
Network Working Group P. Adamska
Internet-Draft A. Wierzbicki
Intended status: Standards Track T. Kaszuba
Expires: 13 October, 2009 PJIIT
 May 18, 2009

 Publish-subscribe over the generic Peer-to-Peer Protocols
 draft-paulina-p2psip-pubsub-01

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document introduces a generic publish-subscribe protocol, that
 can be built on top of RELOAD or P2PP. It works both for the
 unstructured and DHT-based Peer-to-Peer networks. Moreover it is
 highly customizable to address the optimization issues and support
 different topology structures. It can be used to implement P2P-SIP
 services such as presence or event notification.

Adamska, et al. Expires October 13, 2009 [Page 1]

Internet-Draft Publish-Subscribe May 2009

Table of contents
 1. Introduction...2
 2. Terminology..2
 3. Architecture...3
 3.1 Overview...3
 3.2 Publish-subscribe transport................................4
 3.3 Core Algorithm...4
 3.4 Customizable Algorithm.....................................6
 3.5 Topology Manager...6
 3.6 Publish-Subscribe API......................................8
 3.6.1 Publish-Subscribe Interface...........................8
 3.6.2 Publish-Subscribe Callbacks...........................9
 4. Publish-Subscribe Protocol....................................10
 4.1 General information.......................................10
 4.1.1 Topic..10
 4.1.2 Subscriber...11
 4.1.3 Subscription...11
 4.1.4 Event..12
 4.1.5 Interest conditions..................................12
 4.1.6 Access control rules.................................13
 4.2 Default Customizable Algorithm............................14
 4.2.1 Create topic...14
 4.2.2 Transfer topic.......................................16
 4.2.3 Remove topic...19
 4.2.4 Subscribe..19
 4.2.5 Unsubscribe..20
 4.2.6 Publish..22
 4.2.7 Notify...22
 4.2.8 Maintenance..23
 4.2.9 Reliability..26
 4.3 Message formats...26
 4.3.1 Standard header......................................27
 4.3.2 Standard request header..............................28
 4.3.3 Create topic...29
 4.3.4 Subscribe..29
 4.3.5 Unsubscribe..30
 4.3.6 Publish..30
 4.3.7 Notify...30
 4.3.8 Standard response header.............................31
 4.3.9 Subscribe response...................................31
 4.3.10 Keep-alive..32
 4.4 Objects formats...32
 4.4.1 AC rules...32
 4.4.2 Rule...32
 4.4.3 Operation..33
 4.4.4 User...33
 4.4.5 Subscriber...34
 4.5 Message types...34
 4.6 Event types...35
 4.7 Response codes..35
 4.8 Security..35

Adamska, et al. Expires October 13, 2009 [Page 2]

Internet-Draft Publish-Subscribe May 2009

 5. Integrating publish-subscribe with P2PP/RELOAD................35
 5.1 Extending P2PP/RELOAD interfaces..........................35
 5.1.1 Callbacks..36
 5.1.2 Objects..43
 5.1.3 API..44
 5.2 Usage of the extension....................................44
 5.2.1 Objects..44
 6. Future work...45
 7. IANA Considerations...45
 8. References..45
 8.1 Normative references......................................45
 8.2 Informative references....................................45
 Authors' Addresses...46

1. Introduction
 The publish-subscribe protocol described in this paper is built on
 top of the generic P2P protocols such as RELOAD[1] and P2PP[2]. Both
 of them make the differences between peer-to-peer routing algorithms
 transparent to the higher-layer applications. Our main concern while
 designing the publish-subscribe protocol was to preserve this
 transparency in the presence of a great variety of overlay types. The
 proposed protocol may exchange messages both directly between the
 specified peers or by encapsulating them in the resource objects and
 sending inside the P2P insert request. A set of callback methods has
 been defined to let the publish-subscribe layer capture the incoming
 P2P requests, process them and modify the default P2P protocol
 behavior if it is necessary. In this document we describe the generic
 protocol, that works both for the unstructured and DHT-based P2P
 networks. It can be easily configured to optimize its behavior using
 the overlay-specific features or simply replaced by a set of
 different algorithms for the various P2P networks. Both operations
 are completely transparent for the higher-layer applications and
 topology-independent. Additionally we also define the Access Control
 Rules (AC), which allows higher-layer application to let some of the
 users subscribe for the specified topic without granting them
 permission to generate events. These rules are stored by all the
 topic subscribers, as they can be responsible for accepting other
 nodes' requests. The proposed publish-subscribe protocol also
 provides so called Interest Conditions (IC) which can be used as a
 simple filter for the received events. Each node can define the
 group of users generating interesting events. Each node also stores
 a certain number of events, that have recently been published for
 the topic. The new subscriber may ask for sending some or all of
 them after the successful subscription process. Nodes may also store
 a configurable number of the 'backup nodes' in the special caches,
 to use them in case of the direct parent's failure. The proposed
 protocol allows replacement of the default publish-subscribe
 algorithm with some other ones. This means that it may be integrated
 with a set of different algorithms to be dynamically loaded depending
 on the underlying overlay type (for instance Scribe-like for Pastry

Adamska, et al. Expires October 13, 2009 [Page 3]

Internet-Draft Publish-Subscribe May 2009

 and some other for different ones). Moreover such operation is
 completely transparent for the higher-layer applications and
 topology-independent.

 Due to the terminology differences between P2PP and RELOAD, in this
 document we use 'insert' for the P2PP publish object and RELOAD
 store request, and 'lookup' for the P2PP lookup and RELOAD fetch
 request where distinguishing one from another is not essential.

 This document is organized as follows. Section 3 describes the core
 components of the protocol and briefly explains, how the proposed
 mechanism may be extended. The proposed protocol MAY be integrated
 with many different publish-subscribe algorithms. Section 4 describes
 the elements common for all of them, introduces the default algorithm
 and shows how it can be configured to optimize its behavior for
 the DHT-based overlays. Detailed information about integration of the
 publish-subscribe protocol with P2PP and RELOAD are presented in
 section 5.

2. Terminology
 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

 Some of the terminology has been borrowed from the P2PP[1] and
 RELOAD[2] drafts.

 Topic owner: The node which has created the topic.

 Topic root: A non-leaf node in the topology structure - indirect
 parent for all the other nodes. It MAY be a topic
 subscriber or not. In the DHT-based overlays, it
 will be the peer with id numerically closest to the
 topic identifier.

 Topic history: Every node participating in the topology structure,
 that is able to accept new subscribers (which means
 it is a peer, not client) stores the list of the
 events that have recently been published for the
 specified topic. During the subscription process
 node can ask its parent to send some, or all of
 them. History only refers to the custom events, not
 the predefined ones, such as AC_MODIFIED.

 Topic cache: The backup list of nodes participating in the topology
 structure which is used in case of detecting the
 direct parent's failure. There may be several types of
 caches stored be a single node.

Adamska, et al. Expires October 13, 2009 [Page 4]

Internet-Draft Publish-Subscribe May 2009

3. Architecture

3.1 Overview
 To provide a generic and highly extensible publish-subscribe
 mechanism we decided to split it, as it is shown in the figure
 3.1.1. The arrows illustrate the communication between the
 various components of the publish-subscribe layer.

 +---+
 | Publish-Subscribe API |
 | +-----------------------------+ +-----------------------------+ |
 | | Publish-Subscribe Callbacks | | Publish-Subscribe Interface | |
 | +-----------------------------+ +-----------------------------+ |
 | ^ ^ | |
 +-----------|---------|---------------------------------|-------------+
 | +------------------------+ |
 +----------------------+ | |
 | | v
 +-------------------------------+ | +-------------------------------+
 | Topology Manager | | | Customizable Algorithm |
 +-------------------------------+ | +-------------------------------+
 ^ | ^
 | | |
 v | v
 +---+
 | Core Algorithm |
 | +---+ |
 | | Algorithm Configurator | |
 | +---+ |
 +---+
 ^
 |
 v
 +---+
 | Publish-Subscribe Transport |
 | +-----------------------------+ +-----------------------------+ |
 | | RELOAD/P2PP Transport | | Direct Transport | |
 | +-----------------------------+ +-----------------------------+ |
 +---+
 Figure 3.1.1: Publish-subscribe layer architecture

 The following sections provide the detailed description of the most
 important components of the publish-subscribe layer.

Adamska, et al. Expires October 13, 2009 [Page 5]

Internet-Draft Publish-Subscribe May 2009

3.2 Publish-subscribe transport
 This component is directly responsible for the communication. It
 passes the incoming publish-subscribe messages to the Core Algorithm
 and sends the outgoing ones. It hides the details of the sending
 procedure - for example encapsulates a publish-subscribe message
 inside the network resource object if it is to be sent within the
 P2P insert request. All the publish-subscribe requests may be routed
 either directly to some specified node, or using the overlay-specific
 algorithm. The second method is chosen, when the exact destination is
 not defined - for example to determine the root during the topic
 creation procedure in a DHT-based network. Indications and responses
 are always passed directly to a specified node.

