
QUIC H. Shi
Internet-Draft Y. Cui
Intended status: Informational Z. Liu
Expires: May 20, 2020 Tsinghua University
 November 17, 2019

 Deadline-aware Transport Protocol
 draft-shi-quic-dtp-00

Abstract

 This document defines Deadline-aware Transport Protocol (DTP) to
 provide block-based deliver-before-deadline transmission. The
 intention of this memo is to describe a mechanism to fulfill
 unreliable transmission based on QUIC as well as how to enhance
 timeliness of data delivery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 20, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Shi, et al. Expires May 20, 2020 [Page 1]

Internet-Draft DTP November 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Conventions . 2
 2. Motivation . 2
 3. Design of DTP . 4
 3.1. Abstraction . 4
 3.2. Architecture of DTP 4
 3.3. Deadline-aware Scheduler 6
 3.4. Deadline-aware Redundancy 6
 3.5. Loss Detection and Congestion Control 7
 4. Extension of QUIC . 7
 5. API of DTP . 7
 6. IANA Considerations . 11
 7. Security Considerations 11
 8. Normative References . 11
 Authors’ Addresses . 11

1. Introduction

 Many emerging applications have the deadline requirement for their
 data transmission. However, current transport layer protocol like
 TCP [RFC0793] and UDP [RFC0768] only provide primitive connection
 establishment and data sending service. This document proposes a new
 transport protocol atop QUIC [QUIC] to deliver application data
 before end-to-end deadline.

1.1. Conventions

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
 they appear in this document, are to be interpreted as described in
 [RFC2119].

2. Motivation

 Many applications such as real-time media and online multiplayer
 gaming have requirements for their data to arrive before a certain
 time i.e., deadline. For example, the end-to-end delay of video
 conferencing system should be below human perception (about 100ms) to
 enable smooth interaction among participants. For Online multiplayer
 gaming, the server aggregates each player’s actions every 60ms and
 distributes these information to other players so that each player’s
 state can be kept in sync.

Shi, et al. Expires May 20, 2020 [Page 2]

Internet-Draft DTP November 2019

 These real-time applications have following common features:

 o They tend to generate and process the data in block fashion. Each
 block is a minimal data processing unit. Missing a single byte of
 data will make the block useless. For example, video/audio
 encoder produces the encoded streams as a series of block(I,B,P
 frame or GOP). Decoder consumes the frame into the full image.
 For online games, the player’s commands and world state will be
 bundled together as a message.

 o They will continuously generate new data. Different from web
 browsing or file syncing, real-time applications like video
 conferencing and online multiplayer gaming have uninterruptedly
 interactions with users, and each interaction requires a bunch of
 new data to be transmitted.

 o They prefer the timeliness of data instead of reliability since
 blocks missing deadline are useless to application and will be
 obsoleted by newer data. For example in multiplayer online games,
 the gaming server will broadcast the latest player states to every
 client, and the old information does not matter if it can not be
 delivered in time. So the meaningful deadline of the application
 is actually the block completion time i.e., the time between when
 the block is generated at sender and when the block is submitted
 to application at receiver.

 However, current transport layer protocols lack support for block-
 based deadline delivery. TCP guarantees reliability so it will waste
 network resource to transmit stale data and cause fresh data to miss
 its deadline. UDP is unreliable but it doesn’t drop data according
 to deadline, all data have the same chance to be dropped indeed.
 QUIC makes several improvements and introduces Stream Prioritization
 [QUIC] to enhance application performance, but prioritization is not
 enough for enhancing timeliness.

 Insufficiency of existing transport layer forces applications to
 design their own customized and complex mechanism to meet the
 deadline requirement. For example, the video bitrate auto-adjustment
 in most streaming applications. But this is a disruption to the
 Layered Internet Architecture, since application is not supposed to
 worry about network conditions.

