
NETMOD	Working	Group S.	Mansfield,	Editor

InternetDraft Ericsson	Inc.

Intended	status:	Informational B.	Zeuner

Expires:	January	4,	2016 Deutsche	Telekom	AG

N.	Davis

Ciena

Y.	Yun

Fiberhome

Y.	Tochio

Fujitsu

K.	Lam

E.	Varma

Alcatel	Lucent

July	3,	2015

Guidelines for Translation of UML Information Model to YANG Data Model
draftmansfieldnetmodumltoyang00

Abstract

This	document	defines	guidelines	for	translation	of	data	modeled	with	UML	to	YANG	including	mapping	of	object	classes,	

attributes,	data	types,	associations,	interfaces,	operations	and	operation	parameters,	notifications,	and	lifecycle.

Status of this Memo

This	InternetDraft	is	submitted	in	full	conformance	with	the	provisions	of	BCP	78	and	BCP	79.

InternetDrafts	are	working	documents	of	the	Internet	Engineering	Task	Force	(IETF).	Note	that	other	groups	may	also	

distribute	working	documents	as	InternetDrafts.	The	list	of	current	InternetDrafts	is	at	

http://datatracker.ietf.org/drafts/current/.

InternetDrafts	are	draft	documents	valid	for	a	maximum	of	six	months	and	may	be	updated,	replaced,	or	obsoleted	by	other	

documents	at	any	time.	It	is	inappropriate	to	use	InternetDrafts	as	reference	material	or	to	cite	them	other	than	as	“work	in	

progress”.

This	InternetDraft	will	expire	on	January	4,	2016.

Copyright Notice

Copyright	©	2015	IETF	Trust	and	the	persons	identified	as	the	document	authors.	All	rights	reserved.

This	document	is	subject	to	BCP	78	and	the	IETF	Trust's	Legal	Provisions	Relating	to	IETF	Documents	

(http://trustee.ietf.org/licenseinfo)	in	effect	on	the	date	of	publication	of	this	document.	Please	review	these	documents	

carefully,	as	they	describe	your	rights	and	restrictions	with	respect	to	this	document.	Code	Components	extracted	from	this	

document	must	include	Simplified	BSD	License	text	as	described	in	Section	4.e	of	the	Trust	Legal	Provisions	and	are	

provided	without	warranty	as	described	in	the	Simplified	BSD	License.

Page 1 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Table of Contents

1. Introduction

2. Keywords

3. Terminology

4. Overview

5. Mapping	Guidelines

5.1 Mapping	Guideline	Considerations

5.2 Mapping	of	Object	Classes

5.3 Mapping	of	Attributes

5.4 Mapping	of	Types

5.4.1 Mapping	of	Primitive	Types

5.4.2 Mapping	of	Enumeration	Types

5.4.3 Mapping	of	Basic	Data	Types

5.4.4 Mapping	of	Complex	Data	Types

5.5 Mapping	of	Associations

5.6 Mapping	of	Interfaces

5.7 Mapping	of	Operations

5.8 Mapping	of	Operation	Parameters

5.9 Mapping	of	Notifications

5.10 Mapping	of	Lifecycle

5.11 Other	Mappings

6. Mapping	Issues

6.1 Mapping	of	Recursion

7. Mapping	Patterns

7.1 UML	Recursion

7.2 UML	Conditional	Pacs

7.3 XOR	Relationship

8. Mapping	Basics

8.1 UMLYANG	or	XMIYANG

8.2 XMI	Differences

9. Acknowledgements

10. IANA	Considerations

11. Security	Considerations

12. References

12.1 Normative	References

12.2 Informative	References

A. Example

Authors'	Addresses

Figures	

Figure	1:	Mapping	of	Object	Classes

Figure	2:	Mapping	of	Attributes

Figure	3:	Mapping	of	Types

Figure	4:	Mapping	of	Primitive	Types

Figure	5:	Mapping	of	Enumeration	Types

Figure	6:	Mapping	of	Basic	Data	Types

Figure	7:	Mapping	of	Complex	Data	Types

Figure	8:	Mapping	of	Associations

Figure	9:	Association	Mapping	Examples	(Available	in	PDF	or	HTML	versions)