 [TODO: Perhaps for the direct connections publish-subscribe
 use RELOAD's Attach() - as it was described in the SIP Usage]

3.3 Core Algorithm
 This component provides the core features of the publish-subscribe
 layer which are to be common for all the Customizable Algorithms.
 All the incoming messages are passed directly to this component. It
 checks whether it stores information about the specified topic (or
 does not store - for the create topic request) and whether the
 message originator is allowed to perform a certain operation. If
 both requirements are fulfilled, it passes the message to the
 Customizable Algorithm or the Topology Manager. Otherwise it sends
 the response with an appropriate error code to the request
 originator itself. It is also responsible for forwarding the events
 notifications to the node's children and checking IC, before
 passing them to the higher-layer application. Probably the most
 interesting feature of this component is its ability to query the
 P2P layer for the overlay type and dynamically load the appropriate
 algorithm with the suitable configuration. This can be achieved by
 defining a separate Algorithm Configurator that is used by the Core
 Algorithm to create an appropriate Customizable Algorithm object.
 The choice of the suitable component is made on the basis of the
 underlying P2P network type. This object is also able to configure
 such parameters as the size of the caches. Caches store the lists
 of the 'backup nodes' to be used in case of detecting the direct
 parent's failure. Each node may store several types of such lists,
 for example associated with different levels of the multicast
 tree. The decision on the number of caches depends on the
 Customizable Algorithm component's policy. Each parent is
 responsible for filling its children's caches by periodically
 sending them keep-alive messages containing the appropriate lists
 of nodes. Storing such information is essential in the
 unstructured networks. However it may not be crucial in the
 DHT-based ones, where the topology structure can be repaired at a
 relatively low cost using the overlay-specific routing algorithm,

Adamska, et al. Expires October 13, 2009 [Page 6]

Internet-Draft Publish-Subscribe May 2009

 without performing the complex lookup procedures. In such case
 the Algorithm Configurator may set the cache size to 0 and treat
 event notifications as a heartbeat messages to reduce the additional
 traffic associated with the structure maintenance. Moreover, if some
 new Customizable Algorithm requires sending any additional
 information in a standard publish-subscribe message - it can
 register this extended message format to make the Core Algorithm
 load it instead of the standard message object after receiving the
 specified request. For example the default Customizable Algorithm
 stores the information about the Interest Conditions locally, but
 some different algorithm may choose to built the IC-based multicast
 tree, where the child's IC are the subset of its parent's IC. This
 requires adding the information about the IC to the standard
 subscribe request. Such extended message can be registered using
 the Algorithm Configurator. Figure 3.3.1 illustrates the usage of
 this component.

 +--+----------------+
 | | Core Algorithm |
 | +----------------+
 | |
 +---+
 | ^
 | chord-128-2-16+ | Customizable Algorithm
 | |
 v |
 +--+------------------------+
 | | Algorithm Configurator |
 | +------------------------+
 | |
 | 1. Create the appropriate Customizable Algorithm object |
 | 2. Configure the object |
 | 3. Register the messages for all the publish-subscribe operations |
 | |
 +---+
 Figure 3.3.1: Usage of the Algorithm Configurator component

3.4 Customizable Algorithm
 This component implements all the methods from the Publish-Subscribe
 Interface and takes care of the processing of most of them. For
 instance the create topic operation requires performing different
 procedures in the DTH-based and unstructured overlays. In the first
 case it is enough to encapsulate the create topic request inside the
 P2P insert request, giving the topic identifier as an object key.
 The unstructured networks require performing the lookup procedure to
 ensure that some other node has not created the specified topic
 before. It is also necessary to place the SUBSCRIPTIONINFO objects
 in the P2P network to inform other nodes about the existing
 participants of the topology structure created for the particular

Adamska, et al. Expires October 13, 2009 [Page 7]

Internet-Draft Publish-Subscribe May 2009

 topic. Additionally in the DHT-based networks transferring certain
 topics to the new root may be necessary, if some new node joins the
 P2P network and its ID is closer to the topic ID according to the
 overlay-specific distance metrics. The Customizable Algorithm
 component also takes part in the topology structure creation
 process - this feature is described in details in the next section.

3.5 Topology Manager
 This component is responsible for creating and maintaining the
 specified topology structure. It handles all the subscribe requests
 and takes part in the topic transfers. Currently there are two
 structures defined: star and multicast tree. For the first one,
 topology manager only ensures, that none of the nodes except the
 topic root accepts new subscribers. The situation is slightly more
 complex for the multicast trees. For instance the Customizable
 Algorithm component may require creating IC-based trees. Then the
 node, receiving a subscribe request, must check whether the new
 subscriber's IC are the subset of its own ones. If it is not - it
 has to forward the request to the higher level of the multicast
 tree because it will not be receiving all the events that are
 interesting to the new subscriber. In such cases Topology Manager
 must consult the Customizable Algorithm component to identify the
 next hop for forwarding the subscribe request. Figure 3.5.1
 illustrates the subscribe procedure that uses the described
 mechanism. Figure 3.5.2 shows the structure that does not apply
 any additional rules for accepting the new subscribers. In this
 case the marked node B may not be receiving all the interesting
 events.

 (a) +------------+ (b) +------------+
 | Root | | Root |
 | IC={1,2,3} |-+ | IC={1,2,3} |
 +------------+ | +------------+
 ^ | | / \
 subscribe | | | / \
 | | | / \
 | | | / \
 subscribe +------------+ | +------------+ +------------+
 +---------->| A | | | B | | A |
 | | IC={1,2} | | | IC={2,3} | | IC={1,2} |
 +------------+ +------------+ | +------------+ +------------+
 | B | |
 | IC={2,3} |<--------------------+
 +------------+ subscriber accepted

 Figure 3.5.1: Subscribe procedure that applies the additional
 rules defined by the Customizable Algorithm component (a) and
 the multicast tree after completing the procedure (b)

Adamska, et al. Expires October 13, 2009 [Page 8]

Internet-Draft Publish-Subscribe May 2009

 (a) +------------+ (b) +------------+
 | Root | | Root |
 | IC={1,2,3} | | IC={1,2,3} |
 +------------+ +------------+
 | |
 | |
 | +------------+
 | | A |
 subscribe +------------+ | IC={1,2} |
 +------------>| A | +------------+
 | | IC={1,2} |-+ |
 +------------+ +------------+ | |
 | B | | +============+
 | IC={2,3} |<----------------------+ | B |
 +------------+ subscriber accepted | IC={2,3} |
 +============+

 Figure 3.5.2: Subscribe procedure that does not apply the additional
 rules defined by the Customizable Algorithm component (a) and the
 multicast tree after completing the procedure (b)

 Figure 3.5.3 briefly describes the exact procedures performed by the
 node receiving a subscribe request to build an IC-based multicast
 tree using the proposed mechanism.

 +---------------+----------+ +------------------------+----------+
 | Tree Topology | | | Customizable Algorithm | |
 +---------------+ | +------------------------+ |
2. Query for a better		3. If the new subscriber's IC are
node to accept the		the subset of this node's IC
request		return null
4. If the better node ==		3'.Otherwise return this node's
null, accept the		parent
request		
4'.If the better node		
!= null, forward the		
request to that node		
 +--------------------------+ +-----------------------------------+
 ^ | ^ | ^
 |1.subscribe |2 | |3.better |
 | request | | | node |
 | | | | |
 | | | | |
 +----------------+---|-------|-------------|---------------------|---+
 | Core Algorithm | | +-------------+ | |
 +----------------+ +---+ |
 | |
 | |

Adamska, et al. Expires October 13, 2009 [Page 9]

Internet-Draft Publish-Subscribe May 2009

 | 1. If the topic exists and the node is allowed to subscribe for |
 | it |
 +--+
 Figure 3.5.3: Procedure performed by the node receiving a subscribe
 request

3.6 Publish-Subscribe API

3.6.1 Publish-Subscribe Interface
 Application issues a publish-subscribe request using one of the
 methods described below. All of them are implemented by the
 Customizable Algorithm component. Each operation is asynchronous, as
 it can take a long time to complete. Parameters enclosed in the
 square brackets are optional.

 void createTopic(String topicId, boolean subscribe,
 [AccessControlRules ac])

 @param topicId Topic identifier.

 @param subscribe Value indicating whether this node wants to
 automatically subscribe for the specified topic
 after its creation. In this case the 'create topic'
 request is specially prepared and there is no need
 to send a separate 'subscribe' request later on.

 @param ac Access control rules defined for the operations associated
 with this topic.

 void removeTopic(String topicId)

 @param topicId Topic identifier.

 void subscribe(String topicId, [InterestConditions ic],
 [int eventIndex])

 @param topicId Topic identifier.

 @param ic Object representing Interest Conditions defined for the
 particular topic by the higher-layer application.

 @param eventIndex Value indicating which events from the topic
 history node wants to receive after successfully
 completing the subscribe operation.

Adamska, et al. Expires October 13, 2009 [Page 10]

Internet-Draft Publish-Subscribe May 2009

 void unsubscribe(String topicId)

 @param topicId Topic identifier.

 void publish(String topicId, Event e)

 @param topicId Topic identifier.

 @param e Event to be published.

3.6.2 Publish-Subscribe Callbacks
 Additionally the publish-subscribe layer defines a set of callback
 methods, which are invoked after completing asynchronous operations
 and can be implemented by the higher-layer application. These methods
 are described below.

 public void onTopicSubscribe(String topicId)

 @param topicId Topic identifier.

 Called after a successful subscription.

 public void onTopicCreate(String topicId)

 @param topicId Created topic identifier.

 Called after a successful topic creation.

 public void onTopicNotify(String topicId, byte[] message)

 @param topicId Topic identifier.

