
RATS Working Group G. Mandyam
Internet-Draft Qualcomm Technologies Inc.
Intended status: Standards Track L. Lundblade
Expires: September 25, 2019 Security Theory LLC
 M. Ballesteros
 J. O’Donoghue
 Qualcomm Technologies Inc.
 March 24, 2019

 The Entity Attestation Token (EAT)
 draft-mandyam-rats-eat-00

Abstract

 An attestation format based on concise binary object representation
 (CBOR) is proposed that is suitable for inclusion in a CBOR Web Token
 (CWT), know as the Entity Attestation Token (EAT). The associated
 data can be used by a relying party to assess the security state of a
 remote device or module.

Contributing

 TBD

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 25, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Mandyam, et al. Expires September 25, 2019 [Page 1]

Internet-Draft EAT March 2019

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Entity Overview . 4
 1.2. Use of CBOR and COSE 5
 1.3. EAT Operating Models 5
 1.4. What is Not Standardized 6
 1.4.1. Transmission Protocol 6
 1.4.2. Signing Scheme 7
 2. Terminology . 7
 3. The Claims . 8
 3.1. Universal Entity ID (UEID) Claim 8
 3.2. Origination (origination) Claims 11
 3.3. OEM identification by IEEE OUI 11
 3.4. Security Level (seclevel) Claim 12
 3.5. Nonce (nonce) Claim 13
 3.6. Secure Boot and Debug Enable State Claims 13
 3.6.1. Secure Boot Enabled (secbootenabled) Claim 13
 3.6.2. Debug Disabled (debugdisabled) Claim 13
 3.6.3. Debug Disabled Since Boot (debugdisabledsincebboot)
 Claim . 13
 3.6.4. Debug Permanent Disable (debugpermanentdisable) Claim 13
 3.6.5. Debug Full Permanent Disable
 (debugfullpermanentdisable) Claim 14
 3.7. Location (loc) Claim 14
 3.7.1. lat (latitude) claim 14
 3.7.2. long (longitude) claim 14
 3.7.3. alt (altitude) claim 14
 3.7.4. acc (accuracy) claim 14
 3.7.5. altacc (altitude accuracy) claim 15
 3.7.6. heading claim . 15
 3.7.7. speed claim . 15
 3.8. ts (timestamp) claim 15
 3.9. age claim . 15
 3.10. uptime claim . 15
 3.11. The submods Claim . 16
 3.11.1. The submod_name Claim 16
 3.11.2. Nested EATs, the eat Claim 16

Mandyam, et al. Expires September 25, 2019 [Page 2]

Internet-Draft EAT March 2019

 4. CBOR Interoperability . 16
 4.1. Integer Encoding (major type 0 and 1) 17
 4.2. String Encoding (major type 2 and 3) 17
 4.3. Map and Array Encoding (major type 4 and 5) 17
 4.4. Date and Time . 17
 4.5. URIs . 17
 4.6. Floating Point . 17
 4.7. Other types . 17
 5. IANA Considerations . 18
 5.1. Reuse of CBOR Web Token (CWT) Claims Registry 18
 5.1.1. Claims Registered by This Document 18
 5.2. EAT CBOR Tag Registration 18
 5.2.1. Tag Registered by This Document 18
 6. Privacy Considerations 19
 6.1. UEID Privacy Considerations 19
 7. Security Considerations 20
 8. References . 20
 8.1. Normative References 20
 8.2. Informative References 21
 Appendix A. Examples . 22
 A.1. Very Simple EAT . 22
 A.2. Example with Submodules, Nesting and Security Levels . . 22
 Authors’ Addresses . 23

1. Introduction

 Remote device attestation is fundamental service that allows a remote
 device such as a mobile phone, an Internet-of-Things (IoT) device, or
 other endpoint to prove itself to a relying party, a server or a
 service. This allows the relying party to know some characteristics
 about the device and decide whether it trusts the device.

 Remote attestation is a fundamental service that can underlie other
 protocols and services that need to know about the trustworthiness of
 the device before proceeding. One good example is biometric
 authentication where the biometric matching is done on the device.
 The relying party needs to know that the device is one that is known
 to do biometric matching correctly. Another example is content
 protection where the relying party wants to know the device will
 protect the data. This generalizes on to corporate enterprises that
 might want to know that a device is trustworthy before allowing
 corporate data to be accessed by it.

 The notion of attestation here is large and may include, but is not
 limited to the following:

 o Proof of the make and model of the device hardware (HW)

Mandyam, et al. Expires September 25, 2019 [Page 3]

Internet-Draft EAT March 2019

 o Proof of the make and model of the device processor, particularly
 for security oriented chips

 o Measurement of the software (SW) running on the device

 o Configuration and state of the device

 o Environmental characteristics of the device such as its GPS
 location

 The required data format should be general purpose and extensible so
 that it can work across many use cases. This is why CBOR (see
 [RFC7049]) was chosen as the format -- it already supports a rich set
 of data types, and is both expressive and extensible. It translates
 well to JSON for good interoperation with web technology. It is
 compact and can work on very small IoT device. The format proposed
 here is small enough that a limited version can be implemented in
 pure hardware gates with no software at all. Moreover, the
 attestation data is defined in the form of claims that is the same as
 CBOR Web Token (CWT, see [RFC8392]). This is the motivation for
 defining the Entity Attestation Token, i.e. EAT.

