekistan	'121:'	4/2002	NONE
 Brunei Darussa	alam '122:'	4/2002	NONE
 Cambodia	'123:'	4/2002	NONE
 East Timor	'124:'	4/2002	NONE
 Indonesia	'125:'	4/2002	NONE
 Laos	'126:'	4/2002	NONE
 Malaysia	'127:'	4/2002	NONE
 Myanmar (Burma	a) '128:'	4/2002	NONE
 Philippines	'129:'	4/2002	NONE
 Singapore	'130:'	4/2002	NONE
 Thailand	'131:'	4/2002	NONE
 Viet Nam	'132:'	4/2002	NONE
 Armenia	'133:'	4/2002	NONE
 Azerbaijan	'134:'	4/2002	NONE
 Bahrain	'135:'	4/2002	NONE
Cyprus	'136:'	4/2002	NONE
 Georgia 	'137:'	4/2002	NONE
 Iraq 	'138:'	4/2002	NONE
 Israel	'139:'	4/2002	NONE
 Jordan 	'140:'	4/2002	NONE
 Kuwait	'141:'	4/2002	NONE
 Lebanon	'142:'	4/2002	NONE
 Gambia, The	'143:'	4/2002	NONE

E Terrell [Page 40]

IPt1 and IPt2 ADDRESS SPACE

Oman	'144:'	4/2002	NONE
 Qatar	'145:'	4/2002	NONE
 Palestine	'146:'	4/2002	NONE
 Saudi Arak	oia '147:'	4/2002	NONE
 Syria	'148:'	4/2002	NONE
 Turkey	'149:'	4/2002	NONE
United Ara	ab '150:'	4/2002	NONE
 Yemen 	'151:'	4/2002	NONE

Nevertheless, any careful examination and study of Table 7, the "INTERNET PROTOCOL t2 ADDRESS SPACE", and its INDEX. Anyone would readily conclude; 'It does not matter if the World's Population Doubled or Tripled in 5, 10, or 15 years from now, because the number of IP Addresses contained in the Surplus of IP Area Code Addresses, for each Continent, would presently sustain a 20 Billion total World Population, and this says nothing about the Reserve IP Addresses allocation to IANA. In fact, if there is an agreement (which it will be) regarding the New Binary System, it will not pose any difficulties for IANA, because these IP Specifications were derived and first discovered, using the New Method of Enumeration, as defined by the New Binary System. In other words, the IPt1 and IPt2 IP Protocol Specifications overwhelmingly surpasses every Requirement Specified in RFC1550.

E Terrell [Page 41]

It has been mention that the IPt1 IP Specification differs only in 2 primary areas from that of the IPv4 IP Addressing system. And these differences account for the use of more than 99.999...+ % of the total number of available IP Addresses contained in this System of Addressing, and the way Host IP Addresses are allocated. Needless to say, other than the Schematic itself, that's it. In other words, the use of 'APRA and IN-ADD.APRA functions the same in the IPt1 IP Specification, and except for the 'SIGHT' of the Prefixes used in the IPt2 Specification, their use functions the same under this IP Specification as well. In other words, the Prefixes used in the IPt2 IP Specification, serve only the provisions regarding stability, control, management, and increase the Number of IP Addresses (And nothing more!). Because other than these benefits, the Prefixes used in the IPt2 IP Specification does absolutely nothing to effect, nor change any other the practices or procedures used in the IPv4 Protocol. Furthermore, while I do not advocate the used of the Primary IP Protocol in Networking Household Appliances, (behind the demarcation). It should be clearly understood, not only is the IPt2 IP Specification well suited for this application, but there is absolutely No Protocol Requirement, or Demand, it is not suited to address...And it goes without saying, it does indeed, maintain a sufficient supply of IP Addresses, regardless (The 'IPtX' IP Specification: See Table 8, and Appendix II).

Table 8
'IPtX IP Specification'

IPt1 = 32 Bit IPt2 = 64 Bit IPt3 96 Bit = IPt4 = 128 Bit IPt5 = 160 Bit : : 3,200 Bit IPt100 = : IPt5000 = 160,000 Bit IPtX = Infinity

E Terrell [Page 42]

This document, whose only objective was the explanation for the method(s) used in the Efficiency Determination of an IP Addressing Specification, and the development of a possible (Suggestion) "INTERNET PROTOCOL ADDRESS SPACE" for the 'IPt1 and IPt2 IP Addressing Specifications', which actually did not directly raise any security issues. Hence, there are no issues raised that warrant Security Considerations.