 @param message Message encapsulated in the received event.

 Called when node receives a custom event notification.

 public void onTopicRemove(String topicId)

 @param topicId Removed topic identifier.

 Called when node receives the notification informing that the
 particular topic has been removed.

Adamska, et al. Expires October 13, 2009 [Page 11]

Internet-Draft Publish-Subscribe May 2009

 public void onPubSubError(String topicId, Operation o, int errorCode)

 @param topicId Topic identifier.

 @param o Operation which failed to complete successfully.

 @param errorCode Error code.

 Called when an asynchronous operation fails to complete successfully.

4. Publish-Subscribe Protocol

4.1 General information

4.1.1 Topic

 Apart from the identifier, there are several information stored for
 each topic:

 1) Owner

 The node which has created the topic

 2) Parent

 Node's parent in the topology structure

 3) Access Control Rules

 Described in details in the section 4.1.6

 4) Interest Conditions

 Described in details in the section 4.1.5

 5) Subscription list

 The list of topic subscribers, which are this node's children in
 the topology structure

 6) Caches

 The backup information about other nodes participating in the
 topology structure

 7) Distance

 The distance between the peer id and the topic id (calculated

Adamska, et al. Expires October 13, 2009 [Page 12]

Internet-Draft Publish-Subscribe May 2009

 using the overlay-specific metrics)

 8) History

 The list of the previously published events for the specified
 topic

4.1.2 Subscriber
 Apart from the topic identifier, this object contains information
 such as:

 1) User name

 User name in the Peer-to-Peer network

 2) Peer id

 Peer id in the Peer-to-Peer network

 3) IP address

 4) Port number

 Port used for exchanging the publish-subscribe messages directly

4.1.3 Subscription
 Subscription contains the following information:

 1) Subscriber

 2) Expiration time

 How long the subscription is valid - after this period node needs
 to resubscribe

4.1.4 Event
 Every publish-subscribe event contains information about its
 publisher and the identifier of the topic it is associated with. The
 proposed publish-subscribe protocol defines three types of events:

 - remove topic - informs all subscribers that the particular topic
 has been removed

 - AC modified - informs all subscribers that the Access Control Rules
 (section 4.1.6) for the specified topic have been modified

Adamska, et al. Expires October 13, 2009 [Page 13]

Internet-Draft Publish-Subscribe May 2009

 - custom - this event encapsulates the user-defined events

4.1.5 Interest conditions
 Each subscriber can define its Interest Conditions (IC) for the
 topic. This means he can declare that he wants to receive information
 only about the events published by a specified group of users. It can
 be described as follows:

 operation: eventtype(ALL): interestingusers[]
 eventtype(...):interestingusers[]

 If the 'interestingusers' list for the specified event type is empty,
 it means that it is always interesting regardless the publisher. The
 conditions defined for the event type ALL are always checked first.
 If the 'interestingusers' list for it is empty, the decision on
 whether the specified event is interesting or not, depends on the
 'interestingusers' associated with the particular event type.

 If there is no rule defined for some operation or event - it means it
 is not interesting at all.

 By default all the subscribers will be receiving every topic event.
 It means that each non-leaf node in the topology structure has to
 pass every event to all of its children. IC are defined locally and
 checked by the topic subscriber before invoking the higher-layer
 notify callback. Otherwise the node's parent in the topology
 structure would have to define similar IC (to receive all the events,
 that are interesting for its children). Additionally after modifying
 IC, subscriber would in some cases have to be passed to a different
 parent in the topology structure, generating extra traffic.

 If IC for some topic are defined as follows:

 NOTIFY: eventtype(ALL):
 eventtype(REMOVETOPIC):
 eventtype(MODIFYAC):
 eventtype(CUSTOM): user1, user2, user3

 then after receiving a CUSTOM notification from user1, 2 or 3, node
 will inform higher layer about it. REMOVETOPIC and MODIFYAC events
 are by default interesting regardless the publisher.

4.1.6 Access control rules
 Nodes can define a set of rules for the topic, to grant other users
 different access permissions (AC). These rules can be described as
 follows:

Adamska, et al. Expires October 13, 2009 [Page 14]

Internet-Draft Publish-Subscribe May 2009

 operation: eventtype(ALL): allowusers[]
 eventtype(...): allowusers[]

 If the 'allowusers' list for a specified event type is empty, it
 means that the associated operation can be performed by any
 subscriber. The permissions defined for the event type ALL are always
 checked first. If the 'allowusers' list for it is empty, then
 granting access permission depends exclusively on the 'allowusers'
 defined for the particular event type.

 If there is no rule for some operation or event - it means it is not
 allowed.

 For example if the rules for some topic are:

 SUBSCRIBE: eventtype(ALL): user1, user2, user3, user4
 PUBLISH: eventtype(ALL):
 eventtype(REMOVETOPIC): user1
 eventtype(MODIFYAC): user1
 eventtype(CUSTOM): user1, user2, user3

 It means that:
 - Only user1 is allowed to modify AC rules for the topic. By default
 this permission is granted exclusively to the topic owner.
 - If the topology structure participant receives a 'subscribe'
 request for example from user5, subscription will fail due to
 access control restrictions. Only users 1, 2, 3 and 4 are allowed
 to subscribe for the topic.
 - User4 may (according to SUBSCRIBE rules) subscribe for receiving
 the topic events, but isn't allowed (according to PUBLISH rules) to
 generate them. Users 1, 2 and 3 are all allowed to publish
 user-defined events, but only user1 has permission to remove this
 topic. By default only topic owner has permission to publish the
 predefined events such as REMOVETOPIC or MODIFYAC.

 In case of any collisions in the AC rules - the most important is the
 one marked with ALL clause. For example if the rules are defined as
 follows:

 PUBLISH: eventtype(ALL): user1, user2, user3
 eventtype(REMOVETOPIC): user1
 eventtype(MODIFYAC): user1
 eventtype(CUSTOM): user4

 User4 will not be able to publish any event, because the first rule
 to be checked is: eventtype(ALL): user1, user2, user3. It could be
 repaired either by removing the 'allowusers' list for event type ALL,
 or adding user4 to it.

 The topic owner always retains permission to modify AC rules and
 remove the topic, but it can also grant it to other users. Rules

Adamska, et al. Expires October 13, 2009 [Page 15]

Internet-Draft Publish-Subscribe May 2009

 defined for the 'notify' operation MAY differ for different nodes. By
 default each subscriber will only accept event notifications from its
 parent in the topology structure.

4.2 Default Customizable Algorithm
 This section describes the default Customizable Algorithm component's
 behavior and the possibilities of configuring it to address the
 optimization issues. In some cases it is essential to determine
 whether the underlying P2P network is a DHT-based or an unstructured
 one. To fulfill this requirement we define an additional method that
 asks the generic P2P protocol to calculate the distance between the
 two given keys according to the overlay-specific metrics. Such
 calculations are possible only in a DHT-based network. Each
 publish-subscribe Customizable Algorithm component MUST implement
 the set of operations defined in this section. In the diagrams shown
 in this section we use '{PUBSUB}msg' notation to indicate, that the
 message 'msg' is sent directly to the specified node and
 '{P2P}insert(msg)' in case of messages encapsulated within an insert
 request.

4.2.1 Create topic
 To perform this operation node encapsulates the 'create topic'
 message inside the P2P resource object, sets its key to the topic ID
 and sends it within the P2P insert request. In the DHT-based networks
 it is enough for the node receiving such request to check, whether it
 does not store information about the specified topic itself
 (figure 4.2.1). The unstructured networks require some lookup
 procedure to determine, whether the topic has not been created by a
 different node (figure 4.2.2). Such situation may occur, because the
 object encapsulated inside the P2P resource object will in most cases
 be stored by the 'create topic' request originator. This is where the
 idea of the SUBSCRIPTIONINFO objects comes along. They are associated
 with the particular topic and contain contact information about its
 subscribers. The status of such object may be PENDING or ACCEPTED.
 The difference between both states will be explained later on. Each
 node receiving a 'create topic' request places a pending
 SUBSCRIPTIONINFO object in the underlying P2P network. Then it looks
 for other objects associated with the specified topic. If there is at
 least one with the accepted status - it assures us that the specified
 topic already exists. If the underlying P2P network stores only the
 pending SUBSCRIPTIONINFO objects, than the peer with the lowest ID is
 allowed to become the root for the specified topic. All the others
 are supposed to remove their SUBSCRIPTIONINFO objects and send the
 response with an appropriate error code. The 'create topic' request
 may additionally contain a list of nodes, which are to be added to
 the topic subscribers after successfully completing the operation.
 This way its originator does not have to issue a separate 'subscribe'
 request later on. The 'create topic' message may also be used to

Adamska, et al. Expires October 13, 2009 [Page 16]

Internet-Draft Publish-Subscribe May 2009

 transfer the topic to the new root, in which case a special flag is
 set to indicate that this request refers to an existing topic.
 Regardless the purpose, the described request always contains AC
 rules defined for the topic.

