The CIDR Network Descriptor expands the size of the IPtX Address Space beyond the IPv6 IP Addressing Specification

‘draft-terrell-cidr-net-descrpt-expands-iptx-add-spc-08.pdf’

Status of this Memo

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Intellectual Property Rights (IPR) Statement

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Conventions

Please note, some of the mathematical operators that cannot be represented in a 'txt' file format, such as the '^' Carrot sign for super-script, or 'v' for sub-script, that must be used to represent the Mathematical Operator involving an Exponential Operation.

This Internet-Draft will expire on October 27th, 2006.
Abstract

This document provides the final clarification of the conclusions resulting in the expansion of 'RFC 1518 and 1519', which redefines the 'CIDR' notation as the 'Network Descriptor', and proves that the IP Address Pool of the IPtX Specification is greater than IPv6. And more importantly, because these conclusions reveal the actual design of the Binary Communication System, the Revolutionary impact sustained, is an upheaval affecting the entire field of Computer Science. In other words, IPtX is a more powerful and cost effective IP Addressing Specification that when using the 'IPtX-MX Routing Protocol' {'2^X : 1' Compression Ratio}, the interface of the "Front-End" can mimic or simulate a 32 Bit-Mapped IP Address. And this, in conjunction with the IPtX Overlay, provides a 100% Backward Compatibility with the IPv4 Specification, in the Backbone environment approaching an unlimited size 'Bit-Map' Address Space.

Introduction

The "CIDR" Concepts, the 'Network Descriptor' and the 'Bit-Mapped' IP Address, provided the bases for the comparison between IPv4, IPv6, and the IPtX IP Addressing Specifications, which concluded that these are different expressions of equal definitions. That is, mathematically speaking, the IP Address Pools of the IPv4 and the IPv6 Specifications, mathematically defines the variable Coefficient of an Identical Base Pool of IP Addresses, or X(2^32); given that ‘X’ respectively equals ‘1’ and ‘7.9228163 x 10^28’.

Where IPv4 = 1(2^32); and the 128 Bit IPv6 ≈ 7.9228163 x 10^28 (2^{128}) = 2^{128} = (2^{32})^4.

However, the IP Address Pool for the IPtX Specification is mathematically defined by the equation:

\[\text{IPtX} = X(2^{32}) + 16,900,000. \]

Nevertheless, these additional IP Addresses, because only the "Network Descriptors" are different, (approximately 16.9 Million Shared) are Host or Client IP Addresses, which cannot be used to establish a direct Internet Connection because of the Logic problems, the decisional conflicts with the Routers. In other words, the expansion of the 'CIDR' concept(s), which mathematically defines the expression; 'X(2^{32})', can only provide a Bit-Map that uniquely Identifies every IP Address within every Address Class, or the IP Address Range the expression defines, essentially availing the entire Range of IP Addresses to the Global-Net.
Table of Contents

Abstract

Introduction

1. The Classless Inter-Domain Routing Architecture, or CIDR

2. The Interpretation of the conclusions Expansion of 'CIDR'; Defining the "Network Descriptor"

3. The IPtX and IPv4 IP Addressing Schemes – 100% Compatibility

4. The Structural Comparison - IPv6 vs. IPtX

5. Security Considerations

6. IANA Considerations
 6.1 Special IANA Consideration**
 6.2 Special IANA Consideration
 - 6.2.1 - Closing Argument
 - 6.2.2 – Security
 - 6.2.3 - Summary
 6.3 Special IANA Consideration
 - Current Definition(s) for the Measurement of the Bit

7. References
1. The Classless Inter-Domain Routing Architecture, or CIDR

The Classless Inter-Domain Routing Architecture, or CIDR, was derived from the so-called; "strategies for address assignment of the existing IP address space with a view to conserve the address space and stem the explosive growth of routing tables in default-route-free routers" [9]. It was in reality, an Expansion of the 'Default Addressing Structures' existing in the Address Class System. The popular claim nevertheless, boasted the elimination of the Address Class System. These Claims needless to say, were fashioned by the Authors, whose works represented their personal interpretation(s), because the works comprising RFC's 1517, 1518, and 1519 were never fully understood. The truth nonetheless, was clearly explained in RFC 1519, whose discourse dealt specifically with the way the Routers, and the Routing Protocols interpreted, or dealt with the IP Address, and not the elimination of the Address Class System per se. In other words, the Routers and the Routing Protocols were limited to using only the 'Default Addressing Formats', which represented Class A, Class B, and the Class C Addressing Specification. And to deal with the prospect, or the possibility of an IP Addressing Shortage, a plan was devised (RFC's 1517, 1518, and 1519), which actually involved not only the initial 'Default Addressing Formats', from Class A, B, and C, but the remaining fractional subcomponents from each of their respective Octets as well. In fact, while RFC 1519 specifically designed the CIDR Architecture to take advantage of Class C, it did not weave in its mention of the same implementation for the Class A Specification. It could be said in other words, that the CIDR Architecture represents an Un-Finished version of the 'IPTX Protocol Family Specification'. However, because of the MISNOMER, 'CLASSLESS', the process of SUB-DIVIDING a Class (In particular; Class A, and Class C), was never fully understood. Hence, the CIDR Architecture is the Sub-division of a CLASS SYSTEM, or a Class Addressing System that has been SUB-DIVIDED, which represents the Class, or the Whole, having a Greater Number of Constituents.

In other words, the CIDR Architecture actually represents: The 'Inter-Domain IP Bit Mapped Address Routing Architecture'. Because this, in essence, is what is really happening to the IP Address, and this is the IP Addressing Format that the Router and the Routing Protocols are dealing with. Therefore, the Class Addressing System is a format that implements a Network IP Address using a specified number of BITs, and in this case, it is either '8', '16', '24', or '32' Bits. Needless to say, any further Sub-Division, or use of some Smaller Portion or Constituent, does not constitute a departure nor eliminate the Existence of the Address Class System. Hence, the CIDR Architecture actually reinforced the Class Concept and proved that, without changing the entire Addressing Architecture defining the 'IP Bit Mapped Address or the IP Bit Mapped Address Space', the Whole is indeed the Sum of its Parts.
2. The Interpretation of the conclusion's Expansion of 'CIDR';
 Defining the "Network Descriptor"

When defining the New 'CIDR' Architecture as representing the collective Extension for RFC's 1517, 1518, and 1519, we must first list the functional components, or Highlights, noted as the objectives or purpose supporting each of these papers, individually. That is, there must be comparison between the definition or description of the functional purpose of the 'CIDR' Architecture as represented in each of these papers, compared with the New 'CIDR' Architecture this paper actually represents.

RFC 1517 (Maintained promoted a fear of IP Address Loss, and Astronomical growth in the size of the Routing Tables):

"- Exhaustion of the class-B network address space. One fundamental cause of this problem is the lack of a network class of a size that is appropriate for a mid-sized organization. Class-C, with a maximum of 254 host addresses, is too small, while class-B, which allows up to 65534 addresses, is too large to be densely populated. The result is inefficient utilization of class-B network numbers.

- Routing information overload. The size and rate of growth of the routing tables in Internet routers is beyond the ability of current software (and people) to effectively manage.

- Eventual exhaustion of IP network numbers."

Argument in Opposition (Justification of the New 'CIDR' Architecture):

Clearly, using the expanded 'CIDR' Architecture, when using the 'CIDR' Network Descriptor, the Reality of IP Address Exhaustion now defines a wasted use of IP Addresses. In other words, Viable IP Address that could have been use to establish an Internet Connection, Connecting the Network's Backbone-Domain to the Internet, were assigned for the Host IP Addresses. This is further clarified by a Comparison of the "Internet Protocol v4 Address Space, and the use of the CIDR Network Descriptor displayed in Table I:
TABLE I

IPvX - Internet Protocol t1 Address Space INDEX

<table>
<thead>
<tr>
<th>Class A</th>
<th>CIDR Network Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1: Issued = 127, Remaining = 1,040,513,921</td>
<td>/0000:08</td>
</tr>
<tr>
<td>A-2: Issued = None, Remaining = 516,160,512</td>
<td>/0000:16</td>
</tr>
<tr>
<td>A-3: Issued = None, Remaining = 256,048,128</td>
<td>/0000:24</td>
</tr>
<tr>
<td>A-4: Issued = None, Remaining = 252,047,376</td>
<td>/0000:32</td>
</tr>
<tr>
<td>Class</td>
<td>Issue</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>B-1</td>
<td>64</td>
</tr>
<tr>
<td>B-2</td>
<td>None</td>
</tr>
<tr>
<td>B-3</td>
<td>None</td>
</tr>
<tr>
<td>B-4</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Issue</th>
<th>Remaining</th>
<th>CIDR Network Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>32</td>
<td>458,321,632</td>
<td>/1100:08</td>
</tr>
<tr>
<td>C-2</td>
<td>None</td>
<td>57,741,312</td>
<td>/1100:16</td>
</tr>
<tr>
<td>C-3</td>
<td>None</td>
<td>7,274,496</td>
<td>/1100:24</td>
</tr>
<tr>
<td>C-4</td>
<td>None</td>
<td>1,048,576</td>
<td>/1100:32</td>
</tr>
</tbody>
</table>
TABLE I

<table>
<thead>
<tr>
<th>Class</th>
<th>CIDR Network Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1: Issued = 16 , Remaining = 245,676,912</td>
<td>/1110:08</td>
</tr>
<tr>
<td>D-2: Issued = None, Remaining = 15,475,712</td>
<td>/1110:16</td>
</tr>
<tr>
<td>D-3: Issued = None, Remaining = 974,848</td>
<td>/1110:24</td>
</tr>
<tr>
<td>D-4: Issued = None, Remaining = 65,536</td>
<td>/1110:32</td>
</tr>
</tbody>
</table>

Class E

<table>
<thead>
<tr>
<th>Class</th>
<th>CIDR Network Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1: Issued = 15 , Remaining = 231,289,845</td>
<td>/1111:08</td>
</tr>
<tr>
<td>E-2: Issued = None, Remaining = 13,658,850</td>
<td>/1111:16</td>
</tr>
<tr>
<td>E-3: Issued = None, Remaining = 806,625</td>
<td>/1111:24</td>
</tr>
<tr>
<td>E-4: Issued = None, Remaining = 50,625</td>
<td>/1111:32</td>
</tr>
</tbody>
</table>
RFC 1518 (Which deals more with the actual Structure of the Internet, or its Hierarchical Structure, and IP Address allocation and Routing, than the actual 'CIDR' Architecture) where by, the points are specified as:

There are two aspects of interest when discussing IP address allocation within the Internet. The first is the set of administrative requirements for obtaining and allocating IP addresses; the second is the technical aspect of such assignments, having largely to do with routing, both within a routing domain (intra-domain routing) and between routing domains (inter-domain routing). This paper focuses on the technical issues.

The architecture and recommendations in this paper are oriented primarily toward the large-scale division of IP address allocation in the Internet.

IP Addresses and Routing

Efficiency versus Decentralized Control

IP Address Administration and Routing in the Internet

Administration of IP addresses within a domain

Indirect Providers (Backbones)*

Continental aggregation*
Argument in Opposition (Justification of the New 'CIDR' Architecture):

While there is a lot that can be said regarding RFC 1518, especially since this is a proposal which advocates a great deal of dependency upon ISP's, whose entire existence is based upon the Economy, the Consumer, and a Volatile Market. This actually means, an ISP has no guaranteed Future, regarding either the use of the IP Address Base, or their Routers for a thoroughfare. In other words, while this RFC did mention some good points, these arguments are supported in the IPtX Specification. It nevertheless, maintained more the soundings of a White Paper Solicitation for a New System Overall, than an actual presentation representing 'CIDR' Architecture. Needless to say, some of the problems discussed, and emphasized repeatedly, addressed the need for an Internet Hierarchy, while dismissing the need to expand the number of Backbone connections, this is the main point of consideration when addressing the concept of an Internet Hierarchy.

RFC 1519 (While this RFC should be the replacement for RFC 1517, because it is clearly derived from RFC 1517, it claims to Obsoletes RFC 1338, which I have not read. And while this paper also disputes some of the proposals outlined in RFC 1518 {Noting Specifically the causes for a loss of aggregation efficiency; Organizations, which are multi-homed, and Organizations, which change, service provider but do not renumber.}. Nevertheless, one thing this RFC does, that the others so far do not, is that, it Mathematically Introduces the beginnings of Foundation for the 'CIDR' Architecture.)

Argument in Opposition (Justification of the New 'CIDR' Architecture):

Nonetheless, while this RFC introduces the basic Mathematical Foundation for the 'CIDR' Architecture, and sets the fundamentals for the hardware and software specifications for Networking in a Supernetted Environment, it actually does nothing to prevent IP Address wasted on Host Assignments. This is because the foundation of the 'CIDR' Architecture was derived from the IPv4 specification, which means there was no way, short of a New IP Addressing System, could this waste be avoided. However, this is not the problem with the IPt1 specification, because it De-Emphasizes the HOST IP Address, and gives it secondary functional value, which defines a dummy Host. Needless to say, this was the foundation that was needed to get the 'Ball Rolling'. Nevertheless, while RFC 1519 developed the Mathematical foundation for the 'CIDR' Architecture, it never fully Exploited the benefits this Architecture maintains.
Definitions

CIDR: Classless Inter-Domain Routing is an IP Address Resolution Technique that provides a way to resolve any Binary Number(s) into it’s the Integer Translation to verify an IP Address, which is written in 'Dotted Notation', and defined by '4' 8 Bit Octets.

CIDR Network Descriptor: It is a 2 Part Number used to resolve, or discover the Integer representing the Binary Number defining the Network Address IP Bit-Mapped.

[Where by, the Digits to the Right of the Colon Represents the Starting Point for the IP Address Class Range in Binary Notation, or Network IP Address assigned to the Specified IP Address Class Range. And the Digits to the Left of the Colon represent the Count of Bit Mapped Displacement, or the Number of Binary Digits the Network IP Address uses. In which case, the '/XXXX:XX' notation would be used to Identify the Bit-Mapped Address Class and the Address Class Range of a Network IP Address.]

