
MPTCP C. Paasch, Ed.
Internet-Draft O. Bonaventure
Intended status: Informational UCLouvain
Expires: April 18, 2013 October 15, 2012

 MultiPath TCP Low Overhead
 draft-paasch-mptcp-lowoverhead-00

Abstract

 This document describes a low overhead connection establishment
 mechanism for Multipath TCP. Its goal is to reduce the computational
 overhead of establishing an MPTCP connection and the associated TCP
 subflows in controlled environments where security attacks are not a
 concern.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Paasch & Bonaventure Expires April 18, 2013 [Page 1]

Internet-Draft MPTCP Low Overhead October 2012

Table of Contents

 1. Introduction . 3
 2. Connection initiation . 3
 3. Starting a new subflow . 6
 4. Operation . 7
 4.1. Generating the token 7
 4.2. Stateless Servers . 7
 5. Security Considerations . 8
 6. Informative References . 8
 Authors’ Addresses . 8

Paasch & Bonaventure Expires April 18, 2013 [Page 2]

Internet-Draft MPTCP Low Overhead October 2012

1. Introduction

 This document introduces a variant of the MPTCP handshake that is
 suitable for an environment where security attacks are not an issue.
 The proposed handshake is a low overhead, low security version of the
 MPTCP handshake defined in [I-D.ietf-mptcp-multiaddressed].

 Its goal is to provide an MPTCP handshake and authentication
 mechanism, reducing the computational overhead provided by MPTCP
 version 0.

2. Connection initiation

 MultiPath TCP uses the MP_CAPABLE option in the handshake for the
 initial subflow. This handshake was designed to meet several
 requirements. When designing another variant of the Multipath TCP
 handshake, it is important to have these requirements in mind. These
 requirements are :

 1. Detect whether the peer supports MultiPath TCP.

 2. Each host generates a locally unique token that unambiguously
 identifies the Multipath TCP connection

 3. Agree on an Initial Data Sequence Number to initialize the MPTCP
 state on each direction of the Multipath TCP connection

 Before discussing the proposed low overhead handshake, it is
 important to have in mind how [I-D.ietf-mptcp-multiaddressed] meets
 the three requirements above.

 The first requirement is simply met by using a Multipath TCP specific
 option like all TCP extensions.

 To meet the second requirement, a simple solution would have been to
 encode the token inside the MP_CAPABLE option. However, this would
 have increased the size of the MP_CAPABLE option. This would have
 limited the possibility of extending Multipath TCP later by adding
 new TCP options that require space inside the SYN segments. To
 minimize the number of option bytes consummed in the SYN segment,
 [I-D.ietf-mptcp-multiaddressed] uses a hash function to compute the
 token based on the keys exchanged in clear. However, using hash
 functions implies that implementations must handle the possible
 collisions which increases the complexity of the Multipath TCP
 handshake.

 The third requirement is more subtle but is also important to ensure

Paasch & Bonaventure Expires April 18, 2013 [Page 3]

Internet-Draft MPTCP Low Overhead October 2012

 the reliability of a Multipath TCP connection. Let us assume that
 Multipath TCP hosts do not agree on an Initial Data Sequence Number.
 Consider the following scenario. Host A opens the initial TCP
 subflow of the Multipath TCP connection. Host B opens a second
 subflow in this Multipath TCP connection. Host B sends one byte with
 DSN x over the initial subflow, but this data never reaches host A.
 Host B then sends one byte, starting at DSN x+1 over the second
 subflow. If host A does not know the Initial Data Sequence Number
 used by host B, it cannot determine whether the byte received over
 the second subflow can be acknowledged at the DSN level or not.
 [I-D.ietf-mptcp-multiaddressed] solves this problem by allowing the
 two hosts to derive the Initial Data Sequence Number from the keys
 exchanged in the MP_CAPABLE option. However, this is achieved by
 computing a hash over the exchanged keys, which increases the
 computational overhead of generating/processing the MP_CAPABLE
 option.

 The figure below provides a simpler and low overhead handshake that
 meets the three requirements identified above.

