Abstract

DECT Ultra Low Energy is a low power air interface technology that is defined by the DECT Forum and specified by ETSI.

The DECT air interface technology has been used world-wide in communication devices for more than 15 years, primarily carrying voice for cordless telephony but has also been deployed for data centric services.

The DECT Ultra Low Energy is a recent addition to the DECT interface primarily intended for low-bandwidth, low-power applications such as sensor devices, smart meters, home automation etc. As the DECT Ultra Low Energy interface inherits many of the capabilities from DECT, it benefits from long range, interference free operation, world wide reserved frequency band, low silicon prices and maturity. There is an added value in the ability to communicate with IPv6 over DECT ULE such as for Internet of Things applications.

This document describes how IPv6 is transported over DECT ULE using 6LoWPAN techniques.
time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 5, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 2
 1.1. Requirements Notation 3
 1.2. Terms Used .. 3
2. DECT Ultra Low Energy ... 4
 2.1. The DECT ULE Protocol Stack 4
 2.2. Link layer roles and topology 6
 2.3. Addressing Model 7
 2.4. MTU Considerations 7
 2.5. Additional Considerations 7
3. Specification of IPv6 over DECT ULE 8
 3.1. Protocol stack ... 8
 3.2. Link model ... 8
 3.3. Internet connectivity scenarios 11
4. IANA Considerations ... 12
5. Security Considerations 12
6. ETSI Considerations ... 13
7. Acknowledgements ... 13
8. Normative References ... 13
Authors’ Addresses ... 14

1. Introduction

DECT Ultra Low Energy (DECT ULE or just ULE) is an air interface technology building on the key fundamentals of traditional DECT / CAT-iq but with specific changes to significantly reduce the power consumption on the expense of data throughput. DECT ULE devices with
requirements to power consumption will operate on special power optimized silicon, but can connect to a DECT Gateway supporting traditional DECT / CAT-iq for cordless telephony and data as well as the ULE extensions. DECT terminology operates with two major role definitions: The Portable Part (PP) is the power constrained device, while the Fixed Part (FP) is the Gateway or base station. This FP may be connected to the Internet. An example of a use case for DECT ULE is a home security sensor transmitting small amounts of data (few bytes) at periodic intervals through the FP, but is able to wake up upon an external event (burglar) and communicate with the FP.

Another example incorporating both DECT ULE as well as traditional CAT-iq telephony is an elderly pendant (broche) which can transmit periodic status messages to a care provider using very little battery, but in the event of urgency, the elderly person can establish a voice connection through the pendant to an alarm service. It is expected that DECT ULE will be integrated into many residential gateways, as many of these already implements DECT CAT-iq for cordless telephony. DECT ULE can be added as a software option for the FP. It is desirable to consider IPv6 for DECT ULE devices due to the large address space and well-known infrastructure. This document describes how IPv6 is used on DECT ULE links to optimize power while maintaining the many benefits of IPv6 transmission. [RFC4944] specifies the transmission of IPv6 over IEEE 802.15.4. DECT ULE has in many ways similar characteristics of IEEE 802.15.4, but also differences. Many of the mechanisms defined in [RFC4944] can be applied to the transmission of IPv6 on DECT ULE links.

This document specifies how to map IPv6 over DECT ULE inspired by RFC4944.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.2. Terms Used

PP: DECT Portable Part, typically the sensor node

FP: DECT Fixed Part, the gateway

LLME: Lower Layer Management Entity

NWK: Network
2. DECT Ultra Low Energy

DECT ULE is a low power air interface technology that is designed to support both circuit switched for service, such as voice communication, and for packet mode data services at modest data rate. This draft is only addressing the packet mode data service of DECT ULE.

2.1. The DECT ULE Protocol Stack

The DECT ULE protocol stack consists of the PHY layer operating at frequencies in the 1880 - 1920 MHz frequency band depending on the region and uses a symbol rate of 1.152 Mbps. Radio bearers are allocated by use of FDMA/TDMA/TDD technics.

In its generic network topology, DECT is defined as a cellular network technology. However, the most common configuration is a star network with a single FP defining the network with a number of PP attached. The MAC layer supports both traditional DECT as this is used for services like discovery, pairing, security features etc. All these features have been reused from DECT.