 Topic root
 | {P2P}insert(messageObject) |
 |------------------------------>| 1. if this is not a topic transfer
 | |
 | {PUBSUB}409 |
 |<------------------------------| 2. if the topic exists
 | | 3. finished
 | |
 | | 2'. if the topic does not exist
 | | 3'. create the topic
 | {PUBSUB}200 | 4'. add the subscribers if the
 |<------------------------------| request contains any
 | | 5'. finished

 Figure 4.2.1: Create topic procedure in a DHT-based network

 Topic root Root's neighbor
{P2P}insert(messageObject)	
--------------------------->	1. if this is not a topic
	transfer
{PUBSUB}409	
<---------------------------	2. if the topic exists
	3. finished
	2'. create the topic with a
	PENDING status
	3'. insert mine
	SUBSCRIPTIONINFO
	object with a
	PENDING status
	{P2P}lookup(SUBSCRIPTIONINFO)
	-------------------------------->
	5'. if no SUBSCRIPTIONINFO found for
	this topic or only PENDING objects
	created by the peers with the higher
	IDs exist - set the topic's and the
	SUBSCRIPTIONINFO object's status to
	ACCEPTED
	6'. add the subscribers if the
	request contains any

Adamska, et al. Expires October 13, 2009 [Page 17]

Internet-Draft Publish-Subscribe May 2009

| {PUBSUB}200 |
|<---------------------------|
| | 8'. finished
| |
| | 5''. if an ACCEPTED SUBSCRIPTIONINFO
| | found or the PENDING object created
| | by the peer with the lower ID exists
| | 6''. Remove the PENDING topic and mine
| | SUBSCRIPTIONINFO object
| {PUBSUB}409 |
|<---------------------------|
| | 8''. finished
| |

 Figure 4.2.2: Create topic procedure in an unstructured network

4.2.2 Transfer topic
 This operation is essential for the DHT-based networks. It MAY be
 performed when the publish-subscribe layer receives the information
 from the P2P layer, that it has accepted the other node's join
 request. In such case the node iterates through all the topics it
 stores information about. If it is the root for one of them and the
 distance between the new peer's ID and the topic ID is smaller than
 the distance calculated for this node, it sends a create topic
 request inside the P2P insert message. Before sending the request,
 the previous root MAY also add the list of its direct children to it.
 All of the procedures associated with the topic transfer are
 performed by the Topology Manager component, as it is responsible for
 retaining the appropriate structure. For instance in the star
 topology, all the request originator's children must be passed to the
 new root as well. If some Customizable Algorithm component is
 designed exclusively for the unstructured networks, it MAY choose not
 to perform this procedure or use a different measure than the
 distance between identifiers to determine, whether the specified
 topic should be transfered. The brief description of the whole
 procedure is shown in the figure 4.2.2.1.

 +------------------------+-------+ +------------------+---------+
 | Customizable Algorithm | | | Topology Manager | |
 +------------------------+ | +------------------+ |
foreach(topic in storedTopics)		3. Transfer the topic
2. If thisNode is the root		to the new peer
for this topic &&		
thisNodeToTopicDistance>		
newPeerToTopicDistance		
 +--------------------------------+ +----------------------------+
 ^ | ^

Adamska, et al. Expires October 13, 2009 [Page 18]

Internet-Draft Publish-Subscribe May 2009

 |1.new |2.topic, |
 | peer | new peer |
 | | |
 | | |
 +----------------+---|---|--+
 | Core Algorithm | | | |
 +----------------+ +---+ |
 | |
 | |
 | 1. New neighbor arrives |
 | |
 +---+
 Figure 4.2.2.1: Overview of the topic transfer procedure

 The details of the transfer topic procedure performed by the Topology
 Manager component are described in the figures 4.2.2.2 (for the star
 topology) and 4.2.2.3 (for the multicast tree).

 (a) Previous root New root
 | |
 | | 1. Add the nodes from
 | | the list inside the
 | | transfer request to
 | | the topic
 | | subscription list
 | {PUBSUB}200 |
 |<-------------------------|
 | |

 (b) Previous root's
 child Previous root New root
 | | |
 | | {PUBSUB}200 | Accepting
 | 1. Set parent to |<-------------| topic
 | the new root | | transfer
 | 2. Send keep-alive | |
 | indication | |
 | to inform the | |
 | child about the | |
 | parent's change | |
 | | |
 | {PUBSUB}keep-alive | |
 |<------------------------| |
 1. Check if this | | |
 message was sent| 3. Remove the child | |
 by my parent | from the topic | |
 (otherwise | subscription list| |
 discard it) | 4. If this node is | |

Adamska, et al. Expires October 13, 2009 [Page 19]

Internet-Draft Publish-Subscribe May 2009

 2. Set parent to | not the topic
 the one stated | subscriber itself
 in keep-alive | - remove the
 3. Update the cache| topic
 4. Reset keep-alive| 5. Finished
 timer for this |
 topic |
 |

 Figure 4.2.2.2: Processing the transfer request(a) and response(b) by
 the star topology

 (a) Previous root New root
 | |
 | | 1. Add the request
 | | originator to the
 | | topic subscription
 | | list
 | {PUBSUB}200 |
 |<--------------------------|
 | |

 (b) Previous root's
 child Previous root New root
 | | |
 | | {PUBSUB}200 | Accepting
 | 1. Set parent to |<-------------| topic
 | the new root | | transfer
 | 2. Send keep-alive | |
 | indication | |
 | to update the | |
 | child's cache | |
 | | |
 | {PUBSUB}keep-alive | |
 |<------------------------| |
 1. Check if this | | |
 message was sent| 3. Finished | |
 by my parent |
 (otherwise |
 discard it) |
 2. Set parent to |
 the one sent |
 in keep-alive |
 3. Update the cache|
 4. Reset keep-alive|
 timer for this |
 topic |
 |

Adamska, et al. Expires October 13, 2009 [Page 20]

Internet-Draft Publish-Subscribe May 2009

 Figure 4.2.2.3: Processing the transfer request(a) and response(b) by
 the multicast tree

4.2.3 Remove topic
 To perform this operation, the node publishes the predefined
 REMOVE_TOPIC event among the topic subscribers. After that all the
 SUBSCRIPTIONINFO objects associated with this topic MUST be removed
 from the underlying P2P network.

4.2.4 Subscribe
 To subscribe for a topic, node has to send a 'subscribe' request to
 the peer that is already participating in the appropriate topology
 structure. Determining the message destination is crucial for the
 whole procedure. In the DHT-based networks it is enough to
 encapsulate the publish-subscribe request in the resource object.
 Then it can be captured using the P2P protocol callbacks. The
 unstructured networks require performing the lookup procedure for the
 SUBSCRIPTIONINFO objects to identify the existing topology structure
 participants. After that the request may be sent directly to the
 specified node. Also the multicast trees are built using a different
 approach in the unstructured and DHT-based environment. In the first
 case, node accepts only the subscribers with the ID greater than its
 own one (figure 4.2.4.1). The nodes that do not fulfill these
 requirements are forwarded to the direct parent. Only the topic root
 accepts all the requests unless this is forbidden by the AC rules.
 Such an arrangement of the topology structure participants simplifies
 the recovery procedures after the direct parent's failure.

 +--------+
 | Root |
 | id=2 |
 +--------+
 / \
 / \
 +--------+ +--------+
 | A | | B |
 | id=4 | | id=3 |
 +--------+ +--------+
 | |
 | |
 +--------+ +---------+
 | C | | D |
 | id=8 | | id=15 |
 +--------+ +---------+

 Figure 4.2.4.1: Multicast tree created on top of an unstructured

 network
Adamska, et al. Expires October 13, 2009 [Page 21]

Internet-Draft Publish-Subscribe May 2009

 In the DHT-based network the nodes are arranged by the distance
 between their identifiers and the topic ID (figure 4.2.4.2).

 +------------+
 | Root |
 | distance=2 |
 +------------+
 / \
 / \
 +------------+ +------------+
 | A | | B |
 | distance=4 | | distance=3 |
 +------------+ +------------+
 | |
 | |
 +------------+ +-------------+
 | C | | D |
 | distance=8 | | distance=15 |
 +------------+ +-------------+

 Figure 4.2.4.2: Multicast tree created on top of a DHT-based network

 In the unstructured networks, after successfully completing the
 described procedure, the new subscriber must place its
 SUBSCRIPTIONINFO object in the underlying network. This is done only
 if it is a peer, as clients SHOULD NOT be responsible for accepting
 new subscribers. The node must also locally modify the AC rules for
 the notify operation, to indicate that only its direct parent is
 allowed to send event notifications to it. The standard subscribe
 request also contains the additional information, such as the index
 of the last received event. After accepting the new subscriber, its
 parent must send the requested set of the notify messages containing
 the historical events to it. Each subscription is valid only for a
 specified time, so the node needs to renew it periodically.

4.2.5 Unsubscribe
 If the node has no more children in the topology structure and it is
 not the topic root, it simply sends an 'unsubscribe' request directly
 to its parent and removes its SUBSCRIPTIONINFO object from the
 overlay if it is necessary. If the node has more children, it also
 has to send the keep-alive indication to them. It is depicted in
 figure 4.2.5.1. The unsubscribe request sent to the node's parent
 contains the list of its children. Parent node has to add the new
 children to its own ones. Children nodes get keep-alive indication
 with the information about the new parent and modify their cache
 information (figure 4.2.5.2). If necessary, keep-alive indications
 are propagated down along the multicast tree to update other node's
 caches (the unsubscribing node can be stored in their grandparents
 cache). Note that after unsubscribe root node does not notify the

Adamska, et al. Expires October 13, 2009 [Page 22]

Internet-Draft Publish-Subscribe May 2009

 higher-layer about the received events anymore, but it is still able
 to forward appropriate messages to its children.

