
MPTCP Working Group C. Paasch
Internet-Draft A. Biswas
Intended status: Experimental D. Haas
Expires: October 29, 2015 Apple, Inc.
 April 27, 2015

 Making Multipath TCP robust for stateless webservers
 draft-paasch-mptcp-syncookies-00

Abstract

 This document proposes an extension to Multipath TCP that allows it
 to work efficiently with stateless servers. We first identify the
 issues around stateless connection establishment using SYN-cookies.
 Further, we suggest an extension to Multipath TCP to overcome these
 issues and discuss alternatives.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 29, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Paasch, et al. Expires October 29, 2015 [Page 1]

Internet-Draft Multipath TCP SYN-cookies April 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Problem statement . 3
 3. Proposal . 4
 3.1. Loss of the third ACK 4
 3.1.1. Negotiation . 6
 3.1.2. DATA_FIN . 6
 3.1.3. Middlebox considerations 6
 3.2. Loss of the first data segment 7
 4. Alternative solutions . 8
 5. IANA Considerations . 9
 6. Security Considerations 9
 7. References . 9
 7.1. Normative References 9
 7.2. Informative References 9
 Authors’ Addresses . 9

1. Introduction

 During the establishment of a TCP connection, a server must create
 state upon the reception of the SYN [RFC0793]. Specifically, it
 needs to generate an initial sequence number, and reply to the
 options indicated in the SYN. The server typically maintains in-
 memory state for the embryonic connection, including state about what
 options were negotiated, such as window scale factor [RFC7323] and
 the maximum segment size. It also maintains state about whether SACK
 [RFC2018] and TCP Timestamps were negotiated during the 3-way
 handshake.

 Attackers exploit this state creation on the server through the SYN-
 flooding attack. Indeed, an attacker only needs to emit SYN segments
 with different 4-tuples (source and destination IP addresses and port
 numbers) in order to make the server create the state and thus
 consume its memory, while the attacker itself does not need to
 maintain any state for such an attack [RFC4987].

 A common mitigation of this attack is to use a mechanism called SYN-
 cookies. SYN-cookies relies on the fact that a TCP-connection echoes
 back certain information that the server puts in the SYN/ACK during
 the three-way handshake. Notably, the sequence-number is echoed back
 in the acknowledgment field as well as the TCP timestamp value inside
 the timestamp option. When generating the SYN/ACK, the server
 generates these fields in a verifiable fashion. Typically, servers
 use the 4-tuple, the client’s sequence number plus a local secret

Paasch, et al. Expires October 29, 2015 [Page 2]

Internet-Draft Multipath TCP SYN-cookies April 2015

 (which changes over time) to generate the initial sequence number by
 applying a hashing function to the aforementioned fields. Further,
 setting certain bits either in the sequence number or the TCP
 timestamp value allows to encode for example whether SACK has been
 negotiated and what window-scaling has been received [M08]. Upon the
 reception of the third ACK, the server can thus verify whether the
 acknowledgment number is indeed the reply to a SYN/ACK it has
 generated (using the 4-tuple and the local secret). Further, it can
 decode from the timestamp echo reply the required information
 concerning SACK, window scaling and MSS-size.

 In case the third ACK is lost during the 3-way handshake of TCP,
 stateless servers only work if it’s the client who initiates the
 communication by sending data to the server - which is commonly the
 case in today’s application-layer protocols. As the data segment
 includes the acknowledgement number for the original SYN/ACK as well
 as the TCP timestamp value, the server is able to reconstruct the
 connection state even if the third ACK is lost in the network. If
 the very first data segment is also lost, then the server is unable
 to reconstruct the connection state and will respond to subsequent
 data sent by the client with a TCP Reset.

 Multipath TCP (MPTCP [RFC6824]) is unable to reconstruct the MPTCP
 level connection state if the third ack is lost in the network (as
 explained in the following section). If the first data segment from
 the client reaches the server, the server can reconstruct the TCP
 state but not the MPTCP state. Such a server can fallback to regular
 TCP upon the loss of the third ACK. MPTCP is also prone to the same
 problem as regular TCP if the first data segment is also lost.

 In the following section a more detailed assessment of the issues
 with MPTCP and TCP SYN-cookies is presented. Section 3 then shows
 how these issues might get solved.