Figure	10:	Mapping	of	Interfaces

Figure	11:	Mapping	of	Operations

Figure	12:	Mapping	of	Operation	Parameters

Figure	13:	Mapping	of	Notifications

Figure	14:	Mapping	of	Lifecycle

Figure	15:	Other	Mappings

Figure	16:	Mapping	of	Conditional	Packages	(Available	in	PDF	or	HTML	versions)

Figure	17:	Example	UML	to	YANG	Mapping	(Available	in	PDF	or	HTML	versions)

Figure	18:	Example	XMI	(Papyrus)	to	YANG	Mapping	(Available	in	PDF	or	HTML	versions)

Figure	19:	Example	XMI	(Papyrus)	/	XMI	(RSA)	Differences	(Available	in	PDF	or	HTML	versions)

Figure	20:	Example	XMI	(Papyrus)	/	XMI	(RSA)	Differences	(detailed)	(Available	in	PDF	or	HTML	versions)

Figure	21:	Interfaces	Tree	(Available	in	PDF	or	HTML	versions)

Page 2 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Figure	22:	Notifications	Tree	(Available	in	PDF	or	HTML	versions)

Figure	23:	Interfaces	UML	Model	(Available	in	PDF	or	HTML	versions)

Page 3 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

1. Introduction

As	discussed	in	draftlamteasusageinfomodelnettopology [5] a	Data	Model	(DM)	may	be	derived	from	an	Information	

Model	(IM).	However,	in	order	to	assure	a	consistent	and	valid	data	modelling	language	representation	that	enables	

maximum	interoperability,	translation	guidelines	are	required.	A	set	of	translation	rules	also	assists	in	development	of	

automated	tooling.

This	draft	defines	guidelines	for	translation	of	data	modelled	with	UML [6] (as	constrained	by	the	ONF's	UML	Modeling	

Guidelines [7])	to	YANG	(defined	in	RFC6020 [2] and	YANG	Update [3])	including	mapping	of	object	classes,	attributes,	data	

types,	associations,	interfaces,	operations	and	operation	parameters,	notifications,	and	lifecycle.

Page 4 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

2. Keywords

The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",	"SHOULD",	"SHOULD	NOT",	"RECOMMENDED",	

"MAY",	and	"OPTIONAL"	in	this	document	are	to	be	interpreted	as	described	in	RFC	2119 [1].

Page 5 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

3. Terminology

The	following	terms	are	defined	in	RFC6020 [2]

• anydata

• anyxml

• augment

• container

• data	node

• identity

• instance	identifier

• leaf

• leaflist

• list

• module

• submodule

The	following	terms	are	defined	in	UML	2.4 [6]

• association

• attribute

• data	type

• interface

• object	class

• operation

• parameter

• signal	(used	to	model	notifications)

Page 6 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

4. Overview

This	document	defines	translation	rules	for	all	constructs	used	in	a	UML	based	IM	to	a	data	model	using	YANG.

While	some	mapping	rules	are	straightforward,	an	IM	in	UML	uses	some	constructs	that	cannot	be	mapped	directly	to	a	DM	

using	YANG	and	conventions	are	described	to	make	the	translation	predictable.	Additionally,	in	some	cases	multiple	mapping	

approaches	are	possible	and	selection	among	these	is	also	necessary	to	assure	interoperability.

Mapping	guidelines	for	these	constructs	are	provided	in	the	following	sections.

Page 7 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

5. Mapping Guidelines

5.1 Mapping Guideline Considerations

Where	"??"	is	inserted	in	the	table,	it	means	that	the	specific	mapping	is	for	further	study	as	it	is	either	as	yet	unclear	how	to	

map	the	construct	or	that	there	are	multiple	ways	of	doing	the	mapping	and	a	single	one	needs	to	be	selected.