 +------+
 | Root |
 +------+
 |
 |
 +-------+
 +-->| A |
 unsubscribe | +-------+
 children={C,E} | |
 | | keep-alive
 | +--\--/--+ parent=A
 +---| B\/ |----------+---+
 | /\ | | |
 +--/--\--+ | |
 / \ | |
 / \ | |
 +-------+ +-------+ | |
 | C | | E |<---+ |
 +-------+ +-------+ |
 ^ |
 | |
 +-------------------------+

 Figure 4.2.5.1: Multicast tree before the unsubscribe procedure

 +------+
 | Root |
 +------+
 |
 |
 +-------+
 | A |
 +-------+
 / \
 / \
 +----------+ / \ +----------+
Cache C:	+-------+ +-------+	Cache E:				
p={A}	<--------	C		E	-------->	p={A}
g={ROOT}	+-------+ +-------+	g={ROOT}				
n={C,E}		n={C,E}				
 +----------+ +----------+

 Figure 4.2.5.2: Multicast tree after the unsubscribe procedure

Adamska, et al. Expires October 13, 2009 [Page 23]

Internet-Draft Publish-Subscribe May 2009

4.2.6 Publish
 There are three types of the predefined events that can be published
 among the topic subscribers: AC_MODIFIED, TOPIC_REMOVED and CUSTOM.
 The first one is generated, when the access control rules are
 modified. The third one represents a custom event defined by the
 higher-layer application. The default Customizable Algorithm
 component requires all the publish messages to be delivered to the
 topic root, which accepts the request, sends the appropriate response
 to its originator and the set of notify indications to the direct
 children. This is done to avoid the situation, when for example AC
 rules have been modified, but the AC_MODIFIED event has not been
 propagated among all of the topic subscribers. In such case some of
 them may accept the events from the node which is not allowed to
 generate them anymore. In the default Customizable Algorithm
 component AC rules are defined so, that only the node's parent in the
 topology structure is allowed to send event notifications to it. Note
 that there are two situations, in which such indication may be
 received. The first one is when a new event is generated by some
 node. In this case the notification SHOULD be forwarded down along
 the multicast tree. However it might happen that the new subscriber
 receives the requested historical events after successfully
 completing the subscribe operation. In such case no further
 forwarding is needed. The node only updates its own topic history and
 invokes the higher-layer callback. The default Customizable Algorithm
 component also requires the node to be a topic subscriber to generate
 events.

4.2.7 Notify
 After receiving a publish request, topic root propagates the event
 among its children using the notify message. Like all indications,
 notifications are send directly to the specified nodes. Figure
 4.2.7.1 briefly describes the procedure performed after receiving
 such message. By default the Customizable Algorithm component defines
 AC rules so, that only the node's parent in the topology structure is
 allowed to send notifications to it. There are three predefined event
 types sent within the notify message(see section 4.1.4). All the
 received notifications MUST be forwarded to children unless they are
 historical.

 Child Parent
 | |
 | {PUBSUB}notify |
 1. If operation not allowed - finished |<--------------------------|
 | |
 2. If event is interesting (according | |
 to IC) and historical (appropriate | |
 flag set to 1), node: | |
 - updates topic history | |

Adamska, et al. Expires October 13, 2009 [Page 24]

Internet-Draft Publish-Subscribe May 2009

 - if it is topic subscriber, not | |
 just a forwarder invokes | |
 higher-layer application callback | |
 3. Finished | |
 | |
 2'. If event is interesting and new | |
 (appropriate flag set to 0), | |
 node: | |
 - updates topic history | |
 - forwards notification to | |
 children (and invokes its own | |
 callback if it is topic | |
 subscriber) | |
 3'. Finished | |
 | |

 Figure 4.2.7.1: Procedure performed after receiving
 event notification

4.2.8 Maintenance
 Apart from the necessity to transfer a topic to the new root in some
 situations, there is also the nodes' failures problem that has to be
 handled by the Customizable Algorithm component. To address this
 issue, we define a keep-alive indication. Every node periodically
 sends this message to its direct children. If some peer is the other
 one's parent for several topics, it does not have to send a separate
 indication for each one of them. Such message contains the
 information about the current parent and the list of the 'backup
 nodes' to be placed in the node's cache for each topic. When the
 child detects its parent's failure, it uses the cache to resubscribe.
 If the cache size is set to 0 by the Algorithm Configurator
 component, the default Customizable Algorithm assumes, that the
 keep-alive message does not carry any additional information and
 treats the notify indication as a 'keep-alive', like Scribe does.
 This way, if events are frequently published for the specified
 topics, no additional traffic associated with the topology structure
 maintenance is involved. This optimization mechanism can be
 considered for the DHT-based networks, where the recovery procedure
 may be performed at a relatively low cost using the overlay-specific
 routing. In general there are three types of caches stored for each
 topic: parents cache, grandparents cache and neighbors cache. The
 capacities of the caches are the parameters k (for the parents and
 neighbors) and g (for the grandparents). For the node N at the level
 x, parents cache contains k nodes with the lowest id or the closest
 to the topic id from the level x-1. It may also contain the node's
 direct parent. The neighbor cache contains k nodes with the lowest id
 or the closest to the topic id from the level x, which have the same
 parent as N. The grandparents cache contains one node from each level
 between x-2 and x-1-g. This cache is stored in case of the multiple

Adamska, et al. Expires October 13, 2009 [Page 25]

Internet-Draft Publish-Subscribe May 2009

 nodes' failures in the highly unbalanced trees. When all the nodes
 from the parents cache fail to respond or the cache is empty - the
 node can try to send 'subscribe' request directly to its grandparent.
 All the nodes at the same level and in the same subtree have the same
 caches' contents. Nodes in the different subtrees have different
 neighbors caches' contents. All the entries in the parents and
 neighbors caches are sorted from the lowest id (or distance to the
 topic id) to the highest. In the grandparents cache the node from the
 highest level is stored at the lowest index. Examples of the topology
 structures and caches' contents for both the unstructured and
 DHT-based networks are shown in the figures 4.2.8.1 and 4.2.8.2.

 --
 +-------------+ +-------+ | Level 0
Cache ROOT:	<------------------	ROOT	
p={}		dist=2	
g={}	+-------+		
n={}	/	\	
+-------------+ ----------------/----	----\---------------------------		
+----------+ /	\	Level 1	
Cache A:	+--------+ +-------+ +-------+		
p={ROOT}	<---------	A	
g={}		dist=8	
n={B,C}	+--------+ +-------+ +-------+		
+----------+ ---------/-----\---------------	----------------------		
+----------+ / \		Level 2	
Cache D:	+--------+ +-------+ +-------+		
p={B,C}	<-----	D	
g={ROOT}		dist=11	
n={E,D}	+--------+ +-------+ +-------+		
 +----------+ ------------------|-------------|---------------------
 | +---------+
 | |
 V V
 +----------+ +----------+
 | Cache E: | | Cache F: |
 | p={B,C} | | p={B,C} |
 | g={ROOT} | | g={ROOT} |
 | n={E,D} | | n={F} |
 +----------+ +----------+

 Figure 4.2.8.1: Caches' contents for k=2 and g=1 in the DHT-based
 network

 +-------------+ +-------+ | Level 0
Cache ROOT:	<------------------	ROOT	
p={}		id=2	
g={}	+-------+		

Adamska, et al. Expires October 13, 2009 [Page 26]

Internet-Draft Publish-Subscribe May 2009

 | n={} | / | \ |
 +-------------+ ----------------/----|----\---------------------------
 +----------+ / | \ | Level 1
Cache A:	+--------+ +-------+ +-------+						
p={ROOT}	<---------	A		B		C	
g={}		id=8		id=3		id=5	
n={B,C}	+--------+ +-------+ +-------+						
+----------+ ---------/-----\---------------	----------------------						
+----------+ / \		Level 2					
Cache D:	+--------+ +-------+ +-------+						
p={B,C}	<-----	D		E		F	
g={ROOT}		id=11		id=9		id=6	
n={E,D}	+--------+ +-------+ +-------+						
 +----------+ ------------------|-------------|---------------------
 | +---------+
 | |
 V V
 +----------+ +----------+
 | Cache E: | | Cache F: |
 | p={B,C} | | p={B,C} |
 | g={ROOT} | | g={ROOT} |
 | n={E,D} | | n={F} |
 +----------+ +----------+

 Figure 4.2.8.2: Caches' contents for k=2 and g=1 in an unstructured
 network

 Figure 4.2.8.3 briefly describes the usage of the grandparents cache
 in case of the multiple nodes' failures.

