
IPSECME D. Migault, Ed.
Internet-Draft Orange
Intended status: Standards Track T. Guggemos, Ed.
Expires: January 3, 2015 Orange / LMU Munich
 July 2, 2014

 Diet-ESP: a flexible and compressed format for IPsec/ESP
 draft-mglt-ipsecme-diet-esp-01.txt

Abstract

 IPsec/ESP secure every single IP packets exchanged between two nodes.
 This makes security transparent to the applications, as opposed to
 TLS or DTLS for example.

 IPsec/ESP has not widely been used to secure application because
 IPsec is implemented in the kernel space, and IPsec/ESP security
 rules are defined on the device -- similarly to firewall. In
 addition, IPsec/ESP introduces network overhead on an IP packet
 basis, as opposed as TLS/DTLS that introduces network overhead on an
 UDP or TCP segment basis. This mostly impacts devices that do not
 perform IP fragmentation.

 Such drawbacks are not anymore valid for IoT, and the IPsec/ESP may
 even better fits IoT usage and security requirements. IoT device are
 usually hardware dedicated for a given task or a given application
 which makes Kernel / user land split less significant. IoT devices
 send data that is most likely expected to fit in a single IP packet.
 Eventually, configuring IPsec/ESP security rules provides the ability
 to enforce the security of the device, as security is not handled on
 a per-application basis. Then the database structure of the IPsec/
 ESP security policies perfectly match sleeping nodes.

 This document defines Diet-ESP that adapts IPsec/ESP for IoT. The
 goal of Diet-ESP is to reduce the size of the IPsec/ESP packet sent
 on the wire. As a result Diet-ESP is expected to compress
 traditional IPsec/ESP packet without impacting the security provided
 by IPsec/ESP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Migault & Guggemos Expires January 3, 2015 [Page 1]

Internet-Draft Diet-ESP July 2014

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Requirements notation . 3
 2. Introduction . 3
 2.1. IoT context . 3
 2.2. Position of Diet-ESP suite documents toward IPsec 4
 2.3. Document Overview . 5
 3. Terminology . 7
 4. Diet-ESP Context . 7
 4.1. Description . 7
 4.2. Standard ESP compliant Diet-ESP Context 11
 4.3. Default Diet-ESP Context 12
 5. Diet-ESP Protocol Description 14
 5.1. Robust Header Compression (ROHC) 14
 5.2. Diet-ESP ROHC framework 16
 5.3. Diet-ESP header classification 16
 5.4. Diet-ESP ICV . 18
 6. Interaction with other Compression Protocols 21
 6.1. 6LoWPAN . 21
 6.2. ROHC . 22
 6.3. ROHCoverIPsec and 6LoWPANoverIPsec 23
 7. Diet-ESP and Requirements 23
 8. IANA Considerations . 25

Migault & Guggemos Expires January 3, 2015 [Page 2]

Internet-Draft Diet-ESP July 2014

 9. Security Considerations 25
 9.1. Size of the SPI . 25
 9.2. Size of the Diet-ESP ICV 25
 9.3. Size of the SN . 26
 10. Acknowledgment . 26
 11. References . 27
 11.1. Normative References 27
 11.2. Informational References 28
 Appendix A. Example of light Diet-ESP implementation for sensor 28
 Appendix B. Difference between Diet-ESP and ESP 30
 B.1. Packet Alignment . 31
 B.2. SAD . 31
 B.2.1. Inbound Security Association Lookup 31
 B.2.2. Outgoing Security Association Lookup 34
 B.3. Sequence Number . 34
 B.4. Outgoing Packet processing 35
 B.5. Inbound Packet processing 36
 Appendix C. Document Change Log 37
 Authors’ Addresses . 37

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

2.1. IoT context

 The IPsec/ESP [RFC4303] is represented in Figure 1. It was designed
 to: 1) provide high level of security as a basis, 2) favor
 interoperability between implementations 3) scale on large
 infrastructures.

 In order to match these goals, ESP format favor mandatory fields with
 fixed sizes that are designed for the worst case scenarios. This
 results in a kind of "unique" packet format common to all considered
 scenarios using ESP. These specific scenarios may result in carrying
 "unnecessary" or "larger than required" fields. This cost of
 additional bytes were considered as negligible versus
 interoperability, making ESP very successful over the years.

 With IoT, requirements become slightly different. For most devices,
 like sensors, sending extra bytes directly impacts the battery and so
 the life time of the sensor. As a result, IoT may look at reducing
 the number of bytes sent on the wire. As sensors may belong to
 different specific network topologies, compression of the IPsec/ESP

Migault & Guggemos Expires January 3, 2015 [Page 3]

Internet-Draft Diet-ESP July 2014

 packet may differ from one network to the another. The use of
 different compressed IPsec/ESP packets may increase the code
 complexity of Diet-ESP versus the standard IPsec/ESP. Code
 complexity may directly impacts interoperability. In addition, in
 order to reduce the amount of code embedded on the sensors, some
 sensors may only embed the code associated to a specific compressed
 IPsec/ESP packet format. This may also impact interoperability
 between these specific sensors. The fact that Diet-ESP, more
 specifically IPsec/ESP compression may limit any sensor-to-any-sensor
 IPsec/ESP communication is not an issue. First, it is mainly an
 implementation issue, not a protocol issue, as implementation design
 may prefer limiting the code embedded on the device vs.
 interoperability. Secondly, very constrained devices are more likely
 to be connected to an IPsec/ESP Security Gateway. In this document,
 we consider that interoperability is provided as long as a generic
 Security Gateway is able to set a secure connection with any IPsec/
 Diet-ESP or IPsec/ESP sensor.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ ---
 | Security Parameters Index (SPI) | ^
 +-+ I
 | Sequence Number (SN) | n
 +-+ t--
 | Payload Data* (variable) | e ^
 ˜ ˜ g c
 | | r o
 + +-+ i n
 | | Padding (0-255 bytes) | t f
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ y .
 | | Pad Length | Next Header | v v
 +-+ ---
 | Integrity Check Value-ICV (variable) |
 ˜ ˜
 | |
 +-+

 Figure 1: ESP Packet Description

2.2. Position of Diet-ESP suite documents toward IPsec

 This document is part of the Diet-ESP document suite that addresses
 the use of IPsec/ESP for IoT. Requirements for IPsec/ESP for IoT are
 expressed in [draft-mglt-ipsecme-diet-esp-requirements].

 Standard IPsec/ESP [RFC4303] defines a protocol and a packet format
 that carries an encrypted Payload Data. More specifically, the

Migault & Guggemos Expires January 3, 2015 [Page 4]

Internet-Draft Diet-ESP July 2014

 Payload Data is placed between an ESP Header and an ESP Trailer.
 Eventually, an Integrity Check Value (ICV) is appended to the ESP
 Trailer to authenticate the packet. The encryption algorithm (like
 [RFC3686] and [RFC3602]) defines how to encrypt the concatenation of
 the Payload Data and the Trailer. In fact, encryption or decryption
 is performed using a shared secret key as well as additional data
 such as the Initialization Vector (IV). AES-CTR [RFC3686] and AES-
 CBC [RFC3602] both define protocols to encrypt or decrypt the IV, the
 Payload Data and the Trailer: the Encrypted Payload. In order to
 agree on cryptographic material -- like the shared key --, the
 encryption mode -- like AES-CTR or AES-CBC -- and the protocol -- ESP
 -- peers use IKEv2 [RFC5996].

 This document [draft-mglt-ipsecme-diet-esp] describes Diet-ESP which
 compresses fields of the Standard ESP [RFC4303]. [draft-mglt-ipsecme-
 diet-esp-iv] describe how to compress the IV embedded in the
 Encrypted Payload. [draft-mglt-diet-esp-inner-compression] addresses
 the compression of the Clear Text Data, that is the Payload Data
 before compression.

 [draft-mglt-ipsecme-diet-esp-ikev2-extention] defines how all
 necessary parameters for Diet-ESP can be negotiated using IKEv2.

2.3. Document Overview

 This document describes how to compress ESP fields sent on the wire.
 Concerned fields are those of the ESP Header, the ESP Trailer and the
 ICV as represented in Figure 1. Compression of the Payload Data,
 including the IV is out of scope of the document.

 The compression mechanisms defined in this document are based on ROHC
 [RFC3095], [RFC5225] and ROHCoverIPsec [RFC5856], [RFC5857],
 [RFC5858].

 ROHC defines mechanisms to compress/decompress fields of an IP
 packet. These compressors are placed between the MAC layer and the
 IP layer. In the case of ESP, ROHC can be used to compress/
 decompress SPI, SN. However, ROHC cannot be used to compress
 encrypted fields like Padding, Pad Length, Next Header -- and later
 the Clear Text Data before encryption. In fact, at the MAC layer,
 these fields are encrypted and their encrypted value is used generate
 the ICV. As a result, compression an ESP packet at the MAC layer
 requires to decrypt the packet to be able to compress fields like
 Clear Text Data, Pad Length in order to be able to eventually remove
 the Padding Field. Similarly, decompressing a compress ESP packet at
 the MAC layer would require to decrypt the received packet,
 decompress the packet the Clear Text Data as well as the other ESP
 fields, before forwarding the ESP packet to the IP stack. Note that

Migault & Guggemos Expires January 3, 2015 [Page 5]

Internet-Draft Diet-ESP July 2014

 in some case decompression is not feasible. Consider for example an
 ESP implementation that generates a random Padding. If this field is
 removed by the compressor, it can hardly be recovered by the
 decompressor. Using a different Padding field would result is ESP
 rejecting the packet as the ICV check will not succeed. As a result
 ROHC cannot be used alone.