A	table	will	be	included	summarizing	constructs	in	UML	that	do	not	directly	map	to	YANG	and	where	in	this	draft	the	

associated	guidelines	for	mapping	these	constructs	will	be	provided.

5.2 Mapping of Object Classes

Page 8 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

++
| Object Class > "list" statement (key property) or |
| "container" statement |
++
| UML Artifact | YANG Artifact | Comment |
++
| documentation | "description" | |
| | substatement | |
++
| superclass(es) | ?? | |
++
| abstract | abstract: "container" | |
| | not abstract: "list" | |
++
| objectCreationNotific| ?? | |
| ation | | |
++
| objectDeletionNotific| ?? | |
| ation | | |
++
| support | "iffeature" | |
| | substatement | |
++
| condition | "iffeature" | |
| | substatement | |
++
| operation | "action" | |
| | substatement | |
++
| XOR | "choice" | |
| | substatement | |
++
| ?? | "config" | |
| | substatement | |
++
| error notfication? | "must" | |
| | substatement | |
++
| object identifier | list::"key" | |
| | substatement | |
++
??	list::"minelements"	minelements
	"maxelements"	default = 0
	substatements	maxelements
		default=unbounded
		mandatory
		default=false
++		
Conditional PACs	container::presence"	
	substatement	
++		
hyperlink?	"reference"	Papyrus doesn't
	substatement	support hyperlinks
++		
lifecycle stereotypes	"status"	"current"
	substatement	"deprecated"
		"obsolete"
		default="current"
++		
??	list::"unique"	
	substatement	
++		
complex attribute	"uses" substatement	
++		
{<constraint>}	"when" substatement	
++

Figure	1:	Mapping	of	Object	Classes

5.3 Mapping of Attributes

Page 9 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

++
| Attribute > "leaf" (single) or "leaf list" (multiple) |
| statement |
++
| UML Artifact | YANG Artifact | Comment |
++
| documentation | "description" | |
| | substatement | |
++
| type | "type" substatement | |
| | (builtin or derived) | |
++
| readOnly | "config" substatement | |
| | (false) | |
++
isOrdered	"orderedby"	
	substatement	
	("system" or "user")	
++		
multiplicity	"minelements" and	minelements
	"maxelements"	default = 0
	substatements	maxelements
	[0..x]=>mandatory	default=unbounded
	substatement=false	mandatory
	[1..x]=>mandatory	default=false
	substatement=true	
++		
defaultValue	"default"	If a default value
	substatement	exists and it is
		the desired value,
		the parameter does
		not have to be
		explicitly config
		ured by the user.
++		
isInvariant	"config"	
	substatement (false)	
++		
valueRange	"range" or "length"	
	substatement of "type"	
	substatement	
++		
passedById	??	
++		
support	"iffeature"	
	substatement	
++		
condition	"iffeature"	
	substatement	
++		
error notfication?	"must"	
	substatement	
++		
hyperlink?	"reference"	Papyrus doesn't
	substatement	support hyperlinks
++		
lifecycle stereotypes	"status"	"current"
	substatement	"deprecated"
		"obsolete"
		default="current"
++		
unit?	"units" substatement	
++		
{<constraint>}	"when" substatement	
++

Figure	2:	Mapping	of	Attributes

5.4 Mapping of Types

Page 10 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

++
| UML Artifact | YANG Artifact | Comment |
++
| Primitive Type | ?? | new builtin type?|
++
| Enumeration | "enum" statement | |
++
| Basic Data Type | "typeDef" statement | |
++
| Complex Data Type | "grouping" statement | |
++

Figure	3:	Mapping	of	Types

Note:	YANG	allows	also	in-line	enumerations	which	are	not	possible	in	UML

5.4.1 Mapping of Primitive Types

++
| Primitive Type > new builtin type? |
++
| UML Artifact | YANG Artifact | Comment |
++
| documentation | ?? | |
++

