MPTCP Wor ki ng Group C. Paasch

Internet-Draft A. Bi swas
I nt ended status: Experinmental D. Haas
Expires: Cctober 29, 2015 Appl e, Inc.

April 27, 2015

Maki ng Mul tipath TCP robust for statel ess webservers
dr af t - paasch- npt cp- syncooki es- 00

Abstract

Thi s docunent proposes an extension to Miultipath TCP that allows it
to work efficiently with stateless servers. W first identify the
i ssues around statel ess connection establishnent using SYN cooki es.
Further, we suggest an extension to Miultipath TCP to overcone these
i ssues and discuss alternatives.

Status of This Menp

This Internet-Draft is submtted in full confornance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engi neering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Cctober 29, 2015.
Copyri ght Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
document authors. All rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Lega

Provi sions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document rnust
include Sinplified BSD License text as described in Section 4.e of

Paasch, et al. Expi res Cctober 29, 2015 [Page 1]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction
2. Probl em st at enent
3 Proposal
Loss of the third ACK .
1.1. Negotiation . . .
1.2. DATAFIN
1.3. M ddl ebox considerations
Loss of the first data segnent
Alternative solutions .
| ANA Consi derations .
Security Considerations .
. References e
7.1. Normative References
7.2. Informative References
Aut hors’ Addr esses

1

3.
3.
3.
2.

No ok
COOOOOONNOOBDWN

1. | nt roducti on

During the establishnent of a TCP connection, a server mnust create
state upon the reception of the SYN [RFC0793]. Specifically, it
needs to generate an initial sequence nunber, and reply to the
options indicated in the SYN. The server typically maintains in-
menory state for the enbryoni c connection, including state about what
options were negotiated, such as wi ndow scal e factor [RFC7323] and

the maxi mum segnment size. It also mmintains state about whether SACK
[RFC2018] and TCP Ti nestanps were negoti ated during the 3-way
handshake.

Attackers exploit this state creation on the server through the SYN
flooding attack. Indeed, an attacker only needs to emt SYN segments
with different 4-tuples (source and destination |IP addresses and port
nunbers) in order to nake the server create the state and thus
consunme its menory, while the attacker itself does not need to

mai ntain any state for such an attack [RFC4987].

A common mtigation of this attack is to use a nechanism called SYN
cooki es. SYN-cookies relies on the fact that a TCP-connection echoes
back certain information that the server puts in the SYN ACK during
the three-way handshake. Notably, the sequence-nunber is echoed back
in the acknowl edgnment field as well as the TCP timestanp val ue inside
the timestanp option. When generating the SYN ACK, the server
generates these fields in a verifiable fashion. Typically, servers
use the 4-tuple, the client’s sequence nunber plus a |l ocal secret

Paasch, et al. Expi res Cctober 29, 2015 [Page 2]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

(whi ch changes over tine) to generate the initial sequence nunber by
appl yi ng a hashing function to the aforenentioned fields. Further
setting certain bits either in the sequence nunber or the TCP
timestanp value allows to encode for exanpl e whether SACK has been
negoti ated and what w ndow scaling has been received [M)8]. Upon the
reception of the third ACK, the server can thus verify whether the
acknow edgnent nunber is indeed the reply to a SYNACK it has
generated (using the 4-tuple and the local secret). Further, it can
decode fromthe timestanp echo reply the required information
concer ni ng SACK, wi ndow scaling and MsS-size.

In case the third ACK is |ost during the 3-way handshake of TCP
statel ess servers only work if it’s the client who initiates the
conmuni cati on by sending data to the server - which is commonly the
case in today's application-layer protocols. As the data segnent

i ncl udes the acknowl edgenment nunber for the original SYN ACK as wel |
as the TCP timestanp value, the server is able to reconstruct the

connection state even if the third ACKis lost in the network. |If
the very first data segnment is also lost, then the server is unable
to reconstruct the connection state and will respond to subsequent

data sent by the client with a TCP Reset.

Mul tipath TCP (MPTCP [RFC6824]) is unable to reconstruct the MPTCP

| evel connection state if the third ack is lost in the network (as
explained in the following section). |If the first data segnent from
the client reaches the server, the server can reconstruct the TCP
state but not the MPTCP state. Such a server can fallback to regul ar
TCP upon the loss of the third ACK. MTCP is also prone to the sane
problemas regular TCP if the first data segnent is also |ost.

In the follow ng section a nore detail ed assessnent of the issues
with MPTCP and TCP SYN-cookies is presented. Section 3 then shows
how t hese issues m ght get solved.

