Internet-Draft Asymmetrical Packets in STAMP June 2023
Mirsky Expires 28 December 2023 [Page]
Workgroup:
Network Working Group
Internet-Draft:
draft-mirsky-ippm-asymmetrical-pkts-00
Published:
Intended Status:
Standards Track
Expires:
Author:
G. Mirsky
Ericsson

Performance Measurement with Asymmetrical Packets in STAMP

Abstract

This document describes an optional extension to a Simple Two-way Active Measurement Protocol (STAMP) that enables the use of STAMP test and reflected packets of variable length during a single STAMP test session. In some use cases, the use of asymmetrical test packets allow for the creation of more realistic flows of test packets and, thus, a closer approximation between active performance measurements and conditions experienced by the monitored application.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 December 2023.

Table of Contents

1. Introduction

Simple Two-way Active Measurement Protocol (STAMP) [RFC8762] defined the STAMP base functionalities and, among them, the use of symmetrical test packets. In some scenarios, e.g., rate measurements discussed in [RFC7497], it is beneficial not only to use a variable size of the test packets transmitted downstream while controlling length, number, and interpacket interval for reflected test packets. This document specifies an optional extension of STAMP as defined in [RFC8972] that allows for control of the length, number, and interpacket interval of a reflected STAMP test packets transmitted in response to a received STAMP test packet.

1.1. Terminology

STAMP Simple Two-way Active Measurement Protocol

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Problem Statement

STAMP ([RFC8762]) allows for variable lengths of the test packets transmitted by a Session-Sender. [RFC7497] analyses rate measurement scenarios where it is beneficial to enable control of the responding node reflecting the received test packet with a different length and, in some cases, with a series of equally timed test packets.

3. Reflected Test Packet Control TLV

This document defines a new optional STAMP extension, Reflected Test Packet Control TLV. The format of the Reflected Test Packet Control TLV is presented in Figure 1.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |STAMP TLV Flags|      Type     |           Length              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  Length of the Reflected Packet               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                 Number of the Reflected Packets               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |               Interval Between Reflected Packets              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                            Sub-TLVs                           ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: Reflected Test Packet Control TLV Format

The interpretation of the fields is as follows:

A Session-Sender MAY include the Reflected Test Packet Control TLV in a STAMP test packet. If the received STAMP test packet includes the Reflected Test Packet Control TLV, the Session-Reflector MUST transmit a sequence of reflected test packets according to the following rules:

4. IANA Considerations

The IANA is requested to assign a new value for the Reflected Test Packet Control TLV from the STAMP TLV Types subregistry according to Table 1.

Table 1: New Reflected Test Packet Control Type TLV
Value Description Reference
 (TBD1) Reflected Test Packet Control TLV This document

5. Security Considerations

Security considerations discussed in [RFC8762] and [RFC8972] apply to this document. Furthermore, spoofed STAMP test packets with the Reflected Test Packet Control TLV can be exploited to conduct Denial-of-Service attack. Hence, implementations MUST provide a means of checking the source addresses of the STAMP test packets containing the Reflected Test Packet Control TLV.

6. Acknowledgments

TBA

7. References

7.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8762]
Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple Two-Way Active Measurement Protocol", RFC 8762, DOI 10.17487/RFC8762, , <https://www.rfc-editor.org/info/rfc8762>.
[RFC8972]
Mirsky, G., Min, X., Nydell, H., Foote, R., Masputra, A., and E. Ruffini, "Simple Two-Way Active Measurement Protocol Optional Extensions", RFC 8972, DOI 10.17487/RFC8972, , <https://www.rfc-editor.org/info/rfc8972>.

7.2. Informative References

[RFC7497]
Morton, A., "Rate Measurement Test Protocol Problem Statement and Requirements", RFC 7497, DOI 10.17487/RFC7497, , <https://www.rfc-editor.org/info/rfc7497>.

Author's Address

Greg Mirsky
Ericsson