Figure 1; Visualizing the 'Zone IP' and 'IP Area Code' Addresses

E Terrell [Page 43]

Figure 2: 'NA' Continent; Zone IP Address = '001' (See Table 7)

Figure 3: Different 'IP Area Code' Address for each State (See the Index of Table 7)

E Terrell [Page 44]

TABLE 9

Internet Protocol tl Address Space

Compatibility / Conversion with the Internet Protocol v4 Address Space

Add:	ress Block	Registry - Purpose	Da	ate
Add: Issi IPad	ber of IP resses ued - ddNum/ RNetDescrip	Note: Host IP Addresses are Not, and Can not Be Used for a Direct Active Connection. They can only be Used in conjunction with a Requestor / Server, as a Client having a Subordinate Unction, which defines a Host V	,	
All	000/00:8	IANA - Reserved	Sep	 81
1		IANA - Reserved	Sep	
1	002/00:8	IANA - Reserved	Sep	
1	003/00:8	General Electric Company	May	94
1	004/00:8	Bolt Beranek and Newman Inc.	Dec	92
1	005/00:8	IANA - Reserved	Jul	95
1	006/00:8	Army Information Systems Center	Feb	94
1	007/00:8	IANA - Reserved	Apr	95
1	008/00:8	Bolt Beranek and Newman Inc.	Dec	92
1	009/00:8	IBM	Aug	92
1	010/00:8	IANA - Private Use	Jun	95
1	011/00:8	DoD Intel Information Systems	May	93
1	012/00:8	AT&T Bell Laboratories	Jun	95
1	013/00:8	Xerox Corporation	Sep	91
1	014/00:8	IANA - Public Data Network	Jun	91
1	015/00:8	Hewlett-Packard Company	Jul	94
1	016/00:8	Digital Equipment Corporation	Nov	94
1	017/00:8	Apple Computer Inc.	Jul	92
1	018/00:8	MIT	Jan	94
1	019/00:8	Ford Motor Company	May	95
1	020/00:8	Computer Sciences Corporation	Oct	94
1	021/00:8	DDN-RVN	Jul	91
1	022/00:8	Defense Information Systems Agency	May	93
1	023/00:8	IANA - Reserved	Jul	95
1	024/00:8	ARIN - Cable Block	May	01
		(Formerly IANA - Jul 95)		

IPt1 and IPt2 ADDRESS SPACE

E Terrell

October 15, 2002

[Page 45]

1	025/00:8	Royal Signals and Radar Establishment	Jan	95
1	026/00:8	Defense Information Systems Agency	May	95
1	027/00:8	IANA - Reserved	Apr	95
1	028/00:8	DSI-North	Jul	92
1	029/00:8	Defense Information Systems Agency	Jul	91
1	030/00:8	Defense Information Systems Agency	Jul	
1	031/00:8	IANA - Reserved	Apr	99
1	032/00:8	Norsk Informasjonsteknologi	Jun	94
1	033/00:8	DLA Systems Automation Center	Jan	91
1	034/00:8	Halliburton Company	Mar	
				-
1	035/00:8	MERIT Computer Network	Apr	
1	036/00:8	IANA - Reserved	Jul	00
		(Formerly Stanford University - Apr 93)		
1	037/00:8	IANA - Reserved	Apr	95
1	038/00:8	Performance Systems International	Sep	
1	039/00:8	IANA - Reserved	Apr	95
1	040/00:8	Eli Lily and Company	Jun	94
1	041/00:8	IANA - Reserved	May	95
1	042/00:8	IANA - Reserved	Jul	
1	043/00:8	Japan Inet	Jan	
1	044/00:8	Amateur Radio Digital Communications	Jul	92
1	045/00:8	Interop Show Network	Jan	95
1	046/00:8	Bolt Beranek and Newman Inc.	Dec	92
	·	Bell-Northern Research	Jan	
1	047/00:8			
1	048/00:8	Prudential Securities Inc.	May	
1	049/00:8	Joint Technical Command	May	94
		Returned to IANA	Mar	98
1	050/00:8	Joint Technical Command	May	94
_	030/00-0	Returned to IANA	Mar	
_				
1	051/00:8	Department of Social Security of UK	Aug	94
1	052/00:8	E.I. duPont de Nemours and Co., Inc.	Dec	91
1	053/00:8	Cap Debis CCS	Oct	93
1	054/00:8	Merck and Co., Inc.	Mar	92
1	055/00:8	Boeing Computer Services	Apr	
1	056/00:8	U.S. Postal Service	Jun	
1	057/00:8	SITA	May	95
1	058/00:8	IANA - Reserved	Sep	81
1	059/00:8	IANA - Reserved	Sep	
			-	
1	060/00:8	IANA - Reserved	Sep	
1	061/00:8	APNIC - Pacific Rim	Apr	97
1	062/00:8	RIPE NCC - Europe	Apr	97
1	063/00:8	ARIN	Apr	97
1	064/00:8	ARIN	Jul	
1	065/00:8	ARIN	Jul	
1	066/00:8	ARIN	Jul	00
1	067/00:8	ARIN	May	01
1	068/00:8	ARIN	Jun	
	· - , -			

