Network Working Group V. Smyslov Internet-Draft ELVIS-PLUS Intended status: Informational November 30, 2021 Expires: June 3, 2022 Using GOST ciphers in ESP and IKEv2 draft-smyslov-esp-gost-07 Abstract This document defines a set of encryption transforms for use in the Encapsulating Security Payload (ESP) and in the Internet Key Exchange version 2 (IKEv2) protocols. The transforms are based on Russian cryptographic standard algorithms (GOST) in a Multilinear Galois Mode (MGM). This specification is developed to facilitate implementations that wish to support the GOST algorithms. This document does not imply IETF endorsement of the cryptographic algorithms used in this document. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on June 3, 2022. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents Smyslov Expires June 3, 2022 [Page 1] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4. Transforms Description . . . . . . . . . . . . . . . . . . . 3 4.1. Tree-based External Re-Keying . . . . . . . . . . . . . . 4 4.2. Initialization Vector Format . . . . . . . . . . . . . . 5 4.3. Nonce Format for MGM . . . . . . . . . . . . . . . . . . 6 4.3.1. MGM Nonce Format for "Kuznyechik" based Transforms . 6 4.3.2. MGM Nonce Format for "Magma" based Transforms . . . . 7 4.4. Keying Material . . . . . . . . . . . . . . . . . . . . . 7 4.5. Integrity Check Value . . . . . . . . . . . . . . . . . . 8 4.6. Plaintext Padding . . . . . . . . . . . . . . . . . . . . 8 4.7. AAD Construction . . . . . . . . . . . . . . . . . . . . 8 4.7.1. ESP AAD . . . . . . . . . . . . . . . . . . . . . . . 8 4.7.2. IKEv2 AAD . . . . . . . . . . . . . . . . . . . . . . 10 4.8. Using Transforms . . . . . . . . . . . . . . . . . . . . 10 5. Security Considerations . . . . . . . . . . . . . . . . . . . 11 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 12 7.1. Normative References . . . . . . . . . . . . . . . . . . 12 7.2. Informative References . . . . . . . . . . . . . . . . . 13 Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . 14 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 22 1. Introduction This document defines four transforms for the Encapsulating Security Payload protocol (ESP) [RFC4303] and for the Internet Key Exchange protocol version 2 (IKEv2) [RFC7296]. These document is based on Russian Standard [GOST-ESP], which describes how Russian cryptographic standard algorithms are used in ESP and IKEv2. Transforms defined in this document are based on two block ciphers from Russian cryptographic standard algorithms (often called "GOST" algorithms) - "Kuznyechik" [GOST3412-2015][RFC7801] and "Magma" [GOST3412-2015][RFC8891] in Multilinear Galois Mode (MGM) [GOST-MGM][RFC9058]. These transforms provide Authenticated Encryption with Associated Data (AEAD). An external re-keying mechanism, described in [RFC8645] is also used in these transforms to limit load on session keys. Smyslov Expires June 3, 2022 [Page 2] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 This specification is developed to facilitate implementations that wish to support the GOST algorithms. This document does not imply IETF endorsement of the cryptographic algorithms used in this document. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Overview Russian cryptographic standard algorithms, often referred as "GOST" algorithms, constitute a set of cryptographic algorithms of different types - ciphers, hash functions, digital signatures etc. In particular, Russian cryptographic standard [GOST3412-2015] defines two block ciphers - "Kuznyechik" (also defined in [RFC7801]) and "Magma" (also defined in [RFC8891]). Both ciphers use 256-bit key. "Kuznyechik" has a block size of 128 bits, while "Magma" has a 64-bit block. Multilinear Galois Mode (MGM) is an AEAD mode defined in [GOST-MGM][RFC9058]. It is claimed to provide defense against some attacks on well-known AEAD modes, like Galois Counter Mode (GCM). [RFC8645] defines mechanisms that can be used to limit the number of times any particular session key is used. One of these mechanisms, called external re-keying with tree-based construction (defined in Section 5.2.3 of [RFC8645]), is used in the defined transforms. For the purpose of deriving subordinate keys a Key Derivation Function (KDF) KDF_GOSTR3411_2012_256 defined in Section 4.5 of [RFC7836], is used. This KDF is based on an HMAC [RFC2104] in a combination with a Russian GOST hash function defined in Russian cryptographic standard [GOST3411-2012] (also defined in [RFC6986]). 4. Transforms Description This document defines four transforms for use in ESP and IKEv2. All of them use MGM mode of operation with tree-based external re-keying. The transforms differ in underlying ciphers and in cryptographic services they provide. o ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform based on "Kuznyechik" algorithm; it provides confidentiality and message authentication and thus can be used both in ESP and IKEv2 Smyslov Expires June 3, 2022 [Page 3] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 o ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based on "Magma" algorithm; it provides confidentiality and message authentication and thus can be used both in ESP and IKEv2 o ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only transform based on "Kuznyechik" algorithm; it provides no confidentiality and thus can only be used in ESP, but not in IKEv2 o ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform based on "Magma" algorithm; it provides no confidentiality and thus can only be used in ESP, but not in IKEv2 4.1. Tree-based External Re-Keying All four transforms use the same tree-based external re-keying mechanism. The idea is that the