 On the other hand, ROHCoverIPsec makes compression possible before
 the ESP payload is encrypted, and so the Clear Text Data can be
 compressed, but not the ESP related fields like Padding, Pad Length
 and Next Header.

 ROHC and ROHCoverIPsec have been designed for bandwidth optimization,
 but not necessarily for constraint devices. As a result, defining
 ROHC and ROHCoverIPsec profiles is not sufficient to fulfill the
 complete set of Diet-ESP requirements listed in [draft-mglt-ipsecme-
 diet-esp-requirements]. In fact Diet-ESP MUST result in an light
 implementation that does not require implementation of the full ROHC
 and ROHCoverIPsec frameworks.

 In order to achieve ESP field compression, this document describes
 the Diet-ESP Context. This context contains all necessary parameters
 to compress an ESP packet. This Diet-ESP Context can be provided as
 input to proceed to Diet-ESP compression / decompression. This
 document uses the ROHC and ROHCoverIPsec framework to compress the
 ESP packet. The advantage of using ROHC and ROHCoverIPsec is that
 compression behavior follows a standardized compression framework.
 On the other hand, ROHC and ROHCoverIPsec frameworks are used in a
 stand alone mode, which means no ROHC communications between
 compressor and decompressor are considered. This enables specific
 and lighter implementations to perform Diet-ESP compression without
 implementing the ROHC or ROHCoverIPsec frameworks. All Diet-ESP
 implementations only have to agree on the Diet-ESP Context to become
 inter-operable.

 The remaining of the document is as follows. Section 4 described the
 Diet-ESP Context. Section 5 describes how the parameters of the
 Diet-ESP Context are used by the ROHC and ROHCoverIPsec framework to
 compress the ESP packet. This requires definition of new profiles
 and extensions. Section 6 describes the interactions of Diet-ESP
 interacts with other compression protocols such as 6lowPAN and ROHC
 compression for other protocols than ESP. Finally, Section 7
 describes how Diet-ESP matches the requirements for Diet-ESP [draft-
 mglt-ipsecme-diet-esp-requirements]. Appendix A is an informational
 section that illustrates how an minimal Diet-ESP implementation may
 be used in IoT devices. Appendix B lists the differences between
 Diet-ESP and Standard ESP.

Migault & Guggemos Expires January 3, 2015 [Page 6]

Internet-Draft Diet-ESP July 2014

3. Terminology

 This document uses the following terminology:

 - IoT: Internet of Things

 - LSB: Last Significant Bytes

 - IP alignment: The necessary alignment for IPv4 (32 bits) resp.
 IPv6 (64 bits)

 - Clear Text Data: designates the original data that are carried by
 ESP.

 - Encrypted Payload: carries the encrypted Data Payload including
 cryptographic material like the IV and the ESP Trailer.

4. Diet-ESP Context

 The Diet-ESP context provides the necessary parameters for the
 compressor and decompressor to perform the appropriated compression
 and decompression of the ESP packet. Table 1 in Section 4.1
 describes the different parameters. Section 4.2 describes the Diet-
 ESP Context that makes Diet-ESP compliant with ESP. Finally,
 Section 4.3 provides the default Diet-ESP Context. This describes
 default values when not explicitly set by the developer. Motivation
 for default values is to make the use of Diet-ESP simple for
 developers while still providing a secure framework for IoT
 communications. It is also expected to simplify negotiation of a
 Diet-ESP Context between peers.

4.1. Description

Migault & Guggemos Expires January 3, 2015 [Page 7]

Internet-Draft Diet-ESP July 2014

 +-------------------+---+
 | Context Field | Overview |
 | Name | |
 +-------------------+---+
ALIGN	Necessary Alignment for the specific device.
SPI_SIZE	Size in bytes of the SPI field in the sent
	packet.
SN_SIZE	Size in byte of the SN field in the sent
	packet.
NH	Presence of the Next Header field in the ESP
	Trailer.
PAD	Presence of the Pad Length field present in
	the ESP trailer.
Diet-ESP_ICV_SIZE	Size of the Diet-ESP ICV in the sent packet.
 +-------------------+---+

 Table 1: Diet-ESP Context.

 ALIGN:
 Alignment is the minimum alignment accepted by the hardware.
 Constrains may come from various reasons. Hardware may have some
 specific requirements, but also operating systems. For most
 servers CPU and OS have been designed with 32 bit or 64 bit
 alignment. As a result, IP headers have been standardized with 32
 bits (resp. 64 bits in IPv6) alignment for each IP extension
 header. ESP is one of these extension headers with an Header (SPI
 and SN) of 64 bits and the Trailer (NH, PL, PAD) of (2 + PL)
 bytes. Since the trailer is part of the ESP extension header, it
 must provide the necessary padding for a correct alignment of the
 NH field to 32 (resp. 64) bits. The alignment may also be
 relevant if Block-Ciphers like AES-CBC needs an aligned payload to
 perform the encryption.

 Diet-ESP reduces the ALIGN value from 32 bits for IPv4 or 64 bits
 for IPv6 to 8, 16, 32 and 64 bit alignment.

 Motivations to do so is to remove the Padding and other mandatory
 fields of the ESP packet. Then, most IoT embeds small 8 or 16 bit
 CPUs. Finally, even though ESP is an extension header, it is
 often the last extension header of a header-only IP packet. The
 ESP header is only read by the real receiver and is uninteresting
 for other devices like routers, placed between the to peers. As a
 result, there seems no real impact on the system if ESP extension
 header is not aligned.

 Note that the benefices of ALIGN also depends on the used
 cryptographic mode. More specifically AES-CTR has a 8 bit block
 whereas AES-CBC has a 128 bit block. As a result the use of AES-

Migault & Guggemos Expires January 3, 2015 [Page 8]

Internet-Draft Diet-ESP July 2014

 CBC with small Clear Text Data results in large encrypted Data
 with embedded padding. In other words, the alignment for one
 packet is always MAX(CIPHER_BLOCK_SIZE, ALIGN).

 SPI_SIZE:
 ESP Security Policy Index is 4 byte long to identify the SAD-entry
 for incoming traffic.
 Diet-ESP omits, leaves unchanged, or reduces the SPI sent on the
 wire to the 0, 1, 2, 3 or 4 LSB.
 Compression only impacts the data sent on the wire and therefore
 OS SHOULD only deal with 4 byte decompressed SPIs in the SAD.
 This allows systems to send and receive multiple SPI_SIZE with
 different hosts. Decompressing the SPI at the receiver may
 involve IP addresses (see Appendix B.2.1).
 Compressing the SPI has significant security impacts as detailed
 in Section 9. It should be guided by 1) the number of
 simultaneous inbound SA the device is expected to handle and 2)
 reliability of the IP addresses in order to identify the proper SA
 for incoming packets. More specifically, a sensor with a single
 connection to a Security Gateway, may bind incoming packets to the
 proper SA based only in its IP addresses. In that case, the SPI
 may not be necessary. Other scenarios may consider using the SPI
 to index the SAs or may consider having multiple ESP channels with
 the same host from a single host. In that case it may choose a
 reduced length for the SPI. Note also that the value 0 for the
 SPI is not allowed to be sent on the wire as described in
 [RFC4303].

 SN_SIZE:
 ESP Sequence Number is 32 bit and extended SN is 64 bit long and
 used for anti-replay protection.
 Diet-ESP omits, leaves unchanged or reduces SN sent on the wire to
 0, 1, 2, 3 or 4 LSB.
 Decompressing the SN at the receiver is guided by a linear
 extrapolation of the expected received Sequence Number and the
 LSB-SN sent on the wire. To avoid packet overhead, this
 configuration is stored within the SA, whereas it remains valid
 during its lifetime. Therefore an implementer should consider the
 LSB window such that two consecutive received SN should not
 present a difference of more than the LSB window.
 In some cases, the received SN may increase by a high number e.g.
 using the time as the SN or because of a high number of packet
 loss. See Section 9.3 for the related security considerations for
 this case.

 Note that SN and SPI MUST be aligned to a multiple of the
 Alignment value (ALIGN).

