SPRING S. Matsushima Internet-Draft Softbank Intended status: Informational C. Filsfils Expires: June 13, 2020 Z. Ali Cisco Systems Z. Li Huawei Technologies December 11, 2019 SRv6 Implementation and Deployment Status draft-matsushima-spring-srv6-deployment-status-04 Abstract This draft provides an overview of IPv6 Segment Routing (SRv6) deployment status. It lists various SRv6 features that have been deployed in the production networks. It also provides an overview of SRv6 implementation and interoperability testing status. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on June 13, 2020. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. Matsushima, et al. Expires June 13, 2020 [Page 1] Internet-Draft SRv6 Deployment Status December 2019 This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Deployment Status . . . . . . . . . . . . . . . . . . . . . . 3 2.1. Softbank . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. China Telecom . . . . . . . . . . . . . . . . . . . . . . 3 2.3. Iliad . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4. LINE Corporation . . . . . . . . . . . . . . . . . . . . 5 2.5. China Unicom . . . . . . . . . . . . . . . . . . . . . . 5 2.6. CERNET2 . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.7. MTN Uganda Ltd. . . . . . . . . . . . . . . . . . . . . . 6 2.8. NOIA Network . . . . . . . . . . . . . . . . . . . . . . 7 2.9. Additional Deployments . . . . . . . . . . . . . . . . . 7 3. Significant industry collaboration for SRv6 standardization . 7 3.1. Academic Contributions . . . . . . . . . . . . . . . . . 8 4. Implementation Status of SRv6 . . . . . . . . . . . . . . . . 8 4.1. Open-source platforms . . . . . . . . . . . . . . . . . . 9 4.2. Additional Routing platforms . . . . . . . . . . . . . . 9 4.3. Applications . . . . . . . . . . . . . . . . . . . . . . 10 5. Interoperability Status of SRv6 . . . . . . . . . . . . . . . 11 5.1. EANTC 2019 . . . . . . . . . . . . . . . . . . . . . . . 11 5.2. SIGCOM 2017 . . . . . . . . . . . . . . . . . . . . . . . 12 5.3. EANTC 2018 . . . . . . . . . . . . . . . . . . . . . . . 13 6. Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . 14 7. Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . 16 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18 9. Security Considerations . . . . . . . . . . . . . . . . . . . 18 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 18 11. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 18 12. Normative References . . . . . . . . . . . . . . . . . . . . 18 13. Informative References . . . . . . . . . . . . . . . . . . . 19 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 21 1. Introduction This draft provides an overview of IPv6 Segment Routing (SRv6) deployment status. It lists various SRv6 features that have been Matsushima, et al. Expires June 13, 2020 [Page 2] Internet-Draft SRv6 Deployment Status December 2019 deployed in the production networks. It also provides an overview of SRv6 implementation and interoperability testing status. 2. Deployment Status 2.1. Softbank As part of the 5G rollout, Softbank have deployed a nationwide SRv6 network. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header] based data plane. o END (PSP), END.X (PSP), END.DT4, T.Encaps.Red and T.Insert.Red functions as per [I-D.ietf-spring-srv6-network-programming], [I- D.filsfils-spring-srv6-net-pgm-insertion]. o ISIS SRv6 extensions [I-D.ietf-isis-srv6-extensions]. o BGP VPN SRv6 extensions [I-D.ietf-bess-srv6-services]. o SRH based Topology Independent (TI-LFA) Fast Reroute mechanisms using T.Insert.Red for the O(50msec) protection against node and link, as described in [I-D.ietf-rtgwg-segment-routing-ti-lfa], [I- D.voyer-6man-extension-header-insertion]. o BGP Prefix Independent Convergence (PIC) core and edge [I-D.ietf- rtgwg-bgp-pic]. o Support for Ping and Traceroute as defined in [I-D.ietf-6man- spring-srv6-oam]. 