Nevertheless, the definitions noted above, concludes the argument by providing logical support for Re-Defining the 'CIDR' notation as the "Network Descriptor", which comprises a Switch, and a 2-part Number that defines the entire Range of every IP Address, including the Address Class Range mapping every Octet for the Network portion of the IP Address defines.
TABLE II

<table>
<thead>
<tr>
<th>IPTX - Internet Protocol t1 Address Space INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAddrNum = Network IP Address (XXX:XXX:XXX:XXX)</td>
</tr>
<tr>
<td>CIDRNetDescr = CIDR Network Descriptor (/XXX:XX)</td>
</tr>
<tr>
<td>CIDRNetDesSwitch = CIDR Network Descriptor Switch ()</td>
</tr>
<tr>
<td>CIDRNetDesClassID = A "4" place Binary Number (XXXX) Identify the 'Front-End' of the Bit-Mapped Space of the Network Address in the Range of the Address Class.</td>
</tr>
</tbody>
</table>

| **CIDRNetDesDivider** = Statement End-Start New Statement (:) |
| **CIDROctDesNetID** = A "2" place, or variable Number (XX) Identifying the entire Bit-Mapped Range of an IP Address. (IPv6 has "3" places) |
| **ZONEIPAddrNum** = Zone IP designates the Continent's location, and it is the First of a 2 Octet configuration defining the Prefix of a 32 Bit IP Address, which is 8 Bit Number Terminated by a Colon (XXX:) |
| **IPAreaCodeAddNum** = IP Area Code designates the second level of the Continent's Sub-Region, and defines the Second of the 2 8 Bit Octet configuration Prefixing a 32 Bit IP Address that is also Terminated by a Colon (XXX:) |
| **CIDRTrunkNetID** = The combined use of the 'Zone IP' and the 'IP Area Code' to identify the 'Trunk-Identifier', which is assigned to the 'TelCo-Xchg or Backbone Routers' |
3. The IPtX and IPv4 IP Addressing Schemes –100% Compatibility

The IPtX IP Addressing Scheme is a logically derived ‘Internet Protocol Addressing Family’ that is founded upon the IPv4 IP Addressing Specification. In other words, because IPtX utilizes the same Bit-Mapped Binary Addressing Format, which does not require any deviation from the operational infrastructure of the IPv4 Address Space. It maintains a 100% Backward Compatibility with IPv4, which is retained throughout an expansion capability defining an Infinitely Bit-Mapped IP Address Space using only a 64 Bit Header. There is however, the one noted difference in the IPv4 and the IPtX Specifications, which defines a distinction between the respective "Subnet-Mask" and the "Subnet-Identifier" that allows the IPtX Address Pool to be greater than IPv4 and IPv6, when using the same Bit-Mapped IP Address Space. Needless to say, while this distinction might at first, appear to be a strong departure from the IPv4 Format. It’s only a 'Binary Switch' that uses the elements from the Set, {X,Y} to provide the ability the Change ((between) or (Extend)) the 'Programmed Functions' or 'Operations' defining the "Subnet-Mask" and the "Subnet-Identifier". In any case, it should be clearly understood, the definition of the "Subnet-Identifier" extends the definition of the "Subnet-Mask" by providing the ability to Change the Range of the Subnet, which specifies the range of the Host IP Address. And this, it should be noted, is the Distinguishing Mathematical Hallmark that assigns every IP Address in the IPv4 Specification to the IP Address Pool, with the added benefit of the creation of a Host IP Address Pool. Now, if the Address Spaces were equal, the number of available IP Address in the IP Address Pool assigned to the IPv4 Specification, given that IPtX is defined as the extension of IPv4, exceeds the number of available IP Address in the IP Address Pool assigned to the IPv6 Specification. Nevertheless, the validity of the foregoing is supported by the conclusions from the mathematical analysis and comparison of Tables III, IV, and V.
TABLE III

Structure Decimal of the IPv4 Representation IP Class System
IPv4 IP Address Pool = 4.145×10^9 Addresses

1. **Class A:** 1 - 126, Default Subnet Mask 255.255.255.0:
 126 Networks and 16,387,064 Hosts: 0000

2. **Class B:** 128 - 191, Default Subnet Mask 255.255.0.X:
 16,256 Networks and 64,512 Hosts: 1000

3. **Class C:** 192 - 233, Default Subnet Mask 255.255.255.X:
 2,064,512 Networks and 254 Hosts: 1100

4. **Class D:** 224 - 239; Used for Multicasting, No Host: 1110
 $16 \times 254 \times 3 = 262,192,024$ IP Addresses available

5. **Class E:** 240 - 254; Denoting Experimental, No Host: 1111
 $15 \times 254 \times 3 = 245,805,960$ IP Addresses available
TABLE IV

IPX - 'Subnet-Identifier' = "Subnet-Mask" - 100% Backward Compatibility with IPv4
"IPX Addressing System Using the Current Binary System."

[N\textit{ote}: The Law of the Octet defines the value, relative to Class, of the ‘Y’ variable
in the IP Address Pool containing; 4,145,927,192 = 4.145 \times 10^9 Addresses,
which should be: $2^{32} = 4,294,967,296$

1. Total IP Addresses for Class A = 126 \times 254^3 = 2,064,770,064
 Total available IP Host Addresses Equals 126 \times 254^N
 [Where N = Number of Octet(s), and ‘Y’ equals the Address
 Range '128 - 254', 1 - 126 is not included in the Address
 Range Represented by the equation 'Y = 254 - 126'.]

 - Class A-1, 1 - 126, Default Subnet-Mask 255.Y.X.X:
 126 Networks and 8,129,016 Hosts: /0000:08

 - Class A-2, 1 - 126, Default Subnet-Mask 255.255.Y.X:
 15,876 Networks and 32,004 Hosts: /0000:16

 - Class A-3, 1 - 126, Default Subnet-Mask 255.255.255.Y:
 2,000,376 Networks and 126 Hosts: /0000:24

 - Class A-4, 1 - 126, Default Subnet-Mask 255.255.255.255:
 252,047,376 Network / MultiCast IP Addresses / AnyCast: /0000:32
TABLE IV - Continued

2. Total IP Addresses for Class B = 64 x 254\(^3\) = 1,048,772,096
 Total available IP Host Addresses Equals 64 x 254\(^N\)
 [Where N = Number of Octet, and 'Y' equals the Address Range
 '254 - Q'; 128 - 191 is not included in the Address Range
 Represented by the equation 'Y = 254 - 64'.]

 - **Class B-1, 128 - 191**, Default Subnet Mask 255.Y.X.X:
 64 Networks and 4,129,024 Hosts: /1000:08
 - **Class B-2, 128 - 191**, Default Subnet Mask 255.255.Y.X:
 4,096 Networks and 48,260 Hosts: /1000:16
 - **Class B-3, 128 - 191**, Default Subnet Mask 255.255.255.Y:
 262,144 Networks and 64 Hosts: /1000:24
 - **Class B-4, 128 - 191**, Default Subnet Mask 255.255.255.255:
 16,777,216 Network / MultiCast IP Addresses / AnyCast: /1000:32

3. Total IP Addresses for Class C = 32 x 254\(^3\) = 524,286,048
 Total available IP Host Addresses Equals 32 x 254\(^N\)
 [Where N = Number of Octet, and 'Y' equals the Address Range
 '254 - Q'; 192 - 223 is not included in the Address Range
 Represented by the equation 'Y = 254 - 32'.]

 - **Class C-1, 192 - 223**, Default Subnet Mask 255.Y.X.X:
 32 Networks and 2,065,512 Hosts: /1100:08
 - **Class C-2, 192 - 223**, Default Subnet Mask 255.255.Y.X:
 1,024 Networks and 8,128 Hosts: /1100:16
 - **Class C-3, 192 - 223**, Default Subnet Mask 255.255.255.Y:
 32,768 Networks and 32 Hosts: /1100:24
 - **Class C-4, 192 - 223**, Default Subnet Mask 255.255.255.255:
 1,048,576 Network / MultiCast IP Addresses / AnyCast: /1100:32
TABLE IV - Continued

4. Total IP Addresses for Class D = 16 x 254^3 = 262,193,024
 Total available IP Host Addresses Equals 16 x 254^N
 [Where N = Number of Octet, and ‘Y’ equals the Address
 Range ‘254 - Q’, 224 - 239 is not included in the Address
 Range Represented by the equation ‘Y = 254 - 16’.
]

 Class D-1, 224 - 239, Default Subnet Mask 255.Y.X.X:
 16 Networks and 1,032,256 Hosts: /1110:08

 Class D-2, 224 - 239, Default Subnet Mask 255.255.Y.X:
 256 Networks and 3,048 Hosts: /1110:16

 Class D-3, 224 - 239, Default Subnet Mask 255.255.255.Y:
 4,096 Networks and 16 Hosts: /1110:24

 Class D-4, 224 - 239, Default Subnet Mask 255.255.255.255:
 65,536 Network / MultiCast IP Addresses / AnyCast: /1110:32

5. Total IP Addresses for Class E = 15 x 254^3 = 245,805,960
 Total available IP Host Addresses Equals 15 x 254^N
 [Where N = Number of Octet, and ‘Y’ equals the Address
 Range ‘254 - Q’, 240 - 254 is not included in the Address
 Range Represented by the equation ‘Y = 254 - 15’.
]

 Class E-1, 240 - 254, Default Subnet Mask 255.Y.X.X:
 15 Networks and 967,740 Hosts: /1111:08

 Class E-2, 240 - 254, Default Subnet Mask 255.255.Y.X:
 225 Networks and 3,810 Hosts: /1111:16

 Class E-3, 240 - 254, Default Subnet Mask 255.255.255.Y:
 3,375 Networks and 15 Hosts: /1111:24

 Class E-4, 240 - 254, Default Subnet Mask 255.255.255.255:
 50,625 Network / MultiCast IP Addresses / AnyCast: /1111:32
The mathematical analysis of the result from Table III and Table IV reveals that when the "Subnet-Mask" is equal to the "Subnet-Identifier". The division of the Address Classes in the IPv4 Specification, is defined by the "Network Descriptor" as; the Logical Expansion of each of the Address Classes in the IPv4 Specification, through the use of the Network ID designation, "255", in remaining Octets. And because the requirement of the "Subnet-Mask" mandates that 'only a Number from the Range of the Address Class' can be assigned a Network ID, then every Octet specifies one of the '4 Sub-Division' created in the Range of every Address Class. In other words, because the "Subnet-Mask" specifies the uses of the "255" designation in conjunction with the 'Range of the Address Class', to identify the Address Class associated with the Network ID. The logical use of the Octets remaining in the Range of every Address Class in conjunction with the "Subnet-Mask", is the logical consequence of the conclusion derived from the expansion, or sub-division of the 'Address Class Range' that was outlined in RFC 1517, 1518, and 1519. Needless to say, since 'the Quantified Sum of the 'Product of the Network and Host IP Addresses' for every Address Class in Table IV, is equal to the Total Number of IP Address assigned to the Range of the Address Class defined by Table III, then the Addressing Specifications shown by these Tables are mathematically equal. In which case, mathematically speaking, is should be concluded that the IPtX Specification, by RFC 1517, 1518, and 1519, is the interpretation of the IPv4 Specification derived from the use of the "Subnet-Mask".
4. The Structural Comparison - IPv6 vs. IPtX

The handicaps from using an askew Binary System, the Loop-Back Address (127), and the Subnet-Mask (255), makes it impossible for the IPv4 Specification, even through the progressive expansion using 32 Bit additions for an equal Address Space, to match the IP Addresses available in the IP Address Pool of the IPv6 Specification. And clearly, the same fate, according to Figures 1 and 2, will befall the IPtX Specification. However, because the IPtX Specification maintains an expansion capability that defines an Infinitely Bit-Mapped IP Address Space, using only a 64 Bit Header. In which, the 'TelCo-Xchge or Backbone Routers' would be assigned a Network ID, which would absorb the Bit-String of the Address Space beyond the 32 Bit-Mapped IP Address Space defined by the IPt1 Specification. And since, the losses represented by Figures 1 and 2, at infinity, are not discernable. The IPtX Specification maintains an IP Address Pool Capacity, which is theoretically, infinitely larger than the IP Address Pool availability in the IPv6 Specification (See Figure 3).

IPv4 Specification

IPv4 = 32 Bit Address Space

IPv4 IP Address Pool = 253(254^3) = 4,145,927,192 = 4.145 x 10^9 Addresses

IPv4 IP Address Pool Specification = 4,294,967,296 - X(2^32)

This represents a loss: 4,294,967,296 - 4,145,927,192 = 149,040,104 IP Addresses

IPv6 Specification

IPv6 = 128 Bit Address Space

IPv6 IP Address Pool = (2^32) x (2^32) x (2^32) x (2^32) = 2^128 = X(2^32)

IPv6 IP Address Pool Specification =

IPtX Specification

IPt1 = 32 Bit Address Space

IPt1 IP Address Pool = (255^4) = 4,228,250,625 + 16,500,000 IP Addresses

IPt1 IP Address Pool Specification = X(2^32) + 16,500,000 IP Addresses

= 4,294,967,296 + 16,500,000 IP Addresses

This represents a loss: 4,294,967,296 - 4,228,250,625 = 66,716,671 IP Addresses

Figure 1
IPtX Specification

IPt2 = 64 Bit Address Space

\[\text{IPt2} = 48 \text{ Bit IP Address} = (255^2)(255^4) = X(2^{32}) + 16,500,000 \text{ IP Addresses} \]

\[\text{IPt2 IP Address Pool} = (255^2)(255^4) = 65,025 \times X(2^{32}) + 16,500,000 \text{ IP Addresses} \]

\[= 65,025(4,228,250,625) + 16,500,000 \]

\[= 2.7494200 \times 10^{14} + 16,500,000 \text{ IP Addresses} \]

\[\text{IPt2 IP Address Pool Specification} = X(2^{32}) + 16,500,000 \text{ IP Addresses} \]

\[= (256^2)(2^{32}) = 2.8147498 \times 10^{14} \]

This represents a loss: \(2.8147498 \times 10^{14} - 2.7494200 \times 10^{14}\)

\[= 6.5329799 \times 10^{12} \text{ IP Addresses} \]

\[\text{IPt2} = 64 \text{ Bit IP Address} = (255^4)(255^4) = X(2^{32}) + 16,500,000 \text{ IP Addresses} \]

\[\text{IPt2 IP Address Pool} = (255^8) = 1.7878103 \times 10^{19} + 16,500,000 \text{ IP Addresses} \]

\[= 1.7878103 \times 10^{19} + 16,500,000 \text{ IP Addresses} \]

\[= 1.7878103 \times 10^{19} + 16,500,000 \text{ IP Addresses} \]

\[\text{IPt2 IP Address Pool Specification} = (256^4)(2^{32}) = 1.8446744 \times 10^{19} \]

\[= X(2^{32}) + 16,500,000 \text{ IP Addresses} \]

This represents a loss: \(1.8446744 \times 10^{19} - 1.7878103 \times 10^{19}\)

\[= 5.6864072 \times 10^{17} \text{ IP Addresses} \]

Figure 2

Note: The IP Addressing Design Specification implements the IP Addressing Operational Design Procedures for the "Front-End" and the "Back-End"... Specifically noting that; IPv6 is a "Back-End" only, Addressing Specification: IPv4 is a "Front-End" and "Back-End" IP Addressing Specification: The IPtX Design however, is a Dual Addressing Specification that offers a choice between a design specification that is 100% backward compatible with the "Front-End" and the "Back-End" of IPv4, or a design that to mimics the "Front-End" of IPv4, with a new "Back-End" design specification that defines an Alternate "Electro-Magnetic Spectrum", which is a (New) "Binary" Interpretation" of the "Electro-Magnetic Spectrum" ("Quantum Theoretical Physics"; the Logical Foundation resulting from the discovery of the "Quantum Scale").
The "Trunk-Identifier" Specification (Spec.) contains the Zone IP and IP Area Code. And given that software can assign the Zone IP and IP Area Code to any location/destination. Eventually it will be necessary to know an 18 Digit IP Address: ZoneIP, IP Area Code, Network IP Address.