2. Probl em st at ement

Mul tipath TCP adds additional state to the 3-way handshake. Notably,
the keys must be stored in the state so that |ater on new subfl ows
can be established as well as the initial data sequence nunber is
known to both hosts. |In order to support stateless servers,

Mul tipath TCP echoes the keys in the third ACK. A statel ess server
thus can generate its own key in a verifiable fashion (simlar to the
initial sequence nunber), and is able to learn the client’s key
through the echo in the third ACK. The reliance on the third ACK
however inplies that if this segment gets lost, then the server
cannot reconstruct the state associated to the MPTCP connecti on.

I ndeed, a Multipath TCP connection is forced to fallback to regul ar
TCP in case the third ACK gets | ost or has been reordered with the

Paasch, et al. Expi res Cctober 29, 2015 [Page 3]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

first data segnment of the client, because it cannot infer the
client’s key fromthe connection and thus won't be able to generate a
valid HVAC to establish new subflows nor does it know the initia

dat a sequence nunber. In the remainder of this document we refer to
the aforementioned i ssue as "Loss of the third ACK"

Anot her issue with SYN-cookies is also present in regular TCP and
occurs as well due to packet loss. |In case the client is sending
mul tiple segnents when initiating the connection, it might be that
the third ack as well as the first data segment get lost. Thus, the
server only receives the second data segnent and will try to
reconstruct the state based on this segnent’s 4-tuple, sequence
nunber and tinestanp value. However, as this segnent’s sequence
nunber has al ready gone beyond the client’s initial sequence nunber

it will not be able to regenerate the appropriate SYN-cooki e and thus
the verification will fail. The server effectively cannot infer that
the sequence nunber in the segment has gone beyond TCP's initia
sequence nunber. This will make the server send a TCP reset as it

appears to the server that it received a segnment for which no SYN
cooki e was ever generated.

3. Proposa

Thi s section shows how the above problens mght be solved in
Mul tipath TCP

3.1. Loss of the third ACK

In order to make Multipath TCP robust against the |loss of the third
ACK when SYN-cooki es are being depl oyed on servers, we nust nmake sure
that the state-information relevant to Miltipath TCP reaches the
server in areliable way. As the client is initiating the data
transfer to the server, and this data is being delivered reliably,
the state-information could be delivered together with this data and
thus is inmplicitly reliably sent to the server - when the data
reaches the server, the state-information reaches the server as well.

We achieve this by defining a new MPTCP subtype (called

MP_CAPABLE _EXT) which is an extension of the existing MP_CAPABLE
option. It is solely sent on the very first data segnment fromthe
client to the server. This option serves the dual purpose of
conveying the client’s and server’s key as well as the DSS nappi ng
whi ch woul d ot herwi se have been sent in a DSS option on the first
data segment. The MP_CAPABLE EXT option (shown in Figure 1) contains
the same set of bits Ato Has well as the version nunber, like the
MP_CAPABLE option. The server behaves in a statel ess nanner and thus
has generated it’s own key in a verifiable fashion (e.g., as a hash
of the 4-tuple, sequence nunber and a |ocal secret - simlar to what

Paasch, et al. Expi res Cctober 29, 2015 [Page 4]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

is done for the TCP-sequence nunber in case of SYN cookies
[RFC4987]). It is thus able to verify whether it is indeed the
originator of the key echoed back in the MP_CAPABLE_EXT option

Further, the option includes the data-level length as well as the
checksum (in case it has been negotiated during the 3-way handshake).
This allows the server to reconstruct the mappi ng and deliver the
data to the application. It nust be noted that the information

i nsi de the MP_CAPABLE EXT is less explicit than a DSS option

Not abl y, the data-sequence nunber, data acknow edgnment as well as the
rel ati ve subfl ow sequence nunber are not part of the MP_CAPABLE EXT.
Nevert hel ess, the server is able to reconstruct the nappi ng because
the MP_CAPABLE EXT is guaranteed to only be sent on the very first
data segnment. Thus, inplicitly the relative subfl ow sequence nunber
equals 1 as well as the data-sequence nunber, which is equal to the
initial data-sequence nunber.

1 2 3
01234567890123456789012345678901
o o o e o e e +
| Ki nd | Lengt h=16 | Subtype| Version| A|B|C|D E F|GH
o a e oo o a e oo Fommm o e e e e e +

| Data-Level Length (2 octets) | Checksum (2 octets, optional)

Format of the new MP_CAPABLE_EXT opti on.
Figure 1

It nust be said that if TCP Fastopen [RFC7413] is being used in
conbination with Miultipath TCP [I-D. barre-nptcp-tfo], the SYN segnent
covering part of the data sequence space night be a concern

However, if TFO is being used, servers do not enploy stateless
connection establishnment, thus TFOis not of concern for the
MP_CAPABLE_EXT opti on

Wil e the MP_CAPABLE EXT option lets us recover fromloss of the 3rd
ACK of the 3WHS as well as loss of the first data segnent, it has the
addi ti onal benefit of allowing a client to piggyback data on the 3rd
ACK of the 3WHS of the first MPTCP subfl ow.

