
Internet Engineering Task Force L. Peterson
Internet-Draft J. Hartman
Intended status: Informational Verivue Inc.
Expires: October 21, 2011 M. Pilarski
 Orange Labs/WUT
 April 19, 2011

 A Simple Approach to CDN Interconnection
 draft-peterson-cdni-strawman-00

Abstract

 This document presents a simple strawman for CDN interconnection, and
 uses the strawman as a basis for articulating a set of design
 principles and exploring (parts of) the CDNI design space. Our
 intent is to spur discussion about what information needs to be
 exchanged between CDN peers, which is a prerequisite for crafting
 interfaces and protocols to communicate that information.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be modified,
 and derivative works of it may not be created, and it may not be
 published except as an Internet-Draft.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 21, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Peterson, et al. Expires October 21, 2011 [Page 1]

Internet-Draft CDNI Strawman April 2011

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Use Cases . 3
 3. Autonomy Requirement . 4
 3.1. Limitations . 5
 4. Available Mechanisms . 6
 4.1. Redirection . 6
 4.1.1. DNS Redirection 7
 4.1.2. HTTP Redirection 7
 4.1.3. Assumptions . 8
 4.2. Proxy Directives . 8
 4.3. Alternative Model - CDN Exchange 9
 5. Request Routing . 10
 5.1. First Method . 11
 5.1.1. Configuration Summary 13
 5.2. Second Method . 14
 5.2.1. Configuration Summary 17
 5.3. Third Method . 17
 5.3.1. Configuration Summary 19
 5.4. Discussion . 20
 5.4.1. Method Selection 20
 5.4.2. Overload Conditions 21
 5.4.3. Advertising Peering Information 21
 6. Additional Interfaces . 22
 6.1. Logging . 22
 6.2. Monitoring . 23
 6.3. Control . 24
 6.4. CDNI Metadata . 24
 7. IANA Considerations . 25
 8. Security Considerations 25
 9. References . 26
 9.1. Normative References 26
 9.2. Informative References 26
 Authors’ Addresses . 26

Peterson, et al. Expires October 21, 2011 [Page 2]

Internet-Draft CDNI Strawman April 2011

1. Introduction

 This document presents a simple strawman for CDN interconnection, and
 uses the strawman as a basis for articulating a set of design
 principles and exploring (parts of) the CDNI design space. In terms
 of the four CDNI-related interfaces outlined in
 [I-D.jenkins-cdni-problem-statement], this document first describes
 several approaches to Request Routing, and then based on that
 foundation, discusses possible Logging, Control, and CDNI Metadata
 interfaces.

 Our general strategy is to explore low barrier-to-entry CDN
 interconnection. This strategy has three implications. First, we
 take a "best effort" approach by including only essential
 functionality. We expect enhanced inter-CDN control features to be
 added incrementally if and when they prove necessary in practice.
 Second, we pursue an approach in which two cooperating CDNs directly
 interconnect with no third-party mediation or involvement. Third, we
 exploit "in-band" signaling that leverages existing protocols (e.g.,
 DNS and HTTP), rather than define new "out-of-band" control
 interfaces. This is not to say that advanced control features,
 third-party mediation, or out-of-band interfaces will never be
 required, but rather, that the best way to avoid unnecessary
 complexity is to fully explore the limits of what can be done with
 simple mechanisms.

 An implicit question asked throughout this document is: "What
 information needs to be shared between CDNI peers?" Until we can
 answer this question, details about the precise interfaces and
 protocols needed to exchange that information are premature.

 This document is partially informed by ongoing CDN interconnection
 trials, an early instance of which is reported in
 [I-D.bertrand-cdni-experiments].

2. Use Cases

 Several use cases for CDN interconnection drive our discussion.
 Examples include:

 Delivery Termination: A global CDN might peer with one or more
 regional CDNs, with the latter terminating content delivery to
 locally connected end-users.

Peterson, et al. Expires October 21, 2011 [Page 3]

Internet-Draft CDNI Strawman April 2011

 Pair-wise Peers: Two peer CDNs, each serving a distinct set of
 content providers and end-users, might each agree to serve the
 other’s content to its local users.

 International CDN: A set of semi-autonomous national affiliates
 belonging to a common multi-national operator might cooperate to
 form a single international CDN.

 On-Net/Off-Net Delivery: An operator serving content to end-users
 directly connected to its network might also serve those same
 users when they are connected off-network

 Managed/Unmanaged Networks: An operator that offers separate
 managed (IPTV services including Catch-up and VoD) and unmanaged
 (broadband) CDNs can serve content from one to the other.

 Each of these usage scenarios involves an upstream CDN that serves
 content on behalf of a content provider (CP), and a downstream CDN
 that delivers content to a local end-user. Some of the scenarios are
 asymmetric (e.g., Delivery Termination) with content flowing in only
 one direction, and some are symmetric (e.g., Pair-wise Peers) with
 content flowing in both directions.

 In general, there might also exist one or more transit CDNs that sit
 between the upstream and downstream CDNs. While we believe the
 interaction between any pair of CDNs (e.g., upstream/transit,
 transit/transit, transit/downstream) is exactly as in the simple
 upstream/downstream case, we do not specifically consider transit
 CDNs in this document.

3. Autonomy Requirement

 Any approach to interconnecting CDNs must preserve administrative
 boundaries between autonomous organizations. To this end,
 information hiding is the key design principle, by which we mean
 minimizing the information autonomous CDNs must share with (advertise
 to) each other. Note that we are not necessarily concerned about one
 CDN being able to infer something about another (e.g., by
 interpreting URLs), but rather, we are focused on minimizing the
 information one CDN must explicitly advertise to another to
 facilitate interconnection.

 Minimizing information sharing argues for each independent CDN not
 having to explicitly advertise their internal caching hierarchy and
 not having to reveal how they interpret the rest of the URL (after
 the host name). This second point implies peer CDNs access origin
 servers indirectly through the CDN that serves the CP; they do not

Peterson, et al. Expires October 21, 2011 [Page 4]

Internet-Draft CDNI Strawman April 2011

 directly contact the origin servers themselves.