 +------+
 +--->| ROOT |
 | +------+
 | |
 | |
 | +-\--/-+
 | | A\/ |
 | | /\ |
 | +-/--\-+
 | | \
 possible path for | | \
 resubsciption | +-\--/-+ +-\--/-+
 | | B\/ | | E\/ |
 | | /\ | | /\ |
 | +-/--\-+ +-/--\-+
 | |
 | |
 | +------+ +-------------+
 +----| C |------->| Cache C: |

Adamska, et al. Expires October 13, 2009 [Page 27]

Internet-Draft Publish-Subscribe May 2009

 +------+ | p={B,E} |
 | g={A,ROOT} |
 | n={C} |
 +-------------+

 Figure 4.2.8.3: Example of the grandparents cache usage
 (algorithm parameters: k=2 and g=2)

 After discovering the direct parent's failure, node tries to send the
 'subscribe' request to the the first node from its parents cache. If
 it does not respond, it is removed from the cache, and the
 'subscribe' request is sent to the next one. If all the nodes from
 the parents cache fail to respond, the grandparents cache is used. If
 the grandparents cache does not contain any useful information and
 the node's distance to the topic ID is greater than 0, than peer
 assumes that it participates in the DHT-based network and there may
 be some node which ID is closer to the topic ID than its own one. In
 such case it encapsulates the 'transfer topic' request inside the P2P
 insert message. If this message is received by some other node, it
 performs a standard topic transfer procedure. If the peer is already
 participating in the topology structure, than it only omits creating
 the new topic. If the distance between the topic ID and the peer ID
 is lower than 0, than node assumes, that it is participating in an
 unstructured network and cannot rely on the overlay routing
 algorithm. In such case the neighbor cache's contents are examined.
 If it does not provide any useful information or this node is the
 first one on the list, the subscriber performs the lookup procedure
 for the SUBSCRIPTIONINFO objects associated with the same topic. If
 it finds any nodes with the ID lower than its own one, than it must
 send the subscribe message to the one with the lowest ID. If there
 are no such nodes in the P2P network, than it assumes that it is the
 new topic root and waits for the other nodes to send 'subscribe'
 requests to it. These procedures guarantee the cycles avoidance.
 Moreover they work both for the multicast tree and star topology.

4.2.9 Reliability
 [TODO: history of events for temporary out-of-order issues, but not
 the long term ones - history length as algorithm parameter]

4.3 Message formats
 All the message formats described in this section are used by the
 default Customizable Algorithm component. However they MAY be
 extended by the user-defined ones if it is necessary and registered
 by a different Algorithm Configurator object. In general there are
 three types of messages: requests, indications and responses. Node
 receiving the first one always sends response to the message
 originator. Both requests and responses contain the unique

Adamska, et al. Expires October 13, 2009 [Page 28]

Internet-Draft Publish-Subscribe May 2009

 identifier of the transaction, they are associated with. It is
 generated by the request originator, who uses it to find out, which
 operation is received response related to. Indications are messages
 which do not require any response as they are not associated with a
 pending operation.

4.3.1 Standard header
 Every publish-subscribe message is preceded by the following header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 |IPver| Source IP //
 +-+
 // | Destination IP //
 +-+
 // | Source port //
 +-+
 // | Destination port //
 +-+
 // | Type | //
 +-+
 // Source user name length | //
 +-+
 // Source user name |
 +-+
 | Source peer id length |
 +-+
 | Source peer id //
 + +
 // |
 +-+
 | Destination user name length |
 +-+
 | Destination user name //
 + +
 // |
 +-+
 | Destination peer id length |
 +-+
 | Destination peer id //
 + +
 // |
 +-+
 | Topic id length |
 +-+
 | Topic id //
 + +
 // |

Adamska, et al. Expires October 13, 2009 [Page 29]

Internet-Draft Publish-Subscribe May 2009

 +-+

 IP version (3 bits): IP version number, 4 or 6
 Source IP (32 or 128 bits): IP address of message sender

 Destination IP (32 or 128 bits): IP address of message receiver

 Source port (32 bits): Message sender's port number

 Destination port (32 bits): Message receiver's port number

 Type (8 bits): Publish-subscribe message type

 Source user name length (32 bits): Length of the user's unhashed id

 Source user name (undefined): User's unhashed id

 Source peer id length (32 bits): Length of the peer id

 Source peer id (undefined): Peer id

 Destination user name length (32 bits): Length of user's unhashed id

 Destination user name (undefined): User's unhashed id

 Destination peer id length (32 bits): Length of the peer id

 Destination peer id (undefined): Peer id

 Topic id length (32 bits): Length of the topic id this message is
 associated with
 Topic id (undefined): Topic id this message is associated
 with

4.3.2 Standard request header
 Apart from the type-specific information, every request contains the
 following header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Transaction id |
 +-+

 Transaction id (32 bits): Identifier of the transaction this
 operation is associated with

Adamska, et al. Expires October 13, 2009 [Page 30]

Internet-Draft Publish-Subscribe May 2009

4.3.3 Create topic
 Create topic message can be send to actually create a new topic, or
 to transfer an existing one to the new root. The node recognizes the
 requested operation by checking the value of the special flag inside
 the header.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | F | AC rules //
 +-+-+ +
 // |
 +-+
 | Subscribers list length |
 +-+
 | Subscriber 1 //
 +-+

 F (2 bits): Flag representing the requested operation type. Currently
 only two types are defined (figure 4.3.3.1).

 AC rules (undefined): Access control rules defined for the topic (see
 section 4.4.1 for details).

 Subscriber list length (32 bits): Length of the list containing the
 subscribers to be added after the
 topic creation.

 +------+---+
 |Value | Description |
 +------+---+
0	Creates new topic
1	Transfers an existing topic to new root
 +------+---+

 Figure 4.3.3.1

4.3.4 Subscribe
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Expiration time //
 + +
 // |
 +-+
 | Event index |

Adamska, et al. Expires October 13, 2009 [Page 31]

Internet-Draft Publish-Subscribe May 2009

 +-+
 | Distance |
 +-+

 Expiration time (64 bits): Time, after which node will have to
 resubscribe

 Event index (32 bits): Index of the last received event from the
 topic history

 Distance (32 bits): Distance between the subscriber id and topic id

4.3.5 Unsubscribe
 Currently there are no type-specific values for this message. It
 contains only the standard request header.

4.3.6 Publish
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Event type | User name length //
 +-+
 // | User name //
 +-+-+-+-+-+-+-+-+-+-+ +
 // |
 +-+
 | Message length |
 +-+
 | Message |
 +-+

 Event type (8 bits): Field indicating, whether this is the
 REMOVE_TOPIC, AC_MODIFIED or CUSTOM event

 User name length (32 bits): Length of the event publisher's name

 User name (undefined): Event publisher's name

 Message length (32 bits): Length of the message encapsulated in the
 CUSTOM event

 Message (undefined): User-defined message encapsulated in the CUSTOM
 event or the modified AC rules

4.3.7 Notify

Adamska, et al. Expires October 13, 2009 [Page 32]

Internet-Draft Publish-Subscribe May 2009

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 |H| Event type | User name length //
 +-+
 // | User name //
 +-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 +-+
 | Message length |
 +-+
 | Message |
 +-+

 H (1 bit): Flag indicating whether this event is the new one (value
 MUST be 0 in this case), or the old one from the topic
 history (value MUST be 1)

 Event type (8 bits): Field indicating, whether this is a
 REMOVE_TOPIC, AC_MODIFIED or CUSTOM event

 User name length (32 bits): Length of the event publisher's name

 User name (undefined): Event publisher's name

 Message length (32 bits): Length of the message encapsulated in the
 CUSTOM event

 Message (undefined): Message encapsulated in the CUSTOM event

4.3.8 Standard response header
 Every response, except the response code, contains a unique
 transaction identifier. The request originator uses it, to find out
 which operation this response is related to.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Transaction number |
 +-+
 | Response code |
 +-+

 Transaction number (32 bits): Identifier of the transaction, this
 response is associated with

 Response code (32 bits): Response codes are described in section 4.7

Adamska, et al. Expires October 13, 2009 [Page 33]

Internet-Draft Publish-Subscribe May 2009

4.3.9 Subscribe response
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | AC rules //
 + +
 // |
 +-+

 AC rules (undefined): AC rules encoding is described in section 4.4.1

4.3.10 Keep-alive
 Parent (undefined): Subscriber object containing node's parent in
 the topology structure

 Neighbors (undefined): List of the subscriber objects to put into the
 neighbors cache. Its length depends on the k
 parameter.

 Parents (undefined): List of the subscriber objects to put into the
 parents cache. Its length depends on the k
 parameter.

 Grandparents (undefined): List of the subscriber objects to put into
 the grandparents cache. Its length depends
 on the g parameter.

4.4 Objects formats

4.4.1 AC rules
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | List of rules length |
 +-+
 | List of rules //
 + +
 // |
 +-+

 List of rules length (32 bits): Number of the rules on the list

 List of rules (undefined): List of the AC rules (see section 4.4.2
 for details)

Adamska, et al. Expires October 13, 2009 [Page 34]

Internet-Draft Publish-Subscribe May 2009

4.4.2 Rule
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Operation byte length |
 +-+
 | Operation //
 + +
 // |
 +-+
 | Event type | Allowed users list length //
 +-+
 // | User byte length //
 +-+
 // | User //
 +-+-+-+-+-+-+-+-+-+-+ +
 | |
 +-+
 | User 2 byte length |
 +-+
 | |
 +-+
 | Event type 2 | |
 +-+

 Operation (undefined): Operation, this rule is associated with

 Event type (8 bits): Particular event within an operation (at least
 one event is mandatory)

 User (undefined): User allowed to perform specified operation

4.4.3 Operation
 0
 0 1 2 3 4 5 6 7 8 9
 +-+-+-+-+-+-+-+-+-+-+
 | Operation type |
 +-+-+-+-+-+-+-+-+-+-+

 Operation type (8 bits): Type of an operation, this rule is
 associated with. Currently defined values
 correspond with the message types
 (from 1 to 6) described in section 4.5.