2. Problem statement

 Multipath TCP adds additional state to the 3-way handshake. Notably,
 the keys must be stored in the state so that later on new subflows
 can be established as well as the initial data sequence number is
 known to both hosts. In order to support stateless servers,
 Multipath TCP echoes the keys in the third ACK. A stateless server
 thus can generate its own key in a verifiable fashion (similar to the
 initial sequence number), and is able to learn the client’s key
 through the echo in the third ACK. The reliance on the third ACK
 however implies that if this segment gets lost, then the server
 cannot reconstruct the state associated to the MPTCP connection.
 Indeed, a Multipath TCP connection is forced to fallback to regular
 TCP in case the third ACK gets lost or has been reordered with the

Paasch, et al. Expires October 29, 2015 [Page 3]

Internet-Draft Multipath TCP SYN-cookies April 2015

 first data segment of the client, because it cannot infer the
 client’s key from the connection and thus won’t be able to generate a
 valid HMAC to establish new subflows nor does it know the initial
 data sequence number. In the remainder of this document we refer to
 the aforementioned issue as "Loss of the third ACK".

 Another issue with SYN-cookies is also present in regular TCP and
 occurs as well due to packet loss. In case the client is sending
 multiple segments when initiating the connection, it might be that
 the third ack as well as the first data segment get lost. Thus, the
 server only receives the second data segment and will try to
 reconstruct the state based on this segment’s 4-tuple, sequence
 number and timestamp value. However, as this segment’s sequence
 number has already gone beyond the client’s initial sequence number,
 it will not be able to regenerate the appropriate SYN-cookie and thus
 the verification will fail. The server effectively cannot infer that
 the sequence number in the segment has gone beyond TCP’s initial
 sequence number. This will make the server send a TCP reset as it
 appears to the server that it received a segment for which no SYN
 cookie was ever generated.

3. Proposal

 This section shows how the above problems might be solved in
 Multipath TCP.

3.1. Loss of the third ACK

 In order to make Multipath TCP robust against the loss of the third
 ACK when SYN-cookies are being deployed on servers, we must make sure
 that the state-information relevant to Multipath TCP reaches the
 server in a reliable way. As the client is initiating the data
 transfer to the server, and this data is being delivered reliably,
 the state-information could be delivered together with this data and
 thus is implicitly reliably sent to the server - when the data
 reaches the server, the state-information reaches the server as well.

 We achieve this by defining a new MPTCP subtype (called
 MP_CAPABLE_EXT) which is an extension of the existing MP_CAPABLE
 option. It is solely sent on the very first data segment from the
 client to the server. This option serves the dual purpose of
 conveying the client’s and server’s key as well as the DSS mapping
 which would otherwise have been sent in a DSS option on the first
 data segment. The MP_CAPABLE_EXT option (shown in Figure 1) contains
 the same set of bits A to H as well as the version number, like the
 MP_CAPABLE option. The server behaves in a stateless manner and thus
 has generated it’s own key in a verifiable fashion (e.g., as a hash
 of the 4-tuple, sequence number and a local secret - similar to what

Paasch, et al. Expires October 29, 2015 [Page 4]

Internet-Draft Multipath TCP SYN-cookies April 2015

 is done for the TCP-sequence number in case of SYN-cookies
 [RFC4987]). It is thus able to verify whether it is indeed the
 originator of the key echoed back in the MP_CAPABLE_EXT option.

 Further, the option includes the data-level length as well as the
 checksum (in case it has been negotiated during the 3-way handshake).
 This allows the server to reconstruct the mapping and deliver the
 data to the application. It must be noted that the information
 inside the MP_CAPABLE_EXT is less explicit than a DSS option.
 Notably, the data-sequence number, data acknowledgment as well as the
 relative subflow-sequence number are not part of the MP_CAPABLE_EXT.
 Nevertheless, the server is able to reconstruct the mapping because
 the MP_CAPABLE_EXT is guaranteed to only be sent on the very first
 data segment. Thus, implicitly the relative subflow-sequence number
 equals 1 as well as the data-sequence number, which is equal to the
 initial data-sequence number.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length=16 |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-----------------------+
 | Sender’s Key (64 bits) |
 | |
 +---------------+---------------+-------+-----------------------+
 | Receiver’s Key (64 bits) |
 | |
 +---+
 | Data-Level Length (2 octets) | Checksum (2 octets, optional) |
 +---+

 Format of the new MP_CAPABLE_EXT option.