Migault & Guggemos Expires January 3, 2015 [Page 9]

Internet-Draft Diet-ESP July 2014

 NH:
 Next Header in ESP is used to identify the first header inside the
 ESP payload.
 Diet-ESP is able to remove the Next Header field from the ESP-
 Trailer.
 Removing the Next Header is possible only if the underlying
 protocol can be derived from the Traffic Selector (TS) within the
 Security Association (SA). More specifically, the Next Header
 indicates whether the encrypted ESP payload is an IP packet, a UDP
 packet, a TCP packet or no next header. The NH can only be
 removed if this has been explicitly specified in the SA or if the
 device has a single application.
 Note that removing the Next Header impacts how encryption is
 performed. For example, the use of AES-CBC [RFC3602] mode
 requires the last block to be padded, reaching a 128 bit
 alignment. In this case removing the Next Header increases the
 padding by the Next Header length, which is 8 bits. In this case,
 removing the Next Header provides few advantages, as it does not
 reduce the ESP packet length. With AES-CBC, the only advantage of
 removing the Next Header would be for data with the last block of
 15 bytes. In that case, ESP pads with 15 modulo 16 bytes, sets
 the 1 byte pad length field to 15 and add the one byte Next Header
 field. This leads to 15 + 15 + 1 + 1 = 32 bytes to be sent. On
 the other hand, removing the Next Header would require only the
 concatenation of the pad length byte with a 0 value, which leads
 to 16 bytes to be sent.
 Other modes like AES-CTR [RFC3686] do not have block alignment
 requirements, so the only alignment constraint comes from the
 device hardware alignment (ALIGN). Suppose A designates the
 alignment constraint from OS, hardware, encryption, packet
 format...). A is fixed and consider then any data of length k * A
 + A - 1 bytes with k an integer. Sending this data using ESP
 takes advantage of removing the Next Header as it reduces the
 number of bytes to be sent by A over the traditional ESP. As a
 result, for 8 bit alignment hardware (A = 1) removing the Next
 Header always prevent an unnecessary byte to be sent.

 PAD:
 With ESP, all packets have a Pad Length field. This field is
 usually present because ESP requires IP alignment which is ensured
 with padding.
 Diet-ESP considers removing the Padding and the Pad Length field.
 If PAD is present, then it is computed according to ALIGN.
 In fact, some devices might use an 8 bits alignment, in which case
 padding is not necessary. Similarly, sensors may send application
 data of fixed length matching the alignment. Note that alignment
 may be required by the device (8-bit, 16-bit, or more generally
 32-bit), but it may also be required by the encryption block size

Migault & Guggemos Expires January 3, 2015 [Page 10]

Internet-Draft Diet-ESP July 2014

 (AES-CBC uses 128 bit blocks). With ESP these scenarios would
 result in an unnecessary Pad Length field always set to zero.
 Diet-ESP considers those case with no padding, and thus the Pad
 Length field can be omitted.

 Diet-ESP_ICV_SIZE:
 Integrity Check Value (ICV) is used to authenticate the Diet-ESP
 Payload.
 Diet-ESP considers sending the whole ICV or the first 1 byte resp
 (2, 4, 8, 12, 16, 32) bytes.
 ESP negotiates authentication protocols for every SA. These
 protocols generate an ICV of a length defined by the
 authentication protocol. These authentication protocols do not
 provide ways to perform weak authentication, as there is no way to
 reduce the size of the ICV. IoT is interested in weak
 authentication as it may send a small amount of bytes, and the
 trade-of between battery life time and security may be worth. As
 a result Diet-ESP indicates the number of bytes of the ICV. Note
 that reducing the size of the ICV may expose the system to
 security flows. See Section 9 for more details. Note that ICV is
 optional so if one chooses not to perform authentication, he MUST
 negotiate the authentication algorithm to NULL as defined in
 [RFC4835].
 Note also that the Diet-ESP ICV value differs from the Standard
 ESP value since the authenticated data is not the same. In the
 case of the Diet-ESP ICV, the ICV is computed over the compressed
 Diet-ESP payload, whereas in the case of the Standard ESP ICV the
 ICV is computed over the uncompressed packet. This means that the
 decompress Diet-ESP ICV is not expected to match the Standard ESP
 ICV value.

 Some additional parameters may be added to the Diet-ESP Context.
 Such parameters are defined in other documents, like [draft-mglt-
 ipsecme-diet-esp-iv] to compress the Initialization Vector required
 by cipher algorithms or [draft-mglt-diet-esp-inner-compression] the
 compression of protocol headers inside the encrypted ESP payload.

4.2. Standard ESP compliant Diet-ESP Context

 Table 2 defines the Diet-ESP Context that produces regular ESP
 packets. This makes Diet-ESP compatible with standard ESP.

Migault & Guggemos Expires January 3, 2015 [Page 11]

Internet-Draft Diet-ESP July 2014

 +-------------------+---+
 | Context Field | Default Value |
 | Name | |
 +-------------------+---+
ALIGN	IP alignment (4 bytes for IPv4 and 8 bytes
	for IPv6)
SPI_SIZE	4 bytes
SN_SIZE	4 bytes
NH	Present
PAD	Present
Diet-ESP_ICV_SIZE	Not compressed
 +-------------------+---+

 Table 2: Diet-ESP Default Context for regular ESP

 - ALIGN: IP alignment
 IP alignment is 32 bit for IPv4 and 64 bit for IPv6.

 - SPI_SIZE: 4 bytes
 This is not problematic for devices that handle a few
 simultaneous connections.

 - SN_SIZE: 4 bytes
 This causes a window of 2**32 lost packets for a regular
 increment of 1 for each packet.

 - NH: Present
 Next Header remains uncompressed as compression cannot be
 performed in all scenarios.

 - PAD: Present
 Padding is computed according to the IP alignment.

 - Diet-ESP_ICV_SIZE: Not compressed
 The Diet-ESP ICV is computed. The length is determined by the
 authenticating algorithm negotiated by the SA. This value is
 not truncated.

4.3. Default Diet-ESP Context

 This section defines a default Diet-ESP Context. IPsec/ESP has been
 designed to provide a secure framework that remains secure in any
 scenarios. As a result, specific scenarios may carry unnecessary
 bytes. In fact, compression is performed on a per-scenario basis,
 the Diet-ESP Context configuration for a given scenario may introduce
 vulnerabilities in another scenario. As a result, Diet-ESP can
 hardly define a optimized Diet-ESP Context that matches with any
 scenarios.

Migault & Guggemos Expires January 3, 2015 [Page 12]

Internet-Draft Diet-ESP July 2014

 On the other hand, Diet-ESP is very flexible and make possible to
 compress any fields. Defining which field can be compressed without
 introducing vulnerabilities requires specific security knowledge we
 do not expect all application developers to have. Instead, we would
 like application developers to be able to simply mention that a given
 application needs to be secured with diet-esp without specifying any
 parameters. In that case, a Default Diet-ESP Context will be
 considered. This Diet-ESP Context is probably not optimized for the
 given scenario, but at least it does not introduce vulnerabilities.
 The values for the Default Diet-ESP Context are specified in Table 3.

 +--------------------+-----------------+
 | Context Field Name | Default Value |
 +--------------------+-----------------+
 | ALIGN | 8 bit Alignment |
 | SPI_SIZE | 2 bytes |
 | SN_SIZE | 2 bytes |
 | NH | Present |
 | PAD | Removed |
 | ESP_ICV_SIZE | Not compressed |
 +--------------------+-----------------+

 Table 3: Diet-ESP Default Context

 - ALIGN: 8 bit
 As most IoT devices CPUs are likely to deal with 8 bit
 alignment.

 - SPI_SIZE: 2 bytes
 reduced to 2 bytes. This is not problematic for devices that
 handle a few simultaneous connections.

 - SN_SIZE: 2 bytes
 reduced to 2 bytes which causes a window of 512 lost packets
 for a regular increment of 1 for each packet.

 - NH: Present
 Next Header remains present in the packet as compression cannot
 be performed in all scenarios.

 - PAD: Removed
 Padding is removed as AES-CTR (CCM*) is widely deployed for
 IoT, and most IoT devices can deal with 8 bit alignment. If
 AES-CBC is used, the padding is performed by the encryption
 mode itself.

 - Diet-ESP_ICV_SIZE: Not compressed

Migault & Guggemos Expires January 3, 2015 [Page 13]

Internet-Draft Diet-ESP July 2014

 The Diet-ESP ICV is computed. The length is determined by the
 authenticating algorithm negotiated by the SA. This value is
 not truncated in order to remain the security provided by the
 algorithm

5. Diet-ESP Protocol Description

 This section defines Diet-ESP on the top of the ROHC and
 ROHCoverIPsec framework. Section 5.1 presents and explains the
 choice of these frameworks. This section is informational and its
 only goal is to position our work toward ROHC and ROHCoverIPsec.
 Section 5.2 defines profiles for all fields expect the Diet-ESP ICV
 field. Section 5.4 describes the Diet-ESP ICV field. In fact the
 Diet-ESP ICV field is not derived from the Standard ESP ICV field,
 but instead is built especially by Diet-ESP.

5.1. Robust Header Compression (ROHC)

 ROHC enables the compression of different protocols of all layers.
 It is designed as a framework, where protocol compression is defined
 as profile. Each profile is defined for a specific layer, and ROHC
 compression in [RFC3095] defines profiles for the following
 protocols: uncompressed, UDP/IP, ESP/IP and RTP/UDP/IP. The
 compression occurs between the IP and the MAC layer, and so remains
 independent of an eventual IP alignment.