Figure 3

INTERNET PROTOCOL 12 (64 Bit) ADDRESS SPACE

<table>
<thead>
<tr>
<th>Reserved CIDR</th>
<th>Zone IP</th>
<th>IP Area Code</th>
<th>IP Address Prefix</th>
<th>IP Address</th>
<th>Distribution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/8</td>
<td>None</td>
<td>000:</td>
<td>000:000.000.000.000</td>
<td>None</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>001:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>NA</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>002:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>SA</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>003:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>EU</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>004:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>OS</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>005:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>AU</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>006:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>AF</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>007:256:</td>
<td>All: XXX.XXX.XXX.XXX</td>
<td>IANA/RESERVED</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>All</td>
<td>001-256:</td>
<td>000-256: 000.000.000.000</td>
<td>IANA/EMERGENCY</td>
<td>4/2002</td>
<td></td>
</tr>
<tr>
<td>8/8</td>
<td>±</td>
<td>0000:90 256:</td>
<td>256: 127.000.000.000</td>
<td>IANA/LoopBack</td>
<td>4/2002</td>
<td></td>
</tr>
</tbody>
</table>

Note: SA = South American, NA = North America, EU = European Union, AU = African Union, OS = Oceania States, AF = Asia Federation.

Figure 4
Note: While noting that any Trunk-Id beyond 96 Bits might seem ridiculous, because of the inherent limitations of the design specifications for the "Network Descriptor", (+/0000:00). However, assigning a 'Router-ID' that requires Special Authentication between communicating Routers could easily absorb any Number of Bits beyond the IPt4 Specification.

Nevertheless, it should be clearly understood, that if the 'TelCo-Xchge or Backbone Routers' were assigned the "Trunk-Identifier", then there must be a way to verify, resolve, or confirm the "Zone IP and the IP Area Code" Address defining the "Trunk-Identifier". In other words, the IPtX Specification can maintain the "Subnet-Identifier", use the "Network Descriptor" to verify the "Trunk-Identifier", and exhaust, without loss, every available IP Address in the Address Pool defined by the equation 1 (eq-1):

\[
\text{eq-1: } \quad \text{IPtX} = X(2^{32}) + 16,900,000 = \infty
\]

\[
\text{eq-2: } \quad \text{IPv6} = X(2^{32}) = (2^{128}) = (256^{16}) = 3.4028237 \times 10^{38}
\]

The process of maximizing the Address Pool defined by equation 1, is a '3' Step procedure, in which the first step exhaust all of the available IP Addresses in the IPv4 Specification. The second step requires changing the Symbol used as the "Network Designator" for the "Subnet-Identifier" (255 or 256), and the third step requires expanding the function of the Switch for the "Network Descriptor". To achieve the first goal, multiply the Network and Host IP Addresses from Table IV, and use the product to represent the total number of Networks, leaving the Host total unchanged. And after the "Network Descriptor" and the "Subnet-Identifier" has been redefined, as provided in Table V. The adjusted results now reveals that the total number of available IP Addresses in the Address Pool for the IPtX Specification is equal the equation 1, and it exceeds the amount assigned to the IPv6 Specification, when the size of the Bit-Mapped Address Space is equal to both Addressing Specifications (See Table VI).
"Network Descriptor": A method derived from the CIDR notation, which is used to resolve and identify every part of a Network IP Address. And when it defines the use of '2' State Switch, comprising a 'Statement End-Start New Statement Command symbol' and a 2 Part numeral, it separates an IP Address into 2 components, which identifies the Network IP Address and the Trunk-Identifier.

CIDR Network Descriptor '±0000:00'
1) '2' State Switch: "±/" - CIDRNetDesSwitch
 a) "Network-Identifier" Switch: '.-.' - CIDRGetIPAddNum
 b) "Trunk-Identifier" Switch: '+/-' - CIDRTrunkIDNum
2) 'End-Start', Flip/Flop Command symbol: '(' - CIDRGetTrunkIDNum
3) 'Network ID': '0000' - CIDRNetDesClassID
4) 'Octet Bit-Map': '00' - CIDRGetDesNetID - Address Length

"Subnet Identifier": Defines the Overlay that is used in conjunction with a "Network Designator" and the 'X' and 'Y' variables to resolve a Networks IP Address.

1) "Network Designator": The symbol for the Null Set, 'Ø', which is used as the 'Place Holder', identifying the OCTET(s) that define the Network ID, or the Network portion of the 32 Bit IP Address.
2) "Octet using either Address Range: 'X'
3) "Octet not using "Network Designator" Addresses: 'Y'

Note: From Table V, the "Network Designator", which is symbolized as; 'Ø', could just as easily, been assigned to defined any symbol, (e.g.; '257') except for '0' (representing '00', the Binary equivalent of '1') and any assignment represented in the Range of the Addressing Specification. In any case, it should be clearly understood that when every available IP Address is used for IP Addressing, The IPtX Addressing Schematic, (where fig. 5 and fig. 6 respectively denotes IPt1 and IPt2 Specifications) becomes nothing more than an OVERLAY, which is used to facilitate the visualization of the Topology for the Structure of the Network Design. And this is an extremely important advantage when designing a Network containing hundreds (or thousands) of Servers and several thousand (or Million) Hosts assigned to Subnets. [It is important to note, 'Ø' represents the [NULL SET] or TRUE ZERO {the Traditional European Representation for True Zero}, and '0' is EQUAL to '00', which defines the Binary equivalence of '1': '00' = '0' = '1'.]
TABLE VI: 'IPv4' 128 Bit-Mapped Space

"The Logically derived Structure of the 'Synthetic' Decimal Representation of the IPv4 IP Addressing Specification"

IPv4 Address Pool Size = $2^{32}(256^{12}) = 256^{16}$
= 4,294,967,296(256^{12}) = 3.4028237 x 10^{38}

NOTE: IPv4, by FIGURE '5' contains; '7,922,8163 x 10^{28}' COPIES of the 'IPv4' Specification

CLASS A - 'Address Range 1 - 128'

- Networks: 128 x (128 x 256^{2}) x 256^{12} = 8,388,608
- Host: 128 x 256^{2} = 8,388,608

- Networks: (128^{2})(128 x 256)(256^{12}) = 32,768
- Host: 128 x 256 = 32,768

- Networks: (128^{3}) x 128(256^{12}) = 128
- Host: 128

- Networks: 128^{4}(256^{12}) = 0
- Host: 0

Total Number of Available Network and Host Addresses:
- Networks ID = 2^{27} x (256^{12})(128 x 16,777,216) = 1.70114118 x 10^{38}
- Hosts = (128 x 256^{2}) x (128 x 256) + 128 = 8.3412504

CLASS B - 'Address Range 129 - 192'

- Networks: 64(256 - 64)(256^{2}) x 256^{12} = 4,194,404
- Host: 64 x 256^{2} = 4,194,404

- Networks: (64^{2})(256 - 64) x 256(256^{12}) = 16,384
- Host: 64 x 256 = 16,384

- Networks: 64^{4}(256^{12}) = 0
- Host: 64

- Networks: (256^{12}) = 0
- Host: 0

Total Number of Available Network and Host Addresses:
- Networks ID = 2^{5} x (256^{12})(64 x 16,777,216) = 8,5070592 x 10^{37}
- Hosts = (64 x 256^{2}) + (64 x 256) + 64 = 4,210,752
TABLE VI: IPv4 128 Bit-Mapped Space - Continued

CLASS C - 'Address Range 193 - 224'

 - Networks: 32(256 - 32)(256^2)(256^12)
 - Host: 32 x 256^2 = 2,097,152

 - Networks: 32^2(256 - 32)x 256(256^12)
 - Host: 32 x 256 = 5,888

 - Networks: 32^3(256 - 32)(256^12)
 - Host: 32 = 32

 - Networks: 32^4(256^12)
 - Host: 0

Total Number of Available Network and Host Addresses:

- Networks ID: \(2^5 = (256^12)(32 x 16,777,216)\)
 - \(= 4,295,289 \times 10^{37}\)
- Hosts = \((32 x 256^2) + (32 x 256) + 32 = 2,105,376\)

TABLE VI: IPv4 128 Bit-Mapped Space - Continued

CLASS D - 'Address Range 225 - 240'

 - Networks: 16(256 - 16)(256^2)(256^12)
 - Host: 16 x 256^2 = 1,048,576

 - Networks: 16^2(256 - 16)x 256(256^12)
 - Host: 16 x 256 = 4096

 - Networks: 16^3(256 - 16)(256^12)
 - Host: 16 = 16

 - Networks: 16^4(256^12)
 - Host: 0

Total Number of Available Network and Host Addresses:

- Networks ID: \(2^4 = (256^12)(16 x 16,777,216)\)
 - \(= 2.1267648 \times 10^{37}\)
- Hosts = \((16 x 256^2) + (16 x 256) + 16 = 1,052,688\)
Note: Since, the "Subnet Id" = the "Subnet Identifier", the Shared Host IP Address Pool increases by a factor equal the number of available Network IP addresses assigned to every sub-division within the Overlay defining the Address Class Range, given that No Host Address is assigned a direct Internet Connection.

\[
eq 1: \quad IPtX = X(2^{32}) + 16,900,000 = \infty
\]

\[
eq 2: \quad IPv6 = X(2^{32}) = (2^{128}) = (256^{16}) = 3.4028237 \times 10^{38}
\]

\[
eq 3: \quad IPt4 = X(2^{32}) + 16,900,000
\]
\[
= (2^{128}) + 16,900,000
\]
\[
= (256^{16}) + 16,900,000
\]
\[
= 3.4028237 \times 10^{38} + 16,900,000 \text{ Host Addresses}
\]

\[
eq 4: \quad IPv4 = X(2^{32}); \text{ when } X = 1.
\]
FIGURE 5: 'IPt1'

"The Logically derived Structure of the 'Synthetic' Decimal Representation of the IPt1 IP Addressing Specification"

'IPt1' Address Pool Size = 2^32 = 256^4
= 4,294,967,296 = 4.294967296 x 10^9

CLASS A

1. A-1, 1 - 128, Subnet Identifier 0ØØØ.Y.X.X -/0000:08
 - Networks: 128 x (128 x 256^2)
 - Host: 128 x 256^2

A-2, 1 - 128, Subnet Identifier 0ØØØ.ØØØ.Y.X -/0000:16
 - Networks:(128^2)(128 x 256)
 - Host: 128 x 256

A-3, 1 - 128, Subnet Identifier 0ØØØ.ØØØ.ØØØ.Y -/0000:24
 - Networks:(128^3) x 128
 - Host: 128

A-4, 1 - 128, Subnet Identifier 0ØØØ.ØØØ.ØØØ.ØØØ -/0000:32
 - Networks: 128^4
 - Host: 0

Total Number of Available Network and Host Addresses:
2^7 Networks = 128 x 16,777,216 = 2,147,483,648
Hosts = (128 x 256^2) + (128 x 256) + 128 = 8,421,504
CLASS B

2. B-1, 129 - 192, Subnet Identifier 000.Y.X.X /1000:08
 - Networks: 64(256 - 64)(256^2)
 - Host: 64 x 256^2

B-2, 129 - 192, Subnet Identifier 000.000.Y.X /1000:16
 - Networks: (64^2)(256 - 64) x 256
 - Host: 64 x 256

B-3, 129 - 192, Subnet Identifier 000.000.000.Y /1000:24
 - Networks: 64^3 (256 - 64)
 - Host: 64

B-4, 129 - 192, Subnet Identifier 000.000.000.000 /1000:32
 - Networks: 64^4
 - Host: 0

Total Number of Available Network and Host Addresses:
2^6 Networks = 64 x 16,777,216 = 1,073,741,824
Hosts = (64 x 256^2) + (64 x 256) + 64 = 4,210,752
FIGURE 5: 'IPt1' - Continued

CLASS C

3. C-1, 193 - 224, Subnet Identifier 000.000.Y.X. -/1100:08
 - Networks: 32(256 - 32)(256^2)
 - Host: 32 x 256^2

C-2, 193 - 224, Subnet Identifier 000.000.000.Y. -/1100:16
 - Networks: 32^2(256 - 32) x 256
 - Host: 32 x 256

C-3, 193 - 224, Subnet Identifier 000.000.000.000. -/1100:24
 - Networks: 32^3(256 - 32)
 - Host: 32

C-4, 193 - 224, Subnet Identifier 000.000.000.000.000. -/1100:32
 - Networks: 32^4
 - Host: 0

Total Number of Available Network and Host Addresses:
 2^5 Networks = 32 x 1,677,7216 = 536,870,912
 Hosts = (32 x 256^2) + (32 x 256) + 32 = 2,105,376

FIGURE 5: 'IPt1' - Continued

CLASS D

4. D-1, 225 - 240, Subnet Identifier 000.000.Y.X. -/1110:08
 - Networks: 16(256 - 16)(256^2)
 - Host: 16 x 256^2

D-2, 225 - 240, Subnet Identifier 000.000.000.Y. -/1110:16
 - Networks: 16^2(256 - 16) x 256
 - Host: 16 x 256

D-3, 225 - 240, Subnet Identifier 000.000.000.000. -/1110:24
 - Networks: 16^3(256 - 16)
 - Host: 16

D-4, 225 - 240, Subnet Identifier 000.000.000.000.000. -/1110:32
 - Networks: 16^4
 - Host: 0

Total Number of Available Network and Host Addresses:
 2^4 Networks = 16 x 16,777,216 = 268,435,456
 Hosts = (16 x 256^2) + (16 x 256) + 16 = 1,052,688
CLASS E

3, E-1, 241 - 256, Subnet Identifier 000.Y.X.X ./1111:08
- Networks: 16(256 - 16)(256^2)
- Host: 16 x 256^2

E-2, 241 - 256, Subnet Identifier 000.000.Y.X ./1111:16
- Networks: 16^2(256 - 16) x 256
- Host: 16 x 256

E-3, 241 - 256, Subnet Identifier 000.000.000.Y ./1111:24
- Networks: 16^3(256 - 16)
- Host: 16

E-4, 241 - 256, Subnet Identifier 000.000.000.000 ./1111:32
- Networks: 16^4
- Host: 0

Total Number of Available Network and Host Addresses:
2^4 Networks = 16 x 16,777,216 = 268,435,456
Hosts = (16 x 256^2) + (16 x 256) + 16 = 1,052,688
Special Note: The simplification of the Network IP Addressing format into the 'Zone IP', the 'IP Area Code', and the 'Network IP Address', as provided by the IPX Specification, could also REPLACE the format currently being used by the Telephone Systems all over the World. In other words, there is an EASY, 'Off-The-Shelf' procedure for DIALING any Telephone Number defined by the 18 Digit String from the 'IPX' Specification:

1. Dial First - Key in the digits representing the 'ZONE IP'
2. Dial Next - Key in an Asterisk " * " the 'End-Start Statement'(;)
3. Dial Second - Key in the digits representing the 'IP AREA CODE'
4. Dial Next - Key in an Asterisk " * " the 'End-Start Statement'(;)
5. Dial Third - Key in the All '12' digits of the 'NETWORK IP ADDRESS'

eg. Direct Trunk-Identifier, and respective Local "ENUM" Dialing:

 a. Dial Zone IP: '123:213:121.0.12.3' =
 '123 * 213 * 121-000-012-003';

 b. Dial IP Area Code: '123:213:121.0.12.3' =
 ' * 213 * 121-000-012-003';

 c. Dial Local '123:213:121.0.12.3' = ' * * ' 121-000-012-003';

Where it is not possible to define the Zone IP, IP Area Code, or Network IP Address with ' 0 '.