Figure	4:	Mapping	of	Primitive	Types

5.4.2 Mapping of Enumeration Types

++
| Enumeration Type > "enum" statement |
++
| UML Artifact | YANG Artifact | Comment |
++
| documentation | "description" | |
| | substatement | |
++
| literal name | "value" | |
| | substatement | |
++
| hyperlink? | "reference" | Papyrus doesn't |
| | substatement | support hyperlinks|
++
lifecycle stereotypes	"status"	"current",
	substatement	"deprecated",
		"obsolete"
		default=current
++		
??	"iffeature" statement	
++

Figure	5:	Mapping	of	Enumeration	Types

5.4.3 Mapping of Basic Data Types

Page 11 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

++
| Basic Data Type > "typeDef" statement |
++
| UML Artifact | YANG Artifact | Comment |
++
| documentation | "description" | |
| | substatement | |
++
| type | "type" substatement | |
| | (builtin type) | |
++
defaultValue	"default"	If a default value
	substatement	exists and it is
		the desired value,
		the parameter does
		not have to be
		explicitly config
		ured by the user.
++		
hyperlink?	"reference"	Papyrus doesn't
	substatement	support hyperlinks
++		
lifecycle stereotypes	"status"	"current",
	substatement	"deprecated",
		"obsolete"
		default=current
++		
unit?	"units" statement	
++

Figure	6:	Mapping	of	Basic	Data	Types

5.4.4 Mapping of Complex Data Types

++
| Complex Data Type > "grouping" statement |
++
| UML Artifact | YANG Artifact | Comment |
++
| documentation | "description" | |
| | substatement | |
++
| not used | "action" substatement | |
++
| XOR | "choice" | |
| | substatement | |
++
| hyperlink? | "reference" | Papyrus doesn't |
| | substatement | support hyperlinks|
++
lifecycle stereotypes	"status"	"current",
	substatement	"deprecated",
		"obsolete"
		default=current
++		
complex attribute	"uses" statement	
++

Figure	7:	Mapping	of	Complex	Data	Types

5.5 Mapping of Associations

++
| Associations |
++
| UML Artifact | YANG Artifact | Comment |
++
| Inheritance | "extension" or | |
| | "augment" statement | |
++
| Composition | "container" statement | |
++
| Aggregation | "container" statement | |
++

Page 12 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Figure	8:	Mapping	of	Associations

Figure	9:	Association	Mapping	Examples	(Available	in	PDF	or	HTML	versions)

5.6 Mapping of Interfaces

++
| UML Interface > Container? |
++
| documentation | "description" | |
| | substatement | |
++
| abstract | ?? | |
++
| support | "iffeature" | |
| | substatement | |
++
| condition | "iffeature" | |
| | substatement | |
++

Figure	10:	Mapping	of	Interfaces

5.7 Mapping of Operations

Page 13 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

++
| Operation > "action" and "rpc" statements |
++
| documentation | "description" | |
| | substatement | |
++
| precondition | ?? | |
++
| postcondition | ?? | |
++
| input parameter | "input" substatement | |
++
| output parameter | "output" substatement | |
++
| operation exceptions | ?? | |
++
| isOperationIdempotent | ?? | |
++
| isAtomic | ?? | |
++
| support | "iffeature" | |
| | substatement | |
++
| condition | "iffeature" | |
| | substatement | |
++
| hyperlink? | "reference" | Papyrus doesn't |
| | substatement | support hyperlinks|
++
lifecycle stereotypes	"status"	"current",
	substatement	"deprecated",
		"obsolete"
		default=current
++

Figure	11:	Mapping	of	Operations

Note:	The	difference	between	an	action	and	an	rpc	is	that	an	action	is	tied	to	a	node	in	the	data	tree,	whereas	an	rpc	is	not.