Paasch, et al. Expi res Cctober 29, 2015 [Page 5]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

3.1.1. Negotiation

We require a way for the hosts to negotiate support for the
MP_CAPABLE EXT option. As it is a new option, MP_CAPABLE EXT relies
on a new version of MPTCP. The client requests this new version of
MPTCP during the MP_CAPABLE exchange (it remains to be defined by the
| ETF whi ch version of MPTCP includes the MP_CAPABLE EXT option). |If
the server supports this version, it replies with a SYN ACK i ncl udi ng
the MP_CAPABLE and indicating this sane version.

If the server desires to do SYN-cookies and supports receiving the
MP_CAPABLE EXT option it sets the C-bit to 1. As the client
indicated in the SYNthat it supports the new version of MPTCP, it
nmust use the MP_CAPABLE EXT option in the first data segnent.

3.1.2. DATA_FIN

As the MP_CAPABLE EXT option includes the sane bitfields as the
regul ar MP_CAPABLE, there is no space to indicate a DATA FIN as is
done in the DSS option. This inplies that a client cannot send a
DATA FIN together with the first segnent of data. Thus, if the
server requests the usage of MP_CAPABLE EXT through the Cbit, the
client nust send a separate segment with the DSS-option, setting the
DATA FIN-flag to 1, after it has sent the data-segnent that includes
the MP_CAPABLE EXT opti on.

3.1.3. Mddl ebox considerations

Mul ti path TCP has been designed with m ddl eboxes in nmnd and so the
MP_CAPABLE EXT option nmust also be able to go through m ddl eboxes.
The foll owi ng m ddl ebox behavi ors have been consi dered and
MP_CAPABLE EXT acts accordingly across these m ddl eboxes:

0 Removing MP_CAPABLE EXT-option: If a mddl ebox strips the
MP_CAPABLE_EXT option out of the data segnent, the server receives
data wi thout a corresponding mapping. As defined in Section 3.6
of [RFC6824], the server nust then do a seam ess fallback to
regul ar TCP

o Coal escing segnents: A mddl ebox night coal esce the first and
second data segment into one single segnent. Wile doing so, it
m ght renove one of the options (either MP_CAPABLE EXT or the DSS-
option of the second segnent because of the Iimted 40 bytes TCP

option space). |If the DSS-option is not included in the segment,
the second half of the payload is not covered by a mapping. Thus,
the server will do a seanless fallback to regular TCP as defined

by [RFC6824]. However, if the MP_CAPABLE EXT option is not
present, then the DSS-option provides an offset of the TCP

Paasch, et al. Expi res Cctober 29, 2015 [Page 6]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

3.

2.

sequence nunber. As the server behaves statelessly it can only
assune that the present mapping belongs to the first byte of the
payl oad (simlar to what is explained in detail in Section 3.2.

As this however is not true, it will calculate an incorrect

initial TCP sequence nunber and thus reply with a TCP-reset as the
SYN-cookie is invalid. As such kind of m ddl eboxes are very rare
we consider this behavior as acceptable.

o Splitting segments: A TCP segmentation offload engine (TSO m ght
split the first segnent in smaller segnments and copy the
MP_CAPABLE_EXT option on each of these segnents. Thanks to the
dat a- 1 ength val ue included in the MP_CAPABLE EXT option, the
server is able to detect this and correctly reconstructs the
mappi ng. In case the first of these splitted segnents gets | ost,
the server finds itself in a situation simlar to the one
described in Section 2. The TCP sequence nunber doesn’t all ow
anynore to verify the SYN-cookie and thus a TCP reset is sent.
This behavior is the sane as for regular TCP

o Payl oad nodi fying m ddl ebox: In case the niddl ebox nodifies the
payl oad, the DSS-checksumincluded in the MP_CAPABLE_EXT option
allows to detect this and will trigger a fallback to regular TCP
as defined in [RFC6824] .