{See "TELe-RIP" Protocol}
FIGURE 6: 'IPt2'

"The Logically derived Structure of the 'Synthetic' Decimal Representation of the IPt2 IP Addressing Specification"

'IPt2' Address Pool Size = \(2^{32}(256^2) = 256^6\)
= \(4,294,967,296(256^2) = 2.814798 \times 10^{14}\)

NOTE: IPt2, by FIGURE '5' contains;
* 256^2 * COPIES of the 'IPt1' Specification

CLASS A

1. A-1, 1 - 128, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000 \pm 0000:08\)
 - Networks: 128 x (128 x 256^2)(256^2)
 - Host: 128 x 256^2

A-2, 1 - 128, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000 \pm 0000:16\)
 - Networks:(128^2)(128 x 256)(256^2)
 - Host: 128 x 256

A-3, 1 - 128, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000 \pm 0000:24\)
 - Networks:(128^3) x 128(256^2)
 - Host: 128

A-4, 1 - 128, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000 \pm 0000:32\)
 - Networks: 128\(^4\)(256^2)
 - Host: 0

Total Number of Available Network and Host Addresses:
Networks \(2^7(256^3)(256^2) = (128 x 16,777,216)(256^2)\)
= \(2,147,483,648(256^2)\)
Hosts = \((128 x 256^2) + (128 x 256) + 128 = 8,421,504\)
FIGURE 6: 'IPt2' - Continued

CLASS B

2. B-1, 129 - 192, Subnet Id - 8 Bit Reserved: 8 Bit Reserved: 256:256:
 0000.Y.X.X ±/1000:08
 - Networks: 64(256 - 64)(256^2)(256^2)
 - Host: 64 x 256^2

B-2, 129 - 192, Subnet Id - 8 Bit Reserved: 8 Bit Reserved: 256:256:
 0000.0000.Y.X ±/1000:16
 - Networks: (64^2)(256 - 64) x 256(256^2)
 - Host: 64 x 256

B-3, 129 - 192, Subnet Id - 8 Bit Reserved: 8 Bit Reserved: 256:256:
 0000.0000.0000.Y ±/1000:24
 - Networks: 64^3(256 - 64)(256^2)
 - Host: 64

B-4, 129 - 192, Subnet Id - 8 Bit Reserved: 8 Bit Reserved: 256:256:
 0000.0000.0000.0000 ±/1000:32
 - Networks: 64^4(256^2)
 - Host: 0

Total Number of Available Network and Host Addresses:
Networks 2^6(256^3)(256^2) = (64 x 16,777,216)(256^2)
 = 1,073,741,824(256^2)
Hosts = (64 x 256^2) + (64 x 256) + 64 = 4,210,752
FIGURE 6: 'IPt2' - Continued

CLASS C

3. C-1, 193 - 224, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 $000.Y.X.X \pm /1100:08$
 - Networks: $32(256 - 32)(256^2)(256^2)$
 - Host: 32×256^2

C-2, 193 - 224, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 $000.000.Y.X \pm /1100:16$
 - Networks: $32^2(256 - 32) \times 256(256^2)$
 - Host: 32×256

C-3, 193 - 224, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 $000.000.000.Y \pm /1100:24$
 - Networks: $32^3(256 - 32)(256^2)$
 - Host: 32

C-4, 193 - 224, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 $000.000.000.000\pm /1100:32$
 - Networks: $32^4(256^2)$
 - Host: 0

Total Number of Available Network and Host Addresses:

Networks $2^5(256^3)(256^2) = (32 \times 16,777,216)(256^2)$

$= 536,870,912(256^2)$

Hosts $= (32 \times 256^2) + (32 \times 256) + 32 = 2,105,376$
FIGURE 6: 'IPt2' - Continued

CLASS D

4. D-1, 225 - 240, Subnet Id - 8 Bit Reserved: 8 Bit Reserved:256:256:
 0000 Y.X.X = /1110:08
 - Networks: 16(256 - 16)(256^2)
 - Host: 16 x 256^2

D-2, 225 - 240, Subnet Id - 8 Bit Reserved: 8 Bit Reserved:256:256:
 0000 0000 Y.X = /1110:16
 - Networks: 16^2(256 - 16)x 256(256^2)
 - Host: 16 x 256

D-3, 225 - 240, Subnet Id - 8 Bit Reserved: 8 Bit Reserved:256:256:
 0000 0000 0000 Y = /1110:24
 - Networks: 16^3(256 - 16)(256^2)
 - Host: 16

D-4, 225 - 240, Subnet Id - 8 Bit Reserved: 8 Bit Reserved:256:256:
 0000 0000 0000 0000 Y /1110:32
 - Networks: 16^4(256^2)
 - Host: 0

Total Number of Available Network and Host Addresses:
Networks 2^4(256^3)(256^2) = (16 x 16,777,216)(256^2)
 = 268,435,456(256^2)
Hosts = (16 x 256^2) + (16 x 256) + 16 = 1,052,688
FIGURE 6: ‘IPt2’ - Continued

CLASS E

3. E-1, 241 - 256, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000 \pm 1111:00\)
 - Networks: \(16(256 - 16)(256^2)(256^2)\)
 - Host: \(16 \times 256^2\)

E-2, 241 - 256, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000 \pm 1111:10\)
 - Networks: \(16^2 (256 - 16) \times 256(256^2)\)
 - Host: \(16 \times 256\)

E-3, 241 - 256, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000.000 \pm 1111:20\)
 - Networks: \(16^3 (256 - 16)(256^2)\)
 - Host: \(16\)

E-4, 241 - 256, Subnet Id - 8 Bit Reserved:8 Bit Reserved:256:256:
 \(000.000.000.000.000.000 \pm 1111:30\)
 - Networks: \(16^4(256^2)\)
 - Host: 0

Total Number of Available Network and Host Addresses:
Networks \(2^4(256^3)(256^2) = (16 \times 16,777,216)(256^2)\)
 \(= 268,435,456(256^2)\)
Hosts = \((16 \times 256^2) + (16 \times 256) + 16 = 1,052,688\)
Special Note:

In the IPtX Specification any Contiguous String of ZERO(s) is not a mathematically viable IP Address, because the IP Address Pool equation, X(X^{32}), defines a sequence of counting by successive additions of ‘1’. That is, using Zero(s), while not a problem for the IPtX Specification, it is however, a problem for IPv6. In other words, the problems inherent in the IPv6 Specification pertain primarily to the difficulties arising from the 48 Digit Number used to represent the Default format of an IP Address. And while there are Rules which define the use of " :: " as the replacement for the Contiguous ZERO(s) String, because they are not mathematically viable, the problem is exacerbated. Furthermore, since I have not found any documentation that specifically defines how to distinguish between 2 or more Addresses defining a different number of ZERO(s) in the Contiguous String, which might occur in the Start, Middle, or Trailing portion of the Address. Clearly, the " :: " cannot be used as the solution for the size reduction of an IPv6 Address, the replacement for a Contiguous String of ZERO(s), at least, not without the necessary Rule(s) explaining its use. Nevertheless, these inadequacies are further compounded by defining the IP Addressing Format as having a variable length, which may be greater than 128 Bits, and the " :: " as a compressor of the leading and/or trailing zeros, or as the replacement for the multiple 16-bit Zero Groups with a specification that limits its use, number of occurrences, in an address. And this, needless to say, defines the gist of the mathematical failings of every supporting document, including RFC 2373, and more importantly, the reasons the Chinese developed the IPv9 Addressing Specification.

It should have been quite clear from documents expounding the development of the design for the 'IPtX' Specification that the "Network Descriptor" provided the means to identify the "Trunk-Identifier", which defines the IP Address assigned to the 'TelCo-Xchge or Backbone Routers'. In other words, from 'Table V - Definitions', the "Network Descriptor" allows for the resolution of the Trunk-Identifier ID and the resolution of the entire Length of the Network IP Address String. And while the "CIDR" notation was exploited even further during the creation of the IPv6 Specification; because the symbol, '/128 ', specifies the length for the Bit-Mapped IP Address, which defines the size of the 128 Bit-Mapped IPv6 Address Space. The "Network Descriptor" provided the ability to separate, or distinguish between the addresses assigned to the 'TelCo-Xchge or Backbone Routers' and the 'Network IP Address'. And this specified the Length defining the Network IP Address as '32 Bits' in the IPtX Specification, even if the size of its Address Space was equal to or greater than the 128 Bit IPv6 Specification.
Nevertheless, this procedure allows the retention of the more familiar structure defining a Network IP Address, which is similar to the ‘Telephone Number’ and defined by the IPv4 Specification. And clearly, this mathematically clarifies the interpretation of the IPtX Specification (See Table VII), which is logically derived from IPv4, by proving that the number of available Addresses in its IP Address Pool is greater than the IPv6 Specification. Furthermore, since it was only in the configuration of the Router where “CIDR” was addressed, “CIDR”, as with the “Network Descriptor” can be automatic, and remain only as the concerns for the Network Engineer, because its affect lies outside the boundary of the Network Domain. In other words, IPtX is a more powerful and cost effective IP Addressing Specification, which allows the interface of the “Front-End” to mimic or simulate the IPv4 Specification, a 32 Bit-Mapped IP Address, in the Backbone environment of an unlimited size IP Address Space.

Table VII

<table>
<thead>
<tr>
<th>IPX</th>
<th>"Network IP Address" Bit-Mapped Length Specification = 32 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP2 - "Trunk-Identifier"</td>
<td>= 8 Bit Rsvd:8 Bit Rsvd:256:256:</td>
</tr>
<tr>
<td></td>
<td>= 16 Bit-Mapped Address String</td>
</tr>
<tr>
<td></td>
<td>=+/0000:16; Range is '00 thru 16'</td>
</tr>
<tr>
<td>"Network Descriptor"</td>
<td>=+/0000:16; Range is '00 thru 16'</td>
</tr>
<tr>
<td></td>
<td>= 96 Bit-Mapped Address String</td>
</tr>
<tr>
<td></td>
<td>=+/0000:96; Range is '00 thru 96'</td>
</tr>
</tbody>
</table>

Given that the first '0000' defines the '8 Bit' String that identifies:

"Trunk-Identifier" : Class Range - A, B, C, D, E - using the '+' Switch
"Network ID" : Address Class of Network IP Address - A, B, C, D, E - using the '-' Switch
5. Security Considerations

This document, whose only objective was the deliberation of the final explanation for the IPtX Specification, which resulted from the Mathematics of Quantification, does not directly raise any security issues. Hence, there are no issues that warrant Security Considerations.
6. IANA Considerations

The complete Anatomy of a IPtX Address String

1. 'Router-ID + Trunk-Identifier + Network IP Address*':

 Total Address Length - IANA Specifications

2. 'TelCo-Xchge or Backbone Routers' - Router-ID: 'DNS ZONE'

 " ID + Trunk-Identifier + ZONE IP + IP AREA CODE "

 Total Segment Address Length - IANA Specifications

3. 'Trunk-Identifier' - ID: 'DNS ZONE - Address Block Specification'

 " ID + ZONE IP + IP AREA CODE "

 a. - 'ZONE IP' - ID ' - Segment Address Length - IANA Specifications

 b. - 'IP AREA CODE - ID ' - Segment Address Length - IANA Specifications

 Total Segment Address Length - IANA Specifications

4. 'Network IP Address' - ID: Segment Address Length - IANA Specifications
6.1 Special IANA Consideration:

While the use of Router Authentication can include Address String verification, its application may prove even more vital for Security applications. However, Address resolution could be accomplished more easily using a '3 State CIDR Network Descriptor Switch' \(\{0, -1, +1\} \):

a) Router-ID: /0000:00 or /0000:00E00; '00E 00' = 00 \text{ thru } 99

\(\{\text{e.g. } 96E99 = 96^{99} \text{ Bits} ; \text{ or } , X^{99}(2^{32}) \approx (7.9228163 \times 10^{28})^{99} \text{ copies of 'IPt1' } \} \)

b) Trunk-Identifier: +/-0000:00 or +/-0000:00E00; '00E 00' = 00 \text{ thru } 99

\(\{\text{e.g. } 32E10 = 32^{10} \text{ Bits} ; \text{ or } , X^{10}(2^{32}) \approx (4,294,967,296)^{10} \text{ copies of 'IPt1' } \} \)

c) Network IP Address: -/0000:00 or -/0000:00E00; '00E 00' = 00 \text{ thru } 99

d) ‘ANSI Trace – Ping Switch’: Multi-Conditional Switch defining Additional Command Statements –
\(\pm//0000: |? \text{ and } //0000:00|? \{\text{Where } ' |?' = \text{HELP!} \} \)

The above considerations represent the conclusions derived from the foundation of ‘RFC(s) 1518 and 1519’, which actually define ‘Address Segment Routing’. Given that in the Binary System of counting, sums by the addition of ‘1’s’ are from the Right, and leading Zeros to the Left are insignificant. The conclusions clearly establish the above mathematical expressions as a viable representation of the Router’s interpretation of an IPtX ‘Bit-Mapped’ IP Address. That is, the ‘CIDR Network Descriptor’ provides the Router’s depiction of an IP Address, which only acknowledges the routing of the Network-ID according to the structure of the Network’s IP Address defined by the Address Class Range: ‘\(\pm//0000:00E00 \text{ and } /0000:00E00 \)’. Hence, this is the gist of an extremely powerful method, ‘Address Segment Routing’, which provides the translation of the Network Address defined by the Schematic representing the IPtX IP Addressing Specification, and any length of one or more additional Address Segments defining the total length of the IPtX Bit-Mapped Address. In other words, the ‘CIDR Network Descriptor’, in addition to defining the mathematical expression of the routed Address, it also acts as the Address Mask, resolving the Integer, one Bit at a time, in a process that defines every Address defined in the Schematic of the IPtX Addressing Specification. And finally, these conclusions also confirm the necessity of resolving the 48 Bit-Mapped IP Address (18 Digits), as the required identification to specifically determine the exact location/destination of the communicating nodes.
In other words, the ‘CIDR Network Descriptor’, in addition to defining the mathematical expression of the routed Address, it also acts as the Address Mask, resolving the Integer, one Bit at a time, in a process that defines every Address defined by the Schematic of the IPtX Addressing Specification. And finally, these conclusions also confirm the necessity of the 48 Bit-Mapped IP Address (18 digits), as the required identification to specifically determine the exact location/destination of the communicating nodes.