The DECT ULE device can then switch to the ULE mode of operation, utilizing the new ULE MAC layer features. The DECT ULE Data Link Control (DLC) provides multiplexing as well as segmentation and re-assembly for larger packets from layers above. The DECT ULE layer also implements per-message authentication and encryption. The DLC layer ensures packet integrity and preserves packet order, but delivery is based on best effort.

The current DECT ULE MAC layer standard supports low bandwidth data broadcast. However the usage of this broadcast service has not yet been standardized for higher layers and no security has been developed been developed yet. This document is not considering usage of this DECT ULE MAC broadcast service in current version.

In general, communication sessions can be initiated from both FP and PP side. Depending of power down modes employed in the PP, latency may occur when initiating sessions from FP side. MAC layer communication can either take place using connection oriented packet transfer with low overhead for short sessions or take place using connection oriented bearers including media reservation. The MAC layer autonomously selects the radio spectrum positions that are available within the band and can rearrange these to avoid interference. The MAC layer has built-in retransmission procedures in order to improve transmission reliability.
The DECT ULE device will typically incorporate an Application Programmers Interface (API) as well as common elements known as Generic Access Profile (GAP) for enrolling into the network. The DECT ULE stack establishes a permanent virtual circuit (PVC) for the application layers and provides support for a range of different application protocols. The used application protocol is negotiated between the PP and FP when the PVC communication service is established. This draft proposes to define 6LoWPAN as one of the possible protocols to negotiate.

```
+------------------------+
<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic Access</td>
</tr>
<tr>
<td>Profile</td>
</tr>
<tr>
<td>ULE Profile</td>
</tr>
<tr>
<td>DECT/Service API</td>
</tr>
<tr>
<td>ULE Data API</td>
</tr>
<tr>
<td>LLME</td>
</tr>
<tr>
<td>NWK (MM,CC)</td>
</tr>
<tr>
<td>DECT DLC</td>
</tr>
<tr>
<td>DECT ULE DLC</td>
</tr>
<tr>
<td>MAC Layer</td>
</tr>
<tr>
<td>Physical Layer</td>
</tr>
<tr>
<td>(C-plane)</td>
</tr>
<tr>
<td>(U-plane)</td>
</tr>
</tbody>
</table>

Figure 1: DECT ULE Protocol Stack
```

The DECT ULE stack can be divided into control (C-plane) and user-data (U-plane) parts shown to the left and to the right in figure 1, respectively.

It is expected that the ULE 6LoWPAN adaptation layer can run directly on this U-plane DLC layer. Figure 2 illustrates IPv6 over DECT ULE stack.

Constrained Application Protocol (CoAP) is an application protocol specifically designed for resource constrained environments. CoAP could be run on top of IPv6 supporting requests from the server and requests of cached replies from a CoAP/HTTP proxy in the DECT Fixed Part or in an external network infrastructure.
2.2. Link layer roles and topology

A FP is assumed to be less constrained than a PP. Hence, in the primary scenario FP and PP will act as 6LoWPAN Border Router (6LBR) and a 6LoWPAN Node (6LN), respectively. This document does only address this primary scenario.

In DECT ULE, communication only takes place between a FP and a PP. A FP is able to handle multiple simultaneous connections with a number of PP. Hence, in a DECT ULE network using IPv6, a radio hop is equivalent to an IPv6 link and vice versa.

DECT ULE repeaters are not considered in this proposal.
2.3. Addressing Model

Each DECT PP is assigned an <IPEI> (International Portable Equipment Identity) during manufacturing. This identity has the size of 40 bits and is globally unique for the PP and can be used to constitute the MAC address.

When bound to a FP, a PP is assigned a 20 bit TPUI (Temporary Portable User Identity) which is unique within the FP. This TPUI is used for addressing (layer 2) in messages between FP and PP.

Each DECT FP is assigned a <RFPI> (Radio Fixed Part Identity) during manufacturing. This identity has the size of 40 bits and is globally unique for a FP and can be used to constitute the MAC address.

Alternatively each DECT PP and DECT FP can be assigned a unique (IEEE) MAC-48 address additionally to the DECT identities to be used by the 6LoWPAN. When such approach, the FP and PP have to implement a mapping between used MAC-48 addresses and DECT identities.