 The general idea of ROHC is to classify the different protocol
 fields. According to the classification, they can either completely
 and always be omitted, omitted only after the fields has been sent
 once and registered by the receiver or partly sent and be regenerated
 by the receiver. For example, a static field value may be negotiated
 out of band (for example IP version) and thus not be sent at all. In
 some cases, the value is not negotiated out of band and is carried in
 the first packet (for example SPI, UDP ports). As a result, the
 first packet is usually not so highly compressed with ROHC. Finally,
 some variable fields (for example Sequence Number) can be represented
 partially by their Last Significant Bits (LSB) and regenerated by the
 receiver.

 The main issue encountered with ESP and ROHC is that ESP may contain
 encrypted data which makes compression between the IP and MAC layer
 complex to achieve. Therefore ROHC defines different compression of
 the ESP protocol (see Figure 2), so compression of the Clear Text
 Data can occur before the ESP encryption. Regular ROHC can compress
 the ESP header. If the packet is not encrypted, the rate of
 compression is extremely high as the whole packet including padding
 can be compressed in the regular ROHC stack, too. For encrypted
 payload ROHC defines ROHCoverIPsec ([RFC5856], [RFC5857], [RFC5858])

Migault & Guggemos Expires January 3, 2015 [Page 14]

Internet-Draft Diet-ESP July 2014

 to compress the ESP payload before it is going to be encrypted. This
 leads to a second ESP stack, where another ROHC compressor (resp.
 decompressor) works (see Figure 2). Excluding the first packet which
 initializes the ROHC context, this makes ESP compression highly
 efficient.

 +-------------------------------+---
 | Transport Layer | Layer 4
 +---------------+---------------+---
 | ROHCoverIPsec | Standard ESP | ^
 +---------------+---------------+ | Layer 3
 | IP Layer | v
 +-------------------------------+---
 | ROHC (de-)compressor | ^
 +-------------------------------+ | Layer 2
 | MAC Layer | v
 +-------------------------------+---

 Figure 2: The two different ROHC layers in the TCP/IP stack.

 The first drawback for ROHC and ROHCoverIPsec is, that it leads to
 two ROHC compression layers (ROHCoverIPsec before ESP encryption and
 ROHC before the MAC layer) in addition to two ESP implementations
 (Standard ESP and ROHCoverIPsec ESP). Both frameworks are quite
 complex and require a lot of resources which does not fit IoT
 requirements. Then ROHCoverIPsec also limits the compression of the
 ESP protocol, according to the IP restrictions. Padding remains
 necessary as IPsec is part of the IP stack which requires a 32 bits
 (resp. 64 bits for IPv6) aligned packet. This makes compression
 quite inefficient when small amount of data are sent.

 Note that mechanism to compress encrypted fields may be possible with
 ROHC only and without ROHCoverIPsec. Such mechanisms may be possible
 for fields like the Next Header or the Padding and Pad Length when
 the data sent is of fixed size. As the sizes of the fields are known
 the compressor may simply remove these fields. However, even in this
 case, it almost doubles the amount of computation on the receiver’s
 side. In fact, the ROHC compressor would almost decompress and re-
 encrypt the compressed ESP payload before forwarding it to the IP
 stack. In addition, since the receiver has to re-encrypt the
 decompressed information before integrity of the packet can be
 checked, one can easily construct a DoS attack. Flooding the
 receiver with invalid packet causes the receiver to perform the
 complex encryption and authentication algorithm for each packet.

Migault & Guggemos Expires January 3, 2015 [Page 15]

Internet-Draft Diet-ESP July 2014

5.2. Diet-ESP ROHC framework

 This section defines how the compression of all ESP fields is
 performed within the ROHC and ROHCoverIPsec frameworks. More
 especially fields that are in the ESP Header (i.e. the SPI and the
 SN) and the ICV are compressed by the ROHC framework. The other
 fields, that is to say those of the ESP Trailer, are compressed by
 the ROHCoverIPsec framework. The specific Diet-ESP ICV field is
 detailed in Section 5.4 as more details are required.

 Diet-ESP fits in the ROHC and the ROHCoverIPsec in a very specific
 way.

 1 - Diet-ESP does not needs any ROHC signaling between the peers.
 More specifically, ROHC Initialization and Refresh (IR), or
 ROHC IR-DYN or ROHC Feed back packet are not considered with
 Diet-ESP. The first reason is that fields are either STATIC or
 PATTERN and their value or profile is defined through the Diet-
 ESP Context agreement. This agreement is out of scope of ROHC,
 it is expected to be agreed by other protocols like IKEv2 and
 thus is considered as an out-of band agreement by the peers.
 Then, the profiles are applied for each Security Association
 that is unidirectional. In fact an IKEv2 negotiation results
 in two unidirectional SA. As a result, each SA the packets are
 sent in one direction only, which corresponds to the
 Unidirectional mode -- U-mode of ROHC.

 2 - Diet-ESP only exchanges compressed data. How the compression /
 decompression occurs is defined by the Diet-ESP Context. Once
 the Diet-ESP Context has been agreed, both peers are in a
 Second Order (SO) State and exchange only compressed data.

 3 - Diet-ESP only compresses ESP packets, it may include inner
 packet compression, but Diet-ESP does not make any assumption
 on the IP compression. This is made in order to make Diet-ESP
 interoperable with multiple IP compression protocols.

 4 - Diet-ESP compresses partially STATIC fields as they are used as
 indexes by the receiver, and may not completely be removed.

5.3. Diet-ESP header classification

 The ROHC header field classifications are defined in Appendix A.1 of
 [RFC3095] and Appendix A of [RFC5225].

Migault & Guggemos Expires January 3, 2015 [Page 16]

Internet-Draft Diet-ESP July 2014

 +---------+------------+---------------+-----------+----------------+
Field	ROHC class	Framework	Encoding	Diet-ESP
			Method	Context
				Parameters
+---------+------------+---------------+-----------+----------------+				
SPI	STATIC-DEF	ROHC	LSB	SPI_SIZE
SN	PATTERN	ROHC	LSB	SN_SIZE
Padding	PATTERN	ROHCoverIPsec	Removed	PAD, ALIGN
Pad	PATTERN	ROHCoverIPsec	Removed	PAD, ALIGN
Length				
Next	STATIC-DEF	ROHCoverIPsec	Removed	NH
Header				
 +---------+------------+---------------+-----------+----------------+

 Table 4: Diet-ESP ROHC profile.

 SPI:
 The SPI indexes the SA, is negotiated by the two peers (e.g. via
 IKEv2 or manually) and remains the same during the session.
 Therefore, as defined in Appendix A.6 of [RFC5225] this field is
 classified as STATIC-DEF. The compressed SPI consists in the
 SPI_SIZE LSB of the negotiated 32 bit SPI, and SPI_SIZE is
 provided by the Diet-ESP Context.

 SN:
 The SN is used for anti-replay protection and is modified in every
 packet. In default cases, the ESP Sequence Number will be
 incremented by one for each packet sent. Therefore, as defined in
 Appendix A.6 of [RFC5225] this field is classified as PATTERN.
 The compressed SN consists in the SN_SIZE LSB of the 32 bit or 64
 bit SN, and SN_SIZE is provided by the Diet-ESP Context.

 Padding:
 Padding is used for alignment purposes and is computed on a per-
 packet basis. Therefore it is classified as PATTERN. The
 compressed Padding is defined by PAD and ALIGN provided by the the
 Diet-ESP Context. If PAD is set the Padding and Pad Length fields
 are removed. If PAD is unset, Padding is computed according to
 the ALIGN and the padding length is indicated in the PAD Length
 field.

 Pad Length:
 Pad Length indicates the length of the Padding field and is
 computed on a per-packet basis. Therefore it is classified as
 PATTERN. See Padding for the compressed Pad Length.

 Next Header:

Migault & Guggemos Expires January 3, 2015 [Page 17]

Internet-Draft Diet-ESP July 2014

 The Next Header indicates the next layer in the inner ESP Payload.
 To be compressed the Next Header MUST remain the same during the
 session. This means that it MUST have been negotiated (e.g. by
 IKEv2) and can be derived from the Traffic Selectors. If this
 condition is met and the Next Header compression is requested by
 the peers with NH set in the Diet-ESP Context, then the Next
 Header field MUST be removed.

5.4. Diet-ESP ICV

 With Standard ESP the Standard ESP ICV is computed over the whole ESP
 Packet. If Diet-ESP were using the Standard ESP ICV value, then
 Diet-ESP would have to decompressed Diet-ESP to Standard ESP packet
 to check the Standard ESP ICV value. First, this is not in the scope
 of Diet-ESP that is looking for light implementation of ESP. Then,
 as there is no standard way to generate the Padding, this may be
 impossible in most cases.