2.2. China Telecom China Telecom (Sichuan) have deployed a multi-city SRv6 network. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o END.DT4 function as per [I-D.ietf-spring-srv6-network- programming]. o BGP VPN SRv6 extensions [I-D.ietf-bess-srv6-services]. Matsushima, et al. Expires June 13, 2020 [Page 3] Internet-Draft SRv6 Deployment Status December 2019 o BGP Prefix Independent Convergence (PIC) core and edge [I-D.ietf- rtgwg-bgp-pic]. o Support for Ping and Traceroute as defined in [I-D.ietf-6man- spring-srv6-oam]. 2.3. Iliad As part of the 5G rollout, Iliad has deployed a nationwide SRv6 network to provide a new mobile offering in Italy. This is a complete mobile IP network. The SRv6 backbone is based on Cisco ASR 9000 and Cisco NCS 5500. All the cell site routers are Iliad's Nodebox, which are SRv6 capable and has been build in-house by the provider. In this deployment SRv6 is running on ASR 9000, NCS 5500 and Iliad's Nodebox. I.e., the deployment includes interoperating multiple implementations of SRv6. As of the end of 2019, the SRv6 network consists of: o 1000 Cisco NCS 5500 routers. o 1800 Iliad's Nodeboxes. o The network services 4.5 million mobile subscribers (as of Q3 2019). o The network is carrying 300 Gbps of commercial traffic at peak hours. o It is expected to grow to more than 4000 Nodeboxes in 2020. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o End (PSP), End.X (PSP), End.DT4, T.Encaps.Red, T.Insert.Red functions as per [I-D.ietf-spring-srv6-network-programming] , [I- D.filsfils-spring-srv6-net-pgm-insertion]. o BGP VPN SRv6 extensions [I-D.ietf-bess-srv6-services]. o ISIS SRv6 extensions [I-D.ietf-isis-srv6-extensions]. o SRH based Topology Independent (TI-LFA) Fast Reroute mechanisms using T.Insert.Red for the O(50msec) protection against node and Matsushima, et al. Expires June 13, 2020 [Page 4] Internet-Draft SRv6 Deployment Status December 2019 link, as described in [I-D.ietf-rtgwg-segment-routing-ti-lfa], [I- D.voyer-6man-extension-header-insertion]. o Support for Ping and Traceroute as defined in [I-D.ietf-6man- spring-srv6-oam]. 2.4. LINE Corporation LINE Corporation have deployed multi-tenants SRv6 network in the Data Center. The network provides per-service policy on a shared SRv6 underlay. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o SRv6 implementation in the Linux kernel for the End.DX4, T.Encap functions as per [I-D.ietf-spring-srv6-network-programming]. o Hardware support (RSS: Receive-Side Scaling) for the SRv6 packets on the NIC to get required throughput at the receiving cores. o SRv6 data plane aware OpenStack Neutron ML2 driver and API extension to provision tenant networks. 2.5. China Unicom China Unicom has deployed SRv6 L3VPN over 169 backbone network from Guangzhou to Beijing to provide inter-domain CloudVPN service. The SRv6 network is based on Huawei NE40E hardware platform. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o END.DT4 function as per [I-D.filsfils-spring-srv6-network- programming]. o BGP VPN SRv6 extensions [I-D.ietf-bess-srv6-services]. o BGP Prefix Independent Convergence (PIC) core and edge [I-D.ietf- rtgwg-bgp-pic]. o Support for Ping and Traceroute as defined in [I-D.ietf-6man- spring-srv6-oam]. Matsushima, et al. Expires June 13, 2020 [Page 5] Internet-Draft SRv6 Deployment Status December 2019 2.6. CERNET2 CERNET2 (CERNET: China Education and Research Network) has deployed SRv6 L3VPN from Beijing to Nanjing to provide inter-domain L3VPN service for universities. CERNET2 is the largest pure IPv6 education backbone networking in the world. The SRv6 network is based on Huawei NE40E hardware platform. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o END.DT4 function as per [I-D.filsfils-spring-srv6-network- programming]. o BGP VPN SRv6 extensions [I-D.ietf-bess-srv6-services]. o BGP Prefix Independent Convergence (PIC) core and edge [I-D.ietf- rtgwg-bgp-pic]. o Support for Ping and Traceroute as defined in [I-D.ietf-6man- spring-srv6-oam]. 2.7. MTN Uganda Ltd. As part of the complete mobile IP network, Uganda MTN has deployed a SRv6 network that carries all services in its backbone. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o End (PSP), End.X (PSP), End.DT4, End.DX2, End.DT2U, End.DT2M, T.Encaps, T.Insert as per [I-D.ietf-spring-srv6-network- programming], [I-D.filsfils-spring-srv6-net-pgm-insertion]. o SRH based Topology Independent (TI-LFA) Fast Reroute mechanisms using T.Insert for the O(50msec) protection against node and link, as described in [I-D.ietf-rtgwg-segment-routing-ti-lfa], [I- D.voyer-6man-extension-header-insertion]. o BGP VPN SRv6 extensions [I-D.ietf-bess-srv6-services]. o BGP Prefix Independent Convergence (PIC) core and edge [I-D.ietf- rtgwg-bgp-pic]. Matsushima, et al. Expires June 13, 2020 [Page 6] Internet-Draft SRv6 Deployment Status December 2019 o Support for Ping and Traceroute as defined in [I-D.ietf-6man- spring-srv6-oam]. 2.8. NOIA Network NOIA Network have deployed a nationwide SRv6 network backbone. The SRv6 backbone is based on white box and cloud routers with FD.io VPP or Linux srext module installed. Details can be found at [noia- whitepaper1], [noia-whitepaper2]. The following SRv6 features have been deployed: o A Segment Routing Header [I-D.ietf-6man-segment-routing-header]. based data plane. o END (PSP), END.X (PSP), END.DT4, End.DT6 as per [I-D.ietf-spring- srv6-network-programming]. o iOAM Proof of Transit and Trace options as per [I-D.ietf-ippm- ioam-data] o BFD for Multihop Paths as per [I-D.ietf-bfd-multihop]. o SRH based Topology Independent (TI-LFA) Fast Reroute mechanisms using T.Insert for the O(50msec) protection against node and link, as described in [I-D.ietf-rtgwg-segment-routing-ti-lfa], [I- D.voyer-6man-extension-header-insertion]. 2.9. Additional Deployments Several other deployments are in preparation. Details to be added after the public announcements. 3. Significant industry collaboration for SRv6 standardization The work on SRv6 started in IETF in 2013 and was later published in 6man working group as [I-D.previdi-6man-segment-routing-header-00] in March 2014. The first implementation was done in 2014 [WC-2015]. A significant industry group of operators, academics and vendors supported and refined the idea according to the IETF process: o Twenty-four revisions of the document were published. o Over 1000 emails were exchanged. o Over 16 IETF presentations were delivered. Matsushima, et al. Expires June 13, 2020 [Page 7] Internet-Draft SRv6 Deployment Status December 2019 o Over 50 additional drafts were submitted to the IETF to specify SRv6 protocol extensions and use-cases [SRH-REF-BY]. These documents are either working group drafts or are well on their way to be adopted by their respective working group. The work spans 13 working group, including 6man, Spring, idr, bess, pce, lsr, detnet, dmm, mpls, etc. Appendix A lists IETF contribution on SRv6. The outcome of this significant support from the operators and vendors led to the adoption of the draft by the 6man working group in December 2015. The first last call for the SRH document was issued in March 2018. A significant industry group of operators, academics and vendors supported and refined the idea according to the IETF process: o 63 tickets were open. o 50 have been closed. o Hundreds of emails have been exchanged to support the closure. o Five revisions of the document have been published to reflect the work of the group and the closure of the tickets. There is clear confidence that the remaining 13 tickets can be formally closed during IETF 104. 