 This document proposes Deadline-aware Transport Protocol (DTP) to
 provide deliver-before-deadline transmission. DTP is implemented as
 an extension of QUIC (Refer to [Section 4]) because QUIC provides
 many useful building blocks including full encryption, user space
 deployment, zero-RTT handshake and multiplexing without head-of-line
 blocking.

Shi, et al. Expires May 20, 2020 [Page 3]

Internet-Draft DTP November 2019

3. Design of DTP

 The key insight of DTP is that these real-time applications usually
 have multiple blocks (As shown in Figure 1 below) to be transferred
 simultaneously and these blocks have diverse impact on user
 experience(denoted as priority). For example, audio data is more
 important than video stream in video conferencing. Central region is
 more important than surrounding region in 360 degree video.
 Foreground object rendering is more important than the background
 scene in mobile VR offloading.

 The priority difference among multiple blocks makes it possible to
 drop low priority data to improve timeliness of high priority data
 delivery, which can enhance the overall QoE if resources allocated to
 blocks are correctly prioritized. In this section, we describe the
 mechanism which enables DTP to leverage that insight.

3.1. Abstraction

 DTP provides block-based data abstraction for application to
 facilitate the scheduling decision. Application can attach metadata
 along with the data block, those metadata include:

 o Each block has a deadline requirement, meaning if the block cannot
 arrive before the deadline, then the whole block may become
 useless because it will be overwrote by newer blocks. The
 application can mark the deadline timestamp indicating the
 deadline of its completion time. In the API of DTP, the deadline
 argument represents the desired block completion time in ms.

 o Each block has its own importance to the user experience. The
 application can assign each block a priority to indicate the
 importance of the block. The lower the priority value, the more
 important the block. The priority argument also indicates the
 reliability requirement of the block. The higher priority, the
 less likely the block will be dropped by sender.

3.2. Architecture of DTP

 The sender side architecture is shown in Figure 1:

Shi, et al. Expires May 20, 2020 [Page 4]

Internet-Draft DTP November 2019

 +-------------+
 | |
 | Application |
 | |
 +-------------+
 |
 |
 V
 +---+
 | 0 1 n |
 | +----+---+---+ +----+---+---+ +----+---+---+ |
 | |Data| D | P | |Data| D | P | ... |Data| D | P | |<--+ Lost
 | +----+---+---+ +----+---+---+ +----+---+---+ | | Packet
 | D: Deadline P: Priority | |
 +---+ |
 | |
 | |
 V |
 +-------------+ |
 | | | Bandwidth
 | Scheduler |<----------------------+ &
 | | | RTT
 +-------------+ |
 | |
 | |
 V |
 +-------------+ |
 | | |
 | Redundancy |<----------------------+ Loss
 | Encoder | | Rate
 +-------------+ |
 | |
 | |
 V |
 +-------------+ |
 | | |
 | Congestion +-----------------------+
 | Control |
 +-------------+

 Figure 1: The Architecture of DTP

 In receiver side, the transport layer will receive data and
 reassemble the block. The process is symmetric with the sender side.
 It first goes through packet parsing and redundancy processing
 module. Transport layer also keeps track of the deadline of each
 block. When receiver calls RECV function (Refer to [Section 5]), the

Shi, et al. Expires May 20, 2020 [Page 5]

Internet-Draft DTP November 2019

 transport layer returns the received in-ordered data to the
 application.

3.3. Deadline-aware Scheduler

 The scheduler will pick the blocks to send and drop stale blocks when
 the buffer is limited. This section describes the algorithm of DTP
 scheduler.

 Scheduler of DTP takes into account many factors when picking blocks
 in sender buffer to send. The goal of the scheduler is to deliver as
 much as high priority data before the deadline and drop obsolete or
 low-priority blocks. To achieve this, the scheduler utilizes both
 bandwidth and RTT measurement provided by the congestion control
 module and the metadata of blocks provided by the application to
 estimate the block completion time. The scheduler will run each time
 ACK is received or the application pushes the data.