 The Diet-ESP ICV payload is defined to enable an integrity check
 without decompressing the Diet-ESP packet to a Standard ESP packet.
 In order to do so, the Diet-ESP ICV is computed over the Diet-ESP
 packet before the ESP Header is compressed. In other words, the
 Diet-ESP ICV is computed over the ROHCoverIPsec compressed ESP
 payload before ROHC compression.

 The reason of building the Diet-ESP ICV over the uncompressed header
 is the anti-replay protection of IPsec. If anti-replay is enabled at
 the receiver of the packet, the ICV ensures the integrity of the SN
 sent on the wire. Suppose the SN is compressed to 0 byte and the
 Diet-ESP ICV is built over the compressed ESP Header. In that case,
 the Diet-ESP ICV would not consider the SN value and thus removes the
 ESP anti-replay mechanism, as the SN cannot be compared with the one
 chosen by the sender. The problem also occurs when the SN is
 compressed to less then 4 bytes and the SN has been increased by more
 then SN_SIZE. For example, if the SN_SIZE is 1 byte the maximum
 increasing can be 255. If the received SN is increased by 300, the
 receiver will recognize a increase of only 45. Integrity check of
 the ICV with the whole ESP Header can determine the new SN is 300 and
 not 45.

 Due to this issues the SN has to be decompressed to 32 bit SN before
 the Diet-ESP ICV generation takes place (see Figure 4). More
 specifically the regular ESP header is used for the Diet-ESP ICV
 generation on sender and receiver. This mechanism ensures the
 correctness of the anti-replay mechanism and the possibility to sent
 Standard ESP conform packets remains. As the receiver includes the
 Diet-ESP header to the Diet-ESP ICV generation he always checks the
 whole 32 Bit SN.

Migault & Guggemos Expires January 3, 2015 [Page 18]

Internet-Draft Diet-ESP July 2014

 The algorithm used to generate the Diet-ESP ICV is the same as the
 one negotiated for ESP. As this field is computed for every packet,
 it is classified as PATTERN. The compressed Diet-ESP ICV consists in
 the Diet-ESP_ICV_SIZE LSB of the Diet-ESP ICV. Diet-ESP_ICV_SIZE is
 provided by the Diet-ESP Context. Profile parameters are summed up
 in Table 5

 +----------+---------+---------------+----------+-------------------+
 | Field | ROHC | Framework | Encoding | Diet-ESP Context |
 | | class | | Method | Parameters |
 +----------+---------+---------------+----------+-------------------+
 | Diet-ESP | PATTERN | ROHCoverIPsec | LSB | Diet-ESP_ICV_SIZE |
 | ICV | | / ROHC | | |
 +----------+---------+---------------+----------+-------------------+

 Table 5: Diet-ESP ICV profile.

 The Diet-ESP ICV differs from the ROHC ICV described in section 4.2
 of [RFC5858]. The ROHC ICV is computed over the Clear Text Data, and
 encapsulated in the ESP payload. The goal of the ROHC ICV is to
 check the integrity of Clear Text Data output. It ensures that the
 compressed payload is not corrupted. As a result, the ROHC ICV
 authenticates the Clear Text Data over the whole chain compressor /
 network / decompressor. In contrast the Diet-ESP ICV authenticates
 the Diet-ESP packet over the network transmission. Note that the
 ROHC-ICV can be disabled by negotiating the algorithm NULL in the
 ROHC_INTEG notify payload [RFC5857].

 Figure 3 illustrates the different Standard ESP ICV, ROHC ICV and
 Diet-ESP ICV. Note that ROHC ICV can be used with Diet-ESP ICV or
 Standard ESP ICV. Diet-ESP considers ROHC-ICV as disabled, that is
 to say that ROHC_INTEG algorithm is set to NULL.

Migault & Guggemos Expires January 3, 2015 [Page 19]

Internet-Draft Diet-ESP July 2014

 1) BEFORE COMPRESSION AND APPLICATION OF ESP

 | orig IP hdr | | |
 |(any options)| UDP | Data |

 <----------->
 Clear Text Data

 2) Standard ESP ICV including ROHC-ICV
 --
 | orig IP hdr | ESP | | | ROHC | ESP | ESP|
 |(any options)| Hdr | UDP | Data | ICV | Trailer | ICV|
 --
 |<-ROHC ICV->|
 |<------ ESP encryption ----->|
 |<------------ ESP ICV ------------>|

 3) DIET-ESP ICV including ROHC-ICV

 3.1) Before ROHC compression

 | orig IP hdr | ESP | Cmpr. | | ROHC |Cmpr.ESP| Diet-ESP|
 |(any options)| Hdr |UDP Hdr.|Data| ICV |Trailer | ICV |

 |<----Diet-ESP encryption --->|
 |<--------- Diet-ESP ICV ---------->|

 3.2) After ROHC compression
 --
 | orig IP hdr | Cmpr. | Cmpr. | | ROHC |Cmpr.ESP| Diet-ESP|
 |(any options)|ESP-Hdr |UDP Hdr.|Data| ICV |Trailer | ICV |
 --

 Figure 3: Diet-ESP-ICV in Transport Mode.

 Upon receipt a Diet-ESP ICV, the receiver MUST compute the Diet-ESP
 ICV and compare with the LSB provided in the packet. If a match
 occurs, the Diet-ESP packet is authenticated, otherwise, the packet
 MUST be rejected as illustrated in figure Figure 4.

Migault & Guggemos Expires January 3, 2015 [Page 20]

Internet-Draft Diet-ESP July 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | compr. SPI | compr. SN | encrypted Payload Data |
 +-+
 | Diet-ESP ICV |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |
 V
 +-----------------+
 | decompressor |
 +-----------------+
 |
 V
 +-+
 | Security Parameters Index (SPI) |
 +-+
 | Sequence Number |
 +-+
 | encrypted Payload Data | Diet-ESP ICV |
 +-+
 |
 V
 +-----------------+
 | ICV generation |
 | and |
 | Integrity Check |
 +-----------------+

 Figure 4: Example of decompression of the header, before ICV
 generation and checking.

6. Interaction with other Compression Protocols

 Diet-ESP exclusively defines compression for the ESP protocol as well
 as the ESP payload. It does not consider compression of the IP
 protocol. ROHC or 6LoWPAN may be used by a sensor to compress the IP
 (resp. IPv6) header. Since compression usually occurs between the
 MAC and IP layers, there are no expected complications with this
 family of compression protocols.

6.1. 6LoWPAN

 Diet-ESP smoothly interacts with 6LoWPAN. Every 6LoWPAN compression
 header (NHC_EH) has an NH bit. This one is set to 1 if the following
 header is compressed with 6LoWPAN. Similarly, the NH bit is set to 0
 if the following header is not compressed with 6LowPAN. Thus,
 interactions between 6LowPAN and Diet-ESP considers two case: 1) NH

Migault & Guggemos Expires January 3, 2015 [Page 21]

Internet-Draft Diet-ESP July 2014

 set to 0: 6LowPAN indicates the Diet-ESP payload is not compressed
 and 2) NH set to 1: 6LowPAN indicates the Diet-ESP payload is
 compressed.

 Suppose 6LowPAN indicates the Next Header ESP is not compressed by
 6LowPAN. If the peers have agreed to use Diet-ESP, then the ESP
 layer on each peers receives the expected Diet-ESP packet. Diet-ESP
 is fully compatible with 6LowPAN ESP compression disabled.

 Suppose 6LowPAN indicates the Next Header ESP is compressed by
 6LowPAN. ESP compression with 6LowPAN [I-D.raza-6lowpan-ipsec]
 considers the compression of the ESP Header, that is to say the
 compression of the SPI and SN fields. As a result 6LowPAN
 compression expects a 4 byte SPI and a 4 byte SN from the ESP layer.
 Similarly 6LowPAN decompression provides a 4 byte SPI and a 4 byte SN
 to the ESP layer. If the peers have agreed to use Diet-ESP and one
 of them uses 6LowPAN ESP compression, then the Diet-ESP MUST use SPI
 SIZE and the SN SIZE MUST be set to 4 bytes.

6.2. ROHC

 ROHC and ROHCoverIPsec have been used to describe Diet-ESP. This
 means the ROHC and ROHCoverIPsec concepts and terminology have been
 used to describe Diet-ESP. In that sens Diet-ESP is compatible with
 the ROHC and ROHCoverIPsec framework. The remaining of the section
 describes how Diet-ESP interacts with ROHC and ROHCoverIPsec profiles
 and payloads.

 ROHC compress packets between the MAC and the IP layer. Compression
 can only be performed over non encrypted packets. As a results, this
 section considers the case of an ESP encrypted packet and an ESP non
 encrypted packet.

 For encrypted ESP packet, ROHC profiles that enable ESP compression
 (e.g. profile 0x0003 and 0x1003) compresses only the ESP Header and
 the IP header. To enable ROHC compression a Diet-ESP packet MUST
 present an similar header as the ESP Header, that is a 4 byte SPI and
 a 4 byte SN. This is accomplished by setting SPI_SIZE = 4 and
 SN_SIZE = 4 in the Diet-ESP Context. Reversely, if the Diet-ESP
 packet presents a 4 byte SPI and a 4 byte SN, ROHC can proceed to the
 compression. Note that Diet-ESP does not consider the IP header,
 then ESP and Diet-ESP are encrypted, thus ROHC can hardly make the
 difference between Diet-ESP and ESP packets. For encrypted packets,
 the only difference at the MAC layer might be the alignment.