 To fully understand the ramifications, recall the distinction between
 the upstream CDN (the CDN that has a relationship with the CP) and
 the downstream CDN (the CDN that delivers the content to an end-
 user). In this context, there are two issues: (1) processing the
 original request flow from upstream CDN to downstream CDN so as to
 select the best delivery node for the end-user, and (2) processing
 the request flow from downstream CDN to upstream CDN to fetch the
 content in response to a cache miss in the downstream CDN. Consider
 each, in turn.

 First, in order to know the target downstream CDN to which to
 redirect a request (assuming each CDN has more than one peer), the
 upstream CDN must be aware of the set of end-users (e.g., IP address
 blocks) a given downstream CDN is able to serve. Care must be taken
 in configuring the two CDNs so that the downstream CDN does not
 inadvertently redirect a request back to the upstream CDN, creating
 an infinite loop.

 Second, if we assume the rest of the URL contains information that
 only the upstream CDN can use to identify the origin server, then
 once a delivery node is selected for a given end-user by the
 downstream CDN, if that node does not have the requested content in
 its cache, it requests the content from the upstream CDN rather than
 contacting the origin server directly. In general, the delivery node
 might request the missing content from some place higher in its
 caching hierarchy, but eventually some cache in the downstream CDN
 will need to pull the data from some cache in the upstream CDN.

3.1. Limitations

 One consequence of maintaining strong boundaries between CDNs is that
 there will necessarily be limits on how much visibility and control
 the upstream CDN has into the actual delivery of content from the
 downstream CDN to its end-users. Considers two such limits.

 First, while it might be reasonable for the downstream CDN to inform
 the upstream CDN each time it receives a request for cached content
 that originated with the upstream CDN (Section 6 describes one such
 mechanism), it is problematic for the upstream CDN to learn (in real-
 time) the actual number of bytes transferred out of a downstream
 cache since not all requests result in a complete file download. The
 upstream CDN can learn this information off-line, as it processes
 traffic logs received from the downstream peer, but real-time
 delivery monitoring will be limited.

 Second, while a given CDN may offer its own content providers

Peterson, et al. Expires October 21, 2011 [Page 5]

Internet-Draft CDNI Strawman April 2011

 elaborate control over how their content is delivered to its directly
 connected end-users (e.g., fine-grain access control and service
 differentiation), attempting to compose such polices across CDN
 boundaries significantly raises the barrier to interconnection.
 Instead, we start with the simplifying assumption that peers will
 establish coarse-grained agreements in which the downstream CDN
 treats the upstream CDN as a single content source (without
 distinguishing among different upstream content providers) and the
 upstream CDN treats the downstream CDN as a single content sink
 (without distinguishing among different classes of end-users). This
 is not to say that content providers have no control over how their
 content is delivered across interconnected CDNs. Just as in a
 single-CDN scenario, the origin server is free to implement its own
 access control mechanisms, the assumption being that an end-user
 first acquires the necessary authorization directly from the content
 provider, and then downloads the content itself from a CDN.

 Clearly, neither of these two examples is absolute. They are
 intended to illustrate that placing too many requirements on CDN
 interconnection has the potential to make the problem (and resulting
 mechanisms) prohibitively complex. Again, we take a "best effort"
 approach, adding requirements and mechanisms only after they prove
 essential in practice.

4. Available Mechanisms

 This section reviews several mechanisms that can be used to
 interconnect CDNs. Our approach is to leverage existing protocols in
 a way that allows two CDNs to directly interconnect, without
 requiring third-party mediation.

4.1. Redirection

 Request redirection is a building block for the request routing
 function of CDNI. There are two main mechanisms for redirecting a
 request. The first leverages the DNS name resolution process and the
 second uses in-protocol redirection mechanisms such as the HTTP 302
 redirection response.

 There is a third technique--transparent caching--in which the
 downstream CDN transparently intercepts content requests targeted at
 the upstream CDN. We do not discuss transparent caching any further
 in this report.

Peterson, et al. Expires October 21, 2011 [Page 6]

Internet-Draft CDNI Strawman April 2011

4.1.1. DNS Redirection

 DNS redirection is based on returning different IP addresses for the
 same DNS name, for example, to balance server load or to account for
 the client’s location in the network. A DNS server, sometimes called
 the Local DNS (LDNS), resolves DNS names on behalf of an end-user.
 The LDNS server in turn queries other DNS servers until it reaches
 the authoritative DNS server for the CDN-domain. The network
 operator typically provides the LDNS server, although the user is
 free to choose other DNS servers (e.g., Google Public DNS).

 The advantage of DNS redirection is that it is completely transparent
 to the end user--the user sends a DNS name to the LDNS server and
 gets back an IP address. On the other hand, DNS redirection is
 problematic because the DNS request comes from the LDNS server, not
 the end-user. This may affect the accuracy of server selection that
 is based on the user’s location. The transparency of DNS redirection
 is also a problem in that there is no opportunity to modify the path
 component of the URL being accessed by the client. We consider two
 main forms of DNS redirection: simple and CNAME-based.

 In simple DNS redirection, the authoritative DNS server for the name
 simply returns an IP address from a set of possible IP addresses.
 The answer is chosen from the set based on characteristics of the set
 (e.g., the relative loads on the servers) or characteristics of the
 client (e.g., the location of the client relative to the servers).
 Simple redirection is straightforward. The only caveats are (1)
 there is a limit to the number of delivery nodes a single DNS server
 can manage; and (2) DNS responses are cached by downstream servers so
 the TTL on the response must be set to an appropriate value so as to
 preserve the timeliness of the redirection.

 In CNAME-based DNS redirection, the authoritative server returns a
 CNAME response to the DNS request, telling the LDNS server to restart
 the name lookup using a new name. A CNAME is essentially a symbolic
 link in the DNS namespace, and like a symbolic link, redirection is
 transparent to the client--the LDNS server gets the CNAME response
 and re-executes the lookup. Only when the name has been resolved to
 an IP address does it return the result to the user. Note that DNAME
 would be preferable to CNAME if it becomes widely supported.