3.1. Academic Contributions Academia has made significant contribution to SRv6 work. This includes both Scholastic publications as well as writing open source software. Appendix 2 provides a list of academic contributions. 4. Implementation Status of SRv6 The hardware and software platforms listed below are either shipping or have demonstrated support for SRv6 including processing of the SRH as described in [I-D.ietf-6man-segment-routing-header]. This section also indicates the supported SRv6 functions and transit behaviors on open-source software Matsushima, et al. Expires June 13, 2020 [Page 8] Internet-Draft SRv6 Deployment Status December 2019 4.1. Open-source platforms The following open source platforms supports SRv6 including processing of an SRH as described in [I-D.ietf-6man-segment-routing- header]: o Linux kernel[ref-1],[ref-2]: End, End.X, End.T, End.DX2, End.DX6, End.DX4, End.DT6, End.B6, End.B6.Encaps, T.Insert, T.Encaps, T.Encaps.L2 o Linux srext module: End, End.X, End.DX2, End.DX6, End.DX4, End.AD, End.AM o FD.io VPP: End, End.X, End.DX2, End.DX6, End.DX4, End.DT6, End.DT4, End.B6, End.B6.Encaps, End.AS, End.AD, End.AM, T.Insert, T.Encaps, T.Encaps.L2 4.2. Additional Routing platforms To date, 18 publicly known routing platforms from 8 different vendors support SRv6 in hardware. Specifically, the following routing platforms supports SRv6 features, including processing of the SRH as described in [I-D.ietf-6man-segment-routing-header]: Cisco: Cisco hardware platforms supports SRH processing since April 2017, with current status as follows: o Cisco ASR 9000 platform with IOS XR shipping code. o Cisco NCS 5500 platform with IOS XR shipping code. o Cisco NCS 560 platform with IOS XR shipping code. o Cisco NCS 540 platform with IOS XR shipping code. o Cisco ASR 1000 platform with IOS XE engineering code. Huawei: o Huawei ATN with VRPV8 shipping code. o Huawei CX600 with VRPV8 shipping code. o Huawei NE40E with VRPV8 shipping code. o Huawei ME60 with VRPV8 shipping code. Matsushima, et al. Expires June 13, 2020 [Page 9] Internet-Draft SRv6 Deployment Status December 2019 o Huawei NE5000E with VRPV8 shipping code. o Huawei NE9000 with VRPV8 shipping code. o Huawei NG-OLT MA5800 with VRPV8 shipping code. Barefoot Networks: o Hardware implementation in the Tofino NPU is present since May 2017. Marvell: o Hardware implementation in the Prestera family of Ethernet switches. Intel: o Hardware support on Intel's FPGA Programmable Acceleration Card N3000. UTStarcom: o Hardware implementation in UTStarcom SkyFlux UAR500. Spirent: o Support in Spirent TestCenter. Ixia: o Support in Ixia IxNetwork. 4.3. Applications In addition to the aforementioned routing platforms, the following open-source applications have been extended to support the processing of IPv6 packets containing an SRH. For Wireshark, tcpdump, iptables and nftables, these extensions have been included in the mainstream version. o Wireshark [ref-3] o tcpdump [ref-4] o iptables [ref-5], [ref-6] o nftables [ref-7] Matsushima, et al. Expires June 13, 2020 [Page 10] Internet-Draft SRv6 Deployment Status December 2019 o Snort [ref-8] 5. Interoperability Status of SRv6 This section provides a brief inventory of publicly disclosed SRv6 interoperability testing, including processing of the SRH as described in [I-D.ietf-6man-segment-routing-header], among many implementations. Please refer to [I-D.filsfils-spring-srv6-interop] for details. 