 For non encrypted ESP packet, ROHC MAY proceed to the compression of
 different fields of ESP and other layers, as the payload appears in
 clear. ROHC compressor are unlikely to deal with ESP fields

Migault & Guggemos Expires January 3, 2015 [Page 22]

Internet-Draft Diet-ESP July 2014

 compressed by Diet-ESP. As a result, it is recommended not to
 combine Diet-ESP and ROHC ESP compression with non encrypted ESP
 packets.

6.3. ROHCoverIPsec and 6LoWPANoverIPsec

 ROHC or 6LoWPAN are not able to compress the ESP payload, as long as
 it is encrypted. Diet-ESP describes how to compress the ESP-Trailer,
 which is part of the encrypted payload can be compressed.
 6LowPANoverIPsec (section 2 of [I-D.raza-6lowpan-ipsec]) and
 ROHCoverIPsec define the compression of the ESP payload, more
 specifically the upper layer headers (e.g. IP header or Transport
 layer header). These protocols need a second, modified ESP stack in
 order to make the payload compression possible. Then the packets
 with compressed payload are forwarded to this second ESP stack which
 can compress or decompress the payload.

 Diet-ESP and its extensions also needs a modified ESP stack in order
 to perform the compression of ESP payload possible. In addition,
 fields that are subject to compression are most likely to be the same
 with Diet6ESP and 6LowPANoverIPsec and/or ROHCoverIPsec. Therefore,
 if a device implements Diet-ESP and 6LowPANoverIPsec and/or
 ROHCoverIPsec the developer needs to define an order the various
 frameworks perform the compression. Currently this order has not
 been defined, and Diet-ESP is unlikely to be compatible with
 6LowPANoverIPsec and/or ROHCoverIPsec. Integration of Diet-ESP and
 6LowPANoverIPsec and/or ROHCoverIPsec has not been considered in the
 current document as Diet-ESP has been designed to avoid
 implementations of 6LowPANoverIPsec and/or ROHCoverIPsec frameworks
 to be implemented into the devices. Diet-ESP has been designed to be
 more lightweight than 6LowPANoverIPsec and/or ROHCoverIPsec by
 avoiding negotiations between compressors and decompressors.

7. Diet-ESP and Requirements

 [draft-mglt-ipsecme-diet-esp-requirements] lists the requirements for
 Diet-ESP. This section position Diet-ESP described in this document
 toward these requirements.

 R1: Diet-ESP is able to handle alignments of 8, 16, 32 and 64 bits.

 R2: is not in the scope of Diet-ESP. Announcement of the Byte-
 Alignment should be performed by IKEv2.

 R3: Diet-ESP does not modify how encryption occurs. It only
 changes the encrypted payload, which is one of the parameters
 for the encryption function. Therefore Diet-ESP is able to

Migault & Guggemos Expires January 3, 2015 [Page 23]

Internet-Draft Diet-ESP July 2014

 work with any encryption defined in [RFC4835] which also
 includes AES-CCM [RFC4309].

 Combined Mode algorithm (e.g. AES-CCM, AES-GCM) have an
 additional parameter, called Addition Authentication Data
 (AAD). This AAD requires the uncompressed ESP header that is
 to say the full SPI and SN. These parameters are not removed
 by Diet-ESP. There are well known by the two peer. The ESP
 Header MUST be uncompressed before proceeding to encryption/
 decryption.

 R4: Diet-ESP can remove all static and compress fields from the
 protocol.

 R5: The inner payload compression mechanisms are not defined in
 this document. This aspect is the purpose of [draft-mglt-
 inner-compression]

 R6: Diet-ESP compressed packet fields are always a number of bytes
 -- that is Diet-ESP do not result in compressed fields that are
 not expressed in a natural number of bytes.

 R7: Diet-ESP allows the developer define the maximum compression
 within the Diet-ESP context. The way the agreement is done, is
 out of scope of this document and is described in [draft-mglt-
 diet-esp-ikev2].

 R8: Each field in the packet can be compressed separately, which
 provides high flexibility.

 R9: Since Diet-ESP does not propose compression method flexibility.
 The proposed methods are generic enough and there is not
 advantage for this flexibility and so it does not seems
 appropriated for Diet-ESP.

 R10: Each Diet-ESP client can have his own set of supported
 contexts. The negotiation is out of scope of this document and
 described in [draft-mglt-diet-esp-ikev2].

 R11: Diet-ESP adds small complexity to Standard ESP, like described
 in Appendix B. In- and Outbound packet procession is straight-
 forward, like shown in Appendix B.5 and Appendix B.5.
 Appendix A provides a implementation guideline for a minimal
 use case. This one can be ported to any other use case.

 R12: Diet-ESP is easy to configure and provides a default-context if
 a developer does not want to dive into the details of Diet-ESP.

Migault & Guggemos Expires January 3, 2015 [Page 24]

Internet-Draft Diet-ESP July 2014

 R13: Diet-ESP can interact with 6LoWPAN and ROHC IP compression, but
 SHOULD be able to interact with all future compression applying
 after the IP layer as well.

 R14: Compatibility with Standard ESP 1: Diet-ESP can be implemented
 instead of, nearby or like an add-on to an existing Standard
 ESP implementation.

 R15: Compatibility with Standard ESP 2: Diet-ESP is able to work
 without compression and works with 32 and 64 bits alignment,
 which makes it compatible with Standard ESP.

8. IANA Considerations

 There are no IANA consideration for this document.

9. Security Considerations

 This section lists security considerations related to the Diet-ESP
 protocol.

9.1. Size of the SPI

 Small SPI_SIZE exposes the device to DoS. For a device, the number
 of SA is related to the number of SPI. For systems using small
 SPI_SIZE values as index of their database, the number of
 simultaneous communications is limited by the SPI_SIZE. This means
 that a given device initiating SPI_SIZE communications can isolate
 the system. In order to leverage this vulnerability, one can
 consider receiving systems that generate 32 bits SPI with a hash
 function that considers different parameters associated to the
 reduced SPI. For example, if one use the IP addresses as well as the
 reduced SPI, the number of SPI becomes SPI_SIZE per IP address. This
 may be sufficient as sensors are not likely to perform multiple
 communications.

9.2. Size of the Diet-ESP ICV

 Small size of ICV reduces the authentication strength. For example 8
 bits mean that authentication can be spoofed with a probability of
 1/256. Standard value considers a length of 96 bit for reliable
 authentication. If specified, the ICV field is truncated after the
 given number of bits which, for sure, has to be mentioned while
 incoming packet procession as well. For removing authentication ESP
 NULL has to be negotiated, as described in [RFC4303].

Migault & Guggemos Expires January 3, 2015 [Page 25]

Internet-Draft Diet-ESP July 2014

9.3. Size of the SN

 This section describes the security consideration for two possible
 scenarios

 Increasing by 1
 If the SN is increased by 1 for each packet, the last sent/
 received SN is stored at the sender/receiver. In this case the
 device MAY negotiate a SN SIZE of 0 if receiving unordered packets
 or packet loss can be secured.

 Using the Time
 A minimal ESP implementation MAY choose to use a always
 increasing, already existing and stored value in order to save the
 storage used by the SN in the SA. For this purpose it could use
 e.g. the current time, when the packet is send. For Diet-ESP this
 leads to problems, as the receiver is not able to know the current
 SN used in the packet. If one decides to use this mechanism, he
 has to deal with the following restrictions:

 1) the SN SIZE MUST NOT be 0

 2) If the SN SIZE is NOT 4:

 2.1) The SN SIZE MUST be chosen so that the time between two
 packet is less than 2 ** SN SIZE.

 2.2) The start value of the SN MUST be ensured to be the
 same, between the two peers. This may be done with time
 synchronization. Suppose a 1 byte SN is sent on the
 wire the sender decides to use the time to prevent the
 storage of the SN in the SA. Now the first packet is
 sent after a couple of seconds and only the 1LSB of the
 time is sent in the packet. If the two peers have a
 time difference of more than 255(let’s say seconds) the
 3 Most Significant Bytes of the SN may be wrong and the
 ICV will not match.

 Due to this restrictions, we highly RECOMMEND not to use the time
 as a sequence number, if the SN SIZE is NOT 4.

10. Acknowledgment

 The current draft represents the work of Tobias Guggemos while his
 internship at Orange [GUGG14].

Migault & Guggemos Expires January 3, 2015 [Page 26]

Internet-Draft Diet-ESP July 2014

 Diet-ESP is a joint work between Orange and Ludwig-Maximilians-
 Universitaet Munich. We thank Daniel Palomares and Carsten Bormann
 for their useful remarks, comments and guidance.