4.1.2. HTTP Redirection

 HTTP redirection makes use of the "302" redirection response of the
 HTTP protocol. This response contains a new URL that the application
 should fetch instead of the original URL. By changing the URL
 appropriately, the server can cause the user to redirect to a
 different server. The advantages of 302 redirection are that (1) the

Peterson, et al. Expires October 21, 2011 [Page 7]

Internet-Draft CDNI Strawman April 2011

 server can change the URL fetched by the client to include, for
 example, both the DNS name of the particular server to use, as well
 as the original HTTP server that was being accessed; and (2) the
 client sends the HTTP request to the server, so that its IP address
 is known and can be used in selecting the server.

 The disadvantages of HTTP redirection are (1) it is visible to the
 application, so it requires application support and may affect the
 application behavior (e.g., web browsers will not send cookies if the
 URL changes to a different domain); (2) HTTP is a heavy-weight
 protocol layered on TCP so it has relatively high overhead; and (3)
 the results of HTTP redirection are not cached so that all
 redirections must go through to the server.

4.1.3. Assumptions

 We make three assumptions regarding request routing. First, the
 language used in this document presumes a unified request routing
 service that handles both DNS and HTTP requests. In practice, DNS-
 based redirection and HTTP-based redirection might be handled by
 separate mechanisms in a given CDN. Some CDNs might support one but
 not necessarily both mechanisms, and our proposal takes this into
 account.

 Second, we assume the request routing service is bootstrapped through
 some external mechanism, such as IP anycast. Thus, when we say "the
 Request Router responds to a DNS query for cdn.cp.com," we assume
 cp.com’s DNS servers return an anycast address for a set of Request
 Routers. If IP anycast is not available, then we assume some other
 mechanism is used to pick a specific Request Router bound to that
 name.

 Third, we assume the operator’s LDNS is located within the same
 operator network as the end-user (i.e., both are contained in the
 same IP address block), and hence, the upstream CDN will be able to
 correctly identify the downstream CDN that serves the end-user based
 upon the client in DNS requests. Unfortunately, this is not
 necessarily true for end-users that use a global DNS service. We
 will revisit this situation in later sections.

4.2. Proxy Directives

 In as much as a CDN can be viewed as a distributed proxy, many of the
 HTTP directives used by proxy servers can also be used by peer CDNs
 to inform each other of caching activity. Of these, one that seems
 particularly relevant is the If-Modify-Since directive, which is used
 with the GET method to make it conditional: if the requested object
 has not been modified since the time specified in this field, a copy

Peterson, et al. Expires October 21, 2011 [Page 8]

Internet-Draft CDNI Strawman April 2011

 of the object will not be returned, and instead, a 304 (not modified)
 response will be returned.

 Peer CDNs can use the If-Modify-Since directive to communicate two
 bits of information to each other. First, the downstream CDN can
 send a conditional GET to the upstream CDN to signal that cached
 content is being requested. This allows the upstream CDN to record
 that fact for real-time monitoring and reporting purposes. Second,
 the upstream CDN can respond with an HTTP error code that indicates
 the content is no longer available. This allows the upstream CDN to
 effectively purge content from the downstream CDN.

 In addition, by including the X-Forwarded-For HTTP header along with
 the If-Modified-Since directive, the downstream CDN can report the
 end-user’s IP address to the upstream CDN. This is useful for
 monitoring, and potentially, for access control.

4.3. Alternative Model - CDN Exchange

 The approach outlined in this report involves direct DNS and HTTP
 interaction between a pair of CDNs. An intermediate "CDN Exchange"
 (or Broker) is not required. Direct interaction reduces the barrier
 to CDN interconnection, since DNS and HTTP are already well-
 established protocols. The problem is reduced to defining rules for
 how URLs are rewritten, as described in the next section.

 Although not required, there remains a question of whether or not a
 CDN Exchange adds some value in certain circumstances. Consider two
 potential arguments.

 One is that having all requests pass through an explicit exchange
 point provides an opportunity for a neutral third-party to record the
 transaction for billing and monitoring. We believe such a mechanism
 is not necessary, and instead, our approach requires the downstream
 CDN to periodically send the upstream CDN a traffic (billing) log
 off-line, coupled with the use of HTTP directives like If-Modify-
 Since to support monitoring. Note that even with the use of such
 HTTP directives, neither the upstream CDN nor a CDN exchange can know
 exactly how many bytes the downstream CDN delivers from its cache
 unless it puts itself on the data path, which is not practical.
 Since the upstream CDN must trust the traffic logs it receives from
 the downstream CDN anyway (augmented with any request signal it
 receives), a CDN exchange provides no value in terms of brokering
 requests.

 A second potential argument for a CDN exchange is that it reduces the
 amount of information peer CDNs much advertise to each other. Such
 information can be given to an intermediate party, but not advertised

Peterson, et al. Expires October 21, 2011 [Page 9]

Internet-Draft CDNI Strawman April 2011

 to a peer. This may be particularly relevant to resolving billing
 logs. We return to this issue in a later section, after describing
 and evaluating candidate methods for direct (broker-less) CDN
 interconnection.

 Of course, a CDN Exchange might also have non-technical value, for
 example, by providing a common peering agreement that lowers the
 barrier-to-entry from a business perspective. This document focuses
 on technical mechanisms (i.e., interfaces and protocols), and hence,
 considers CDN Exchanges through that lens.

5. Request Routing

 This section presents three direct (in-band) methods to Request
 Routing, including a discussion of their relative merits. To
 simplify the exposition, we use the term "CDN-domain" to refer to the
 host name (a FQDN) at the beginning of each URL, and we assume
 Operator A provides an upstream CDN that serves content on behalf of
 a content provider with CDN-domain cdn.cp.com and Operator B provides
 a downstream CDN that delivers content to an end-user who makes a
 request for URL

 http://cdn.cp.com/...rest of url...