E Terrell [Page 46]

10	069-079/00:8	IANA - Reserved	Sep 81
1	080/00:8	RIPE NCC	Apr 01
1	081/00:8	RIPE NCC	Apr 01
14	082-095/00:8	IANA - Reserved	Sep 81
31	096-126/00:8	IANA - Reserved	Sep 81
1	127/00:8	IANA - Reserved	Sep 81
64	128-191/00:8	Various Registries	May 93
1	192/00:8	Various Registries - MultiRegional	May 93
1	193/00:8	RIPE NCC - Europe	May 93
1	194/00:8	RIPE NCC - Europe	May 93
1	195/00:8	RIPE NCC - Europe	May 93
1	196/00:8	Various Registries	May 93
1	197/00:8	IANA - Reserved	May 93
1	198/00:8	Various Registries	May 93
1	199/00:8	ARIN - North America	May 93
1	200/00:8	ARIN - Central and South America	May 93
1	201/00:8	Reserved - Central and South America	May 93
1	202/00:8	APNIC - Pacific Rim	May 93
1	203/00:8	APNIC - Pacific Rim	May 93
1	204/00:8	ARIN - North America	Mar 94
1	205/00:8	ARIN - North America	Mar 94
1	206/00:8	ARIN - North America	Apr 95
1	207/00:8	ARIN - North America	Nov 95
1	208/00:8	ARIN - North America	Apr 96
1	209/00:8	ARIN - North America	Jun 96
1	210/00:8	APNIC - Pacific Rim	Jun 96
1	211/00:8	APNIC - Pacific Rim	Jun 96
1	212/00:8	IPE NCC - Europe	Oct 97
1	213/00:8	RIPE NCC - Europe	Mar 99
1	214/00:8	US-DOD	Mar 98
1	215/00:8	US-DOD	Mar 98
1	216/00:8	ARIN - North America	Apr 98
1	217/00:8	RIPE NCC - Europe	Jun 00
1	218/00:8	APNIC - Pacific Rim	Dec 00
1	219/00:8	APNIC	Sep 01
1	220/00:8	APNIC	Dec 01
3	221-223/00:8	IANA - Reserved	Sep 81
16	224-239/00:8	IANA - Reserved IANA - Multicast	Sep 81
16	240-255/00:8	IANA - Reserved	Sep 81
	ce: Host IP Add	resses are determined by the 'IPt1' Ado	 dressing

Note: Host IP Addresses are determined by the 'IPt1' Addressing Schematic, and can Not Be Used for / to Establish A Direct Internet Connection (Connection Outside of its Network Domain)

E Terrell [Page 47]

IPt1 and IPt2 ADDRESS SPACE

TABLE 10

Internet Protocol t1 Address Space INDEX

TPaddNum	_	Network	ΤD	Address

CIDRNetDescrip = CIDR Network Descriptor

Current Number of IP Network Addresses Issued
Accounts for = 253 IP Network Addresses

Class A	CDIR Network Descriptor
A-1: Issued = 127 , Remaining = 1,040,513,921	/00:8
A-2: Issued = None, Remaining = 516,160,512	/00:16
A-3: Issued = None, Remaining = 256,048,128	/00:24
A-4: Issued = None, Remaining = 252,047,376	/00:32
Class B	
Class b	
B-1: Issued = 64 , Remaining = 784,514,496	/10:8
B-2: Issued = None, Remaining = 197,672,960	/10:16
B-3: Issued = None, Remaining = 49,807,360	/10:24
B-4: Issued = None, Remaining = 16,777,216	/10:32
Class C	
C-1: Issued = 32 , Remaining = 458,321,632	/110:8
C-2: Issued = None, Remaining = 57,741,312	/110:16
C-3: Issued = None, Remaining = 7,274,496	/110:24
C-4: Issued = None, Remaining = 1,048,576	/110:32