4.4.4 User

Adamska, et al. Expires October 13, 2009 [Page 35]

Internet-Draft Publish-Subscribe May 2009

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Username byte length |
 +-+
 | Username //
 + +
 // |
 +-+

4.4.5 Subscriber
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Username byte length |
 +-+
 | Username //
 + +
 // |
 +-+
 | Peer id byte length |
 +-+
 | Peer id //
 + +
 // |
 +-+
 | IP address byte length |
 +-+
 | IP address //
 + +
 // |
 +-+
 | Port number |
 +-+

4.5 Message types
 +------+-------------------------+-----------------------------+
 |Value | Message type | Indication/Request/Response |
 +------+-------------------------+-----------------------------+
0	Standard response	Res
1	Create topic	Req
2	Subscribe	Req
3	Unsubscribe	Req
4	Publish	Req

Adamska, et al. Expires October 13, 2009 [Page 36]

Internet-Draft Publish-Subscribe May 2009

5	Notify	Ind
6	Keep-alive	Ind
 +------+-------------------------+-----------------------------+

4.6 Event types
 +------+--+
 | Type | Description |
 +------+--+
0	Topic removed
1	Access Control Rules modified
2	Custom event defined by higher-layer application
 +------+--+

4.7 Response codes
 Response codes are inspired from HTTP.

 +------+---+
 |Code | Description |
 +------+---+
200	Operation successful
403	Operation forbidden due to AC rules
404	Operation cannot be completed, because the topic or
	subscriber it is associated with does not exist
409	Create topic operation cannot be completed because
	the specified topic already exists
 +------+---+

4.8 Security
 [TODO: Verifying user identity for AC rules, etc.]

5. Integrating publish-subscribe with P2PP/RELOAD

5.1 Extending P2PP/RELOAD interfaces

Adamska, et al. Expires October 13, 2009 [Page 37]

Internet-Draft Publish-Subscribe May 2009

 There are several major differences between some of the P2PP and
 RELOAD requests, we had to consider. P2PP publish allows application
 to insert only one object per request. Single RELOAD store request
 MAY contain several objects with the same resource-id, but different
 kind-id's or data models. It is the same with the P2PP lookup and
 RELOAD fetch requests. To provide the generic interfaces for both
 protocols we decided to use object lists, not single objects in all
 callbacks associated with the requests processing. Due to the
 terminology differences between both protocols we use 'insert' for
 the P2PP publish, and RELOAD store request, and 'lookup' for the P2PP
 lookup and RELOAD fetch request where distinguishing one from another
 is not essential.

5.1.1 Callbacks
 We propose adding several callback methods to the P2PP/RELOAD
 interfaces. They can be used by applications built on top of it not
 only for gathering information about the received messages, but also
 for passing data to the overlay layer. Parameters marked as [in] are
 the ones that are passed to the higher layer by P2PP/RELOAD. These
 marked as [out] are returned to the overlay by the application layer.

 [TODO: Decide what about applications which do not want to use
 callbacks - default implementation returning true shouldn't be a
 problem, when performance is considered]

 [TODO: Decide, whether signature/certificate checking should be
 performed before or after the callback invocation (in the second case
 application layer would have to update the object's signature) and
 whether to invoke callbacks for example if the RELOAD layer already
 knows that the signature is invalid]

 boolean onDeliverRequest([in]Request message,
 [in/out]List<GeneralObject> objectList)

 @param message Received P2PP/RELOAD request.

 @param objectList Value interpretation is message type dependent.

 @return Value interpretation is message type dependent. In general
 'true' means 'continue standard processing', and 'false'
 means 'perform custom operation'.

 Usually invoked directly after receiving a request and determining
 that this node is message destination. In case of lookup requests -
 after searching for the objects in the peer's resource table
 (figure 5.1.1.1). If node stores the requested objects there, they
 are passed to the higher layer using 'objectList' parameter.
 Higher-layer application may decide to send these objects within the
 lookup response, or pass a different ones using the same parameter.

Adamska, et al. Expires October 13, 2009 [Page 38]

Internet-Draft Publish-Subscribe May 2009

 After the callback invocation P2PP/RELOAD checks the returned value.
 If this value is 'true' it simply returns objects found in the
 resource table in response (or 'NOT FOUND' message if none of the
 requested objects is stored there). Otherwise response message
 contents depend on the second callback parameter's value (objects
 defined by higher layer are returned to the request originator). This
 MAY be used by the application built on top of P2PP/RELOAD for
 example to create different 'views' of the node's resource table,
 depending on the lookup request originator. Higher layer MAY hide
 object's value from some users or send different values to them.

 Similar procedure is performed after receiving an insert request
 (figure 5.1.1.2) although returned value interpretation is slightly
 different. When this value is 'true', objects encapsulated inside the
 insert request are simply put into the peer's resource table.
 Otherwise either different objects are inserted or only P2PP/RELOAD
 response is sent.

 For both insert and lookup requests application layer MAY modify
 object list elements' values or replace them with null. It MUST NOT
 modify resource id, type or data model. For all the request types it
 also MUST NOT alter the object list size.

 Message
 Receiver Originator
 +--+ +------+
RELOAD/		RELOAD			
Application P2PP	lookup	/P2PP			
			request		
		<-----------------			
	1. Fill object				
	list (if				
	some				
	requested				
	object isn't				
	stored here				
	- add null				
	at this				
	position)				
	onDeliverRequest				
	(request, objects)				
	<-----------------------				
1. continue					
standard	true, objects				
processing	----------------------->				
	1. return				
	standard				

Adamska, et al. Expires October 13, 2009 [Page 39]

Internet-Draft Publish-Subscribe May 2009

	response				
	containing				
	objects				
	found in		standard		
	resource		response		
	table	----------------->			
	2. finished				
1'. modify object					
list (if any					
of stored					
objects needs					
to be hidden					
from lookup					
request					
originator					
- set it to					
null)			modified		
	false, modifiedObjects		response		
	----------------------->	----------------->			
 +--+ +------+
 Figure 5.1.1.1: Node receives lookup request

 Message
 Receiver Originator
 +--+ +------+
RELOAD/		RELOAD			
Application P2PP	insert	/P2PP			
			request		
		<-----------------			
	1. Fill object				
	list with				
	values from				
	resource				
	table (if				
	object with				
	specified				
	key and of				
	specified				
	type isn't				
	already				
	stored here				
	- add null				
	at this				

Adamska, et al. Expires October 13, 2009 [Page 40]

Internet-Draft Publish-Subscribe May 2009

	position)				
	onDeliverRequest				
	(request, objects)				
	<-----------------------				
1. continue					
standard	true, objects				
processing	----------------------->				
	1. insert all				
	objects from				
	request into		insert		
	resource		response		
	table	----------------->			
	2. finished				
1'. modify object					
list	false, modifiedObjects				
	----------------------->				
	1. for each				
	element on				
	the list if				
	it is not				
	null insert				
	it into		insert		
	resource		response		
	table	----------------->			
 +--+ +------+
 Figure 5.1.1.2: Node receives insert request

 boolean onForwardingRequest([in]Request message,
 [in/out]List<GeneralObject> objectList)
 @param message Received P2PP/RELOAD request.

 @param objectList Value interpretation is message type dependent.

 @return Value indicating, whether to forward or discard the message.
 In case of discarding - node has to send P2PP response.
 Otherwise request sender will try to retransmit its message
 and finally assume unresponsive peer's failure.

 Usually invoked directly after receiving a P2PP request (and
 determining that this node is not the message destination), before
 forwarding it to other node or sending 302 response. In case of
 lookup requests (figure 5.1.1.3) - after checking, if the requested
 object is not for example cached (or replicated) here. If such object

Adamska, et al. Expires October 13, 2009 [Page 41]

Internet-Draft Publish-Subscribe May 2009

 is found, P2PP/RELOAD passes it to the higher layer using the
 'objectList' parameter. Higher-layer application may decide to send
 this object within the P2PP lookup response, or pass a different one
 using the same parameter. After the callback invocation P2PP/RELOAD
 checks the returned value. If this value is 'true' it simply forwards
 the message or returns the cached/replicated objects in a standard
 response. Otherwise the message is discarded, and P2PP/RELOAD
 response containing objects defined by the higher layer is sent.

 Figure 5.1.1.4 shows the procedure performed in case of receiving
 insert request. If the returned value is 'true', the message is
 forwarded. Otherwise node discards the message and sends insert
 response to its originator.

 For both insert and lookup requests application layer MAY modify the
 object list elements' values or replace them with null. It MUST NOT
 modify the resource id, type or data model. For all request types it
 also MUST NOT alter the object list size.