key that is provided for the transform (Child SA key derived from KEYMAT in case of ESP or SK_ei/ SK_er in case of IKEv2) is not directly used to protect messages. Instead a tree of keys is derived using this key as a root. This tree may have several levels. The leaf keys are used for messages protection, while intermediate nodes keys are used to derive lower level keys (including leaf keys). See Section 5.2.3 of [RFC8645] for more details. This construction allows to protect a large amount of data, at the same time providing a bound on a number of times any particular key in the tree is used, thus defending from some side channel attacks. The transforms defined in this document use three-level tree. The leaf key that protects a message is computed as follows: K_msg = KDF (KDF (KDF (K, l1, i1), l2, i2), l3, i3) where: KDF (k, l, s) Key Derivation Function KDF_GOSTR3411_2012_256 defined in Section 4.5 of [RFC7836], which accepts three input parameters - a key (k), a label (l) and a seed (s) and provides a new key as an output; K the key for the transform (ESP SA key derived from KEYMAT or SK_ei/SK_er in case of IKEv2); l1, l2, l3 labels defined as 6 octet ASCII strings without null termination: l1 = "level1" l2 = "level2" Smyslov Expires June 3, 2022 [Page 4] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 l3 = "level3" i1, i2, i3 parameters that determine which keys out of the tree are used on each level, altogether they determine a leaf key that is used for message protection; these parameters are two octet integers in network byte order; This construction allows to generate up to 2^16 keys on each level, but due to IV construction (see Section 4.2) the number of possible keys on the level 1 is limited to 2^8. So, the total number of possible leaf keys generated from one SA key is 2^40. This specification doesn't impose any requirements on the frequency the external re-keying takes place. It is expected that sending application will follow its own policy dictating how many times the keys on each level must be used. 4.2. Initialization Vector Format Each message protected by the defined transforms MUST contain Initialization Vector (IV). The IV has a size of 64 bits and consists of the four fields, three of which are i1, i2 and i3 parameters that determine the particular leaf key this message was protected with (see Section 4.1), and the fourth is a counter, representing the message number for this key. 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | i1 | i2 | i3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | i3 (cont) | pnum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: IV Format where: o i1 (1 octet), i2 (2 octets), i3 (2 octets) - parameters, determining the particular key used to protect this message; 2-octets parameters are integers in network byte order o pnum (3 octets) - message counter in network byte order for the leaf key protecting this message; up to 2^24 messages may be protected using a single leaf key Smyslov Expires June 3, 2022 [Page 5] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 For any given SA the IV MUST NOT repeat, but there is no requirement that IV is unpredictable. 4.3. Nonce Format for MGM MGM requires a per-message nonce (called Initial Counter Nonce, ICN, in the [RFC9058]) that must be unique in the context of any leaf key. The size of the ICN is n-1 bits, where n is the block size of the underlying cipher. The two ciphers used in the transforms defined in this document have different block sizes, so two different formats for the ICN are defined. MGM specification requires that the nonce be n-1 bits in size, where n is the block size of the underlying cipher. This document defines MGM nonces that are n bits in size, because that makes them having a whole number of bytes. When used inside MGM the most significant bit of the first octet of the nonce (represented as an octet string) is dropped, making an effective size of the nonce equal to n-1 bits. Note, that the dropped bit is a part of zero field (see Figure 2 and Figure 3) which is always set to 0, so no information is lost when it is dropped. 4.3.1. MGM Nonce Format for "Kuznyechik" based Transforms For transforms based on "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) the ICN consists of a zero octet, a 24-bit message counter and a 96-bit secret salt, that is fixed for SA and is not transmitted. 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | zero | pnum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | salt | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: Nonce format for "Kuznyechik" based transforms where: o zero (1 octet) - set to 0 o pnum (3 octets) - the counter for the messages protected by the given leaf key; this field MUST be equal to the pnum field in the IV Smyslov Expires June 3, 2022 [Page 6] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 o salt (12 octets) - secret salt 4.3.2. MGM Nonce Format for "Magma" based Transforms For transforms based on "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE) the ICN consists of a zero octet, a 24-bit message counter and a 32-bit secret salt, that is fixed for SA and is not transmitted. 