 Throughout the examples, we truncate the "/...rest of url..." from
 the URL to simplify the presentation. This simplification is
 consistent with the underlying design principle that the portion of
 the URL that follows the CDN-domain is opaque to peer CDNs. Only the
 upstream knows how to interpret the rest of the URL, and hence, is
 able to contact the origin server. The downstream CDN never contacts
 the origin server directly. (In practice, the full URL might include
 the actual origin server--e.g.,
 http://cdn.cp.com/video.cp.com/video1.mp4--but not necessarily. The
 origin server might be implicit in the CDN-domain, or it might be
 identified in the URL by an opaque identifier that is later mapped
 into a URL for the origin server.) Also, while the examples use a
 customer-branded CDN-domain for each content provider (e.g.,
 cdn.cp.com), this is not a requirement. It could also be the case
 that all content providers being served by a given operator share an
 operator-branded CDN-domain (e.g., cdn.operator.net).

 To be clear about this, and the other example URLs presented in this
 section, we summarize our examples as follows:

 o cdn.cp.com - An example CP-branded CDN-domain. We assume the
 upstream CDN provides the authoritative DNS name server for this
 CDN-domain. Note that this CDN-domain can be viewed as opaque for

Peterson, et al. Expires October 21, 2011 [Page 10]

Internet-Draft CDNI Strawman April 2011

 all the methods. We present it as an example only to emphasize
 whether or not the URL seen by the end-user is within the scope of
 the original content provider (e.g., cp.com).

 o peer.op-a.net, peer.op-b.net - Example distinguished operator-
 branded CDN-domains. We use the string "peer" to signify--by
 convention--that this CDN-domain is used as part of the CDN
 interconnection, distinguishing it from other CDN-domains the
 operator might use when publishing its own content via its CDN.
 We sometimes call such a distinguished CDN-domain an operator-
 domain.

 o a.cdn.cp.com, b.cdn.cp.com - Examples of a modified CDN-domain
 that encodes a unique id for an operator. We do not mean the
 strings "a" and "b" literally; they could be integers. The only
 requirement is that a unique and well-known identifier is assigned
 to each participating CDN. In practice, using A and B’s
 autonomous system (AS) number would be a good solution.

 o dca.cdn.cp.com - An example of a modified CDN-domain that
 signifies a request is coming from a "Designated CDN Authority".
 We mean the string "dca" literally. There must be global
 agreement among operators that this particular designator is used.

5.1. First Method

 The first method assumes Operators A and B use the distinguished CDN-
 domains peer.op-a.com and peer.op-b.com, respectively. We say these
 CDN-domains are distinguished because their use is limited to the
 interconnection mechanism; they are never embedded in URLs that end-
 users request. They are also unique to each CDN. Figure 1 depicts
 the exchange of DNS and HTTP requests. The following explains each
 exchange, keyed to the highlighted numbers.

Peterson, et al. Expires October 21, 2011 [Page 11]

Internet-Draft CDNI Strawman April 2011

 End-User Operator B Operator A
 |DNS cdn.cp.com | |
 |-->|
 | | |(1)
 |IPaddr of A’s Request Router |
 |<--|
 |HTTP cdn.cp.com | |
 |-->|
 | | |(2)
 |302 peer.op-b.net/cdn.cp.com |
 |<--|
 |DNS peer.op-b.net | |
 |------------------------>| |
 | |(3) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 |HTTP peer.op-b.net/cdn.cp.com |
 |------------------------>| |
 | |(4) |
 | |DNS dca.cdn.cp.com |
 | |------------------------>|
 | | |(5)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | |HTTP dca.cdn.cp.com |
 | |------------------------>|
 | | |(6)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 1: Request Trace for Method One

 1. A Request Router for Operator A processes the DNS request for its
 customer based on CDN-domain cdn.cp.com and recognizes that the
 end-user is best served by another operator’s CDN, but in order
 to redirect the end-user to that CDN, it must first get the end-
 user to issue an HTTP request. Thus, it returns the IP address
 of a Request Router in Operator A.

 2. A Request Router for Operator A processes the HTTP request and
 again recognizes that the end-user is best served by another
 CDN--specifically one provided by Operator B--and so it returns a
 302 redirect message for a new URL constructed by "stacking"
 Operator B’s distinguished CDN-domain (e.g., peer.op-b.net) on
 the front of the original URL.

Peterson, et al. Expires October 21, 2011 [Page 12]

Internet-Draft CDNI Strawman April 2011

 3. The end-user does a DNS lookup using Operator B’s distinguished
 CDN-domain (e.g., peer.op-b.net). B’s Request Router returns a
 suitable delivery node.

 4. The end-user requests the content from B’s delivery node,
 potentially resulting in a cache miss. B sees its distinguished
 CDN-domain and so "pops it off" the URL, revealing the original
 CDN-domain cdn.cp.com. Operator B verifies that this CDN-domain
 belongs to a known peer (so as to avoid being tricked into
 serving as an open proxy). It then does a DNS request for an
 "internal" CDN-domain constructed by augmenting the original CDN-
 domain with a distinguished token (e.g., dca.cdn.cp.com).

 5. Operator A recognizes that the DNS request is from a peer CDN
 rather than an end-user (due to the internal CDN-domain) and so
 returns the address of a delivery node.

 6. Operator A serves content for the requested CDN-domain. Although
 not shown, it is at this point that Operator A processes the rest
 of the URL: it extracts information identifying the origin
 server, validates that this server has been registered, and
 determines the content provider that owns the origin server.

 The main advantage of this design is that it is simple: each CDN need
 only know a single distinguished CDN-domain for each peer, with the
 upstream CDN "pushing" the downstream CDN-domain onto the URL as part
 of its redirect (step 2) and the downstream CDN "popping" its CDN-
 domain off the URL to expose a CDN-domain that the upstream CDN can
 correctly process. Neither CDN needs to be aware of the internal
 structure of the other’s URLs. Moreover, redirection is entirely
 supported by a single HTTP redirect; neither CDN needs to be aware of
 the other’s internal redirection mechanism (i.e., whether it is DNS
 or HTTP based). This makes our first example most appropriate for a
 heterogeneous set of CDN peers (i.e., CDNs utilizing different vendor
 technology).

 One disadvantage is that the end-user’s browser is redirected to a
 new URL that is not in the same domain of the original URL. It is
 important that any redirected URL be in the same domain (e.g.,
 cp.com) if the browser is expected to send any cookies associated
 with that domain.