2.4. MTU Considerations

Generally the DECT ULE FP and PP may be generating data that fits into one MAC Layer packet (38 bytes) for periodically transferred information, depending on application. IP data packets may be much larger and hence MTU size should be the size of the IP data packet. The DECT ULE DLC procedures supports segmentation and reassembly of any MTU size below 65536 bytes, but most implementations do only support smaller values.

If an implementation cannot support the sufficient MTU size (due to implementation cost) then SAR needs to be supported at upper layers. The SAR feature of [RFC4944] section 5 could be considered.

It is expected that the LOWPAN_IPHC packet will fulfill all the requirements for header compression without spending unnecessary overhead for mesh addressing.

It is important to realize that the support of larger packets will be on the expense of battery life, as a large packet will be fragmented into several or many MAC layer packets, each consuming power to transmit / receive.

2.5. Additional Considerations

The DECT ULE standard allows PP to be registered (bind) to multiple FP and roaming between these FP. This draft does not considered the
scenarios of PP roaming between multiple FP. The use of repeater functionality is also not considered in this draft

3. Specification of IPv6 over DECT ULE

DECT ULE technology sets strict requirements for low power consumption and thus limits the allowed protocol overhead. 6LoWPAN standard [RFC4944] provides useful functionality for reducing overhead which can be applied to DECT ULE. This functionality comprises of link-local IPv6 addresses and stateless IPv6 address autoconfiguration, Neighbor Discovery and header compression.

A significant difference between IEEE 802.15.4 and DECT ULE is that the former supports both star and mesh topology (and requires a routing protocol), whereas DECT ULE in its primary configuration does not support the formation of multihop networks at the link layer. In consequence, the mesh header defined in [RFC4944] for mesh under routing MUST NOT be used in DECT ULE networks. In addition, a DECT ULE PP node MUST NOT play the role of a 6LoWPAN Router (6LR).

3.1. Protocol stack

DECT ULE standardization of protocol identifier in negotiation of higher layer application protocol 6LoWPAN: xx. This identifier is reserved for 6LoWPAN and has to be standardized by ETSI.

3.2. Link model

The general model is that IPv6 is layer 3 and DECT ULE MAC+DLC is layer 2. The DECT ULE implements FAR functionality and RFC4944 MUST NOT be used. Since IPv6 requires MTU size of at least 1280 octets, the DECT ULE connection (PVC) must be configured with configured with equivalent MTU size.

This specification also assumes the IPv6 header compression format specified in [RFC6282]. It is also assumed that the IPv6 payload length can be inferred from the ULE DLC packet length and the IID value inferred from the link-layer address.

Due to DECT ULE star topology, each branch of the star is considered to be an individual link and thus the PP cannot directly hear each other and also cannot talk to each other with link-local addresses. After the FP and PP have connected at the DECT ULE level, the link can be considered up and IPv6 address configuration and transmission can begin. The FP ensures address collisions do not occur.
3.2.1. IPv6 Address Configuration

A DECT ULE 6LN performs stateless address autoconfiguration as per RFC 4862. A 64-bit Interface identifier (IID) for a DECT ULE interface MAY be formed by utilizing a MAC-48 device address as defined in RFC 2464 "IPv6 over Ethernet" specification. Alternatively, the DECT device addresses IPEI, RFPI or TPUI, MAY be used instead to derive the IID. In the case of randomly generated IID or use of IID derived from DECT devices addresses, the "Universal/Local" bit MUST be set to 0. Only if a global unique MAC-48 is used the "Universal/Local" bit can be set to 1.

As defined in RFC 4291, the IPv6 link-local address for a DECT ULE node is formed by appending the IID, to the prefix FE80::/64.

The means for a 6LBR to obtain an IPv6 prefix for numbering the DECT ULE network is out of scope of this document, but can be, for example, accomplished via DHCPv6 Prefix Delegation or by using Unique Local IPv6 Unicast Addresses (ULA). Due to the link model of the DECT ULE the 6LBR MUST set the "on-link" flag (L) to zero in the Prefix Information Option. This will cause 6LNs to always send packets to the 6LBR, including the case when the destination is another 6LN using the same prefix.