Nevertheless, the method of Counting that is defined by ‘+/0000:00E00 and 000:00E00’, defines a 'One-to-One' Correspondence with the Unary Element, ' 1 ', which defines the Sum of the Elements contained in the Set defining the 'CIDR Network Descriptor, as the Cardinality representing the count of the number of elements the Set Contains. Thus, yielding the exact depiction, from the Sum of the number ' 1's ', this equals the Number representing the IPtX IP Address. In other words, the Sum of the Bit Count defined by the '00E00' String is equal to the Number representing the remaining portion of the IP Address that is not defined by the Address Class Range, which defines the 8 Bit '0000' Prefix of the IP Address defined by the Network Descriptor. However, allowing the '00E00.0000' String to be equal to the method defining 'Exponential Enumeration' would be easier, because an Exponential Equation could Mask and Un-Mask the Integer representing the IP Address(s); ‘+/0000:00E00.0000 and /0000:00E00.0000’. And this method would also represent an exact count of the Sum of the ' 1's ', because it equals the one-to-one relationship that assigns only one Number from the result of, '2^X', the 'Exponent', to one IP Address. Furthermore, it is also behooving to note, that since (+/)’0000:00E00.0000' and (/)’0000:00E00.0000' is Routable, its Function as the 'Network Descriptor' still remains useful, because it allows for Address Segment Routing, and retains the original definition of its Address String Length; ‘+/0000:00'. In other words, the expansion of the 'CIDR Network Descriptor' defines a Routable Mathematical Expression, defining a '2^X: 1' 'Exponential Compression Ratio', which can be used in either a Static or Dynamic Mode.

Note: The logical expansion of the 'CIDR Network Descriptor' defines a Routable 'Universal Expression', which is a Mathematical Expression defined by an Exponential Equation', expressing the value of the result that uniquely represents the value of the Quantified Sum of the Component Strings defining the numerical value of every IP Address defined by the IPtX Specification. And this, as it will be clearly realized, changes the calculation for the Bit/Data Transfer Rate.
In any case, it should by quite clear that the foregoing uniquely defines the IPtX Specification, a distinct difference from IPv4, that provides the exact rendering of Binary Enumeration, which is equal to the sequential incrementation resulting from the summation of the progressing using ' 1's '. In other words, since the Binary equivalent of the Unit displacement, given by eq-5, defines the 'Exponential Expression' derived from the Binary Equation defined by the Mathematics of Quantification, which defines an incremental progression using the result from the summation of ' 1's '. It defines the result, 2^Q, from the equation as representing the Quantified Sum of the Binary Expressions defining the Numerical Displacement of the 8 Bit Segment that defines the Octet represented in an IP Address {see eq-6 and eq-7}.

\[
\text{eq-5: } 2^X = 1; \text{ respectively denoting the Binary and Unary Sets}
\]

\[
\text{eq-6: } 2^X = 8 \text{ Bit String } = "1 \text{ thru } 256"
\]

\[
\text{eq-7: } (2^X) + (2^X) + (2^X) + (2^X) = 2^Q, \text{ given that } \{, \} = \{ + \}, \text{ then}
8 \text{ Bit, 8 Bit, 8 Bit, 8 Bit} = 2^Q = 2^X,
\]

\[
XXX.XXX.XXX.XXX = 2^Q = 00E000.0000\ldots
\]

2^Q now defines an incremental progression, using the summation from the additions of ' 1's ', which approaches a Bit displacement defining an infinite length; see eq-9.

And clearly, given that $2^Q = 00E000.0000\ldots$, where $2 = 00$ and $Q = E000.0000\ldots$, the Masking and Un-Masking procedure for protocol encapsulation is extremely elementary, because it is a comparison defined by the laws of addition and subtraction. In other words, the Sum of any number of the Binary Expressions equaling the value of the 8 Bit Address Segment defining an Octet of an IP Address, \{where the $00E00.0000 = \text{IPtX IP Address as the Sum of the Binary Expressions defining the Total Number of Octets the IP Address contains.}\} is equal to the value of the Integer defining an IPtX IP Address. Hence, if there is a difference between any of the values defining an Octet or their resulting Sum, 2^Q, it would be determined, confirmed, or verified by the Translation / Resolution of an IP Address from the Masking or Un-Masking of the 'Exponential Expression(s)'. And this uniquely defines, by eq-8, the 'IPtX Mathematical Expression' Routing Protocol, and the ability of IPtX Specification to define an Un-Limited IP Address Pool: see 'The Anatomy of the IPtX-MX Routing Protocol'.

\[
\text{eq-8: } 0000:00E000.0000\ldots; 2^X + 2^X + 2^F + 2^F = 2^Q
\]

$2^Q =$ IP Address value; or value of the Octets Sum.
The Anatomy of the IPtX-MX Routing Protocol

The Number of 8 Bit Address Segments - IANA Specifications

0000:00E000.0000... = 2^999.99987654321 IP Addresses = 2^Q
or: Theoretical Number of available IP Addresses =
(2^999.99987654321)^2 copies of IPt1 = [(0000:00') x (+/-0000:00')]

1. ' 0000: ' ID: 8 Bit Address Segment - Address Class Range
 Total Segment IP Address Length - IANA Specifications

2. ' 00 ' ID: 4 Bit Address Segment - The Base 2, in 2^Q
 Total Segment Address Length - IANA Specifications

3. ' E ' ID: 4 Bit Address Segment - Binary Exponential Operator
 Total Segment Address Length - IANA Specifications

4. ' 000.0000...' ID: 48 Bit Address Segment - 2 Part Exponent Q
 a. ' 000 ' ID: 3-4 Bit Address Segment - Integer Part of Exponent
 Segment Length - IANA Specifications
 b. '.0000...' ID: 36 Bit Address Segment - Decimal Part of Exponent
The Anatomy of the IPtX-MX Routing Protocol

5. `Router-ID + Trunk-Identifier + Network IP Address`

\[0000:00\text{E}000.0000... + 0000:00\text{E}000.0000... + 0000:00\text{E}000.0000... \]

\[3(8 + 20 + 36) = 3(64) \text{ Bit Strings} \]

a. 0000:00\text{E}000.0000... /0000:00 - Masked Routable Router-ID
b. 0000:00\text{E}000.0000...+/0000:00 - Masked Routable Trunk-Identifier
c. 0000:00\text{E}000.0000...-/0000:00 - Masked Routable Network IP Address

Total Address Length - IANA Specifications

\[
\text{eq.9: } 0000:00\text{E}000.0000... ; \text{ The Reality of } "2^{\text{X}} : 1" \text{ Compression Ratio of the IPtX-MX Protocol} \\
a. \text{\((2^{\text{X}})\alpha_1 + (2^{\text{X}})\alpha_2 + (2^{\text{F}})\alpha_3 + (2^{\text{X}})\alpha_4 = 2^\text{Q} \)} \\
b. \text{\((2^{\text{X}})\alpha_1 + (2^{\text{X}})\alpha_2 + (2^{\text{F}})\alpha_3 + (2^{\text{X}})\alpha_4 + (2^{\text{F}})\alpha_5 + (2^{\text{F}})\alpha_6 = 2^\text{Q} \)} \\
c. \text{\((2^{\text{X}})\alpha_1 + (2^{\text{X}})\alpha_2 + \ldots + (2^{\text{F}})\alpha_N = 2^\text{Q} \)}
\]

Given that \(2^{\text{X}} \) defines Binary Enumeration, as the result from an Exponential Equation that defines the Unary incremental progression of addition, or counting, using '1's '.

Note: The comparable analogy the Computing Power defining the payload capacity of the '00.E000.0000... String' is equivalent to having \(2^{999.99997654321} \) 3-State Logical Transistor Switches in the Core of '1' CPU. And this, it should be duly noted, is equivalent to the ability of programming every Transistor, or allowing every Transistor to become the CPU. However, since every 4 Bit segment can equal any number in the range of '0 thru 16', the '00.E000.0000... String' Theoretical Number of available IP Addresses now equals:
\[(/0000:00') \times (+/0000:00') = (16^{161.616})^2 = [(2^4)^{161.616}]^2 = 2^{2^{4 \times 161.616}} = 2^{1,292,928.99987654321} \text{ copies of IPt1}\]

In which case, this means; A 64 Bit Address String can define the Number or Data Stream that represents the Sum of the incremental progressions, using '1's ', which equals the count of a \(2^{646.464}\) Bit-Mapped displacement. And if the Address total defined by IPt1; 4,294,967,296, equaled a book containing 67,108,864 64 Bit words, then the '00.E000.0000...' 64 Bit Address Block defines a Bit-Mapped Address String equaling approximately \(2^{646.464}\) Books; when a book contains approximately 50,000 pages.

[The Genetic Equation representing the Formula for Life? ...Yep.]
Encryption and Decryption - The Binary Enumeration Algorithm - \(2^N\)

1) \(X(2^X - X)\) - Encryption and Decryption Key
 a. \(X\) - Counts the Number of Octets - 00 thru \(2^X\)
 b. (2^8 - X) - Encodes and Decodes Bit-Map Octet String

2) 00.E000.0000... - Binary Enumeration Compression Algorithm
 a. Encryption of the Integer defines a Unique value -
 e.g. - 123.123.123.123 = 123123123123 = \(2^Q\)
 b. Every Integer has a Unique '00.E000.0000...' Translation

3) '+' and the '.' Symbols: "Put it Together & Take it Away"
 a. String Assembler - '+' "Put it Together" -
 e.g. - '123 + 123' = '123.123' = '123123' = \(2^Q\)
 b. String Delimiter - '.' "Take it Away" -
 e.g. - '123123' = '123.123' = \(2^Q\)
In other words, Binary Enumeration, the method of incrementation using '1' that defines the '2^x : 1' Ratio, sustains a practical limit, which is defined by the current technology. However, with the current technology it might be easier if the Exponent of the '2^x : 1' Ratio defined a Payload Capacity of 256 Bits, or the equation, \(2^{256}\), which defines a Payload capacity equaling 256 copies of a 50,000 page Book. And this, it should be reasoned, with the appropriate upgrades would allow the Ratio defining the current Data Transmission Rates, and a host of related technological products, to obtain a performance increase by that might be greater than a '4 : 1' Ratio.
6.2 Special IANA Consideration

- 6.2.1 - Closing Argument

The proof of the mathematical validity for the Ratio defining the '2^X : 1' relationship between Binary and Unary counting is given by:

- Since; 2^0 = 1, and (2^0) + (2^0) = 1 + 1 is True,

- then; If 1 + 1 = 2, 1 + 2 = 3, ..., and 1 + N = I_N, is True,

- there is a relationship; defining every 'X', in '2^X',

- such that; for every value that the element 'Q' defines, also defines a unique element in I, the Set of Integers,

- then; '2^X' also defines an element of the Set of Integers,

- given that; for every '2^X' of the Set I, '2^X = Q',

- and; If 'X' defines an Element of the Set of Integers and an Element of the Set of Real Number,

- then; 'X' is Greater Than, or Equal To 'N_N + 1' and 'N_N + 1.000...NvN + 1'.

- Hence: The Binary Set defines an Equation, '2^X', that equals the count defining the Sum of the incremental progression resulting from the Addition of '1's', which is equal to the progressive counting sequence defined by the Unary Set.
This concludes the design specification(s) for the IPtX Addressing Protocol Family, with the implementation of the logically derived 'Intelligent Quantum Worm', which mimics the 'Payload Carrying Capacity' of the 'Instruction Set' carried by a Cell of DNA. In other words, this discovery represents the capability of compressing a number of any length (Compression of the Set, \(Q = \{1,2,3,4,\ldots,N\} \), having a count of 'N' Members in it's Set, into \(Q = \{1,2,3,4,\ldots,N\} = 1 \), by Nesting Encryptions of the Exponential Translation representing the exact Numerical arrangement of the members of the Set, Q. And more importantly, this discovery, when the correct Mathematical interpretation of the encoding for the Binary System is used, defines the 64 Bit Address as the Mask of the 'Intelligent Quantum Worm', the 'IPtX-MX Universal Routing/Routed Protocol' Specification, which has a 'Theoretical Payload Carrying Capacity' (Data Stream 'Bit-Count' Capacity) equal to the Bit size specification defining a Backbone Environment having an unlimited size 'Bit-Mapped' Address Space.

Polymorphing the 'Intelligent Quantum Worm' Protocol

"The Biological Depiction of the 3 Divisions of a Cell and the Exponential Compression Algorithm is the Nucleus"

Calibrating the Unit Bit Size to the measurement of the Displacement Frequency Characterizing any one or more Unit measures from the Frequencies of the 'Electro-Magnetic Spectrum of the Nucleus of an Atom.'

The Polymorphing "Metamorphosis" Encryption Compression Algorithm

1. '0000:00E000.0000...';

 "Metamorphosis" Encryption Compression Algorithm;

2. '0000:00.0000...E000'

 And this can be programmed to imitate Virus or Bacteria Prorogation, which can be Transformed, or adapt..., because this Algorithm provides the Binary representation, translation, or interpretation of every Element contained in the Set of Real Numbers, Including the Rational and the Irrational numbers.

 Which means, at some Point:

3. 0000:00.0000...E000 = 0000:00E000.0000...
In other words, the Binary Equation in the Ratio, '2^X : 1', actually defines the Unary Process of successive Additions of '1', which the counting by 1, represents every Numeral. However, the benefit of the Exponential Algorithm is that, regardless of the Numeral's length, it requires only 64 Bits to represent the count of the Integer depicting the Numeral.

Nevertheless, the pointed fact is that, the mathematical translation of the foregoing conclusions in terms of the number of available IP Addresses, dramatically increases. In other words, the IP Address Pool representing the 64 Bit IP Address of the IPt2 Address Space, which is defined by the IPtX Specification, more closely approximates:

16 Prefix Addresses

99,987,654,321 Addresses in each Prefix Address Set

And this means, there are;

\[2^{64,464}(16 \times 99,987,654,321)\] Encryption Keys, or;

because this defines the Number of Encryption Keys for each Address in the Address Pool given by;

"0000:00E000.0000..."

then the Total Number of Addresses in the IPt2 Specification equals:

\[((2^{64,464,99987654321}) \times (2^{64,464}(16 \times 99,987,654,321))) = \text{IPt2} = 2^N\]

Or, The 'Payload Capacity' of ONE

Intelligent Quantum Worm = \[2^{64,464}(16 \times 99,987,654,321)\] Bits;

Or \[((2^{64,464,99987654321}) \times (2^{64,464}(16 \times 99,987,654,321))\] Copies of IPt1
Or; each Address Segment of the IP Address,

'Router-ID + Trunk-Identifier + Network IP Address**,

which is defined by;

0000:00E000.0000... + 0000:00E000.0000... + 0000:00E000.0000...,

and equals;

\[(2^{646,464})^2 = 2^X = 2^{1,292,928.99987654321} \text{ copies of IPt1} \]

the 'Polymorphing Intelligent Quantum Worm Protocol Data Compression Engine',
now defines each Address Segment with having either an individual Encryption
Algorithm, or a Data Compression Algorithm(s);

e.g. One Address Segment defines;

\[(0000:00E000.0000...) \times (0000:00.0000...E000) \]

or each Address Segment of the ‘Intelligent Quantum Worm’ has a Payload
Capacity equal to;

\[(2^{646,464}) \times (16 \times 99,987,654,321) \text{ Bits}. \]

Given that each Segment’s Address Pool Capacity equals;

\[(2^{646,464.99987654321}) = (0000:00E000.0000...) = 2^X = 2^N \text{ Addresses}. \]
6.2 Special IANA Consideration

 - 6.2.2 - Security

Even still, possible interpretation(s) notwithstanding, mathematically speaking however, the ("00.0000...E000") String can only define the "Payload Carrying Capacity" of a Data Compression Engine. In which case, the Encryption Coding Strings can be included and defined as an integral part of the Data Stream Code, which has a ‘Bit-Count Length’ determined by the Scaleable 'Payload Capacity' of the 'Polymorphing Intelligent Quantum Worm Protocol Data Compression Engine' (P-IQWP-DCE). Nevertheless, this clarification completes the design specification for the 'Intelligent Quantum Worm Protocol', founded upon the logical derivation of the Binary System of Enumeration from the Mathematics of Quantification, it finalizes the unique design structure of the IPtX Protocol ‘Family’ Specification.