 Figure 1

 It must be said that if TCP Fastopen [RFC7413] is being used in
 combination with Multipath TCP [I-D.barre-mptcp-tfo], the SYN segment
 covering part of the data sequence space might be a concern.
 However, if TFO is being used, servers do not employ stateless
 connection establishment, thus TFO is not of concern for the
 MP_CAPABLE_EXT option.

 While the MP_CAPABLE_EXT option lets us recover from loss of the 3rd
 ACK of the 3WHS as well as loss of the first data segment, it has the
 additional benefit of allowing a client to piggyback data on the 3rd
 ACK of the 3WHS of the first MPTCP subflow.

Paasch, et al. Expires October 29, 2015 [Page 5]

Internet-Draft Multipath TCP SYN-cookies April 2015

3.1.1. Negotiation

 We require a way for the hosts to negotiate support for the
 MP_CAPABLE_EXT option. As it is a new option, MP_CAPABLE_EXT relies
 on a new version of MPTCP. The client requests this new version of
 MPTCP during the MP_CAPABLE exchange (it remains to be defined by the
 IETF which version of MPTCP includes the MP_CAPABLE_EXT option). If
 the server supports this version, it replies with a SYN/ACK including
 the MP_CAPABLE and indicating this same version.

 If the server desires to do SYN-cookies and supports receiving the
 MP_CAPABLE_EXT option it sets the C-bit to 1. As the client
 indicated in the SYN that it supports the new version of MPTCP, it
 must use the MP_CAPABLE_EXT option in the first data segment.

3.1.2. DATA_FIN

 As the MP_CAPABLE_EXT option includes the same bitfields as the
 regular MP_CAPABLE, there is no space to indicate a DATA_FIN as is
 done in the DSS option. This implies that a client cannot send a
 DATA_FIN together with the first segment of data. Thus, if the
 server requests the usage of MP_CAPABLE_EXT through the C-bit, the
 client must send a separate segment with the DSS-option, setting the
 DATA_FIN-flag to 1, after it has sent the data-segment that includes
 the MP_CAPABLE_EXT option.

3.1.3. Middlebox considerations

 Multipath TCP has been designed with middleboxes in mind and so the
 MP_CAPABLE_EXT option must also be able to go through middleboxes.
 The following middlebox behaviors have been considered and
 MP_CAPABLE_EXT acts accordingly across these middleboxes:

 o Removing MP_CAPABLE_EXT-option: If a middlebox strips the
 MP_CAPABLE_EXT option out of the data segment, the server receives
 data without a corresponding mapping. As defined in Section 3.6
 of [RFC6824], the server must then do a seamless fallback to
 regular TCP.

 o Coalescing segments: A middlebox might coalesce the first and
 second data segment into one single segment. While doing so, it
 might remove one of the options (either MP_CAPABLE_EXT or the DSS-
 option of the second segment because of the limited 40 bytes TCP
 option space). If the DSS-option is not included in the segment,
 the second half of the payload is not covered by a mapping. Thus,
 the server will do a seamless fallback to regular TCP as defined
 by [RFC6824]. However, if the MP_CAPABLE_EXT option is not
 present, then the DSS-option provides an offset of the TCP

Paasch, et al. Expires October 29, 2015 [Page 6]

Internet-Draft Multipath TCP SYN-cookies April 2015

 sequence number. As the server behaves statelessly it can only
 assume that the present mapping belongs to the first byte of the
 payload (similar to what is explained in detail in Section 3.2.
 As this however is not true, it will calculate an incorrect
 initial TCP sequence number and thus reply with a TCP-reset as the
 SYN-cookie is invalid. As such kind of middleboxes are very rare
 we consider this behavior as acceptable.

 o Splitting segments: A TCP segmentation offload engine (TSO) might
 split the first segment in smaller segments and copy the
 MP_CAPABLE_EXT option on each of these segments. Thanks to the
 data-length value included in the MP_CAPABLE_EXT option, the
 server is able to detect this and correctly reconstructs the
 mapping. In case the first of these splitted segments gets lost,
 the server finds itself in a situation similar to the one
 described in Section 2. The TCP sequence number doesn’t allow
 anymore to verify the SYN-cookie and thus a TCP reset is sent.
 This behavior is the same as for regular TCP.

 o Payload modifying middlebox: In case the middlebox modifies the
 payload, the DSS-checksum included in the MP_CAPABLE_EXT option
 allows to detect this and will trigger a fallback to regular TCP
 as defined in [RFC6824].