 A simple algorithm which only considers priority cannot get optimal
 result in transmitting deadline-required data. Suppose the bandwidth
 reduces and the scheduler chooses not to send the low priority block.
 Then the bandwidth is restored. The data block with lower priority
 is closer to the deadline than the high priority block. If in this
 round the scheduler still chooses to send the high priority block,
 then the low priority block may miss the deadline next round and
 become useless. In some cases, the scheduler can choose to send a
 low priority block because it’s more urgent. But it should do so
 without causing the high priority stream missing the deadline. This
 example reveals a fundamental conflict between the application
 specified priority and deadline implicated priority. DTP needs to
 take both priorities into consideration when scheduling blocks.

 DTP will combine all these factors to calculate real priority of each
 block. Then the scheduler just picks the block with the highest real
 priority. Scheduler of DTP will calculate the block remaining
 transmission time and then compare it to the deadline. The closer to
 the deadline, the higher real priority. And higher application
 specified priority will also result in higher real priority. In this
 way, the scheduler can take both approaching deadline and
 application-specified priority into account. Blocks which are
 severely overdue can be dropped accordingly.

3.4. Deadline-aware Redundancy

 After the scheduler pick the block to send, the packetizer will break
 the block into packet streams. Those packet streams will go through
 the redundancy module. When the link is lossy and deadline is tight,
 retransmission will cause the block missing the deadline. The

Shi, et al. Expires May 20, 2020 [Page 6]

Internet-Draft DTP November 2019

 redundancy module can help mitigate that problem by generating the
 redundancy packets to avoid retransmission. Since only
 retransmission of tail packets of the block will increase the block
 completion time so the redundancy is only applied to tail packets of
 each block. The tail packets is defined within the Bandwidth-Delay
 Product range of the block. And blocks with higher priority also get
 more redundancy.

3.5. Loss Detection and Congestion Control

 This document reuses the congestion control module defined in QUIC
 [QUIC]. Congestion control module is responsible to send packets,
 collects ACK and do packet loss detection. Then it will put the lost
 data back to the retransmission queue of each block. Congestion
 control module is also responsible to monitor the network status and
 report the network condition such as bandwidth and RTT to scheduler.

4. Extension of QUIC

 DTP is implemented as an extension of QUIC by mapping QUIC stream to
 DTP block one to one. In that way, DTP can reuse the QUIC stream
 cancellation mechanism to drop the stale block during transmission.
 And DTP can also utilize the max stream data size defined by QUIC to
 negotiate its max block size. Besides, the block id of DTP can also
 be mapped to QUIC stream id without breaking the QUIC stream id
 semantic.

5. API of DTP

 DTP extends the send socket API to let application attach metadata
 along with the data block, and the API of DTP is structured as
 follows:

 A) Data transmission functions

 Send

 Format: SEND(connection id, buffer address, byte count, block id,
 block deadline, block priority) -> byte count

 The return value of SEND is the continuous bytes count which is
 successfully written. If the transport layer buffer is limited or
 the flow control limit of the block is reached, application needs
 to call SEND again.

 Mandatory attributes:

Shi, et al. Expires May 20, 2020 [Page 7]

Internet-Draft DTP November 2019

 * connection id - local connection name of an indicated
 connection.

 * buffer address - the location where the block to be transmitted
 is stored.

 * byte count - the size of the block data in number of bytes.

 * block id - the identity of the block.

 * block deadline - deadline of the block.

 * block priority - priority of the block.

 Update

 Format: UPDATE(connection id, block id, block deadline, block
 priority) -> result

 The UPDATE function is used to update the metadata of the block.
 The return value of UPDATE function indicates the success of the
 action. It will return success code if succeeds, and error code
 if fails.

 Mandatory attributes:

 * connection id - local connection name of an indicated
 connection.

 * block id - the identity of the block.

 * block deadline - new deadline of the block.

 * block priority - new priority of the block.

 Retreat

 Format: RETREAT(connection id, block id) -> result

 The RETREAT function is used to cancel the block. The return
 value of RETREAT function indicates the success of the action. It
 will return success code if succeeds, and error code if fails.