And this is true since; ‘00.0000...E000’ = 2^x = 2^n = ’00E000.0000...’ *;
Noting more specifically that the Set of Points at which these Sets are equal, is Finite. Hence, the number of occurrences in which these Sets are equal is defined by; ‘2^x = 2^n’: “The Special Case defining the Distributive Laws representing the Binary and the Unary Sets”. Furthermore, there is a broader interpretation of the “P-IQWP-DCE” Binary Algorithm, in which the Ratio, {2^x : 1} defining this engine represents the Probability or Likelihood of a ‘Security Event’ occurrence vs. “Quality of Service/Product” to prevent it, because ‘Security Protection Coding’ is packaged in the “Payload”: with an excellent Virus Protection Software, e.g., - Consumes Limited or Balanced Security Code to Message Space Ratio – Possible Number of Virus Combinations vs. Anti-Virus Combinations ; This is an Absolute Protocol Protection Environment Ratio defining the “P-IQWP-DCE” Space - ‘2^x = 2^n’; - Balance is Achievable or the Time required to perform a ‘Security Event’ could be of such a duration, it would seem infinite! In which case, the {2^x : 1} Ratio represents the scale of comparison, providing the odds of determining the Probability of preventing a ‘Security Event’, when using the currently available Security Safe Guards. And more importantly –
This Ratio \(\{2^X : 1 \} \) actually depicts a ‘Fully Cognizance Autonomous Artificial Intelligence’, a True Binary Coding Environment, defining a logical mathematical foundation derived from the Laws of Set Theory and the Mathematics of Quantification. In other words, the spectrum of possibilities defined by ‘2\(^X\)’ is unlimited; since ‘2\(^X\)’ represents the Binary equation defining the incremental progression by successive additions of ‘1’, and if 2\(^X\) is an Element of the Real Number Set, then ‘2\(^X\) = 3\(^X\) = 4\(^X\) = 5\(^X\) = N\(^X\) + 1’. In other words, since nesting is inherently defined, the ‘DCE’s’ Payload could define a series of Binary Equations representing a Nested or Encapsulated Data Stream Transmission.
6.2 Special IANA Consideration

- 6.2.3 – Summary

In summary, the conclusions from Mathematics of Quantification that established a true Binary Environment, produced a Revolutionary method of Coding, using the Exponential Expression ‘2^X’, correlating the Mathematical Language of the Binary System, defining a Unary progression, resulting in the unique logical design of the IPtX Protocol Family Addressing Specification. Hence, the final imperative is to display “IPt2’s” remaining 64 Bit-Mapped Protocol Specifications design for the 'Intelligent Quantum Worm Protocol', all of which measure a different size Address Pool correlating with the Address Class Specification of IPv4 – Furthermore, the additional benefits this expansion yields, magnifies the potential of the IPtX-MX Universal Protocol. In other words, there are 5 Sub-Level Divisions of the 'IPt2' Specification, and each contains an 'Address Class Sub-Division'; Set = {A, B, C, D, E}:

--- TABLE VIII ---
- Class A Address Pool Allocation -

1) (0000:0E0000.0000...), or (0000:0.0000...E0000)

- Class B Address Pool Allocation -

2) 00.0000...E000 = 2^X = 2^N = ‘00E0000.0000...’

- Class C Address Pool Allocation -

3) (0000:000F.0000...), or (0000:0000.0000...F00)

- Class D Address Pool Allocation -

4) (0000:0000E0.0000...), or (0000:0000.0000...E0)

- Class E Address Pool Allocation -

5) (0000:00000E.0000...), or (0000:0000...E0000)
Note: Because the Mathematical relationship between the '4' Unit structure of an IP Address defined in the IPv4 Specification represents the identical, '4' Unit Pattern defining the divisional structure for the 'DCE' Unit defining the 'IPTX-MX Universal Protocol' in the IPTX Specification - The Address Pool Allocation table defining the Address Class Distribution in Table VIII actually represents the definition of the '5' Sub-Divisions - 'Address Scaling Division'; a 'Mathematical Scaling Communication Protocol' that defines a procedure matching the specifications related to the parameters defining 'Data Transmission Performance Rates' of the Communicating Nodes – by Table VIX;

<table>
<thead>
<tr>
<th>TABLE VIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) IPT2-a - Class A Address Pool Allocation -</td>
</tr>
<tr>
<td>1.1) (0000:0E0000.0000...), or (0000:0.0000...E0000)</td>
</tr>
<tr>
<td>Address Class Sub-division - Set = {A, B, C, D, E}</td>
</tr>
<tr>
<td>2) IPT2-b - Class B Address Pool Allocation -</td>
</tr>
<tr>
<td>2.1) 00.0000...E000 4 = 2^X = 2^N = 00E000.0000...</td>
</tr>
<tr>
<td>Address Class Sub-division - Set = {A, B, C, D, E}</td>
</tr>
<tr>
<td>3) IPT2-c - Class C Address Pool Allocation -</td>
</tr>
<tr>
<td>3.1) (0000:0000E000.0000...), or (0000:0000.0000...E00)</td>
</tr>
<tr>
<td>Address Class Sub-division - Set = {A, B, C, D, E}</td>
</tr>
<tr>
<td>4) IPT2-d - Class D Address Pool Allocation -</td>
</tr>
<tr>
<td>4.1) (0000:0000E0.0000...), or (0000:0000.0000...E0)</td>
</tr>
<tr>
<td>Address Class Sub-division - Set = {A, B, C, D, E}</td>
</tr>
<tr>
<td>5) IPT2-e - Class E Address Pool Allocation -</td>
</tr>
<tr>
<td>5.1) (0000:00000E0000...), or (0000:0000.0000...E00000)</td>
</tr>
<tr>
<td>Address Class Sub-division - Set = {A, B, C, D, E}</td>
</tr>
</tbody>
</table>
[If \(X^N = 2^X \), then \(X = 2^{1/X} \), when \(1/X = \cdot .00000... \); and this is valid because each Address Class Allocation will contain a different number of Binary, \(2^X \), definitions.]

In other words, the IPtX Addressing Protocol "Family" is defined by a mathematical foundation that defines an incremental progression using successive additions of '1', which also defines the sequence of counting defined by the Unary set. In which case, if the mathematical laws defining the relationships for the Address patterns of the IPtX Specification are mathematically consistent, then Table VIX defines a mathematical expansion for every Address Class Specification defined by the IPtX Protocol "Family".

- The Additional benefits from the IPtX-MX DCE Unit Mathematical Foundation -

1) Data Transmission Rates = 'DCE' Unit Classification

2) 'Performance' & 'Dimensional Design' = 'DCE' Unit Classification

3) Data Transmission Communication Rates = 'DCE' Unit Classification

4) Data Transmission Rates Coefficient = 'X'

5) Data Transmission Rate(s) Equation = 'X(2^X) = 2^X = 2^N = X^N'

6) Control Data Transmission Rates / Matching the Node(s) Rate(s)

7) 'DCE' Unit Classification determines Bit Transmission Scale

8) 'DCE' Unit Classification = 'Storage Capacity Scale' Unit

9) 'DCE' Unit = "Hardware Compatibility Scale" Classification;
 - Matching Data Transmission Communication Rates
 - 'HEX' Numbering System Replacement
 - Matching Binary Numbering System Scale = X(2^X)

10) 'DCE' Unit Classification = “Calibrating the Encoding of Code”
 a) Defines New Binary Coding Operator for Software Construction and Design
 b) Defines New Binary Definition for Instruction Set and Scale for CPU Design
 c) Defines New Data Communication Hardware Orientation Connectivity Association Specification – Eliminating Device Drivers, USB, ATA, SCSI, etc, and a host of additional Hardware Control Protocols.
 d) Scaleable 'DCE' Unit Defines a New Host IP Addressing Specification, which provides a functional use, by TABLE VIX, for the IPtX-MX Universal Protocol that would allow Host IP Address Activation for a Direct Internet
Connection - The Activation of every Host defined in the Overlay of IPtX Specification {See TABLE VIX} - Adding a Host designation function to the CDIR Network Descriptor, which assigns the DCE Unit Protocol Specification to the trailing end Switch; 'h': e.g. '/0000:00-h' - and this allows every Network and Host IP Address to have a unique Identification in the IPtX Specification.

e) Binary Encoding Conversion example; ‘1111’ = 'DCE' Unit' = 2^4, or ‘8’ = 111 = 'DCE' Unit' = 2^3; the Benefits are easily realized when the conversion represents a large Number.

Note: Assigning a DCE Unit Protocol(s) -
Host Address Activation - IANA Specifications
CIDR Network Descriptor Host Activation Switch –
Host Activation Switch ‘h’ – '/0000:00-h' - IANA Specifications

e.g.: The respective reduction and expansion of the 'DCE' Unit:

a) **IPt1 Specification** - 4 Bit Address Class ID: 2 Bits Base in 2^X. - 4 Bit 'E' - Exponent - Exponent Parts: - 2 Bit Integer. - 20 Bit Decimal String - 32 Bit Address – ‘0000:00E00.000…32Bit Intelligent Quantum Worm’

b) **IPt4 Specification** - 16 Bit Address Class ID: 8 Bit Base in 2^X. - 4 Bit 'E' - Exponent - Exponent Parts: - 28 Bit Integer. - 72 Bit Decimal String - 128 Bit Address– ‘00.00:0000E000028.000…72 - 128Bit Intelligent Quantum Worm’

Nevertheless, the Intelligent Quantum Worm Technology maintains a scalable range that defines 5 Address Class Specifications, which represent a different and independent copy of the IPt1 Specification. And this defines the Address Pool of the 64 Bit IPt2 Specification, with a capacity equal to 5 copies of IPt1;

or $5(2^{32}) = 5(4,294,967,296) = 2.147836 \times 10^{10}$;

or "2.147836 $\times 10^{10}$ 'Intelligent Quantum Worms'" that can all share or be assigned to service 4,294,967,296 IP Addresses.

That is, this defines a { 5 : 1 } Ratio, a mathematical relationship sustained throughout the IPtX Specification, which defines approximately 5 different Worm Configurations for every IP Address Class defined by the IPtX Addressing Protocol Family Specification.
In other words, this essentially provides the 'Intelligent Quantum Worm' Protocol with a Scalable "Payload Capacity", which defines a 3-D Spatial Distortion that mimics a Tunneling Effect. In which case, perhaps the "IPtX-MX Universal Protocol" should rightfully be called:

An "Intelligent Quantum Tunneling Worm".

Nevertheless, the ability to program or construct a 3-D Space, implies the possibility that today’s ‘Bit-Mapped’ Specification associates a Bit with a displacement equal to an extremely large Electron Surface Area, one that encompasses the measurement of an extremely large Pool (approximately $2^{646,464}$) or Group of Electrons. In other words, the "Intelligent Quantum Tunneling Worm" Protocol, in such an environment, would define the Unit Bit as the minimum excitation energy required to displace an Electron One Electron-Mass Displacement Unit [7]. And then, if it’s A.I., there is the possibility that it could morph itself, acquiring the specifications to accommodate a 3-D Spatial Environment. - The Illusion by Shading, rendering any picture or video with a 3-D effect when displayed.
Nevertheless, while the foregoing proofs are confirmed by the conclusions from the proof of “Fermat’s Last Theorem”: However, a more thorough understanding of the results from the successive additions of '1', and the Basic Theory of Mathematics, which define Sequential Counting is required to understand the error in the current definition of Infinity; where $1/0 = \text{INFINITY}$. And how is it possible to define an Infinitely Large Address Pool to the IPtX Specification.

The Proof;

First, accepting that $1/0 = \text{INFINITY}$, is not true, since Division is defined [3] as Subtraction, then the results from the continuous operation defined by eq-a, is pointless, because the result from this equation defines the REMAINDER, and if the difference between the Remainder and the Quotient equals Zero, then the solution, by eq-b, of $1/0$, is equal to Zero.

\[
\text{eq-a.} \quad 1 - 0 = 1 - 0 = \ldots = (1 - 0)_N = 1 \\
\text{eq-b.} \quad 1 / 0 = 1 - 1 = 0
\]

And if it can be said that the relationship between the Unary Set and the Binary defines a $\{1 : 11\}$ Ratio, where Cardinality representing this Ratio, given by eq-c, is True.

\[
\text{eq-c.} \quad '1 = 2' \quad \text{- Unary Set} = \{1\} \quad \text{- Binary Set} = \{11\} \\
\text{"Given that: } 11 = 1 + 1 = 2"
\]

Then the Definition of a Prime Number is Given By:

\[
\text{eq-d.} \quad '1 = 2' \quad \text{'Prime Numbers'}
\]

A 'Prime Number' or 'Prime Integer', is a positive integer, $'p | p \geq 1'$, that has no positive integer divisors other than itself, $'p'$, and $'1'$.

In which case, from the definition of a Prime Number, it can be concluded that if every Number except '1', is defined as the Progressive Additions of '1', then "1" defines the Absolute Number, which is equal to the Cardinal Number that defines the Universal Multiplicative Identity Element, representing every Item defining itself [2].
Clearly, the Modern Numbering System evolve defining the Zero distinction as the Multiplicative Coefficient defining the Count of the Members in the Set of ' 1's ' containing 10 Elements. Nevertheless, Nature's Mathematical System defines the Binary pair {0, 1}, as the symbols to be used for numerology, which ultimately refined into the more mathematical symbolic numerical representation used today.

In other words, since '1' is the absolute Numeral, and the Binary and Unary Sets must, if they are equal and enumerate to infinity, map equally, in a One-to-One Correspondence with the Real Number Set, which is counted using successive additions of '1'.

Then the Ratio defining the relationship between the Binary and the Unary Sets, and represented in the mathematical expression defining eq-c, since any One-to-One defines a sequential count defined by the Unary Set as the successive additions using 1’s, also defines 2 Infinities.

\[eq-c. \quad '1 = 2' \quad \text{- Unary Set} = \{1\} = \infty \quad \text{Binary Set} = \{11\} = \infty \]

Furthermore, since Infinity is not enumerable, then Infinity must define a **Prime Number**, because only the mathematical operations involving ‘ITSELF’ and ‘1’ are defined.