3.2.2. Neighbor discovery

'Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)' [RFC6775] describes the neighbor discovery approach as adapted for use in several 6LoWPAN topologies, including the mesh topology. As DECT ULE is considered not to support mesh networks, hence only those aspects that apply to a star topology are considered.

The following aspects of the Neighbor Discovery optimizations [RFC6775] are applicable to DECT ULE 6LNs:

1. A DECT ULE 6LN MUST register its address with the 6LBR by sending a Neighbor Solicitation (NS) message with the ARO option and process the Neighbor Advertisement (NA) accordingly. The NS with the ARO option SHOULD be sent irrespective of whether the IID is derived from a unique MAC-48 bit device address, DECT ULE device addresses or the IID is a random value that is generated as per the privacy extensions for stateless address autoconfiguration [RFC4941]. Although RFC 4941 [RFC4941] permits the use of deprecated addresses for old connections, in this specification we mandate that one interface MUST NOT use more than one IID at any one time.
2. For sending Router Solicitations and processing Router Advertisements the DECT ULE 6LNs MUST, respectively, follow Sections 5.3 and 5.4 of the [RFC6775].

3.2.3. Unicast and Multicast address mapping

The DECT MAC layer broadcast service is considered inadequate for IP multicast.

Hence traffic is always unicast between two DECT ULE nodes. Even in the case where a FP is attached to multiple PPs, the FP cannot do a multicast to all the connected PPs. If the FP needs to send a multicast packet to all its PPs, it has to replicate the packet and unicast it on each link. However, this may not be energy-efficient and particular care must be taken if the FP is battery-powered. In the opposite direction, a PPs can only transmit data to a single destination (i.e. the FP). Hence, when a PP needs to transmit an IPv6 multicast packet, the PP will unicast the corresponding DECT ULE packet to the FP. As described in the linkmodel section FP will not forward link-local multicast messages to other PPs connected to the FP.

3.2.4. Header Compression

Header compression as defined in RFC 6282, which specifies the compression format for IPv6 datagrams on top of IEEE 802.15.4, is REQUIRED in this document as the basis for IPv6 header compression on top of DECT ULE. All headers MUST be compressed according to RFC 6282 encoding formats. The DECT ULE’s star topology structure can be exploited in order to provide a mechanism for IID compression. The following text describes the principles of IPv6 address compression on top of DECT ULE.

In a link-local communication, both the IPv6 source and destination addresses MUST be elided, since the node knows that the packet is destined for it even if the packet does not have destination IPv6 address. On the other hand, a node SHALL learn the IID of the other endpoint of each DECT ULE connection it participates in. By exploiting this information, a node that receives a data channel PDU containing an IPv6 packet can infer the corresponding IPv6 source address. A node MUST maintain a Neighbor Cache, in which the entries include both the IID of the neighbor and the Device Address that identifies the neighbor. For the type of communication considered in this paragraph, the following settings MUST be used in the IPv6 compressed header: CID=0, SAC=0, SAM=11, DAC=0, DAM=11.

When a 6LN transmits an IPv6 packet to a remote destination using global Unicast IPv6 addresses, if a context is defined for the prefix
of the 6LN’s global IPv6 address, the 6LN MUST indicate this context in the corresponding source fields of the compressed IPv6 header as per Section 3.1 of RFC 6282, and MUST elide the IPv6 source address. For this, the 6LN MUST use the following settings in the IPv6 compressed header: CID=1, SAC=1, SAM=11. In this case, the 6LBR can infer the elided IPv6 source address since 1) the 6LBR has previously assigned the prefix to the 6LN’s; and 2) the 6LBR maintains a Neighbor Cache that relates the Device Address and the IID of the corresponding PP. If a context is defined for the IPv6 destination address, the 6LN MUST also indicate this context in the corresponding destination fields of the compressed IPv6 header, and MUST elide the prefix of the destination IPv6 address. For this, the 6LN MUST set the DAM field of the compressed IPv6 header as DAM=01 (if the context covers a 64-bit prefix) or as DAM=11 (if the context covers a full, 128-bit address). CID and DAC MUST be set to CID=1 and DAC=1. Note that when a context is defined for the IPv6 destination address, the 6LBR can infer the elided destination prefix by using the context.