5.1. EANTC 2019 In March 2019, the European Advanced Networking Test Center (EANTC) successfully validated multiple implementations of [I-D.ietf-6man- segment-routing-header], [I.D-draft-ietf-spring-srv6-network- programming], [I-D.ietf-bess-srv6-services], [draft-bashandy-isis- srv6-extensions], [draft-ietf-rtgwg-segment-routing-ti-lfa-01] and [draft-ietf-6man-spring-srv6-oam]. The Results from this event were showcased at the MPLS + SDN + NFV World Congress conference in April 2019 [EANTC-19]. Five different implementations of the SRv6 drafts, including SRH as described in [I-D.ietf-6man-segment-routing-header] were used in this testing: o Hardware implementation in Cisco NCS 5500 router. o Hardware implementation in Huawei NE9000-8 router. o Hardware implementation in Huawei NE40E-F1A router. o Spirent TestCenter. o Keysight Ixia IxNetwork. SRv6 interoperability, including SRH processing as described in [I- D.ietf-6man-segment-routing-header], was validated for the following scenarios: o L3VPN for IPv4 traffic using the SRv6 T.Encaps and End.DT4 behaviors. o L3VPN for IPv6 traffic using the SRv6 T.Encaps and End.DT6 behaviors. Matsushima, et al. Expires June 13, 2020 [Page 11] Internet-Draft SRv6 Deployment Status December 2019 o The testing validated the interoperability of T.Encaps and End.DT4/ End.DT6 behaviors combined with the End and End.X functions. o SRH based Topology Independent (TI-LFA) Fast Reroute mechanisms using T.Insert.Red for link protection. o OAM procedures (Ping and traceroute) [draft-ietf-6man-spring- srv6-oam] Bidirectional traffic was sent between the ingress PE and Egress PE, i.e., the PEs were performing both the encapsulation (T.Encaps) and the decapsulation (END.DT4/ END.DT6) functionality, simultaneously. Multiple implementations of Classic (non-SRv6 capable) P nodes were tested to validate that a transit node only needs to be IPv6 capable. 5.2. SIGCOM 2017 The following interoperability testing scenarios were publicly showcased on August 21-24, 2017 at the SIGCOMM conference. Five different implementations of SRv6 behaviors were used for this testing: o Software implementation in Linux using the srext kernel module created by University of Rome, Tor Vergata, Italy. o Software implementation in the FD.io Vector Packet Processor (VPP) virtual router. o Hardware implementation in Barefoot Networks Tofino NPU using the P4 programming language. o Hardware implementation in Cisco NCS 5500 router using commercially available NPU. o Hardware implementation in Cisco ASR 1000 router using custom ASIC. SRH interoperability including processing of the SRH as described in [I-D.ietf-6man-segment-routing-header] was validated in the following scenarios: o L3VPN using the SRv6 behaviors T.Encaps and End.DX6. o L3VPN with traffic engineering in the underlay. The testing validated the interoperability of T.Encaps and End.DX6 behaviors combined with the End and End.X functions. Matsushima, et al. Expires June 13, 2020 [Page 12] Internet-Draft SRv6 Deployment Status December 2019 o L3 VPN with traffic engineering and service chaining. This scenario validated the L3 VPN service with underlay optimization and service programming using SRH. The results confirm consistency among SRH [I-D.ietf-6man-segment- routing-header], network programming [I.D-draft-ietf-spring-srv6- network-programming] and the dependent SRv6 drafts. 