 Message
 Receiver Originator
 +--+ +------+
RELOAD/		RELOAD			
Application P2PP	lookup	/P2PP			
			request		
		<----------------			
	1. Fill object				
	list (if				
	some				
	requested				
	object isn't				
	replicated/				
	cached here				
	- add null				
	at this				
	position)				
	onDeliverRequest				
	(request, objects)				
	<-----------------------				
1. continue					
standard	true, objects				
processing	----------------------->				
	1. return				
	standard				
	response				
	containing				
	replicated/				

Adamska, et al. Expires October 13, 2009 [Page 42]

Internet-Draft Publish-Subscribe May 2009

	cached				
	objects,				
	forward the				
	message or				
	send		standard		
	redirect		response		
	response	---------------->			
	2. finished				
1'. modify object					
list (if any					
of stored					
objects needs					
to be hidden					
from lookup					
request					
originator					
- set it to					
null)					
	false, modifiedObjects				
	----------------------->				
	1. send				
	response				
	containing		modified		
	modified		response		
	objects	---------------->			
	2. finished				
 +--+ +------+
 Figure 5.1.1.3: Node receives lookup request

 Message
 Receiver Originator
 +---+ +------+
RELOAD/		RELOAD			
Application P2PP	insert	/P2PP			
			request		
		<----------------------			
	1. Fill object				
	list with				
	replicated/				
	cached				
	objects (if				
	object with				
	specified				
	key and of				
	specified				

Adamska, et al. Expires October 13, 2009 [Page 43]

Internet-Draft Publish-Subscribe May 2009

	type isn't				
	replicated/				
	cached here				
	- add null				
	at this				
	position)				
	onDeliverRequest				
	(request, objects)				
	<-----------------------				
1. continue					
standard	true, objects				
processing	----------------------->				
	1. forward the				
	message or				
	send		standard		
	redirect		response		
	response	---------------------->			
	2. finished				
1'. modify					
object	false, modifiedObjects				
list	----------------------->				
	1. for each				
	element on				
	the list if				
	it is not				
	null update				
	replicated/				
	cached				
	object		insert		
			response		
		---------------------->			
 +---+ +------+
 Figure 5.1.1.4: Node receives insert request

 boolean onDeliverResponse([in]Response message)

 @param message P2PP/RELOAD response.

 @return Value indicating whether to continue the standard P2PP/RELOAD
 processing or not.

 Invoked after receiving P2PP/RELOAD response. The returned value
 interpretation is operation type dependent. For instance if it is

Adamska, et al. Expires October 13, 2009 [Page 44]

Internet-Draft Publish-Subscribe May 2009

 'false' for the insert response, it means, that the specified object
 MUST NOT be republished. This is useful, if it was only used to
 encapsulate some higher-layer-defined message.

 void onNeighborJoin(PeerInfo newNode, int nodeType)

 @param newNode Object containing such information as ID, IP address,
 and port number.

 @param nodeType Value indicating, whether new node is a client, peer,
 peer acting as bootstrap server, etc.

 Invoked after accepting other node's join request and successfully
 sending OK reply to it (figure 5.1.1.5).

 Node accepting
 join request New node
 +-----------------------------+ +------+
 | | | | | | |
 | RELOAD/| |RELOAD|
 | Application P2PP | |/P2PP |
 | | | | JoinRequest | | |
 | | |<--------------------------| |
 | | | | | | |
 | | | | OK | | |
 | | |-------------------------->| |
 | | onNeighborJoin | | | | |
 | |<-----------------| | | | |
 | | | | | | |
 | | | |
 +-----------------------------+ +------+
 Figure 5.1.1.5

 void onNeighborLeave(PeerInfo removedNode, int nodeType)

 @param removedNode Object containing such information as ID, IP
 address, and port number.

 @param nodeType Value indicating, whether new node is client, peer,
 peer acting as bootstrap server, etc.

 Invoked after removing a neighbor from the neighbor table.

5.1.2 Objects
 We propose creating a MESSAGE object type. This object could be used
 by the higher-layer applications to encapsulate its own messages

Adamska, et al. Expires October 13, 2009 [Page 45]

Internet-Draft Publish-Subscribe May 2009

 within an insert request and make use of the overlay-specific
 routing. In the DHT-based networks this enables sending a message
 even if the exact destination's peer ID is unknown (we only know,
 that it should be the closest one to some given object key). It also
 guarantees that the message will not be routed to clients (as they
 are not responsible for storing objects).

 This object for P2PP could be described as follows:

 Type: MESSAGE
 Subtype: value indicating protocol
 Message: raw message bytes

 Below we propose the MESSAGE object's format using RELOAD semantics:

 Kind-Id: MESSAGE
 Data Model: single value
 Value: value indicating protocol
 raw message bytes

 The received MESSAGE objects do not necessarily have to be stored in
 the resource tables. Application built on top of P2PP/RELOAD MAY
 prevent it by capturing insert messages containing such objects using
 previously described callbacks and making overlay layer discard them.
 After that, the request originator SHOULD also use the previously
 described onDeliverResponse callback to prevent P2PP/RELOAD layer
 from republishing the object and thus resending the higher-layer
 message encapsulated in it.

5.1.3 API
 We propose adding a method for calculating distance between the two
 given keys according to the overlay-specific metrics and hash
 algorithm. In our algorithm we use it for creating and maintaining
 the topology structure. This method could be defined as follows:

 int getDistance(String key1, String key2)

 @param key1, key2 Method calculates the distance between these keys.

 @return In the DHT-based networks returned value is greater or equal
 to 0. In unstructured ones method always returns -1.

 Publish-subscribe protocols built on top of the unstructured
 overlays, based for instance on random walks, may also require access
 to the routing information. This is why we propose two methods that
 provide it:

Adamska, et al. Expires October 13, 2009 [Page 46]

Internet-Draft Publish-Subscribe May 2009

 RoutingTable getRoutingTable()

 @return Node's routing table.

 NeighborTable getNeighborTable()

 @return Node's neighbor table.

5.2 Usage of the extension

5.2.1 Objects
 Apart from the generic MESSAGE object we also propose to add one
 publish-subscribe-specific type called SUBSCRIPTIONINFO. It will be
 placed in network to inform other nodes about the topic existence,
 and help them join the multicast tree. This is essential for the
 unstructured overlays.

 For P2PP this object can be defined as follows:

 Type = SUBSCRIPTIONINFO
 Status = PENDING/ACCEPTED
 Peer = PeerInfo object containing peer ID, IP address and port number
 for the incoming publish-subscribe messages.

 Below we propose the SUBSCRIPTIONINFO object's format using RELOAD
 semantics:

 Kind-Id: SUBSCRIPTIONINFO
 Data Model: single value
 Value: status = PENDING/ACCEPTED
 peer = PeerInfo object containing peer ID, IP address and port
 number for the incoming publish-subscribe messages.

 When node wants to subscribe for some topic, it performs lookup for
 the SUBSCRIPTIONINFO object (giving the topic ID as a key).

6. Future work
 We plan to provide event metadata to extend the default Interest
 Conditions and support advanced filters for the content-based
 multicast.

7. IANA Considerations

Adamska, et al. Expires October 13, 2009 [Page 47]

Internet-Draft Publish-Subscribe May 2009

 This document has no actions for IANA.

8. References

8.1 Normative references
 [1] S. Baset, H. Schulzrinne and M. Matuszewski, "Peer-to-Peer
 Protocol(P2PP)", draft-baset-p2psip-p2pp-01 (work in progress),
 November 19, 2007.

 [2] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset and H.
 Schulzrinne, "REsource LOcation And Discovery (RELOAD)",
 draft-ietf-p2psip-reload-00 (work in progress), July 11, 2008.

 [3] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

8.2 Informative references
 [4] P. Maymounkov and D. Mazieres, "Kademlia: A peer-to-peer
 information system based on the xor metric," Peer-To-Peer
 Systems: First International Workshop, IPTPS 2002, Cambridge, MA,
 USA, March 7-8, 2002: Revised Papers, 2002.

 [5] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker,
 "Application-level multicast using content-addressable networks."
 in Networked Group Communication, ser. Lecture Notes inComputer
 Science, J. Crowcroft and M. Hofmann, Eds., vol.2233. Springer,
 2001, pp. 14-29.

 [6] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed
 object location and routing for large-scale peer-to-peer
 systems," in Proc. Of the International Conference on
 Distributed Systems platforms(Middleware), 2001.

 [7] A.I.T. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel,
 "Scribe: The design of a large-scale event notification
 infrastructure." vol. 2233, pp. 30-43, 2001.

 [8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
 Balakrishnan, "Chord: A scalable peer-to-peer lookup service for
 internet applications," in SIGCOMM'01: Proceedings of the 2001
 conference on Applications, technologies, architectures, and
 protocols for computer communications. New York, NY, USA: ACM,
 2001, pp. 149-160.

 [9] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
 "Making gnutella-like p2p systems scalable," in SIGCOMM'03:
 Proceedings of the 2003 conference on Applications, technologies,

Adamska, et al. Expires October 13, 2009 [Page 48]

Internet-Draft Publish-Subscribe May 2009

 architectures, and protocols for computer communications.
 New York, NY, USA: ACM, 2003, pp. 407-418

Authors' Addresses
 Paulina Adamska
 Dept. of Computer Networks
 Polish-Japanese Institute of Information Technology
 Koszykowa 86,
 02-008 Warsaw
 Poland

 Email: tiia@pjwstk.edu.pl

 Adam Wierzbicki
 Dept. of Computer Networks
 Polish-Japanese Institute of Information Technology
 Koszykowa 86,
 02-008 Warsaw
 Poland

 Email: adamw@pjwstk.edu.pl

 Tomasz Kaszuba
 Dept. of Computer Networks
 Polish-Japanese Institute of Information Technology
 Koszykowa 86,
 02-008 Warsaw
 Poland

 Email: kaszubat@pjwstk.edu.pl