E Terrell [Page 48]

IPt1 and IPt2 ADDRESS SPACE

Class D

D-1:	Issued	=	16 ,	Remaining =	245,676,912	/1110:8
D-2:	Issued	=	None,	Remaining =	15,475,712	/1110:16
D-3:	Issued	=	None,	Remaining =	974,848	/1110:24
D-4:	Issued	=	None,	Remaining =	65,536	/1110:32
				Class E		
E-1:	Issued	=	15 ,	Remaining =	231,289,845	/1111:8
E-2:	Issued	=	None,	Remaining =	13,658,850	/1111:16
E-3:	Issued	=	None,	Remaining =	806,625	/1111:24
E-4:	Issued	=	None,	Remaining =	50,625	/1111:32

E Terrell [Page 49]

Appendix II: Mathematical Analysis of the Structure, and the Definition of the IPtX Protocol(s) Addressing System. (Part1)

The 'IPtX' is a System of Addressing Protocol Specifications; An Internet Protocol 't'ele-communications Specification having an Unlimited Size, or Capacity, equaling the Number representing the displacement of the 'IP Bit' Mapped Address Space, which is used to Establish Communications between Networked Computers. This Protocol Specification represents a Mathematical Series of a Class of Protocols, a Numbering System that Increases in 32 Bit Increments, or Some Multiple of 32, which is represented by the Number Specified, and Replaced in the 'X' notation used in the name; 'IPtX'. Furthermore, this is Protocol Addressing System that represents a Class of Addressing Specifications, which are completely Backward Compatible, in nearly every respect, with the IPv4 Addressing Specification (See Tables 8 and 11).

Nevertheless, while the 'IPt1' is the only Protocol, the first addressing protocol in this specification, which has complete compatibility with the IPv4 specification. The difference between the IPv4 Protocol and the other protocols derived from the 'IPtX Specification', is their Addressing Schematic, which requires a Different 'Application Program Interface' that would used with the 'NIC Driver' to allow Network Cards (NIC) to Bind to the Prefixes used in the format describing these Addressing Specifications (See Table 11). Needless to say, my suggestion would be, the Development of an Application (GUI), which allows the User to direct their communications via Continent (Zone IP) and the respective Country / State / Province (IP Area Code) of the Recipient.

E Terrell [Page 50]

TABLE 11

IPt1 32 Bit Mapped Address Space

		CIDR
32 Bit	IPt1	Network
Address	Space	Descriptor
XXX.XXX	.xxx.xxx	/XXXX:XX

IPt2 64 Bit Mapped Address Space

Prefix	Address <-	> (Or Trunk	Identifier)		CIDR
/	/	\ '	\	32 Bit IPt1	Network
8 Bits	8 Bits	8 Bits 8	Bits	Address Space	Descriptor
•	•	Zone IP: IP	·	XXX.XXX.XXX	/XXXX:XX

IPt3 96 Bit Mapped Address Space

Prefix Address Bit	Count (Or Trunk Identifi	er)	CIDR			
/	\	32 Bit IPt1	Network			
8 8 8 8 8 8	'	Address Space	, -			
R: R: R: R: R: Zone IP: IP Area Code: XXX.XXX.XXX /XXXX:XXX						
+++	+		++			

IPt4 128 Bit Mapped Address Space

]	Prefix	Address	Bit	Count	(Or '	Trunk	Ider	ntif	lier)		IPt1	CIDR
	/							\			Address	Network
:	8 8	8 8	8 8	8 8	8	8 B:	its	8	Bits		Space	Descriptor
+-	-++	-++-	+	-++	++						+	+
R	: R: R	: R: R: I	R: R	: R: R:	R:	Zone	IP:	IP	Area	Code:	32 Bit	/XXXX:XX
+-	-++	-++-	+	-++	++			⊢ – – –			+	+

E Terrell [Page 51]

IPt1 and IPt2 ADDRESS SPACE

The Future; which Suggest a Different Reality regarding the Internet and Networking, using the IPtX Protocol Specification. (Part2)

The Future of the Internet promises an Always On, for everyone, in a Always Connected World. In fact, it will become a necessity for many, because there are many devices, using the current technology, which would be Medically vital, to sustain life.