5.3. EANTC 2018 In March 2018, the European Advanced Networking Test Center (EANTC) successfully validated multiple implementations of [I-D.ietf-6man- segment-routing-header]. The Results from this event were showcased at the MPLS + SDN + NFV World Congress conference in April 2018 [EANTC-18]. Four different implementations of the SRv6 drafts, including SRH as described in [I-D.ietf-6man-segment-routing-header] were used in this testing: o Hardware implementation in Cisco NCS 5500 router. o Hardware implementation in UTStarcom UAR500. o Spirent TestCenter. o Ixia IxNetwork. SRv6 interoperability, including SRH processing as described in [I- D.ietf-6man-segment-routing-header], was validated for the following scenarios: o L3-VPN for IPv4 traffic using the SRv6 T.Encaps and End.DT4 behaviors. o L3VPN with traffic engineering in the underlay. The testing validated the interoperability of T.Encaps and End.DT4 behaviors combined with the End and End.X functions. o SRH based Topology Independent (TI-LFA) Fast Reroute mechanisms using T.Insert.Red. The results confirm consistency among SRH [I-D.ietf-6man-segment- routing-header], network programming [I.D-draft-ietf-spring-srv6- network-programming] and the dependent SRv6 drafts. Matsushima, et al. Expires June 13, 2020 [Page 13] Internet-Draft SRv6 Deployment Status December 2019 6. Appendix 1 The following IETF working group documents or individual submissions references SRH Draft [I-D.ietf-6man-segment-routing-header] (see [SRH-REF-BY] for the source of the information): o draft-ietf-6man-spring-srv6-oam o draft-ali-spring-ioam-srv6 o draft-bashandy-isis-srv6-extensions o draft-ietf-bess-srv6-services o draft-dawra-idr-bgpls-srv6-ext o draft-ietf-spring-srv6-network-programming o draft-geng-detnet-dp-sol-srv6 o draft-hu-mpls-sr-inter-domain-use-cases o draft-ietf-dmm-srv6-mobile-uplane o draft-li-6man-service-aware-ipv6-network o draft-li-spring-light-weight-srv6-ioam o draft-li-spring-srv6-path-segment o draft-mirsky-6man-unified-id-sr o draft-peng-spring-srv6-compatibility o draft-xuclad-spring-sr-service-programming o draft-bonica-6man-comp-rtg-hdr o draft-bonica-6man-vpn-dest-opt o draft-boutros-nvo3-geneve-applicability-for-sfc o draft-carpenter-limited-domains o draft-chunduri-lsr-isis-preferred-path-routing o draft-chunduri-lsr-ospf-preferred-path-routing Matsushima, et al. Expires June 13, 2020 [Page 14] Internet-Draft SRv6 Deployment Status December 2019 o draft-dawra-idr-bgp-ls-sr-service-segments o draft-dhody-pce-pcep-extension-pce-controller-srv6 o draft-dong-spring-sr-for-enhanced-vpn o draft-dukes-spring-mtu-overhead-analysis o draft-dukes-spring-sr-for-sdwan o draft-dunbar-sr-sdwan-over-hybrid-networks o draft-filsfils-spring-srv6-interop o draft-filsfils-spring-srv6-net-pgm-illustration o draft-gandhi-spring-rfc6374-srpm-udp o draft-gandhi-spring-twamp-srpm o draft-guichard-spring-nsh-sr o draft-heitz-idr-msdc-fabric-autoconf o draft-herbert-ipv4-udpencap-eh o draft-herbert-simple-sr o draft-homma-dmm-5gs-id-loc-coexistence o draft-homma-nmrg-slice-gateway o draft-ietf-idr-bgp-prefix-sid o draft-ietf-idr-segment-routing-te-policy o draft-ietf-intarea-gue-extensions o draft-ietf-mpls-sr-over-ip o draft-ietf-pce-segment-routing o draft-ietf-pce-segment-routing-ipv6 o draft-ietf-spring-mpls-path-segment o draft-ietf-spring-segment-routing-msdc Matsushima, et al. Expires June 13, 2020 [Page 15] Internet-Draft SRv6 Deployment Status December 2019 o draft-ietf-teas-pcecc-use-cases o draft-li-6man-ipv6-sfc-ifit o draft-li-idr-flowspec-srv6 o draft-li-ospf-ospfv3-srv6-extensions o draft-li-pce-pcep-flowspec-srv6 o draft-li-tsvwg-loops-problem-opportunities o draft-raza-spring-srv6-yang o draft-su-bgp-trigger-segment-routing-odn o draft-voyer-6man-extension-header-insertion o RFC 7855 o RFC 8218 o RFC 8402 7. Appendix 2 The following is an partial list of SRv6 Contributions from Academia, including open source implementation of SRH Draft [I-D.ietf-6man- segment-routing-header], network programming [I.D-draft-ietf-spring- srv6-network-programming] draft