Hence, "Given that: \(11 = 1 + 1 = 2\)"; and since eq-c is true, then by eq-e, we have;

\[eq-e. \quad '\infty' = (\infty + \infty) = '\infty' \]

And from eq-d, since multiplication is equal to the quantified sum of addition, we have by eq-f;

\[eq-f. \quad '\infty' = (\infty + \infty) = \text{Infinities}, \quad (\infty + \infty) = '\infty' - \text{Infinity} \]

Therefore, since eq-d, " 1 = 2 - Prime Numbers ", is true, then;

\[(\infty + \infty) = \text{Infinity} = \text{Infinity} = (\infty + \infty) \]

And this, since division is the quantified difference of the repeated subtractions performed on a constant, further implies;

\[\text{Infinity}/\text{Infinity} = '1' \quad \text{and} \quad (\text{Infinity} - \text{Infinity}) = 0 \]
Nevertheless, since the foregoing equations defines the mathematical operations involving Infinity, and since these operations also defines the enumeration of the Elements defining the respective members contained in the Binary and Unary Sets. Then the Elements these Set respectively contain, each enumerate an individual count using successive additions of '1', in a One-to-One Correspondence, to reach an Infinite Count of the Members each Set contains.

In other words, by definition [3], since the

\[
\text{ Unary Set } = \{1\},
\]

and the

\[
\text{ Binary Set } = \{0, 1\}
\]

Then Infinity is the definition of 2 Sets, which defines;

The Binary Set defines; 1 either followed by an Infinite Zero String, or a Decimal Point followed by an Infinite Zero String terminated with a ‘1’.

1) A ‘1’ followed by an Infinite String of Zeros
2) \(1 + 0\text{INFINITY} \ldots 000000000000000000000000000000000.0\)
3) A ‘1’ proceeded by an Infinite String of Zeros
4) \(0.000000000000000000000000000000000 \ldots 0\text{INFINITY} + 1\)

The Unary Set defines an Infinite String of ‘1’ s, either before or after the Decimal Point.

5) A ‘1’ followed by an Infinite String of ‘1’ s
6) \(1 + 1\text{INFINITY} \ldots 111111111111111111111111111111111.0\)
7) A ‘1’ proceeded by an Infinite String of ‘1’ s
8) \(011111111111111111111111111111111 \ldots 1\text{INFINITY} + 1\)

Note: Both examples define every element contained in the Set of Real Numbers. And more importantly, if the Infinite Zero String is countable, then succeeding or following the Zero String is also countable... Also, this proof can be construed as equating the Count of the '1's' in the Unary Set with the Zeros, and the 1 (occurring at a Count one unit beyond the Infinite Zero String) in the Binary Set.
There is no doubt that the profoundness of Figure 7 seems to overshadow the simplicity and flexibility of the design of the IPtX Addressing Protocol Family Specification. In which case, and rightfully so, I must conclude the Summary of the IPtX design specification with the explanation of the description defining the 32 Bit version of IPtX-MX Protocol, and how it applies to the IPt1 Specification. And this, it shall be seen, will provide a more gradual interpretation, elaborating the procedural change defining the steps of the expansive effects describing how “The CIDR Network Descriptor expands the size of the IPtX Address Space beyond the IPv6 IP Addressing Specification” – concluding more importantly, with the correct mathematical expression reflecting these changes, which is supported by a logical argument derived from the proof of “Fermat’s Last Theorem”, and defined by the Mathematics of Quantification.

"Using Current Binary Translation"

'Showing examples of the Concept of "Footprint" Size Reduction'

\[32 + 32 = 64 = 2^{10} \times 2^5 + 2^5 = \text{64 Bit String} \]

which means; - 32 Bit String + 32 Bit String = 2 \times 2^5,

and - 32 Bit String = 2^5

'e.g.' a 32 Bit String =

"101100110000100111111000101010110001110011100011111000111100011111"

= 32 Bit String = '11111111111111111111111111111111' = 2^5

32 Bit String = 2^5 = '2E5' = 1111111111 '9 Bit String Displacement'

= 32 Bit String = 'INTEGER' = 2^5
CIDR Network Descriptor expands IPtX Address Space

'Netowrk Connection - Addressing "Location/Destination" Protocol'

- IPtX-MX 32 Bit {Masked} Universal Protocol -
 'Masked Address Protocol -
 Data Streaming Packet -
 Variable "Payload" Encapsulation Capacity -
 Encapsulation of Linear Programmed
 Information/Instruction Code -
 (e.g. IP Header, TCP/IP Encapsulation Protocols,
 Else Encapsulation Protocols, Info etc.)'

- CIDR Network Descriptor "RIP" "TELe-RIP" "AS-RIP" Protocol -
 "RIP" - Routing Information Protocol
 "AS-RIP" - Address Segment Routing Information Protocol
 "TELe-RIP" - Internet Telephone "ENUM" Routing Information Protocol
 "TELe-ARP" - eTelephone "DCE-Unit" Address Recognition Protocol
 "MUM-ARP" - Masking/Un-Masking "DCE" Address Recognition Protocol

'Initiating the Binary Algorithm Choosing and Encoding
the "P-IQWP-DCE" "DCE" Unit for "MUM-ARP" Identification'

-Distribution Overlay-

TABLE XI

CIDR Network Descriptor - Scaling IPt1 Address Space

'Scaling the Anatomy of a IPtX Address String'

<table>
<thead>
<tr>
<th>Router-ID</th>
<th>Trunk-Identifier-ID</th>
<th>Network-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) /0000:00 = 0 + /0000:00 = 0 + /0000:00 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copies of 'IPt1' = 1</td>
<td>'Total Address Length 32 Bits'</td>
<td></td>
</tr>
<tr>
<td>2) /0000:00 = 0 + /0000:00 = 1 + /0000:00 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copies of 'IPt1' = 256^4</td>
<td>'Total Address Length 64 Bits'</td>
<td></td>
</tr>
<tr>
<td>3) /0000:00 = 1 + /0000:00 = 1 + /0000:00 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copies of 'IPt1' = (256^4 x 256)</td>
<td>'Total Address Length 96 Bits'</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XI
CIDR Network Descriptor - Scaling IPtX Address Space
'Scaling the Anatomy of a IPtX Address String'

IPt1

IPtX-MX Universal Protocol Allocation

- Class A Address Pool Allocation -

1) \((0000:0E000.0000... = 0^X, \text{ or } (0000:0.0000...E000)\)

- Class B Address Pool Allocation -

2) \(00.0000...E00 = 2^X = 2^N = '00E00.0000...\)

- Class C Address Pool Allocation -

3) \((0000:000E0.0000...), \text{ or } (0000:000.0000...E0)\)

- Class D Address Pool Allocation -

4) \((0000:0000E.0000...), \text{ or } (0000:000.0000.000.000 - IPt1/IPv4)\)

- Class E Address Pool Allocation -

5) \((0000:0000E.0000...), \text{ or } (0000:.0000...E0000)\)

Note: The conjecture leading to the possibility of a 'Quanta Electron', or 'Electron' Particle Size Variation is clearly a rational assumption, defined by the “Rudiments of Finite Physics”, as defining the Pattern of the Accelerated Particle as a function of its “Mass-Displacement” Unit. [7]
TABLE XII

IPtX Addressing Specification - '1')
'CDIR Network Descriptor - Scaling IPt1 Address Space'
- IPtX-MX 32 Bit "Masked" Protocol Specification -

1) /0000:00 = 0 + +/0000:00 = 0 + -/0000:00 = 1

'Total Address Length 32 Bits - '1' Copy of the IPt1 Specification'
Network - ID: Address String Length - IANA/FCC Specifications

'Network ID Address Mask Bit-Mapped Specification'
- IPtX-MX 32 Bit "Masked" Bit-Mapped Specification -
- "Front-End" - "Back-End" Address Masking Specification -
- IANA/FCC Specifications -

'(0000:0E000.0000...) = 0^X$, or (0000:0.0000...E000)
- IANA/FCC Specifications -

'OverLay Design/Address Bit-Mapped Specification'
- See FIGURE 5 -

Note: The actual difference the Theory of the IPtX Specification presents,
is defined by the difference between Linear and Non-Linear Coding,
or the choice between Encoding the Bit-Map of the Data Stream or
Encoding the Bit-Map of the Equation for the Data Stream.
TABLE XIII
IPtX Addressing Specification - '2')
'CDIR Network Descriptor - Scaling IPt1 Address Space'
- IPtX-MX 32 Bit "Masked" Protocol Specification

1) /0000:00 = 0 + +/-0000:00 = 0 + -0000:00 = 1

'Total Address Length 32 Bits - '1' Copy of the IPt1 Specification'
Network - ID: Address String Length - IANA/FCC Specifications

'Network ID Address Mask Bit-Mapped Specification'
- IPtX-MX 32 Bit "Masked" Bit-Mapped Specification
 - "Front-End" - "Back-End" Address Masking Specification
 - IANA/FCC Specifications

' 00.0000...E00 = 2^X = 2^N = '00E00.0000...'
 - IANA/FCC Specifications

'OverLay Design/Address Bit-Mapped Specification'
- See FIGURE 5 -

TABLE XIV
IPtX Addressing Specification - '3')
'CDIR Network Descriptor - Scaling IPt1 Address Space'
- IPtX-MX 32 Bit "Masked" Protocol Specification

1) /0000:00 = 0 + +/-0000:00 = 0 + -0000:00 = 1

'Total Address Length 32 Bits - '1' Copy of the IPt1 Specification'
Network - ID: Address String Length - IANA/FCC Specifications

'Network ID Address Mask Bit-Mapped Specification'
- IPtX-MX 32 Bit "Masked" Bit-MappedSpecification
 - "Front-End" - "Back-End" Address Masking Specification
 - IANA/FCC Specifications

' (0000:000E0.0000...), or (0000:000.0000...E0)'
 - IANA/FCC Specifications

'OverLay Design/Address Bit-Mapped Specification'
- See FIGURE 5 -
TABLE XIV
IPtX Addressing Specification - '4)'
'CDIR Network Descriptor - Scaling IPt1 Address Space'
- IPtX-MX 32 Bit "Masked" Protocol Specification -

1) /0000:00 = 0 + /0000:00 = 0 + /0000:00 = 1

'Total Address Length 32 Bits - '1' Copy of the IPt1 Specification'
Network - ID: Address String Length - IANA/FCC Specifications

'Network ID Address Mask Bit-Mapped Specification'
- IPtX-MX 32 Bit "Masked" Bit-Mapped Specification -
- "Front-End" - "Back-End" Address Masking Specification -
 - IANA/FCC Specifications -

'(0000:0000E..0000) , or (0000:0000.0000.0000 - IPt1/IPv4)'
 - IANA/FCC Specifications -

'OverLay Design/Address Bit-Mapped Specification'
 - See FIGURE 5 -

TABLE XIV
IPtX Addressing Specification - '5)'
'CDIR Network Descriptor - Scaling IPt1 Address Space'
- IPtX-MX 32 Bit "Masked" Protocol Specification -

1) /0000:00 = 0 + /0000:00 = 0 + /0000:00 = 1

'Total Address Length 32 Bits - '1' Copy of the IPt1 Specification'
Network - ID: Address String Length - IANA/FCC Specifications

'Network ID Address Mask Bit-Mapped Specification'
- IPtX-MX 32 Bit "Masked" Bit-Mapped Specification -
- "Front-End" - "Back-End" Address Masking Specification -
 - IANA/FCC Specifications -

'(0000:0000E.0000...) , or (0000:0000...E0000)'
 - IANA/FCC Specifications -

'OverLay Design/Address Bit-Mapped Specification'
 - See FIGURE 5 -
Clearly, while the Address Pool equation, \(X(2^{32}) \), which provides the design of the IPtX Addressing Protocol Family Specification with an impressive IP Address Pool address count availability.

\[
\text{eq-1: } \quad \text{IPtX} = X(2^{32}) + 16,900,000 = \text{Infinity}
\]

\[
\text{eq-2: } \quad \text{IPv6} = X(2^{32}) = (2^{128}) = (256^{16}) = 3.4028237 \times 10^{38}
\]

\[
\text{eq-3: } \quad \text{IPt4} = X(2^{32}) + 16,900,000 \\
= (2^{128}) + 16,900,000 \\
= (256^{16}) + 16,900,000 \\
= 3.4028237 \times 10^{38} + 16,900,000 \text{ Host Addresses}
\]

\[
\text{eq-4: } \quad \text{IPv4} = X(2^{32}); \text{ when } X = 1.
\]

However, it is from the revised definition of the role of the "CIDR Network Descriptor", by TABLE XVI, which actually expands the Address Space of the IPtX Specification beyond IPv6.

E Terrell Internet Draft
CIDR Network Descriptor expands IPtX Add Space October 27th, 2006
In other words, Activation of the Host Address Pool by Encapsulating the Host IP Address (or Subnet IP Address) with the Network-ID (Network IP Address), designs a method for every Address Class Network IP Address with the ability to uniquely identify and Activate every Host-ID from a Shared Host IP Address Pool.

Nevertheless, from the Mathematics of Quantification, in which derivation of the "Distributive Law of the Binary System" (The Distributive Law for Exponential Functions) resulted from the use of "Pythagoras Theorem" to proved the conjecture involving "Fermat's Last Theorem" is true, also changes, and redefines, the resulting IPtX Address Pool equation; in a table of comparisons given below;
eq-1.1: IPtX = X[(2^{32}) + (2^{32})16,900,000] = Infinity

eq-2.1: IPv6 = X(2^{32}) = (2^{128}) = (2^{56}) = 3.4028237 x 10^{38} – Address Pool Total

eq-3.1: IPt4 = X[(2^{32}) + (2^{32})16,900,000 Host Addresses]

= (2^{96})(2^{32}) + (2^{96})(2^{32})16,900,000 Host-ID

= (2^{96})(2^{32}) + (2^{96})(2^{32})16,900,000 Host-ID

= (2^{96})(2^{32}) + (2^{96})(2^{32})16,900,000 Host-ID

= 3.4028237 x 10^{38} + 5.7507720 x 10^{45} Host Addresses

= (2^{96})(2^{32}) + (2^{96})(2^{32})16,900,000 Host-ID

= 5.7507723 x 10^{45} IP Address Pool Total

= X(Y + Y) = XY + XY - The Distributive Law

eq-4.1: IPv4 = X(2^{32}); and since X = 1, then;

eq-4.2: IPt1 = [(2^{32}) + (2^{32})16,900,000 Host-ID]

= (2^{32}) + 7.2584947 x 10^{16} = 7.2584952 x 10^{16} – Address Pool Total

eq-5.1: IPt2 = (2^{32}) [(2^{32}) + (2^{32})16,900,000 Host Addresses]

= 3.1174999 x 10^{26} – Address Pool Total

And more importantly, the flexibility of the Switch implemented for the "CIDR Network Descriptor" allows the possibility of incorporating the definitions of every 'Router Protocol' into 'I' functional Protocol Specification: e.g. - IGMP, ICMP, RARP, TOP, All Query Messages, Redirects, Errors, and Router Solicitation and Queries; etc.
Note: Because the "DCE" Unit of the "IPTX-MX Protocol" can also act as the Bit-Mapped Translation of a 'Carrier Wave', it can also be assigned as the 'Streaming Voice Transport of an Analog Signal' (or a Synchronized Audio Video Wave). And this would provide the means to identify a true Universal Internet-Tel (IP Telephone) Specification, which would, using the 'CIDR Network Descriptor', eliminate the need for Voice and Data Signal Filtering. And more importantly, the Omni Directional Non Linear 3-D Space Cloud, it should be noted, can accommodate Multiple Bit-Mapped Address length Specifications; multiple (or **Multiple Bands & Different Band Widths**) Bit-Mapped Address length Specifications of the Intelligent Quantum Worm Protocol(s) {See - TABLE XV}:

1) allowing a direct Bit-Map Specification equating "e911" and "911" dialing.