5.1.1. Configuration Summary

 Operators must exchange the following information to peer with each
 other:

Peterson, et al. Expires October 21, 2011 [Page 13]

Internet-Draft CDNI Strawman April 2011

 o The operator’s distinguished CDN-domain (operator-domain); and

 o Set of IP prefixes for which the operator is prepared to deliver
 to end-users.

 Operators must perform the following URL conversions:

 o When a Request Router in an upstream sees an end-user IP address
 best served by a downstream peer, it converts "cdn-domain" to
 "operator-domain/cdn-domain" (for the selected peer’s operator-
 domain) and returns an HTTP 302 redirect for the new URL.

 o When a delivery node in a downstream sees a URL of the form
 "operator-domain/cdn-domain" (for its operator-domain), it
 verifies that "cdn-domain" is served by a known CDN peer, and if
 so, converts it to "dca.cdn-domain" and issues an HTTP request for
 that new URL.

 DNS must be configured in the following way:

 o The content provider must be configured to make the operator that
 serves "cdn-domain" the authoritative DNS server for that name.

 o An operator that serves "cdn-domain" must be configured so that a
 request for "dca.cdn-domain" returns a delivery node.

 o An operator with CDN-domain "operator-domain" must be configured
 so that a request for "operator-domain/cdn-domain" returns a
 delivery node.

5.2. Second Method

 The second method addresses the cookie issue by assigning a unique
 identifier to each CDN--we use "a" and "b" in our example--and
 including this identifier as a token in a CDN-domain belonging to the
 original content provider (e.g., a.cdn.cp.com). Note that "a" and
 "b" can be integers; the only requirement is that a unique and well-
 known identifier is assigned to each participating CDN. In practice,
 using A and B’s autonomous system (AS) number would be a good
 solution.

Peterson, et al. Expires October 21, 2011 [Page 14]

Internet-Draft CDNI Strawman April 2011

 End-User Operator B Operator A
 |DNS cdn.cp.com | |
 |-->|
 | | |(1)
 |IPaddr of A’s Request Router |
 |<--|
 |HTTP cdn.cp.com | |
 |-->|
 | | |(2)
 |302 b.cdn.cp.com | |
 |<--|
 |DNS b.cdn.cp.com | |
 |-->|
 | | |(3)
 |NS records for b.cdn.cp.com |
 |<--|
 |DNS b.cdn.cp.com | |
 |------------------------>| |
 | |(3’) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 |HTTP b.cdn.cp.com | |
 |------------------------>| |
 | |(4) |
 | |DNS dca.cdn.cp.com |
 | |------------------------>|
 | | |(5)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | |HTTP dca.cdn.cp.com |
 | |------------------------>|
 | | |(6)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 2: Request Trace for Method Two

 Figure 2 depicts the exchange of DNS and HTTP requests. The main
 differences from Figure 1 are the alternative strategy for
 constructing CDN-domains and the replacement of Step 3 with two sub-
 steps, denoted 3 and 3’. We summarize as follows.

 1. A Request Router for Operator A processes the DNS request for its
 customer based on CDN-domain cdn.cp.com and recognizes that the
 end-user is best served by another operator’s CDN, but in order
 to redirect the end-user to that CDN, it must first get the end-

Peterson, et al. Expires October 21, 2011 [Page 15]

Internet-Draft CDNI Strawman April 2011

 user to issue an HTTP request. Thus, it returns the IP address
 of a Request Router in Operator A.

 2. A Request Router for Operator A processes the HTTP request and
 again recognizes that the end-user is best served by another
 CDN--specifically one provided by Operator B--and so it returns a
 302 redirect message for a new URL constructed by "stacking" the
 distinguished token for Operator B onto the original CDN-domain.
 For example, the redirected URL might be b.cdn.cp.com.

 3. The end-user does a DNS lookup using the modified CDN-domain
 (e.g., b.cdn.cp.com). This name is first resolved by A’s Request
 Router (which is responsible for resolving cdn.cp.com), which
 returns an NS record for B’s Request Router to the end-user.
 Sub-step 3’ then involves B’s Request Router selecting a suitable
 delivery node. Alternatively, Step 3 could be implemented by
 having A’s Request Router recursively call B’s Request
 Router,returning B’s answer to the end-user.

 4. The end-user requests the content from B’s delivery node,
 potentially resulting in a cache miss. B sees its distinguished
 token on the CDN-domain and so "pops it off," recovering
 cdn.cp.com. Operator B verifies that this CDN-domain belongs to
 a known peer (so as to avoid being tricked into serving as an
 open proxy). It then does a DNS request for an "internal" CDN-
 domain constructed by augmenting the original CDN-domain with a
 distinguished token (e.g., dca.cdn.cp.com).

 5. Operator A recognizes that the DNS request is from a peer CDN
 rather than an end-user (due to the internal CDN-domain) and so
 returns the address of a delivery node.

 6. Operator A serves content for the requested CDN-domain. Although
 not shown, it is at this point that Operator A processes the rest
 of the URL: it extracts information identifying the origin
 server, validates that this server has been registered, and
 determines the content provider that owns the origin server.

 Note that while the second method always uses a CDN-domain that is
 contained in domain name cp.com, it requires a tighter interaction
 between A and B. Specifically, Operator A must know the NS records
 for Operator B’s DNS-based redirection service. This also forces the
 downstream CDN to participate in DNS-based redirection, which
 potentially infringes on B’s ability to use an alternative
 redirection strategy. This makes the second method potentially less
 suitable for a heterogeneous CDN interconnection scenario.

Peterson, et al. Expires October 21, 2011 [Page 16]

Internet-Draft CDNI Strawman April 2011

5.2.1. Configuration Summary

 Operators must exchange the following information to peer with each
 other:

 o The operator’s unique id (operator-id) that can be used to
 construct a distinguish CDN-domain;

 o The set of IP prefixes for which the operator is prepared to
 deliver to the end-user; and

 o NS records for the operator’s set of externally visible
 redirection servers.