and the related IETF drafts: Matsushima, et al. Expires June 13, 2020 [Page 16] Internet-Draft SRv6 Deployment Status December 2019 o An Efficient Linux Kernel Implementation of Service Function Chaining for legacy VNFs based on IPv6 Segment Routing. Netsoft2019, https://arxiv.org/abs/1901.00936. o Flexible failure detection and fast reroute using eBPF and SRv6 (https://ieeexplore.ieee.org/document/8584995). o Zero-Loss Virtual Machine Migration with IPv6 Segment Routing (https://ieeexplore.ieee.org/document/8584942). o SDN Architecture and Southbound APIs for IPv6 Segment Routing Enabled Wide Area Networks, IEEE Journals & Magazine (https://doi.org/10.1109/TNSM.2018.2876251). o Leveraging eBPF for programmable network functions with IPv6 Segment Routing (https://doi.org/10.1145/3281411.3281426). o Snort demo, http://netgroup.uniroma2.it/Stefano_Salsano/ papers/18-sr-snort-demo.pdf. o Performance of IPv6 Segment Routing in Linux Kernel, IEEE Conference Publication, (https://ieeexplore.ieee.org/document/8584976). o Interface Counters in Segment Routing v6: a powerful instrument for Traffic Matrix Assessment (https://doi.org/10.1109/NOF.2018.8597768). o Exploring various use cases for IPv6 Segment Routing (https://doi.org/10.1145/3234200.3234213). o SRv6Pipes: enabling in-network bytestream functions (http://hdl.handle.net/2078.1/197480). o SERA: SEgment Routing Aware Firewall for Service Function Chaining scenarios (http://netgroup.uniroma2.it/Stefano_Salsano/papers/ 18-ifip-sera-firewall-sfc.pdf). o Software Resolved Networks (https://doi.org/10.1145/3185467.3185471). o 6LB: Scalable and Application-Aware Load Balancing with Segment Routing (https://doi.org/10.1109/TNET.2018.2799242). o Implementation of virtual network function chaining through segment routing in a linux-based NFV infrastructure, IEEE Conference Publication, (https://doi.org/10.1109/NETSOFT.2017.8004208). o A Linux kernel implementation of Segment Routing with IPv6, IEEE Conference Publication(https://doi.org/10.1109/ INFCOMW.2016.7562234). o Leveraging IPv6 Segment Routing for Service Function Chaining (http://hdl.handle.net/2078.1/168097) Matsushima, et al. Expires June 13, 2020 [Page 17] Internet-Draft SRv6 Deployment Status December 2019 8. IANA Considerations None 9. Security Considerations None 10. Acknowledgements The authors would like to thank Darren Dukes and Pablo Camarillo. 11. Contributors The following people have contributed to this document: Hirofumi Ichihara LINE Corporation Email: hirofumi.ichihara@linecorp.com Toshiki Tsuchiya LINE Corporation Email: toshiki.tsuchiya@linecorp.com Francois Clad Cisco Systems Email: fclad@cisco.com Robbins Mwehair MTN Uganda Ltd. Email: Robbins.Mwehair@mtn.com Sebastien Parisot Iliad Email: sparisot@free-mobile.fr Tadas Planciunas NOIA Network Email: tadas@noia.network 12. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . Matsushima, et al. Expires June 13, 2020 [Page 18] Internet-Draft SRv6 Deployment Status December 2019 13. Informative References [RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L., Decraene, B., Litkowski, S., and R. Shakir, "Segment Routing Architecture", RFC 8402, DOI 10.17487/RFC8402, July 2018, . [I-D.ietf-6man-segment-routing-header] Filsfils, C., Previdi, S., Leddy, J., Matsushima, S., and d. daniel.voyer@bell.ca, "IPv6 Segment Routing Header (SRH)", draft-ietf-6man-segment-routing-header-16 (work in progress), February 2019. [I-D.ietf-spring-srv6-network-programming] Filsfils, C., Camarillo, P., Leddy, J., daniel.voyer@bell.ca, d., Matsushima, S., and Z. Li, "SRv6 Network Programming", draft-filsfils-spring-srv6-network- programming-07 (work in progress), February 