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | zero | pnum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | salt | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 3: Nonce format for "Magma" based transforms where: o zero (1 octet) - set to 0 o pnum (3 octets) - the counter for the messages protected by the given leaf key; this field MUST be equal to the pnum field in the IV o salt (4 octets) - secret salt 4.4. Keying Material The key for ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits, of which the first 256 bits is a root key for the tree (denoted as K in Section 4.1) and the remaining 96 bits is a secret salt (see Section 4.3.1). The key for ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits, of which the first 256 bits is a root key for the tree (denoted as K in Section 4.1) and the remaining 32 bits is a secret salt (see Section 4.3.2). The keys in case ESP are extracted from the KEYMAT, and in case IKEv2 they are SK_ei/SK_er keys. Note, that since these transforms provide authenticated encryption, no additional keys are needed for authentication. It means that in case of IKEv2 the keys SK_ai/SK_ar are not used. Smyslov Expires June 3, 2022 [Page 7] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 4.5. Integrity Check Value The MGM computes authentication tag equal to the block size of the underlying cipher. For "Kuznyechik" based transforms (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) the resulting Integrity Check Value (ICV) is truncated to 96 bits by dropping the last 4 octets of the produced authentication tag. For "Magma" based transforms (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE) the full 64-bit authentication tag is used as ICV. 4.6. Plaintext Padding Transforms defined in this document don't require any plaintext padding, as specified in [RFC9058]. It means, that only those padding requirements that are imposed by the protocol are applied (4 bytes for ESP, no padding for IKEv2). 4.7. AAD Construction 4.7.1. ESP AAD Additional Authenticated Data (AAD) in ESP is constructed differently depending on the transform being used and whether Extended Sequence Number (ESN) is in use or not. The ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE provide confidentiality, so the content of the ESP body is encrypted and AAD consists of the ESP SPI and (E)SN. The AAD is constructed similarly to the one in [RFC4106]. On the other hand the ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE don't provide confidentiality, they provide only message authentication. For this purpose the IV and the part of ESP packet that is normally encrypted are included in the AAD. For these transforms encryption capability provided by MGM is not used. The AAD is constructed similarly to the one in [RFC4543]. 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SPI | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 32-bit Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: AAD for AEAD transforms with 32-bit SN Smyslov Expires June 3, 2022 [Page 8] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SPI | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 64-bit Extended Sequence Number | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5: AAD for AEAD transforms with 64-bit ESN 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SPI | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 32-bit Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IV | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Payload Data (variable) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Padding (0-255 bytes) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Pad Length | Next Header | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 6: AAD for authentication only transforms with 32-bit SN Smyslov Expires June 3, 2022 [Page 9] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SPI | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 64-bit Extended Sequence Number | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IV | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Payload Data (variable) ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Padding (0-255 bytes) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Pad Length | Next Header | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 7: AAD for authentication only transforms with 64-bit ESN 4.7.2. IKEv2 AAD For IKEv2 the AAD consists of the IKEv2 Header, any unencrypted payloads followed it (if they are present) and the Encrypted (or the Encrypted Fragment) payload header. The AAD is constructed similar to one in [RFC5282]. 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ IKEv2 Header ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Unencrypted IKE Payloads ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next Payload |C| RESERVED | Payload Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 8: AAD for IKEv2 4.8. Using Transforms When SA is established the i1, i2 and i3 parameters are set to 0 by the sender and a leaf key is calculated. The pnum parameter starts from 0 and is incremented with each message protected by the same leaf key. When sender decides that the leaf should be changed, it increments i3 parameter and generates a new leaf key. The pnum Smyslov Expires June 3, 2022 [Page 10] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 parameter for the new leaf key is reset to 0 and the process continues. If the sender decides, that 3-rd level key corresponding to i3 is used enough times, it increments i2, resets i3 to 0 and calculates a new leaf key. The pnum is reset to 0 (as with every new leaf key) and the process continues. Similar procedure is used when 2-nd level key needs to be changed. Note, that i1, i2, i3 and pnum MUST NOT wrap around. If case i2, i3 or pnum reach their maximum values, a procedure of changing a leaf key described above MUST be executed. If i3 reaches its maximum value, the IPsec SA MUST NOT be used. There may be other conditions to recalculate leaf keys besides reaching maximum values for the counters. For example, the sender may count a number of octets protected by a particular leaf key and generate a new key when some threshold is reached. The receiver always uses i1, i2 and i3 from the received message. If they differ from the values in previously received packets, a new leaf key is calculated. The pnum parameter is always used from the received packet. To improve performance implementations may cache recently used leaf key. When new leaf key is calculated (based on the values from received message) the old key may be kept for some time to improve performance in case of possible packet reordering (when packets protected by the old leaf key are delayed and arrive later). 