11. References

11.1. Normative References

 [GUGG14] Guggemos, TG., "Diet-ESP: Applying IP-Layer Security in
 Constrained Environments (Masterthesis)", September 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
 K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
 Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
 Compression (ROHC): Framework and four profiles: RTP, UDP,
 ESP, and uncompressed", RFC 3095, July 2001.

 [RFC3602] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher
 Algorithm and Its Use with IPsec", RFC 3602, September
 2003.

 [RFC3686] Housley, R., "Using Advanced Encryption Standard (AES)
 Counter Mode With IPsec Encapsulating Security Payload
 (ESP)", RFC 3686, January 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
 4303, December 2005.

 [RFC4309] Housley, R., "Using Advanced Encryption Standard (AES) CCM
 Mode with IPsec Encapsulating Security Payload (ESP)", RFC
 4309, December 2005.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, June 2006.

 [RFC4835] Manral, V., "Cryptographic Algorithm Implementation
 Requirements for Encapsulating Security Payload (ESP) and
 Authentication Header (AH)", RFC 4835, April 2007.

Migault & Guggemos Expires January 3, 2015 [Page 27]

Internet-Draft Diet-ESP July 2014

 [RFC5225] Pelletier, G. and K. Sandlund, "RObust Header Compression
 Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and
 UDP-Lite", RFC 5225, April 2008.

 [RFC5857] Ertekin, E., Christou, C., Jasani, R., Kivinen, T., and C.
 Bormann, "IKEv2 Extensions to Support Robust Header
 Compression over IPsec", RFC 5857, May 2010.

 [RFC5858] Ertekin, E., Christou, C., and C. Bormann, "IPsec
 Extensions to Support Robust Header Compression over
 IPsec", RFC 5858, May 2010.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC
 5996, September 2010.

11.2. Informational References

 [I-D.raza-6lowpan-ipsec]
 Raza, S., Duquennoy, S., and G. Selander, "Compression of
 IPsec AH and ESP Headers for Constrained Environments",
 draft-raza-6lowpan-ipsec-01 (work in progress), September
 2013.

 [RFC5856] Ertekin, E., Jasani, R., Christou, C., and C. Bormann,
 "Integration of Robust Header Compression over IPsec
 Security Associations", RFC 5856, May 2010.

Appendix A. Example of light Diet-ESP implementation for sensor

 Diet-ESP has been designed to enable light implementation. This
 section illustrates the case of a sensor sending a specific amount of
 data periodically. This section is not normative and has only an
 illustrative purpose. In this scenario the sensor measures a
 temperature every minute and sends its value to a gateway, which is
 assumed to collect the data. The data is sent in an UDP packet and
 there is no other connection between the two peers. The
 communication between the sensor and the gateway should be secured by
 a Diet-ESP connection in transport mode. Therefore the following
 context is chosen:

 ALIGN: 8 bit
 Sensors are not expected to be 32 or 64 bit CPU, and micro-
 controllers are expected to support 8 bit alignment.

 SPI_SIZE: 0
 As it is a single connection, the SA can be identified by using
 the IP addresses. As a result the SPI is not needed.

Migault & Guggemos Expires January 3, 2015 [Page 28]

Internet-Draft Diet-ESP July 2014

 SN_SIZE: 0
 Because only one packet every minute is sent, the packets will
 arrive at the receiver in an ordered way. The receiver can
 rebuild the SN which should be present in the packet, assuming the
 SN is incremented by one for each packet. Note that setting SN to
 0 does not mean there is no anti replay protection. In fact, the
 SN is needed for the computation of the Diet-ESP ICV.

 NH: Remove Next Header
 Since the protocol is always UDP, the Next header can be omitted.

 PAD: Remove Padding
 With 8 bit alignment Padding has always a Pad Length of 0.
 Setting PAD to "Remove Padding" removes the Pad Length field.

 Diet-ESP_ICV_SIZE: 4 bytes
 The ICV is chosen to be 32 bits in order to find a fair trade-off
 between security and energy costs.

 Encapsulating the outgoing Diet-ESP packet is proceeded as follows:

 1) SAD lookup for outgoing traffic

 2) Compress ESP payload incl. Transport Header (UDP)

 3) Encrypt IP payload

 4) Build ESP header

 5) Calculate Diet-ESP ICV

 6) Compress ESP header

 7) Add ${Diet-ESP_ICV_SIZE} LSB of ICV to the packet.

Migault & Guggemos Expires January 3, 2015 [Page 29]

Internet-Draft Diet-ESP July 2014

 Diet-ESP | Standard ESP
 +--------------------+ | +--------------------+
 | orig | | | | | orig | | |
 |IP hdr | UDP | Data | | |IP hdr | UDP | Data |
 +--------------------+ | +--------------------+
 | | |
 V | V
 +-----------+ | +-----------+
 | Diet-ESP | | | ESP |
 +-----------+ | +-----------+
 | | |
 V | V
 +----------------------+|+---------------------------------------+
 | orig | | Diet-ESP||| orig | ESP | | | ESP | ESP|
 |IP hdr |Data| ICV |||IP hdr | Hdr | UDP |Data| Trailer | ICV|
 +----------------------+|+---------------------------------------+

 Figure 5: Minimal Example - Input and Output of the Diet-ESP function
 vs. Standard ESP.

 Incoming Diet-ESP packet is processed as follows:

 1) SAD lookup for incoming traffic traffic

 2) Decompress ESP-header incl. Transport Header (UDP)

 3) Calculate packet Diet-ESP ICV

 4) Check integrity with ${Diet-ESP_ICV_SIZE} LSB of Diet-ESP ICV

 5) Check anti-replay

 6) Decrypt IP payload (excluding ICV)

 7) Decompress ESP payload

Appendix B. Difference between Diet-ESP and ESP

 This section details how to use Diet-ESP to send and receive
 messages. The use of Diet-ESP is based on the IPsec architecture
 [RFC4301] and ESP [RFC4303]. We suppose the reader to be familiar
 with these documents and we list here possible adaptations that may
 be involved by Diet-ESP.

Migault & Guggemos Expires January 3, 2015 [Page 30]

Internet-Draft Diet-ESP July 2014

B.1. Packet Alignment

 Each ESP packet has a fixed alignment to 32 bits (resp. 64 bits in
 IPv6). For Diet-ESP each device has an internal parameter that
 defines the minimal acceptable alignment. ALIGN SHOULD be a the
 maximum of the peer’s minimal alignment.

 Diet-ESP Context with SPI_SIZE + SN_SIZE that is not a multiple of
 ALIGN MUST be rejected.

B.2. SAD

B.2.1. Inbound Security Association Lookup

 For devices that are configured with a single SPI_SIZE value can
 process inbound packet as defined in [RFC4301]. As such, no
 modifications is required by Diet-ESP.

 Detecting Inbound Security Association: Identifying the SA for
 incoming packets is a one of the main reasons the SPI is send in each
 packet on the wire. For regular ESP (and AH) packets, the Security
 Association is detected as follows:

 1. Search the SAD for a match on {SPI, destination address, source
 address}. If an SAD entry matches, then process the inbound ESP
 packet with that matching SAD entry. Otherwise, proceed to step
 2.

 2. Search the SAD for a match on {SPI, destination address}. If the
 SAD entry matches, then process the inbound ESP packet with that
 matching SAD entry. Otherwise, proceed to step 3.

 3. Search the SAD for a match on only {SPI} if the receiver has
 chosen to maintain a single SPI space for AH and ESP, or on {SPI,
 protocol} otherwise. If an SAD entry matches, then process the
 inbound ESP packet with that matching SAD entry. Otherwise,
 discard the packet and log an audible event.

 For device that are dealing with different SPI_SIZE SPI, the way
 inbound packets are handled differs from the [RFC4301]. In fact,
 when a inbound packet is received, the peer does not know the
 SPI_SIZE. As a result, it does not know the SPI that applies to the
 incoming packet. The different values could be the 0 (resp. 1, 2, 3
 and 4) first bytes of the IP payload.

 Since the size of the SPI is not known for incoming packets, the
 detection of inbound SAs has to be redefined in a Diet-ESP
 environment. In order to ensure a detection of a SA the above

Migault & Guggemos Expires January 3, 2015 [Page 31]

Internet-Draft Diet-ESP July 2014

 described regular detection have to be done for each supported SPI
 size (in most cases 5 times). In most common cases this will return
 a unique Security Association.

 If there is more than one SA matching the lookup, the authentication
 MUST be performed for all found SAs to detect the SA with the correct
 key. In case there is no match, the packet MUST be dropped. Of
 course this can lead into DoS vulnerability as an attacker recognizes
 an overlap of one or more IP-SPI combinations. Therefore it is
 highly recommended to avoid different values of the SPI_SIZE for one
 tuple of Source and Destination IP address. Furthermore this
 recommendation becomes mandatory if NULL authentication is supported.
 This is easy to implement as long as the sensors are not mobile and
 do not change their IP address.

 The following optimizations MAY be considered for sensor that are not
 likely to perform mobility or multihoming features provided by MOBIKE
 [RFC4555] or any change of IP address during the lifetime of the SA.