When a 6LBR receives an IPv6 packet sent by a remote node outside the DECT ULE network, and the destination of the packet is a 6LN, if a context is defined for the prefix of the 6LN’s global IPv6 address, the 6LBR MUST indicate this context in the corresponding destination fields of the compressed IPv6 header, and MUST elide the IPv6 destination address of the packet before forwarding it to the 6LN. For this, the 6LBR MUST set the DAM field of the IPv6 compressed header as DAM=11. CID and DAC MUST be set to CID=1 and DAC=1. If a context is defined for the prefix of the IPv6 source address, the 6LBR MUST indicate this context in the source fields of the compressed IPv6 header, and MUST elide that prefix as well. For this, the 6LBR MUST set the SAM field of the IPv6 compressed header as SAM=01 (if the context covers a 64-bit prefix) or SAM=11 (if the context covers a full, 128-bit address). CID and SAC MUST be set to CID=1 and SAC=1.

3.3. Internet connectivity scenarios

In a typical scenario, the DECT ULE network is connected to the Internet as shown in the Figure 4.

A degenerate scenario can be imagined where a PP is acting as 6LBR and providing Internet connectivity for the FP. How the FP could then further provide Internet connectivity to other PP, possibly connected to the FP, is out of the scope of this document.
In some scenarios, the DECT ULE network may transiently or permanently be an isolated network as shown in the Figure 5.

```
  6LN    6LN
   \    /     
    \  /      
     6LN --- 6LBR --- 6LN
     \   / 
      \  / 
       6LN
<------- DECT ULE ------>
```

Figure 5: Isolated DECT ULE network

In the isolated network scenario communications between 6LN and 6LBR can use IPv6 link-local methodology, but for communications between different PP, the FP has to act as 6LBR, number the network with ULA prefix [RFC4193], and route packets between PP.

4. IANA Considerations

There are no IANA considerations related to this document.

5. Security Considerations

The secure transmission of speech over DECT will be based on the DSAA2 and DSC2 work being developed by the DF Security group / ETSI TC DECT and the ETSI SAGE Security expert group.
DECT ULE communication are secured by encryption and per-message authentication through CCM mode (Counter with CBC-MAC) similar to RFC3610, which has been defined in the ETSI TC-DECT ULE group. DECT ULE DLC layer implements this per-message authentication and encryption to provide link-layer security mechanisms as defined by ETSI TC-DECT.

The underlying algorithm for providing authentication and encryption is based on AES128. Individual authentication key (UAK) for each ULE PP are generated during the binding procedure. Session encryption keys are renewed regularly. DECT ULE PPs do not use any shared encryption key.

The DECT ULE pairing procedure generates a master security key and during location registration procedure or when the permanent virtual circuit are established, the session security keys are generated. The generated security keys are individual for each FP-PP binding, hence all PP in a system have different security keys.

6. ETSI Considerations

ETSI is standardizing a list of known application layer protocols that can use the DECT ULE permanent virtual circuit packet data service. Each protocol is identified by a unique known identifier. The IPv6/6LoWPAN as described in this document is considered as an application layer protocol on top of DECT ULE. In order to provide interoperability between 6LoWPAN / DECT ULE devices a common protocol identifier for 6LoWPAN has to be standardized by ETSI.

It is proposed to used ETSI DECT ULE protocol identifier 0x06 = 6LoWPAN.

7. Acknowledgements

8. Normative References

[EN300.175-part1-7]
ETSI, "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI)", August 2013.

Authors’ Addresses

Peter B. Mariager (editor)
RTX A/S
Stroemmen 6
DK-9400 Noerresundby
Denmark
Email: pm@rtx.dk

Jens Toftgaard Petersen
RTX A/S
Stroemmen 6
DK-9400 Noerresundby
Denmark
Email: jtp@rtx.dk

Zach Shelby
Sensinode
Hallituskatu 13-17D
FI-90100 Oulu
Finland
Email: zach.shelby@sensinode.com
Marco van de Logt
Gigaset Communications GmbH
Frankenstrasse 2
D-46395 Bocholt
Germany

Email: marco.van-de-logt@gigaset.com