5. Security Considerations The most important security consideration for MGM is that the nonce MUST NOT repeat for a given key. For this reason the transforms defined in this document MUST NOT be used with manual keying. Security properties of MGM are discussed in [MGM-SECURITY]. 6. IANA Considerations IANA maintains a registry of "Internet Key Exchange Version 2 (IKEv2) Parameters" with a sub-registry of "Transform Type Values". IANA has assigned four Transform IDs in the "Transform Type 1 - Encryption Algorithm Transform IDs" registry and is requested to update their references to this document (where RFCXXXX is this document): Smyslov Expires June 3, 2022 [Page 11] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 Number Name ESP Reference IKEv2 Reference --------------------------------------------------------------------- 32 ENCR_KUZNYECHIK_MGM_KTREE [RFCXXXX] [RFCXXXX] 33 ENCR_MAGMA_MGM_KTREE [RFCXXXX] [RFCXXXX] 34 ENCR_KUZNYECHIK_MGM_MAC_KTREE [RFCXXXX] Not allowed 35 ENCR_MAGMA_MGM_MAC_KTREE [RFCXXXX] Not allowed 7. References 7.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005, . [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October 2014, . [RFC6986] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012: Hash Function", RFC 6986, DOI 10.17487/RFC6986, August 2013, . [RFC7801] Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016, . [RFC8891] Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015: Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891, September 2020, . [RFC9058] Smyshlyaev, S., Ed., Nozdrunov, V., Shishkin, V., and E. Griboedova, "Multilinear Galois Mode (MGM)", RFC 9058, DOI 10.17487/RFC9058, June 2021, . Smyslov Expires June 3, 2022 [Page 12] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 [RFC7836] Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V., Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines on the Cryptographic Algorithms to Accompany the Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012", RFC 7836, DOI 10.17487/RFC7836, March 2016, . 7.2. Informative References [GOST3411-2012] Federal Agency on Technical Regulating and Metrology, "Information technology. Cryptographic Data Security. Hashing function", GOST R 34.11-2012, 2012. (In Russian) [GOST3412-2015] Federal Agency on Technical Regulating and Metrology, "Information technology. Cryptographic data security. Block ciphers", GOST R 34.12-2015, 2015. (In Russian) [GOST-MGM] Federal Agency on Technical Regulating and Metrology, "Information technology. Cryptographic data security. Authenticated encryption block cipher operation modes", R 1323565.1.026-2019, 2019. (In Russian) [GOST-ESP] Federal Agency on Technical Regulating and Metrology, "Information technology. Cryptographic data security. Using Russian cryptographic algorithms in data security protocol ESP", R 1323565.1.035-2021, 2021. (In Russian) [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed- Hashing for Message Authentication", RFC 2104, DOI 10.17487/RFC2104, February 1997, . [RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)", RFC 4106, DOI 10.17487/RFC4106, June 2005, . Smyslov Expires June 3, 2022 [Page 13] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 [RFC4543] McGrew, D. and J. Viega, "The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543, DOI 10.17487/RFC4543, May 2006, . [RFC5282] Black, D. and D. McGrew, "Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol", RFC 5282, DOI 10.17487/RFC5282, August 2008, . [RFC8645] Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019, . [MGM-SECURITY] Akhmetzyanova, L., Alekseev, E., Karpunin, G., and V. Nozdrunov, "Security of Multilinear Galois Mode (MGM)", 2019, . Appendix A. Test Vectors 1. ENCR_KUZNYECHIK_MGM_KTREE, example 1: Smyslov Expires June 3, 2022 [Page 14] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38 i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000 K_msg: 2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4 salt [12]: 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45 nonce [16]: 00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45 IV [8]: 00 00 00 00 00 00 00 00 AAD [8]: 51 46 53 6b 00 00 00 01 plaintext [64]: 45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5 0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 ciphertext [64]: 18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f ESP ICV [12]: 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed ESP packet [112]: 45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5 0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00 00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed 2. ENCR_KUZNYECHIK_MGM_KTREE, example 2: Smyslov Expires June 3, 2022 [Page 15] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38 i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000 K_msg: 9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36 66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc salt [12]: 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45 nonce [16]: 00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45 IV [8]: 00 00 01 00 01 00 00 00 AAD [8]: 51 46 53 6b 00 00 00 10 plaintext [64]: 45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5 