 Operators must perform the following URL conversions:

 o When a Request Router in an upstream CDN sees an end-user IP
 address best served by a downstream peer, it converts "cdn-domain
 to "operator-id.cdn-domain" (for the appropriate peer’s
 operator-id) and returns an HTTP 302 redirect for the new URL.

 o When a delivery node in a downstream sees a URL of the form
 "operator-id.cdn-domain" (for its operator-id), it verifies that
 "cdn-domain" is served by a known CDN peer, and if so, converts it
 to "dca.cdn-domain", and issues an HTTP request for that new URL.

 DNS must be configured in the following way:

 o The content provider must be configured to make the operator that
 serves "cdn-domain" the authoritative DNS server for that name.

 o The operator that serves "cdn-domain" must be configured so that a
 request for "dca.cdn-domain" returns a delivery node, and a
 request for "operator-id.cdn-domain" is redirected to the peer
 denoted by operator-id.

 o An operator with unique id operator-id must be configured so that
 a request for "operator-id.cdn-domain" returns a delivery node.

5.3. Third Method

 The third method relies on indirection within the DNS protocol to
 avoid the additional HTTP redirections of the first two methods.
 This method also has the advantage that it is transparent to the end-
 user. No user-visible HTTP redirection is necessary, so the
 participating CDNs need not use CDN-domains that are contained in
 cp.com. Figure 3 depicts the exchange of DNS and HTTP requests. The
 main differences from Figures 1 and 2 are the lack of HTTP

Peterson, et al. Expires October 21, 2011 [Page 17]

Internet-Draft CDNI Strawman April 2011

 redirection and transparency to the end-user.
 End-User Operator B Operator A
 |DNS cdn.cp.com | |
 |-->|
 | | |(1)
 |CNAME b.cdn.cp.com | |
 |NS records for b.cdn.cp.com |
 |<--|
 |DNS b.cdn.cp.com | |
 |------------------------>| |
 | |(2) |
 |IPaddr of B’s Delivery Node |
 |<------------------------| |
 |HTTP cdn.cp.com | |
 |------------------------>| |
 | |(3) |
 | |DNS dca.cdn.cp.com |
 | |------------------------>|
 | | |(4)
 | |IPaddr of A’s Delivery Node
 | |<------------------------|
 | |HTTP dca.cdn.cp.com |
 | |------------------------>|
 | | |(5)
 | |Data |
 | |<------------------------|
 |Data | |
 |<------------------------| |

 Figure 3: Request Trace for Method Three

 1. Request Router for Operator A processes the DNS request for its
 customer based on CDN-domain cdn.cp.com and recognizes that the
 end-user is best served by another CDN. The client IP used in
 this determination is obtained either through the DNS client
 subnet extension or by embedding the client IP in the DNS name
 [I-D.vandergaast-edns-client-subnet]. The Request Router returns
 a DNS CNAME response by "stacking" a distinguished token for
 Operator B onto the original CDN-domain (e.g., b.cdn.cp.com),
 plus an NS record that maps b.cdn.cp.com to B’s Request Router.

 2. The end-user does a DNS lookup using the modified CDN-domain
 (e.g., b.cdn.cp.com). This causes B’s Request Router to respond
 with a suitable delivery node. Note that as sub-steps, CP’s
 authoritative DNS server will redirect the client to Operator A’s
 Request Router, which will in turn redirect the client to
 Operator B’s Request Router, in both cases by returning the
 appropriate NS records.

Peterson, et al. Expires October 21, 2011 [Page 18]

Internet-Draft CDNI Strawman April 2011

 3. The end-user requests the content from B’s delivery node. The
 requested URL contains the name cdn.cp.com. (Note that the
 returned CNAME does not affect the URL.) At this point the
 delivery node has the correct IP address of the end-user and can
 do an HTTP 302 redirect if the redirections in steps 2 and 3 were
 incorrect. Otherwise B verifies that this CDN-domain belongs to
 a known peer (so as to avoid being tricked into serving as an
 open proxy). It then does a DNS request for an "internal" CDN-
 domain constructed by augmenting the original CDN-domain with a
 distinguished token (e.g., dca.cdn.cp.com).

 4. Operator A recognizes that the DNS request is from a peer CDN
 rather than an end-user (due to the internal CDN-domain) and so
 returns the address of a delivery node.

 5. Operator A serves content for the requested CDN-domain. At this
 point the delivery node can issue an HTTP 302 redirect if the
 wrong delivery node was selected in step 4. Although not shown,
 it is at this point that Operator A processes the rest of the
 URL: it extracts information identifying the origin server,
 validates that this server has been registered, and determines
 the content provider that owns the origin server.

 A potential problem with this method is that the upstream CDN depends
 on being able to learn the network (CDN) that serves the end-user
 from the client address in the DNS request. If either the ClientIP
 extension is used or if the end-user uses the operator’s LDNS, then
 this is the case. If not--i.e., the end-user uses a global DNS
 service--then the upstream CDN cannot determine the appropriate
 downstream CDN to serve the end-user. In this case, one option is
 for the upstream CDN to treat the end-user as it would any user not
 connected to a peer CDN. Another option is for the upstream CDN to
 "fall back" to a pure HTTP-based redirection strategy in this case
 (i.e., use the first method).

5.3.1. Configuration Summary

 Operators must exchange the following information to peer with each
 other:

 o The operator’s unique id (operator-id) that can be used to
 construct a distinguish CDN-domain;

 o The set of IP prefixes for which the operator is prepared to
 deliver to the end-user; and

 o NS records for the operator’s set of externally visible
 redirection servers.

Peterson, et al. Expires October 21, 2011 [Page 19]

Internet-Draft CDNI Strawman April 2011

 Operators must perform the following URL conversions:

 o When a delivery node in a downstream sees a URL for a non-local
 "cdn-domain", it verifies that "cdn-domain" is served by a known
 CDN peer, and if so, converts it to "dca.cdn-domain" and issues an
 HTTP request for that new URL.

 DNS must be configured in the following way:

 o The content provider must be configured to make the operator that
 serves "cdn-domain" the authoritative DNS server for that name.

 o When the operator that serves "cdn-domain" sees an end-user IP
 address best served by a downstream peer, it returns CNAME and NS
 records for "operator-id.cdn-domain" (for the selected peer’s
 operator-id).

 o An operator with unique id operator-id must be configured so that
 a request for "operator-id.cdn-domain" returns a delivery node.

 o The operator that serves "cdn-domain" must be configured so that a
 request for "dca.cdn-domain" returns a delivery node.