Loss of the first data segnent

Section 2 described the issue of losing the first data segment of a
connection while TCP SYN-cookies are in use. The follow ng outlines
how Mul ti path TCP actually allows to fix this particular issue

Consi der the packet-flow of Figure 2. Upon reception of the second
data segnment, the included data sequence napping allows the server to
actually detect that this is not the first segnent of a TCP
connection. |Indeed, the relative subfl ow sequence nunber inside the
DSS-mapping is actually 100, indicating that this segment is already
further ahead in the TCP stream This allows the server to actually
reconstruct the initial sequence nunber based on the sequence nunber
in the TCP-header ((X+100) - 100) that has been provided by the
client and verify whether its SYN-cookie is correct. Thus, no TCP-
reset is being sent - in contrast to regular TCP, where the server
cannot verify the SYN-cookie. The server knows that the received
segnent is not the first one of the data streamand thus it can store

it tenporarily in the out-of-order queue of the connection. It nust
be noted that the server is not yet able to fully reconstruct the
MPTCP state. |In order to do this it still rmust await the

MP_CAPABLE EXT option that is provided in the first data segnent.

Paasch, et al. Expi res Cctober 29, 2015 [Page 7]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

4.

The server responds to the out-of-order data with a Duplicate ACK
The Duplicate ACK may al so have SACK data if SACK was negoti at ed.
However, if this Duplicate ACK does not have an MPTCP | evel Data ACK
the client may interpret this as a fallback to TCP. This is because
the client cannot determine if an option stripping mddl ebox renoved
the MPTCP option on TCP segnents after connection establishnment. So
even though the server has not fully recreated the MPTCP state at
this point, it should respond with a Data ACK set to the Data
Sequence Nunber Y-100. The client’s TCP inplenmentati on may
retransmt the first data segment after a TCP retransmit tineout or
it my do so as part of an Early Retransmt that can be triggered by
an ACK arriving fromthe server.

Host A Host B
------ SYN + MP_CAPABLE o
""""" SWAK + Wp_owPRBLE
B e
................................... X
DATA (TCP-seq = X) + MP_CAPABLE EXT
DATA (TGP seq = X+100) + DSS (DSN = v, subseq = 100)
___ >

DATA ACK (Y - 100)

Mul tipath TCP's DSS option allows to handle the loss of the first
data segment as the host can infer the initial sequence nunber

Figure 2

Alternative sol utions

An alternative solution to creating the MP_CAPABLE EXT option woul d
have been to enit the MP_CAPABLE-option together with the DSS-option
on the first data segment. However, as the MP_CAPABLE option is 20
bytes | ong and the DSS-option (using 4-byte sequence nunbers)
consunmes 16 bytes, a total of 36 bytes of the TCP option space would
be consuned by this approach. This option has been disnissed as it
woul d prevent any other TCP option in the first data segnent, a
constraint that would severely linit TCP's extensibility in the
future.

Paasch, et al. Expi res Cctober 29, 2015 [Page 8]

I nternet-Draft Mul tipath TCP SYN-cooki es April 2015

5. | ANA Consi derations
A new codepoi nt nust be allocated for this new MPTCP subtype
6. Security Considerations
No security considerations.
7. References
7.1. Normative References

[RFC4987] Eddy, W, "TCP SYN Fl oodi ng Attacks and Conmmon
M tigations", RFC 4987, August 2007.

[RFC6824] Ford, A., Raiciu, C., Handley, M, and O Bonaventure
"TCP Extensions for Miltipath Operation with Miltiple
Addr esses", RFC 6824, January 2013.

7.2. Informative References
[1-D. barre-nptcp-tfo]
Barre, S., Detal, G, and O Bonaventure, "TFO support for
Mul tipath TCP", draft-barre-nptcp-tfo-01 (work in
progress), January 2015.

[MD8] McManus, P., "Ilnproving syncookies", 2008
<http://1lwn.net/Articles/277146/ >.

[RFCO793] Postel, J., "Transm ssion Control Protocol"”, STD 7, RFC
793, Septenber 1981

[RFC2018] Mathis, M, Mhdavi, J., Floyd, S., and A Romanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, COctober 1996.

[RFC7323] Bornman, D., Braden, B., Jacobson, V., and R
Schef f enegger, "TCP Extensions for Hi gh Perfornmance", RFC
7323, Septenber 2014.

[RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A Jain, "TCP
Fast Open", RFC 7413, Decenber 2014.

Aut hors’ Addr esses

Paasch, et al. Expi res Cctober 29, 2015 [Page 9]

I nternet-Draft

Chri st oph Paasch

Appl e, Inc.

Cupertino

uS

Emai | : cpaasch@ppl e. com

Anum t a Bi swas

Appl e, Inc.

Cupertino

us

Emai | : anumi t a_bi swas@ppl e. com
Darren Haas

Appl e, Inc.

Cupertino

us

Emai | : dhaas@ppl e. com

Paasch, et al. Expi res Cctober 29, 2015

Mul tipath TCP SYN-cooki es

April 2015

[Page 10]