- 1. Bluetooth Wireless: Transmitting Biorhythms, read from a Biorhythm Watch for example, that would monitor a 'Heart Patient', and that could Dispatch an Ambulance during an Emergency.
- 2. Personal Email, operated from Trunk or Backbone Server (Storage Station), transmitted to the Personal Email Server assigned to every Personal Intranet-Network. This however, would require a New Email Naming Convention, which would allow everyone to always have an email address to match their place of residence; e.g.: 'john.doe@ip area code.zone ip/XXXX:XX', which translates to, 'john.doe@255.255/00:8'. Where the DNS values could be equivalent to (Or actually, would not be necessary, because as long as the First and Last Names are Unique the Email would find its' Destination);

Last Name = Network Address, and First Name = host Address

3. Internet Television and the elimination of the 'Tuner'; while having Graphics Superior to 'HDTV', and total Interactive Control. The 'Internet TV' would see the elimination of the Turner Hardware Device, which would still exist in principle. Because instead of Changing Channels in Hardware, a person would be Changing IP Addresses, which are using Video Streaming to Broadcast almost the same (except for the advantages regarding total Interactive Control) TV Broadcasted via some Radio Spectrum Frequency. In other words, Changing the Tuner to an IP Address Channel could be Free, when broadcasted using only a 32 Bit IP Address, and Pay, when using Zone IP and IP Area Code Addresses: e.g.; Channel '7' could be 234.44.123.007 for normal Broadcast...And Pay Broadcast could be delivered from anywhere in the world, because all that would be needed to represent the Channel is the 'Zone IP: IP Area Code: Network IP Address'.

E Terrell [Page 52]

- 4. IP Telephoning could use the same Billing Type Structure, which would mean either Packaging everything, having only 1 cost, or a substantial reduction in the Monthly Phone Bill for the average Consumer.
- 5. Networked Personal Automobiles: Every individual having the Control, Remote Wireless, over the Locking, Unlocking, Location, and Alarm Devices connected to their Automobiles, because it is now a Host on their Network. And in the event their Automobile was stolen, the Location GPS Code used by their Software would be given to the Police to locate their stolen vehicle. And all of these Devices would be required, or the Vehicle would not operate, which would prevent any disabling of these devices.

Nevertheless, while these were only examples, they exist as Real World Possibilities, because most of the required technology is currently on the shelf. Even still, with the implementation of these Protocol Specifications, the possibility for living the future, during my life, is indeed a possibility today.

E Terrell [Page 53]

References

- 1. E. Terrell (not published notarized, 1979) " The Proof of Fermat's Last Theorem: The Revolution in Mathematical Thought" Outlines the significance of the need for a thorough understanding of the Concept of Quantification and the Concept of the Common Coefficient. These principles, as well many others, were found to maintain an unyielding importance in the Logical Analysis of Exponential Equations in Number Theory.
- 2. E. Terrell (not published notarized, 1983) " The Rudiments of Finite Algebra: The Results of Quantification " Demonstrates the use of the Exponent in Logical Analysis, not only of the Pure Arithmetic Functions of Number Theory, but Pure Logic as well. Where the Exponent was utilized in the Logical Expansion of the underlying concepts of Set Theory and the Field Postulates. The results yield; another Distributive Property (i.e. Distributive Law for Exponential Functions) and emphasized the possibility of an Alternate View of the Entire Mathematical field.
- 3. G Boole (Dover publication, 1958) "An Investigation of The Laws of Thought" On which is founded The Mathematical Theories of Logic and Probabilities; and the Logic of Computer Mathematics.
- 4. R Carnap (University of Chicago Press, 1947 / 1958) "Meaning and Necessity" A study in Semantics and Modal Logic.
- 5. R Carnap (Dover Publications, 1958) " Introduction to Symbolic Logic and its Applications"
- 6. C. Huitema (INRIA, November 1994), RFC 1715; "The H Ratio for Address Assignment Efficiency".
- 7. Authors: Durand, A. and Huitema, C., "The Host-Density Ratio for Address Assignment Efficiency: An update on the H ratio", RFC 3194, SUN Microsystems/Microsoft, November 2001.
- 8. Authors: Scott Bradner, and Allison Mankin; RFC1550 "IP: Next Generation (IPng) White Paper Solicitation"

E Terrell [Page 54]

Author:
Eugene Terrell

24409 Soto Road Apt. 7 Hayward, CA. 94544-1438

Voice: 510-537-2390

E-Mail: eterrell00@netzero.net

"Copyright (C) The Internet Society (4/15/02). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind; except when such works are sold without the consent of the Author and are not freely distributed, and provided that the above copyright notice and this paragraph are included on all such copies and derivative works. Furthermore, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns, except that the Author is not bound by any of the provisions set forth herein, or outline by this Copyright.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

E Terrell [Page 55]