5.4. Discussion

 We conclude this section by tying up three loose ends. A fourth
 loose end, verifying that a CDN-domain belongs to a peer, is
 postponed to the section on Security Considerations.

5.4.1. Method Selection

 One take away form this discussion is that no single request-
 forwarding method is suitable for all situations. Instead, we expect
 a pair of operators will agree to use the best available method,
 depending on circumstances. The method selection protocol might be
 as follows:

 o If the correct downstream CDN can be determined (i.e., a global
 LDNS is not used) and both CDNs support the third method, then use
 the third method.

 o Else-if both CDNs support the second method, then use the second
 method.

 o Else use the first method.

Peterson, et al. Expires October 21, 2011 [Page 20]

Internet-Draft CDNI Strawman April 2011

5.4.2. Overload Conditions

 In the event the downstream CDN is overloaded, it can redirect the
 end-user back to the upstream CDN by sending an HTTP 302 redirect.
 It will need to use a URL that informs the upstream CDN that it
 should not re-redirect the end-user back to the downstream CDN. The
 distinctive CDN-domain "dca.cdn-domain" could serve this purpose, but
 another distinctive token (e.g., "overload.cdn-domain") could be used
 instead to disambiguate the two scenarios for which the upstream CDN
 is to serve the content rather than redirect the user.

 Note that the upstream CDN has an opportunity to learn about the
 capacity of the downstream CDN by monitoring how often such overload
 redirects happen. It is not necessary for the two CDNs to exchange
 dynamic capacity information out-of-band, although it would be
 reasonable for operators to exchange course-grained capacity
 expectations as part of a peering agreement.

 It is also possible to piggyback load information on other HTTP
 messages exchanged between operators. (They can also implicitly
 determine live-ness via DNS queries.) However, we view such
 information as a hint--as would also be the case with any out-of-band
 interface--since it’s always possible that no capacity is available
 at the moment an actual user request is processed. In other words,
 any approach to interconnection will need to accommodate overload
 redirects; we simply propose to make this the primary means for
 communicating load information between CDNs.

5.4.3. Advertising Peering Information

 Each of the methods requires CDN peers to exchange information with
 each other. Depending on the method(s) supported, this includes

 o The operator’s unique id (operator-id) or distinguished CDN-domain
 (operator-domain);

 o The set of IP prefixes for which the operator is prepared to
 deliver to the end-user; and

 o NS records for the operator’s set of externally visible
 redirection servers.

 Of these, the two operator identifiers are fixed, and can be
 exchanged off-line as part of a peering agreement. The IP address
 blocks served are relatively static, and perhaps even negotiated as
 part of a peering agreement. It’s not obvious that a dynamic
 protocol is required to exchange this information. The third
 potentially changes with some frequency, but an existing protocol--

Peterson, et al. Expires October 21, 2011 [Page 21]

Internet-Draft CDNI Strawman April 2011

 DNS--can be used to dynamically track this information. That is, a
 peer can do a DNS lookup on operator-domain to retrieve the set of NS
 records corresponding to the peer’s redirection service.

6. Additional Interfaces

 The discussion to this point has focused on request routing. This
 section extends the scope to include the other elements of a complete
 CDN interconnection scheme.

 For example, it is necessary for the upstream CDN to have visibility
 into the delivery of content it originates to end-users connected to
 the downstream CDN. This allows the upstream CDN to properly bill
 its customers for multiple deliveries of content cached by the
 downstream CDN, as well as to report accurate traffic statistics to
 those content providers. This is sometimes called the Logging
 interface, although we also consider the related (but
 distinguishable) Monitoring interface.

 Similarly, the upstream CDN may also require control into how the
 downstream CDN delivers its content, for example, allowing it to
 purge content from the downstream CDN’s caches or control what end-
 users are permitted to download its content. This is sometimes
 called the Control interface.

 Finally, the upstream CDN may need to inform the downstream CDN about
 the content it is expected to deliver, for example, to what regions
 (e.g., countries) the content may be delivered and at what times the
 content may be delivered. This is sometimes called the CDNI Metadata
 interface.

6.1. Logging

 Traffic logs are easily exchanged off-line. For example, the
 following traffic log is a small deviation from the Apache log file
 format, where entries include the following fields:

 o Domain - the full domain name of the origin server

 o IP address - the IP address of the client making the request

 o End time - the ending time of the transfer

 o Time zone - any time zone modifier for the end time

 o Method - the transfer command itself (e.g., GET, POST, HEAD)

Peterson, et al. Expires October 21, 2011 [Page 22]

Internet-Draft CDNI Strawman April 2011

 o URL - the requested URL

 o Version - the protocol version, such as HTTP/1.0

 o Response - a numeric response code indicating transfer result

 o Bytes Sent - the number of bytes in the body sent to the client

 o Request ID - a unique identifier for this transfer

 o User agent - the user agent, if supplied

 o Duration - the duration of the transfer in milliseconds

 o Cached Bytes - the number of body bytes served from the cache

 o Referrer - the referrer string from the client, if supplied

 Of these, only the Domain field is indirect in the downstream CDN--it
 is set to the CDN-domain used by the upstream CDN rather than the
 actual origin server. This field is then used to filter traffic log
 entries so only those entries matching the upstream CDN are reported
 to the corresponding operator.

 The only question is who does the filtering. One option is that the
 downstream CDN filters its own logs, and passes the relevant records
 directly to each upstream peer. This requires that the downstream
 CDN knows the set of CDN-domains that belong to each upstream peer.
 If this information is already exchanged between peers (e.g., to
 validate the upstream CDN), then direct peer-to-peer reporting is
 straightforward. If it is not available, and operators do not wish
 to advertise the set of CDN-domains they serve to their peers, then
 the second option is for each CDN to send both its non-local traffic
 records and the set of CDN-domains it serves to an independent third-
 party (i.e., a CDN Exchange), which subsequently filters, merges, and
 distributes traffic records on behalf of each participating CDN
 operator.