3.2. Loss of the first data segment

 Section 2 described the issue of losing the first data segment of a
 connection while TCP SYN-cookies are in use. The following outlines
 how Multipath TCP actually allows to fix this particular issue.

 Consider the packet-flow of Figure 2. Upon reception of the second
 data segment, the included data sequence mapping allows the server to
 actually detect that this is not the first segment of a TCP
 connection. Indeed, the relative subflow sequence number inside the
 DSS-mapping is actually 100, indicating that this segment is already
 further ahead in the TCP stream. This allows the server to actually
 reconstruct the initial sequence number based on the sequence number
 in the TCP-header ((X+100) - 100) that has been provided by the
 client and verify whether its SYN-cookie is correct. Thus, no TCP-
 reset is being sent - in contrast to regular TCP, where the server
 cannot verify the SYN-cookie. The server knows that the received
 segment is not the first one of the data stream and thus it can store
 it temporarily in the out-of-order queue of the connection. It must
 be noted that the server is not yet able to fully reconstruct the
 MPTCP state. In order to do this it still must await the
 MP_CAPABLE_EXT option that is provided in the first data segment.

Paasch, et al. Expires October 29, 2015 [Page 7]

Internet-Draft Multipath TCP SYN-cookies April 2015

 The server responds to the out-of-order data with a Duplicate ACK.
 The Duplicate ACK may also have SACK data if SACK was negotiated.
 However, if this Duplicate ACK does not have an MPTCP level Data ACK,
 the client may interpret this as a fallback to TCP. This is because
 the client cannot determine if an option stripping middlebox removed
 the MPTCP option on TCP segments after connection establishment. So
 even though the server has not fully recreated the MPTCP state at
 this point, it should respond with a Data ACK set to the Data
 Sequence Number Y-100. The client’s TCP implementation may
 retransmit the first data segment after a TCP retransmit timeout or
 it may do so as part of an Early Retransmit that can be triggered by
 an ACK arriving from the server.

 Host A Host B
 ------ ------
 SYN + MP_CAPABLE
 -->
 SYN/ACK + MP_CAPABLE
 <--
 ACK + MP_CAPABLE
 -----------------------------------X

 DATA (TCP-seq = X) + MP_CAPABLE_EXT
 -----------------------------------X
 DATA (TCP-seq = X+100) + DSS (DSN = Y, subseq = 100)
 --->

 DATA_ACK (Y - 100)
 <---

 Multipath TCP’s DSS option allows to handle the loss of the first
 data segment as the host can infer the initial sequence number.

 Figure 2

4. Alternative solutions

 An alternative solution to creating the MP_CAPABLE_EXT option would
 have been to emit the MP_CAPABLE-option together with the DSS-option
 on the first data segment. However, as the MP_CAPABLE option is 20
 bytes long and the DSS-option (using 4-byte sequence numbers)
 consumes 16 bytes, a total of 36 bytes of the TCP option space would
 be consumed by this approach. This option has been dismissed as it
 would prevent any other TCP option in the first data segment, a
 constraint that would severely limit TCP’s extensibility in the
 future.

Paasch, et al. Expires October 29, 2015 [Page 8]

Internet-Draft Multipath TCP SYN-cookies April 2015

5. IANA Considerations

 A new codepoint must be allocated for this new MPTCP subtype.

6. Security Considerations

 No security considerations.

7. References

7.1. Normative References

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

7.2. Informative References

 [I-D.barre-mptcp-tfo]
 Barre, S., Detal, G., and O. Bonaventure, "TFO support for
 Multipath TCP", draft-barre-mptcp-tfo-01 (work in
 progress), January 2015.

 [M08] McManus, P., "Improving syncookies", 2008,
 <http://lwn.net/Articles/277146/>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance", RFC
 7323, September 2014.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, December 2014.

Authors’ Addresses

Paasch, et al. Expires October 29, 2015 [Page 9]

Internet-Draft Multipath TCP SYN-cookies April 2015

 Christoph Paasch
 Apple, Inc.
 Cupertino
 US

 Email: cpaasch@apple.com

 Anumita Biswas
 Apple, Inc.
 Cupertino
 US

 Email: anumita_biswas@apple.com

 Darren Haas
 Apple, Inc.
 Cupertino
 US

 Email: dhaas@apple.com

Paasch, et al. Expires October 29, 2015 [Page 10]