 Optimization 1 - SPI_SIZE is mentioned inside the SPI:
 The SPI_SIZE is defined as part of the SPI sent in each packet.
 Therefore the receiver has to choose the most significant 2 bits
 of the SPI in the following way in order to recognize the right
 size for incoming Diet-ESP packets:

 00: SPI_SIZE of 1 byte is used.

 01: SPI_SIZE of 2 byte is used.

 10: SPI_SIZE of 3 byte is used.

 11: SPI_SIZE of 4 byte is used.

 If the the value 0 is chosen for the SPI_SIZE this option is not
 feasible.

 Optimization 2 - IP address based lookup:
 IP address based search is one optimization one may choose to
 avoid several SAD lookups. It is based on the IP address and the
 stored SPI_SIZE, which MUST be the same value for each SA of one
 IP address. Otherwise it can’t neither be ensured that an SA is
 found nor that the correct one is found. Note that in case of
 mobile IP the SPI_SIZE MUST be updated for all SAs related to the
 new IP address which may cause renegotiation. Figure 6 shows this
 lookup described below.

 1. Search most significant SA as follows:

Migault & Guggemos Expires January 3, 2015 [Page 32]

Internet-Draft Diet-ESP July 2014

 1.1 Search the first SA for a match on {destination address,
 source address}. If an SA entry matches, then process to
 step 2. Otherwise, proceed to step 1.2.

 1.2 Search the first SA for a match on {source address}. If an
 SA entry matches, then process to step 2. Otherwise, drop
 the packet.

 2. Identify the size of the compressed SPI for the found SA,
 stored in the Diet-ESP context. Note that all SAs to one IP
 address MUST have the same value for the SPI_SIZE. Then go to
 step 3.

 3. If the SPI_SIZE is NOT zero, read the SPI_SIZE SPI from the
 packet and perform a regular SAD lookup as described in
 [RFC4301]. If the SPI_SIZE is zero, the SA from step 1 is
 unique and can be used.

 Note that some implementations may collect all SPI matching the IP
 addresses in step 2 to avoid an additional lookup over the whole
 SAD. This is implementation dependent.

 If the sensor is likely to change its IP address, the outcome may
 be a given IP address associated to different SPI_SIZE. This case
 may occur if one IP address has been used by a device not anymore
 online, but the SA has not been removed. The IP has then been
 provided to another device. In this case the Diet-ESP Context
 SHOULD NOT be accepted by the Security Gateway when the new Diet-
 ESP Context is provided to the Security Gateway. At least the
 Security Gateway can check the previous peer is reachable and then
 delete the SA before accepting the new SA.

 Another case may be that a sensor got two interfaces with
 different IP addresses, negotiates a different SPI_SIZE on each
 interface and then use MOBIKE to move the IPsec channels from one
 interface to the other. In this case, the Security Gateway SHOULD
 NOT accept the update, or force a renegotiation of the SPI_SIZE
 for all SAs, basically by re-keying the SAs.

Migault & Guggemos Expires January 3, 2015 [Page 33]

Internet-Draft Diet-ESP July 2014

 +-----------+
 | START |
 +-----------+
 |
 V
 +-----------------+
 | find 1st SA to |
 | IP address |------------------+
 +-----------------+ |
 | |
 ____V____ V
 yes / \ +-----+
 +------/ SPI_SIZE \ /----->|’---’|
 | \ = 0 ? / / | SAD |
 | _________/ / + +
 | |no / ’---’
 | V /
 | +-----------------+ /
 | | find 1st SA to |--/
 | | SPI +IP |
 | | address |
 | +-----------------+
 | |
 | V
 | +-----------------+
 | | Diet-ESP packet |
 +-->| procession |
 +-----------------+

 Figure 6: SAD lookup for incoming packets.

B.2.2. Outgoing Security Association Lookup

 Outgoing lookups for the SPI are performed in the same way as it is
 done in ESP. The Traffic Selector for the packet is searched and the
 right SA is read from the SA. The SPI used in the packet MUST be
 reduced to the value stored in SPI_SIZE.

B.3. Sequence Number

 Sequence number in ESP [RFC4303] can be of 4 bytes or 8 bytes for
 extended ESP. Diet-ESP introduces different sizes. One way to deal
 with this is to add a MAX_SN value that stores the maximum value the
 SN can have. Any new value of the SN will be check against this
 MAX_SN.

Migault & Guggemos Expires January 3, 2015 [Page 34]

Internet-Draft Diet-ESP July 2014

B.4. Outgoing Packet processing

 NH, TH, IH, P indicate fields or payloads that are removed from the
 Diet-ESP packet. How the Diet-ESP packet is generated depends on the
 length Payload Data LPD, BLCK the block size of the encryption
 algorithm and the device alignment ALIGN. We note M = MAX(BLCK,
 ALIGN).

 - 1: Compress the headers inside the ESP payload.

 - 2: if PAD and NH are set to present: Diet-ESP considers both
 fields Pad Length and Next Header. The Diet-ESP Payload is the
 encryption of the following clear text:
 Payload Data | Padding of Pad Length bytes | Pad Length field |
 Next Header field.
 The Pad Length value is (LPD + 2) mod [M].

 - 3: if PAD is set to present and NH is set to removed: Diet-ESP
 considers the Pad Length field but removes the Next Header
 field. The ESP Payload is the encryption of the following
 clear text: Payload Data | Padding of Pad Length bytes | Pad
 Length field | Next Header field. The Pad Length value is (LPD
 + 1) mod [M].

 - 4: if PAD is set to removed and NH is set to present: Diet-ESP
 considers the Next Header but do not consider the Pad Length
 field or the Padding Field. This is valid as long as (LPD + 1)
 mod [M] = 0. If M = 1 as it is the case for AES-CTR this
 equation is always true. On the other hand the use of specific
 block size requires the application to send specific length of
 application data.

 - 5: if PAD and NH are set to removed: Diet-ESP does consider
 neither the Next Header field nor the Pad Length field nor the
 Padding Field. This is valid as long as LPD mod [M] = 0. If M
 = 1 as it is the case for AES-CTR this equation is always true.
 On the other hand the use of specific block size requires the
 application to send specific length of application data.

 - 6: Encrypt the Diet-ESP payload.

 - 7: Add ESP header.

 - 8: Generate and add Diet-ESP ICV.

 - 9: Compress ESP header.

Migault & Guggemos Expires January 3, 2015 [Page 35]

Internet-Draft Diet-ESP July 2014

B.5. Inbound Packet processing

 Decryption is for performed the other way around.

 After SAD lookup, authenticating and decrypting the Diet-ESP payload
 the original packet is rebuild as follows:

 - 1: Decompress ESP header.

 - 2: Generate Diet-ESP ICV and check ICV send in the packet.

 - 3: Check anti-replay

 - 4: Remove compressed header.

 - 5: Encrypt the Diet-ESP payload.

 - 6: if PAD and NH are set to removed: Diet-ESP does consider
 neither the Next Header field nor the Pad Length field nor the
 Padding Field. The Next Header field of the IP packet is set
 to the protocol defined for incoming traffic within the
 Traffic Selector of the SA. Because there is no Padding it is
 disregarded.

 - 7: if PAD is set to removed and NH is set to present: Diet-ESP
 considers the Next Header but do not consider the Pad Length
 field or the Padding Field. The Next Header field of the IP
 packet is set to the value within the Diet-ESP trailer.

 - 8: if PAD is set to present and NH is set to removed: Diet-ESP
 considers the Pad Length field but removes the Next Header
 field. The Next Header field of the IP packet is set to the
 protocol defined for incoming traffic within the Traffic
 Selector of the SA. The Pad Length field is read and the
 Padding is removed from the Data Payload which results the
 original Data Payload.

 - 9: if PAD and NH are set to present: Diet-ESP considers both
 fields Pad Length and Next Header. The Next Header field of
 the IP packet is set to the value within the Diet-ESP trailer.
 The Pad Length field is read and the Padding is removed from
 the Data Payload which results the original Data Payload.

 - 10: Decompress the headers inside the ESP payload.

Migault & Guggemos Expires January 3, 2015 [Page 36]

Internet-Draft Diet-ESP July 2014

Appendix C. Document Change Log

 [draft-mglt-ipsecme-diet-esp-01.txt]:
 Diet ESP described in the ROHC framework
 ESP is not modified.

 [draft-mglt-ipsecme-diet-esp-00.txt]:
 NAT consideration added.
 Comparison actualized to new Version of 6LoWPAN ESP.

 [draft-mglt-dice-diet-esp-00.txt]: First version published.

Authors’ Addresses

 Daniel Migault (editor)
 Orange
 38 rue du General Leclerc
 92794 Issy-les-Moulineaux Cedex 9
 France

 Phone: +33 1 45 29 60 52
 Email: daniel.migault@orange.com

 Tobias Guggemos (editor)
 Orange / LMU Munich
 Am Osteroesch 9
 87637 Seeg, Bavaria
 Germany

 Email: tobias.guggemos@gmail.com

Migault & Guggemos Expires January 3, 2015 [Page 37]