6.2. Monitoring

 In addition to off-line traffic logs, accurate real-time traffic
 monitoring requires that the downstream CDN inform the upstream CDN
 each time it serves upstream content from its cache. The downstream
 CDN can do this by sending a conditional HTTP GET request (If-
 Modified-Since) to the upstream CDN each time it receives an HTTP GET
 request from one of its end-users. This allows the upstream CDN to
 record that a request has been issued for the purpose of real-time
 traffic monitoring. The upstream CDN can also use this information

Peterson, et al. Expires October 21, 2011 [Page 23]

Internet-Draft CDNI Strawman April 2011

 to validate the traffic logs received later from the downstream CDN.

 There is obviously a tradeoff between accuracy of such monitoring and
 the overhead of the downstream CDN having to go back to the upstream
 CDN for every request.

6.3. Control

 Being able to respond to a conditional GET request also gives the
 upstream CDN an opportunity to influence how the downstream CDN
 delivers its content. Minimally, the upstream CDN can invalidate
 (purge) content previously cached by the downstream CDN.

 Fine-grain control over how the downstream CDN delivers content on
 behalf of the upstream CDN is also possible. For example, by
 including the X-Forwarded-For HTTP header with the conditional GET
 request, the downstream CDN can report the end-user’s IP address to
 the upstream CDN, giving it an opportunity to control whether the
 downstream CDN should serve the content to this particular end-user.
 The upstream CDN would communicate its control directive through its
 response to the conditional GET. The downstream CDN can cache
 information for a period of time specified by the upstream CDN,
 thereby reducing control overhead.

 Thinking beyond what control operations can be done in-line, it is
 reasonable to argue that all CDNs already export a "content purge"
 operation to their customers, and so it is straightforward to also
 export this interface to an upstream peer. Of course, agreement as
 to the syntax and semantics of this call will be required.

6.4. CDNI Metadata

 We save the CDNI Metadata for last because its utility is less clear.
 The intent is to give the upstream CDN an opportunity to inform
 downstream peers about the rules governing the content it might be
 asked to deliver. However, the mechanisms already presented may
 mitigate the need for an explicit CDNI Metadata interface.

 Specifically, instead of the upstream CDN using an out-of-band
 Metadata interface to inform the downstream CDN of any geo-blocking
 restrictions or availability windows, the upstream has two options.
 The first is to redirect a given request to the downstream CDN only
 if that CDN’s advertised delivery footprint is acceptable for the
 requested URL. Similarly, the request should be forwarded only if
 the current time is within the availability window. The second is to
 perform access control on a per-request basis, as outlined in the
 previous section. That is, the CDNI Metadata interface is
 effectively handled in-band.

Peterson, et al. Expires October 21, 2011 [Page 24]

Internet-Draft CDNI Strawman April 2011

 Both strategies keep the locus of control over access decisions with
 the upstream CDN, which has a direct relationship with the content
 provider, and hence, authoritative knowledge about all relevant
 metadata. Of course, the downstream CDN is free to cache this
 information according to any upstream CDN caching directives.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 Each of the above request routing methods includes a step that
 requires the downstream CDN to validate that a peer CDN serves the
 requested CDN-domain. This is a critical step to ensure that a
 malicious content provider or client cannot trick a downstream CDN
 into serving as an open proxy. Although other approaches are
 possible--for example, a signed token generated from a shared secret
 could be encoded in each URL--we summarize two straightforward ways
 to validate the upstream CDN.

 The first approach is to have each upstream CDN advertise the set of
 CDN-domains they serve, where the downstream CDN checks each request
 against this set before caching and delivering the associated object.
 Although straightforward, this approach requires operators to reveal
 additional information, which may or may not be an issue. An
 operator also has to report the CDN-domains it serves in order to
 facilitate billing (see Section 6), but this can be done through an
 independent third-party (a so-called CDN Exchange) rather than by
 directly advertising CDN-domains to each peer CDN.

 A second, less intrusive approach is for the upstream CDN to
 advertise its set of externally accessible DNS-based Request Routers.
 This is essentially a set of NS records, which is already required to
 be advertised by methods two and three. The downstream CDN can
 validate that a server in this set is used to resolve the
 distinguished CDN-domain "dca.cdn-domain". Note that advertising
 this information is a new requirement for method one, but it can be
 avoided by encoding the upstream operator’s distinguished CDN-domain
 in the URL returned in Step 2 and the URL requested in Step 4. For
 example, the returned URL returned in Step 2 would be peer.op-b.net/
 peer.op-a.net/cdn.cp.com, where the downstream CDN issues a request
 for peer.op-a.net/cdn.cp.com in step 4, ensuring that only the
 upstream peer with distinguished CDN-domain peer.op-a.net provides
 the data.

Peterson, et al. Expires October 21, 2011 [Page 25]

Internet-Draft CDNI Strawman April 2011

9. References

9.1. Normative References

 [I-D.bertrand-cdni-experiments]
 Bertrand, G., Le Faucheur, F., and L. Peterson, "Content
 Distribution Network Interconnection (CDNI) Experiments",
 February 2011.

 [I-D.jenkins-cdni-problem-statement]
 Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement", March 2011.

 [I-D.vandergaast-edns-client-subnet]
 Contavalli, C., van der Gaast, W., Leach, S., and D.
 Rodden, "Client subnet in DNS requests", January 2011.

9.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Authors’ Addresses

 Larry Peterson
 Verivue Inc.
 2 Research Way
 Princeton,
 NJ

 Phone: +1 978 303 8032
 Email: lpeterson@verivue.com

 John Hartman
 Verivue Inc.
 2 Research Way
 Princeton,
 NJ

 Phone: +1 978 303 8038
 Email: jhartman@verivue.com

Peterson, et al. Expires October 21, 2011 [Page 26]

Internet-Draft CDNI Strawman April 2011

 Marcin Pilarski
 Orange Labs/Warsaw University of Technology
 pl. Politechniki 1
 Warsaw, Mazowieckie 00-661
 Poland

 Phone: +48 22 699 56 01
 Email: marcin.pilarski@telekomunikacja.pl

Peterson, et al. Expires October 21, 2011 [Page 27]