5.8 Mapping of Operation Parameters

Page 14 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

++
| Operation Parameters |
++
| documentation | "description" | |
| | substatement | |
++
| direction | "input" or "output" | |
| | substatement | |
++
type	see mapping of	
	attribute types	
	(grouping, leaf,	
	leaflist, list,	
	typedef, uses)	
++		
isOrdered		
++		
multiplicity		
++		
defaultValue	??	
++		
valueRange	??	
++		
passedByID	??	
++		
support	"iffeature"	
	substatement	
++		
condition	"iffeature"	
	substatement	
++		
XOR	"choice"	
	substatement	
++		
error notification?	"must"	
	substatement	
++		
complex parameter	"uses"	
	substatement	
++

Figure	12:	Mapping	of	Operation	Parameters

5.9 Mapping of Notifications

++
| Signal > "notification" statement |
++
| documentation | "description" | |
| | substatement | |
++
| support | "iffeature" | |
| | substatement | |
++
| condition | "iffeature" | |
| | substatement | |
++
| XOR | "choice" | |
| | substatement | |
++
| error notification? | "must" | |
| | substatement | |
++
| hyperlink? | "reference" | Papyrus doesn't |
| | substatement | support hyperlinks|
++
lifecycle stereotypes	"status"	"current",
	substatement	"deprecated",
		"obsolete"
		default=current
++		
complex attribute	"uses"	
	substatement	
++

Page 15 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Figure	13:	Mapping	of	Notifications

5.10 Mapping of Lifecycle

++
| UML Lifecycle |
++
lifecycle stereotypes	"status"	"current",
	substatement	"deprecated",
		"obsolete"
		default=current
++

Figure	14:	Mapping	of	Lifecycle

5.11 Other Mappings

++
| UML Lifecycle |
++
Conditional Package	"container" statement	
	with	
	"presence"	
	substatement	
++		
Primitive Type	BuiltIn Type	
++		
Package	Submodule	
++

Figure	15:	Other	Mappings

Page 16 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

6. Mapping Issues

When	translating	from	UML	information	models	to	YANG	data	models	some	mapping	rules	are	straightforward,	and	some	

are	not.	This	section	provides	considerations	and	recommendations	for	the	more	complex	translations.

6.1 Mapping of Recursion

• Statically	define	a	number	of	recursion	levels

• Reference	Based	Approach

In	the	static	approach,	some	number	of	recursion	levels	is	preconfigured.	In	the	Referencebased	approach,	a	flat	list	is	

maintained	using	hierarchical	identities.	The	referencebased	approach	is	generally	preferred	because	there	is	no	arbitrary	

limitation	set	in	the	solution.

Page 17 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

7. Mapping Patterns

7.1 UML Recursion

TBD

7.2 UML Conditional Pacs

May	use	the	"presence"	property	of	the	container	statement?

Figure	16:	Mapping	of	Conditional	Packages	(Available	in	PDF	or	HTML	versions)

7.3 XOR Relationship

Use	the	"choice"	property	of	the	container	statement.

Page 18 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

8. Mapping Basics

8.1 UMLYANG or XMIYANG

Figure	17:	Example	UML	to	YANG	Mapping	(Available	in	PDF	or	HTML	versions)

Figure	18:	Example	XMI	(Papyrus)	to	YANG	Mapping	(Available	in	PDF	or	HTML	versions)

8.2 XMI Differences

Page 19 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Figure	19:	Example	XMI	(Papyrus)	/	XMI	(RSA)	Differences	(Available	in	PDF	or	HTML	versions)

Figure	20:	Example	XMI	(Papyrus)	/	XMI	(RSA)	Differences	(detailed)	(Available	in	PDF	or	HTML	versions)

Page 20 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

9. Acknowledgements

Page 21 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

10. IANA Considerations

This	memo	includes	no	request	to	IANA.