2019. [I-D.ietf-isis-srv6-extensions] Psenak, P., Filsfils, C., Bashandy, A., Decraene, B., and Z. Hu, "IS-IS Extensions to Support Routing over IPv6 Dataplane", draft-bashandy-isis-srv6-extensions-05 (work in progress), March 2019. [I-D.ietf-bess-srv6-services] Dawra, G., ed., "SRv6 BGP based Overlay services", draft-ietf-bess-srv6-services (work in progress), September 2019. [I-D.filsfils-spring-srv6-net-pgm-insertion] Filsfils, C., et al, "SRv6 NET-PGM extension: Insertion", (work in progress), September 2019. [I-D.voyer-6man-extension-header-insertion] D. Voyer, Ed., Filsfils, C., et al, "Insertion of IPv6 Segment Routing Headers in a Controlled Domain", (work in progress), September 2019. [I-D.ietf-rtgwg-segment-routing-ti-lfa] Litkowski, S., et al., "Topology Independent Fast Reroute using Segment Routing", draft-ietf-rtgwg-segment-routing-ti-lfa-01 (work in progress), March 2019. Matsushima, et al. Expires June 13, 2020 [Page 19] Internet-Draft SRv6 Deployment Status December 2019 [I-D.ietf-rtgwg-bgp-pic] Bashandy, A., et al, "BGP Prefix Independent Convergence", draft-ietf-rtgwg-bgp-pic-08 (work in progress), Sept. 2018. [I-D.ietf-6man-spring-srv6-oam] Ali, Z., et al, "Operations, Administration, and Maintenance (OAM) in Segment Routing Networks with IPv6 Data plane (SRv6), draft-ietf-6man-spring-srv6-oam-00 (work in progress), March 2019. [I-D.draft-filsfils-spring-srv6-interop] Filsfils, C., et al, "SRv6 interoperability report", draft-filsfils-spring-srv6-interop-02 (work in progress), March 2019. [I-D.previdi-6man-segment-routing-header-00] Previdi, S., Filsfils, C., et al, "IPv6 Segment Routing Header (SRH)", draft-previdi-6man-segment-routing-header-00, March 2014. [EANTC-19] "MPLS+SDN+NFVVORD@PARIS2019 Interoperability Showcase", "MPLS World Congress", Paris, 2019, http://www.eantc.de/fileadmin/eantc/downloads/News/2019/ EANTC-MPLSSDNNFV2019-WhitePaper-v1.2.pdf. [ref-1] "Implementing IPv6 Segment Routing in the Linux Kernel", July 2017, . [ref-2] "Reaping the Benefits of IPv6 Segment Routing", October 2017, . [ref-3] "Add support for Segment Routing (Type 4) Extension Header", June 2016, . [ref-4] "Add support for IPv6 routing header type 4", December 2017, . [ref-5] "[net-next,v2] netfilter: add segment routing header 'srh' match", January 2018, . [ref-6] "[iptables,v2] extensions: add support for 'srh' match", January 2018, . Matsushima, et al. Expires June 13, 2020 [Page 20] Internet-Draft SRv6 Deployment Status December 2019 [ref-7] "[nft] nftables: Adding support for segment routing header 'srh'", March 2018, . [ref-8] "IPv6 Segment Routing (SRv6) aware snort", March 2018, . [wc-15] "MPLS World Congress", Paris, 2015. [EANTC-18] "MPLS+SDN+NFVVORD@PARIS2018 Interoperability Showcase", "MPLS World Congress", Paris, 2018, http://www.eantc.de/fileadmin/eantc/downloads/events/2017- 2020/MPLS2018/EANTC-MPLSSDNNFV2018-WhitePaper-final.pdf. [SRH-REF-BY] "IETF Documents Referencing draft-ietf-6man-segment-routing-header Draft", https://datatracker.ietf.org/doc/ draft-ietf-6man-segment-routing-header/referencedby/ [noia-whitepaper1] "A Blockchain-backed Internet Segment Routing WAN (SR-WAN)", https://noia.network/programmable-internet-whitepaper. [noia-whitepaper2] "Economics of Decentralized Internet Transit Exchange: Utilization of Transit Capacity", https://noia.network/tokenomics-whitepaper. Authors' Addresses Satoru Matsushima Softbank Email: satoru.matsushima@g.softbank.co.jp Clarence Filsfils Cisco Systems Email: cfilsfil@cisco.com Zafar Ali Cisco Systems Email: zali@cisco.com Matsushima, et al. Expires June 13, 2020 [Page 21] Internet-Draft SRv6 Deployment Status December 2019 Zhenbin Li Huawei Technologies Email: lizhenbin@huawei.com Matsushima, et al. Expires June 13, 2020 [Page 22]