 Mandatory attributes:

Shi, et al. Expires May 20, 2020 [Page 8]

Internet-Draft DTP November 2019

 * connection id - local connection name of an indicated
 connection.

 * block id - the identity of the block.

 Receive

 Format: RECV(connection id, buffer address, byte count, [,block
 id]) -> byte count, fin flag, [,block id]

 The RECV function shall read the first block in-queue into the
 buffer specified, if there is one available. The return value of
 RECV is the number of continuous bytes which is successfully read,
 and fin flag to indicate the ending of the block. If the block is
 cancelled, the RECV function will return error code
 BLOCK_CANCELLED. It will also returns the block id on which it
 receives if application does not specify it.

 If the block size specified in the RECV function is smaller than
 the size of the receiving block, then the block will be partial
 copied(indicated by the fin flag). Next time RECV function is
 called, the remaining block will be copied, and the id will be the
 same. This fragmentation will give extra burden to applications.
 To avoid the fragmentation, sender and receiver can negotiate a
 max block size when handshaking.

 Mandatory attributes:

 * connection id - local connection name of an indicated
 connection.

 * buffer address - the location where the block received is
 stored.

 * byte count - the size of the block data in number of bytes.

 Optional attributes:

 * block id - to indicate which block to receive the data on.

 B) Feedback functions

 Status

Shi, et al. Expires May 20, 2020 [Page 9]

Internet-Draft DTP November 2019

 Format: STATS(connection id, block id) -> byte count

 The STATS function is used to query the deadline delivery result.
 The application uses STATS to query the bytes delivered before the
 deadline to receiver of each block. The information can be used
 to adjust the block sending rate of each priority. For example,
 if the application finds that the lowest priority block always get
 dropped due to the limited bandwidth, the application can stop
 generating the block to save the computation power. Combined the
 status of each priority, the application can also get the overall
 network capacity to facilitate the rate adaptation algorithm.

 Mandatory attributes:

 * connection id - local connection name of an indicated
 connection.

 * block id - the identity of the block.

 Block Completion Time (BCT)

 Format: QUERY_BCT(connection id, block id) -> block completion
 time

 After receiving the block, application can query the block
 completion time using QUERY_BCT. This can also facilitate the
 rate or deadline adaptation of application. For example, if the
 base RTT of the network is bigger than deadline, then all blocks
 will miss the deadline. In this case, application may choose to
 relax its deadline.

 Mandatory attributes:

 * connection id - local connection name of an indicated
 connection.

 * block id - the identity of the block.

 All these functions mentioned above are running in asynchronous mode.
 An application can use various event driven framework to call those
 functions.

Shi, et al. Expires May 20, 2020 [Page 10]

Internet-Draft DTP November 2019

6. IANA Considerations

 This document has no actions for IANA.

7. Security Considerations

 See the security considerations in [QUIC] and [QUIC-TLS]; the block-
 based data of DTP shares the same security properties as the data
 transmitted within a QUIC connection

8. Normative References

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-20 (work
 in progress), April 2019.

 [QUIC-TLS]
 Thomson, M. and S. Turner, "Using TLS to Secure QUIC",
 draft-ietf-quic-tls-20 (work in progress), April 2019.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Authors’ Addresses

 Hang Shi
 Tsinghua University
 30 Shuangqing Rd
 Beijing
 China

 Email: shi-h15@mails.tsinghua.edu.cn

Shi, et al. Expires May 20, 2020 [Page 11]

Internet-Draft DTP November 2019

 Yong Cui
 Tsinghua University
 30 Shuangqing Rd
 Beijing
 China

 Email: cuiyong@tsinghua.edu.cn

 Zhiwen Liu
 Tsinghua University
 30 Shuangqing Rd
 Beijing
 China

 Email: liu-zw16@mails.tsinghua.edu.cn

Shi, et al. Expires May 20, 2020 [Page 12]