Page 22 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

11. Security Considerations

This	document	defines	defines	guidelines	for	translation	of	data	modeled	with	UML	to	YANG.	As	such,	it	doesn't	contribute	

any	new	security	issues	beyond	those	discussed	in	Sec.	16	of	RFC6020 [2].

Page 23 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

12. References

12.1 Normative References

[1] Bradner,	S.,	“Key	words	for	use	in	RFCs	to	Indicate	Requirement	Levels”,	BCP	14,	RFC	2119,	March	1997.

12.2 Informative References

[2] Bjorklund,	M.,	“YANG	 A	Data	Modeling	Language	for	the	Network	Configuration	Protocol	(NETCONF)”,	RFC	6020,	

October	2010.

[3] Bjorklund,	M.,	“YANG	 A	Data	Modeling	Language	for	the	Network	Configuration	Protocol	(NETCONF)”,	Internet

Draft	draftietfnetmodrfc6020bis05	(work	in	progress),	May	2015.

[4] Galimberti,	G.,	Kunze,	R.,	Lam,	H.,	Hiremagalur,	D.,	Grammel,	G.,	Fang,	L.,	and	G.	Ratterree,	“A	YANG	model	to	manage	

the	optical	interface	parameters	of	"G.698.2	single	channel"	in	DWDM	applications”,	InternetDraft	draftdharini

netmodg6982yang03	(work	in	progress),	March	2015.

[5] Lam,	H.,	Varma,	E.,	Doolan,	P.,	Davis,	N.,	Zeuner,	B.,	Betts,	M.,	Busi,	I.,	and	S.	Mansfield,	“Usage	of	IM	for	network	

topology	to	support	TE	Topology	YANG	Module	Development”,	InternetDraft	draftlamteasusageinfomodelnet

topology00	(work	in	progress),	March	2015.

[6] OMG,	“Unified	Modeling	Language	(UML)”,	2011,	<http://www.omg.org/spec/UML/2.4/>.

[7] OMG,	“ONF	TR514	v1.0	UML	Modeling	Guidelines”,	2015,	

<https://www.opennetworking.org/images/stories/downloads/sdnresources/technical

reports/UML_Modeling_Guidelines_V1.0.pdf>.

Page 24 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

A. Example

The	YANG	data	schema	(in	tree	format)	shown	below	was	extracted	from	dharininetmodg6982yang [4] and	represents	

the	same	data	as	UML	model	appearing	in	Figure	23 after	the	tree	format.	Note:	The	color	code	used	in	the	tree	format	

corresponds	to	the	color	code	used	in	the	UML	class	diagram.

Figure	21:	Interfaces	Tree	(Available	in	PDF	or	HTML	versions)

Figure	22:	Notifications	Tree	(Available	in	PDF	or	HTML	versions)

Page 25 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Figure	23:	Interfaces	UML	Model	(Available	in	PDF	or	HTML	versions)

Page 26 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

Authors' Addresses

Scott	Mansfield (editor)	

Ericsson	Inc.

USA

Phone:	+1	724	931	9316

EMail:	scott.mansfield@ericsson.com

Bernd	Zeuner

Deutsche	Telekom	AG

HeinrichHertzStr,	37

Darmstadt,	64295

Germany

Phone:	+49	6151	5812086

EMail:	b.zeuner@telekom.de

Nigel	Davis

Ciena

United	Kingdom

EMail:	ndavis@ciena.com

Yun	Xiang

Fiberhome

China

EMail:	yunxig@fiberhome.com.cn

Yuji	Tochio

Fujitsu

Japan

EMail:	tochio@jp.fujitsu.com

Hing-Kam	Lam

Alcatel	Lucent

USA

Phone:	+1	732	331	3476

EMail:	kam.lam@alcatellucent.com

Eve	Varma

Alcatel	Lucent

USA

EMail:	eve.varma@alcatellucent.com

Page 27 of 27Guidelines for Translation of UML Information Model to YANG Data Model

7/3/2015