 Host A Host B
 ---------- ----------
 Address A1 Address B1
 ---------- ----------
 | |
 | SYN+MP_CAPABLE(Token-A, Rand-A) |
 |----------------------------------->|
 | |
 |SYN/ACK+MP_CAPABLE(Token-B, Rand-B) |
 |<-----------------------------------|
 | |
 | ACK+MP_CAPABLE(Token-A, Rand-A, |
 | Token-B, Rand-B) |
 |----------------------------------->|

 Handshake of the initial subflow.

 Figure 1

 MPTCP’s establishment of the initial subflow follows TCP’s regular
 3-way handshake, but the SYN, SYN/ACK and ACK packets contain the
 MP_CAPABLE-option. The proposed MP_CAPABLE option contains one 32
 bits token and one 32 bits random number in the SYN and SYN/ACK
 segments. The third ACK includes an MP_CAPABLE option that contains
 the two tokens and random numbers. The tokens are used to explictely
 exchange identifier of the Multipath TCP connection. The random
 numbers, combined with the tokens produce the Initial Data Sequence
 Numbers. Echoing all the information back in the third ACK allows

Paasch & Bonaventure Expires April 18, 2013 [Page 4]

Internet-Draft MPTCP Low Overhead October 2012

 stateless operation of the server.

 The format of the proposed MP_CAPABLE option is proposed in the
 figures below.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Sender’s Token (32 bits) |
 +---+
 | Sender’s Random Number (32 bits) |
 +---+

 Format of the MP_CAPABLE-option in the SYN and SYN/ACK packets

 Figure 2

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Sender’s Token (32 bits) |
 +---+
 | Sender’s Random Number (32 bits) |
 +---+
 | Receiver’s Token (32 bits) |
 +---+
 | Receivers’s Random Number (32 bits) |
 +---+

 Format of the MP_CAPABLE-option in the third ACK of the handshake

 Figure 3

 The format of the MP_CAPABLE option is shown in Figure 2. To
 indicate that this MP_CAPABLE contains tokens/random numbers and not
 keys (as in [I-D.ietf-mptcp-multiaddressed], the Version-field is set
 to 1. The message format of the third ACK’s MP_CAPABLE option is
 show in Figure 3.

 The Initial Data Sequence Number (IDSN) serves to initialize the
 MPTCP state on the end-hosts in the same way as TCP’s sequence
 numbers do during the 3-way handshake. There is one IDSN for each
 direction of the data-stream. The IDSN for the data from the client

Paasch & Bonaventure Expires April 18, 2013 [Page 5]

Internet-Draft MPTCP Low Overhead October 2012

 to the server is the concatenation of Rand-A and Token-A (Rand-A||
 Token-A). Rand-A is thus the high-order 32 bits of the IDSN, and
 Token-A the low-order 32 bits. For the data from server to client,
 the IDSN is the concatenation of Rand-B and Token-B (Rand-B||
 Token-B). Rand-A and Rand-B MUST be random numbers with sufficient
 randomness so that they are hard to guess. Recommendations for
 generating random numers for use in keys are given in [RFC4086].

 The meaning of the other fields and behavior of the end-hosts during
 the MP_CAPABLE exchange is the same as specified in
 [I-D.ietf-mptcp-multiaddressed].

3. Starting a new subflow

 Once an MPTCP connection has been established and the tokens
 exchanged, new subflows can be established. The establishment of the
 new subflows follows the handshake as show in Figure 4.

 Host A Host B
 ---------- ----------
 Address A2 Address B2
 ---------- ----------
 | |
 | SYN + MP_JOIN(Token B) |
 |----------------------------------->|
 | |
 | SYN/ACK + MP_JOIN() |
 |<-----------------------------------|
 | |
 | ACK + MP_JOIN(Token B) |
 |----------------------------------->|

 Handshake for a new subflow.