2) Establishes the a 3-D Spatial Grid for the Internet, mimicking a GPS 'like' Mathematical Coordinate System, which provides the ability to Triangulate, using Trigonometry, the Location or Destination of any Internet Connection; Cellar Phone(s) included.

3) Emergence Broadcast Beacons - Seismic Monitoring

The Binary Translation/Interpretation of the Electromagnetic Spectrum

Note: It now appears, defined by the Logic of the Mathematics of Quantification, that: "If 2 Electrons (2eV) = 1 Byte, then:

- \[2 \text{ Bits } = 1 \text{ Byte} \]
- \[2 \text{ Electrons } = 2eV = 1 \text{ Byte} \]
- \[2^X = \text{ Analog Signal Frequency} \]
- \[2^{\text{[eV]}} = \text{One Electromagnetic Spectral (} f \text{) Frequency} \]

And this is a valid conclusion, especially since using Logarithmic Translations to resolve the respective Irrational Exponent: if the value of the Unit Measurement of any Frequency is equal to \('1 eV' \) \(\{1 \text{ Electron Volt } = 1 eV\} \),

and \[2^X = 2^0 = 1 \text{ is true, then } 2^{\text{[eV]}} \text{ 'defines (equals the Bit Count) a Neutral result, which does not change or effect the current value for the measurement of any Frequency defined by the Electromagnetic Spectrum. (as defined by the Substitution Law for Equality) } \]
6.3 Special IANA Consideration

- Current Definition(s) for the Measurement of the Bit

Currently defined mathematical relationship(s) defining the Unit Bit:

Binary Digit –

Claude E. Shannon first used the word bit in a 1948 paper. He attributed its origin to John W. Tukey, who had written a Bell Labs memo in 9 January 1947 in which he contracted "binary digit" to simply "bit", forming a portmanteau. Interestingly, Vannevar Bush had written in 1936 of "bits of information" that could be stored on the punch cards used in the mechanical computers of that time. A bit is like a light switch; it can be either on or off. A single bit is a one or a zero, a true or a false, a "flag" which is "on" or "off", or in general, the quantity of information required to distinguish two mutually exclusive states from each other. The bit is the smallest unit of storage currently used in computing.

Unit Bit –

The bit, as a unit of information, is the amount of information carried by a choice between two equally likely outcomes. It is the capacity of one binary digit. One bit corresponds to about 0.693 nats (ln(2)), or 0.301 hartleys (log10(2)). The name bit is mostly used when discussing data capacity, emphasizing the storage of data as individual binary digits. The name “Shannon”, referring to the same unit, is mostly used when discussing information content, emphasizing aggregate information quantity.

A bit refers to a digit in the binary numeral system (base 2). For example, the number 1001011 is 7 bits long. Binary digits are almost always used as the basic unit of information storage and communication in digital computing and digital information theory. Information theory also often uses the natural digit, called either a ‘nit’ or a ‘nat’. Quantum computing also uses ‘qubits’, a single piece of information with a probability of being true.

The bit is also a unit of measurement, the information capacity of one binary digit. It has the symbol bit, and less formally b (see discussion below). The unit is also known as the ‘shannon’, with symbol ‘Sh’.
Ban –

A ban, sometimes called a ‘hartley’ (symbol Hart), is a logarithmic unit, which measures information or entropy, based on base 10 logarithms and powers of 10, rather than the powers of 2 and base 2 logarithms, which define the bit. Like a bit corresponds to a binary digit, a ban is a decimal digit. A ‘deciban’ is one tenth of a ‘ban’. One ‘ban’ corresponds to about 3.32 bits (log2(10)), or 2.30 ‘nats’ (ln(10)). A deciban is about 0.33 bits.

Nat –

A nat (sometimes also nit or even nepit) is a logarithmic unit of information or entropy, based on natural logarithms and powers of e, rather than the powers of 2 and base 2 logarithms which define the bit. The nat is the natural unit for information entropy, corresponding to Boltzmann's constant for thermodynamic entropy. When the Shannon entropy is written using a natural logarithm,

$$H = - \sum_i p_i \ln p_i$$

it is implicitly giving a number measured in nats. One nat corresponds to about 1.44 bits (log2(e)), or 0.434 hartleys (log10(e)).
IEEE 1541 is a standard issued by the Institute of Electrical and Electronics Engineers (IEEE) concerning the use of prefixes for binary multiples of units of measurement related to digital electronics and computing.

While the International System of Units (SI) defines multiples (and submultiples) based on powers of ten (like 10^3, 10^6, etc.), in computing multiples based on powers of two (like 2^{10}, 2^{20}, etc.) have been usually preferred. In the early times, this choice was made due to the intrinsic binary nature of computers, and often of computer equipment (such as RAM chips), considering that the error between $2^{10} = 1024$ and $10^3 = 1000$ was small enough to favor binary multiples. Thus, SI prefixes, such as kilo- (k, usually misspelled as K), mega- (M) and so on, have been used to indicate binary multiples in computer-related quantities that are not SI quantities. Moreover, there is not a consistent use of the symbols to indicate quantities such as bits and bytes. IEEE 1541 sets new recommendations to represent those quantities and units unambiguously.

After a trial period of two years, in 2005 IEEE 1541-2002 has been elevated to a full-use standard by the IEEE Standards Association, and it is now scheduled for maintenance in 2007.

<table>
<thead>
<tr>
<th>SI prefix and (rare binary meaning)</th>
<th>Binary prefix standards from IEC 60027-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Symbol</td>
</tr>
<tr>
<td>kilobit</td>
<td>kb</td>
</tr>
<tr>
<td>megabit</td>
<td>Mb</td>
</tr>
<tr>
<td>gigabit</td>
<td>GB</td>
</tr>
<tr>
<td>terabit</td>
<td>TB</td>
</tr>
<tr>
<td>petabit</td>
<td>PB</td>
</tr>
<tr>
<td>exabit</td>
<td>EB</td>
</tr>
<tr>
<td>zettabit</td>
<td>ZB</td>
</tr>
<tr>
<td>yottabit</td>
<td>YB</td>
</tr>
</tbody>
</table>
Special Note: Clearly, the profound interpretation underpinning the foundational theory for the IPtX Protocol Specification, which transcends the prescribed purpose defining its application, redefines the:

- Electromagnetic Scale – providing Precision Tuning
- Quantum Scale Theory – Changing the Propagation Frequency
- Quantum Scale Theory – Changing the Radiation Frequency
- Quantum Scale Theory – Changing the Energy Mass Relationship
- Electromagnetic Scale – New Physics - Quantum Scale Theory
- Quantum Scale Theory – Work Energy Relationship Redefined
- Electromagnetic Scale – Defining the Frequency of an IP Address
- Quantum Scale Theory – Resolving Issues from Radiation Exposure
- Quantum Scale Theory – A New Energy Cache Defined
- Quantum Scale Theory – Defining the Electron Bit Relationship
- Quantum Scale – Mathematics of the Electromagnetic Spectrum

It is of special importance to mention that IEEE, specification 1541-2002, did not make any reference to the possibility of a Bit-Map association with an Electron. And this it can be said, is probably due, in part(s); to the inability to resolve a mathematical relationship associating the Unit Bit with the measurement of the Frequencies defined by the Electromagnetic Spectrum, the lack of an understanding of the Electronic States of Matter, or the failure to understand the mathematics of Exponential (Binary) Enumeration and the respective Logarithmic Translations resolving an Irrational Exponent.

Nevertheless, while providing IANA, FCC, and all other noted Regulatory Agencies [defined with FCC responsibilities within their respective ZONE IP location(s); e.g. IEEE], with an extremely broad range of decision options, concluding the overall general design and operational procedures for the IPtX Addressing Protocol Family Specification. However, embedded within the context of this document are the Preferred, or Recommended Operational Procedures that mandates the continued existence of the mathematical continuity ascribed by the Hierarchy of the IPtX Specification, which assigns the controlling position of the Address Space (containing the “Front-End” and the “Back-End”) to the “Front-End”.

E Terrell
Internet Draft

CIDR Network Descriptor expands IPtX Add Space

October 27th, 2006
Work(s) in Progress;

These drafts represent the twelve chapters of the Networking Bible, designing a Network IP Addressing Specification that maintains a 100 Percent backward compatibility with the IPv4 Specification. In other words, this is a design specification developed from the Theory of the Expansion of the IPv4 IP Addressing Specification, which allowed the representation of the Network for the entire World on paper, and the possibility of an Infinite IP Address Pool. Nevertheless, the Internet-Drafts listed below, “Cited as Work(s) in Progress”, explain the design Specification for the development of the IPtX (IP Telecommunications Specification) Protocol Addressing System and the correction of the Mathematical Error in the Binary System.

Computer Science / Internet Technology:

http://www.ietf.org/internet-drafts/draft-terrell-logic-analy-bin-spec-ipv7-ipv8-10.txt
(Foundational Theory for the New IPtX family IP Addressing Specification, and the Binary Enumeration error discovery after the correction.) - "Work(s) in Progress’

(The 2nd proof for the existence of another Binary System, resulting from the Error Correction.) - "Work(s) in Progress’

(Argument against the Machine dependant IPv6 deployment.) - "Work(s) in Progress’

(The foundation of the New IPtX Addressing Spec compared to the Telephone Numbering System.) - "Work(s) in Progress’

(The IPtX Addressing Specification Address Space / IP Address Allocation Table; establishes the visual perspective that actually represents Networking Schematic Networking the entire World on Paper.) - "Work(s) in Progress’

(Re-Defines CIDR) [Classes Inter-Domain Routing Architecture] and introduces the Network Descriptor for the IPtX Addressing Standard.) - "Work(s) in Progress’

(The 3rd Proof for the New Binary System, correcting the error in Binary Enumeration.) - "Work(s) in Progress’

(Defining the GWEBS – The Global Wide Emergency Broadcast System) - "Work(s) in Progress’

(The development of the DHCP {Dynamic Host Configuration Protocol} for the IPtX IPSpec) - "Work(s) in Progress’
7. Normative References:

Pure Mathematics:

1. The Proof of Fermat’s Last Theorem; The Revolution in Mathematical Thought {Nov 1979}
 Outlines the significance of the need for a thorough understanding of the Concept of
 Quantification and the Concept of the Common Coefficient. These principles, as well many others,
 were found to maintain an unyielding importance in the Logical Analysis of Exponential
 Equations in Number Theory.

2. The Rudiments of Finite Algebra; The Results of Quantification {July 1983}
 Demonstrates the use of the Exponent in Logical Analysis, not only of the Pure Arithmetic
 Functions of Number Theory, but Pure Logic as well. Where the Exponent was utilized in the
 Logical Expansion of the underlining concepts of Set Theory and the Field Postulates. The results
 yield another Distributive Property that is Conditional, which supports the existence of a Finite
 Field (i.e. Distributive Law for Exponential Functions) and emphasized the possibility of an
 Alternate View of the Entire Mathematical field.

3. The Rudiments of Finite Geometry; The Results of Quantification {June 2003}
 Building upon the preceding works from which the Mathematics of Quantification was derived.
 Where by it was logically concluded that there existed only 2 mathematical operations; Addition
 and Subtraction. In other words, the objectives this treatise maintained, which was derived from
 the foundation of the Mathematics of Quantification; involves not only the clarification of the
 misconceptions concerning Euclid’s Fifth Postulate, and the logical foundation of his work, or the
 existence of ‘Infinity in a Closed Bound Finite Space’. But, the logical derivation of the
 Foundational Principles that are consistence with the foundation presented by Euclid, which would
 establish the logical format for the Unification of all the Geometries presently existing.

4. The Rudiments of Finite Trigonometry; The Results of Quantification {July 2004}
 The development of the concepts for Finite Trigonometry from the combined foundations derived
 from numbers 3 and 5, and the Mathematics of Quantification.

5. The Mathematics of Quantification and the Metamorphosis of \(\pi : \tau \) { October 2004}
 The logical derivation of the exact relationship between the Circumference and the Diameter of
 the Circle, which defines the measurement of the exact length of the Circle’s Circumference, \(\tau \)
 when the Radius is equal to ‘1’.
6. Squaring the Circle? First! What is the Circle's Area? {January 2005}
The Rhind Papyrus Tale, and the 10,000 year old quest involving “Squaring the Circle”;
Derivation of the equation resolving the Area of the Circle. An illusion perplexing the Sight
and Mind of the greatest mathematicians for about 10,000 years, which maintains an elementary
algebraic solution: \((\pi r^2) = \text{Area of Circle} \).

Physics:

7. The Mathematics of Quantification & The Rudiments of Finite Physics
The Analysis of Newton’s Laws of Motion…the Graviton’ {December 2004}
Through the use of Finite Algebra, Geometry, Trigonometry, and # 5, investigation of the
Laws of Classical Physics were found to be erroneous. This allowed the presentation of the
initial work, which correct the flaws in Classical Physics, and establishes the foundation upon
which there exist the possibility of a Grand Unified Field Theory for the Natural Sciences.
Informative References

1. G Boole (Dover publication, 1958) "An Investigation of The Laws of Thought" On which is founded The Mathematical Theories of Logic and Probabilities; and the Logic of Computer Mathematics.

3. R Carnap (Dover Publications, 1958) "Introduction to Symbolic Logic and its Applications"

4. Regis Desmeules (Cisco Press, April 24, 2003) "Cisco Self-Study: Implementing Cisco IPv6 Networks"

5. Gary C. Kessler (Auerbach Press, August 1997) "Handbook on Local Area Networks"

6. R. Hinden (Nokia) and S. Deering (Cisco Systems) RFC 2373 - "IP Version 6 Addressing Architecture"

Author:

Eugene Terrell

Principle Director
Research & Development

Engineering Theoretical Technologies
Research & Development Publications
(ETT-R&D Publications)

3312 64th Avenue Place
Oakland, CA. 94605
Voice: 510-636-9885
E-Mail: eterrell00@netzero.net

"This work is Dedicated to my first and only child, 'Princess Yahnay', because she is the gift of Dreams, the true treasure of my reality, and the 'Princess of the Universe'. (E.T. 2006)"