0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 ciphertext [64]: 78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d ESP ICV [12]: c2 2f 87 40 83 8e 3d fa ce 91 cc b8 ESP packet [112]: 45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5 0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00 01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8 3. ENCR_MAGMA_MGM_KTREE, example 1: Smyslov Expires June 3, 2022 [Page 16] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: 5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c 22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03 i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000 K_msg: 25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76 5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f salt [4]: cf 36 63 12 nonce [8]: 00 00 00 00 cf 36 63 12 IV [8]: 00 00 00 00 00 00 00 00 AAD [8]: c8 c2 b2 8d 00 00 00 01 plaintext [64]: 45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5 0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 ciphertext [64]: fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8 ESP ICV [8]: 5f 4a fa 8b 02 94 0f 5c ESP packet [108]: 45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5 0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00 00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8 5f 4a fa 8b 02 94 0f 5c 4. ENCR_MAGMA_MGM_KTREE, example 2: Smyslov Expires June 3, 2022 [Page 17] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: 5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c 22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03 i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000 K_msg: 20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a 39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08 salt [4]: cf 36 63 12 nonce [8]: 00 00 00 00 cf 36 63 12 IV [8]: 00 00 01 00 01 00 00 00 AAD [8]: c8 c2 b2 8d 00 00 00 10 plaintext [64]: 45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5 0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 ciphertext [64]: 7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd ESP ICV [8]: dd 5d 50 9a fd b8 09 98 ESP packet [108]: 45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5 0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00 01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd dd 5d 50 9a fd b8 09 98 5. ENCR_KUZNYECHIK_MGM_MAC_KTREE, example 1: Smyslov Expires June 3, 2022 [Page 18] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: 98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4 88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000 K_msg: 98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21 8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f salt [12]: 6c 51 cb ac 93 c4 5b ea 99 62 79 1d nonce [16]: 00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d IV [8]: 00 00 00 00 00 00 00 00 AAD [80]: 3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 plaintext [0]: ciphertext [0]: ESP ICV [12]: ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d ESP packet [112]: 45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5 0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d 6. ENCR_KUZNYECHIK_MGM_MAC_KTREE, example 2: Smyslov Expires June 3, 2022 [Page 19] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: 98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4 88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000 K_msg: 02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8 a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84 salt [12]: 6c 51 cb ac 93 c4 5b ea 99 62 79 1d nonce [16]: 00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d IV [8]: 00 00 00 00 01 00 00 00 AAD [80]: 3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 plaintext [0]: ciphertext [0]: ESP ICV [12]: ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91 ESP packet [112]: 45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5 0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91 7. ENCR_MAGMA_MGM_MAC_KTREE, example 1: Smyslov Expires June 3, 2022 [Page 20] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39 2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30 i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000 K_msg: 4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7 ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46 salt [4]: 88 79 8f 29 nonce [8]: 00 00 00 00 88 79 8f 29 IV [8]: 00 00 00 00 00 00 00 00 AAD [80]: 3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 plaintext [0]: ciphertext [0]: ESP ICV [8]: 4d d4 25 8a 25 35 95 df ESP packet [108]: 45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5 0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 4d d4 25 8a 25 35 95 df 8. ENCR_MAGMA_MGM_MAC_KTREE, example 2: Smyslov Expires June 3, 2022 [Page 21] Internet-Draft GOST ciphers in ESP & IKEv2 November 2021 K: d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39 2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30 i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000 K_msg: b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0 e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28 salt [4]: 88 79 8f 29 nonce [8]: 00 00 00 00 88 79 8f 29 IV [8]: 00 00 00 00 01 00 00 00 AAD [80]: 3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 plaintext [0]: ciphertext [0]: ESP ICV [8]: 84 84 a9 23 30 a0 b1 96 ESP packet [108]: 45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5 0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04 84 84 a9 23 30 a0 b1 96 Author's Address Valery Smyslov ELVIS-PLUS PO Box 81 Moscow (Zelenograd) 124460 RU Phone: +7 495 276 0211 Email: svan@elvis.ru Smyslov Expires June 3, 2022 [Page 22]