 Figure 4

 As the low-overhead version of MPTCP does not try to protect against
 hijacking attacks, the only goal of the MP_JOIN inside the 3-way
 handshake is to identify the MPTCP connection this subflow is
 joining. The token inside the MP_JOIN of the SYN-segment allows the
 server to identify the connection. The SYN/ACK also contains an
 MP_JOIN option because the server needs to signal to the client that
 it indeed received the SYN together with the MP_JOIN and that there
 is no middlebox that removes MPTCP options on this path. Finally,
 the client replies with the third ack. This third ack contains again
 token B. This allows the server to handle MP_JOIN’s in a stateless
 manner, as described below. The third ack is sent in a reliable

Paasch & Bonaventure Expires April 18, 2013 [Page 6]

Internet-Draft MPTCP Low Overhead October 2012

 manner as explained in [I-D.ietf-mptcp-multiaddressed].

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype| |B| Address ID |
 +---------------+---------------+-------+-------+---------------+
 | Receiver’s Token (32 bits) |
 | (if option Length == 8) |
 +---+

 Format of the MP_JOIN-option

 Figure 5

 The semantics of the backup-bit "B" and the Address ID are the same
 as in [I-D.ietf-mptcp-multiaddressed].

4. Operation

4.1. Generating the token

 The token must only be locally unique. The method used to generate
 the token is implementation specific. One possible way to generate
 the token is by applying a block-cipher on a counter together with a
 local secret. This approach has the benefit of a higher probability
 of uniqueness of the token. We will only have a token collision
 after the counter has wrapped around. This means, that a connection
 must have survived 2^32 other connections to cause a collision.
 Thus, a token collision is less likely to occur than with
 [I-D.ietf-mptcp-multiaddressed].

4.2. Stateless Servers

 To allow stateless SYN+Join handling, the server has to perform the
 following upon reception of a SYN:

 o Check whether there exists an MPTCP-connection corresponding to
 the token inside the MP_JOIN option.

 o Send a SYN/ACK as it is done on today’s stateless servers.

 When receiving the third ACK (sent reliably as it is done in today’s
 MPTCP), the server verifies that indeed it has generated a SYN/ACK
 (like regular TCP’s SYN-cookie mechanism) and thanks to the token
 echoed back in the third ACK, the server can find the MPTCP-session
 this subflow is joining.

Paasch & Bonaventure Expires April 18, 2013 [Page 7]

Internet-Draft MPTCP Low Overhead October 2012

 Handling the SYN+Join in a stateless manner allows the server to
 protect itself against attackers that are flooding the server with
 SYN+Join messages. As the server does not need to create state when
 sending the SYN/ACK, flooding performed by the attacker will not
 prevent real clients from establishing new subflows.

5. Security Considerations

 The proposed solution removes the HMAC authentication mechanism
 described in [I-D.ietf-mptcp-multiaddressed]. It is assumed that
 end-hosts will only use this low-overhead version of MPTCP for non-
 security critical traffic or in controlled environments like isolated
 data-centers.

 Security-critical traffic is nowadays typically sent over SSL/TLS or
 similar secure application level protocols. This is done because the
 transport protocols like TCP do not provide a sufficient security.
 An application using SSL over MPTCP benefits from the same security
 provided by SSL. There is one downside of using SSL over MPTCP. If
 an attacker manages to join an existing connection thanks to a JOIN-
 exchange, he can inject data into the SSL-session. However, thanks
 to the MAC-authentication of the SSL messages, the end-hosts will
 tear down the SSL session.

6. Informative References

 [I-D.ietf-mptcp-multiaddressed]
 Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", draft-ietf-mptcp-multiaddressed-10 (work in
 progress), October 2012.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

Authors’ Addresses

 Christoph Paasch (editor)
 UCLouvain
 Place Sainte Barbe, 2
 Louvain-la-Neuve, 1348
 BE

 Email: christoph.paasch@uclouvain.be

Paasch & Bonaventure Expires April 18, 2013 [Page 8]

Internet-Draft MPTCP Low Overhead October 2012

 Olivier Bonaventure
 UCLouvain
 Place Sainte Barbe, 2
 Louvain-la-Neuve, 1348
 BE

 Email: olivier.bonaventure@uclouvain.be

Paasch & Bonaventure Expires April 18, 2013 [Page 9]