1.1. Entity Overview

 An "entity" can be any device or device subassembly ("submodule")
 that can generate its own attestation in the form of an EAT. The
 attestation should be cryptographically verifiable by the EAT
 consumer. An EAT at the device-level can be composed of several
 submodule EAT’s. It is assumed that any entity that can create an
 EAT does so by means of a dedicated root-of-trust (RoT).

 Modern devices such as a mobile phone have many different execution
 environments operating with different security levels. For example
 it is common for a mobile phone to have an "apps" environment that
 runs an operating system (OS) that hosts a plethora of downloadable
 apps. It may also have a TEE (Trusted Execution Environment) that is
 distinct, isolated, and hosts security-oriented functionality like
 biometric authentication. Additionally it may have an eSE (embedded
 Secure Element) - a high security chip with defenses against HW
 attacks that can serve as a RoT. This device attestation format
 allows the attested data to be tagged at a security level from which
 it originates. In general, any discrete execution environment that
 has an identifiable security level can be considered an entity.

Mandyam, et al. Expires September 25, 2019 [Page 4]

Internet-Draft EAT March 2019

1.2. Use of CBOR and COSE

 Fundamentally this attestation format is a verifiable data format.
 It is a collection of data items that can be signed by an attestation
 key, hashed, and/or encrypted. As per Section 7 of [RFC8392], the
 verification method is in the CWT using the CBOR Object Signing and
 Encryption (COSE) methodology (see [RFC8152]).

 In addition, the reported attestation data could be determined within
 the secure operating environment or written to it from an external
 and presumably less trusted entity on the device. In either case,
 the source of the reported data must be identifiable by the relying
 party.

 This attestation format is a single relatively simple signed message.
 It is designed to be incorporated into many other protocols and many
 other transports. It is also designed such that other SW and apps
 can add their own data to the message such that it is also attested.

1.3. EAT Operating Models

 At least the following three participants exist in all EAT operating
 models. Some operating models have additional participants.

 The Entity. This is the phone, the IoT device, the sensor, the sub-
 assembly or such that the attestation provides information about.

 The Manufacturer. The company that made the entity. This may be a
 chip vendor, a circuit board module vendor or a vendor of finished
 consumer products.

 The Relying Party. The server, service or company that makes use of
 the information in the EAT about the entity.

 In all operating models, the manufacturer provisions some secret
 attestation key material (AKM) into the entity during manufacturing.
 This might be during the manufacturer of a chip at a fabrication
 facility (fab) or during final assembly of a consumer product or any
 time in between. This attestation key material is used for signing
 EATs.

 In all operating models, hardware and/or software on the entity
 create an EAT of the format described in this document. The EAT is
 always signed by the attestation key material provisioned by the
 manufacturer.

 In all operating models, the relying party must end up knowing that
 the signature on the EAT is valid and consistent with data from

Mandyam, et al. Expires September 25, 2019 [Page 5]

Internet-Draft EAT March 2019

 claims in the EAT. This can happen in many different ways. Here are
 some examples.

 o The EAT is transmitted to the relying party. The relying party
 gets corresponding key material (e.g. a root certificate) from the
 manufacturer. The relying party performs the verification.

 o The EAT is transmitted to the relying party. The relying party
 transmits the EAT to a verification service offered by the
 manufacturer. The server returns the validated claims.

 o The EAT is transmitted directly to a verification service, perhaps
 operated by the manufacturer or perhaps by another party. It
 verifies the EAT and makes the validated claims available to the
 relying party. It may even modify the claims in some way and re-
 sign the EAT (with a different signing key).

 This standard supports all these operating models and does not prefer
 one over the other. It is important to support this variety of
 operating models to generally facilitate deployment and to allow for
 some special scenarios. One special scenario has a validation
 service that is monetized, most likely by the manufacturer. In
 another, a privacy proxy service processes the EAT before it is
 transmitted to the relying party. In yet another, symmetric key
 material is used for signing. In this case the manufacturer should
 perform the verification, because any release of the key material
 would enable a participant other than the entity to create valid
 signed EATs.

1.4. What is Not Standardized

1.4.1. Transmission Protocol

 EATs may be transmitted by any protocol. For example, they might be
 added in extension fields of other protocols, bundled into an HTTP
 header, or just transmitted as files. This flexibility is
 intentional to allow broader adoption. This flexibility is possible
 because EAT’s are self-secured with signing (and possibly
 additionally with encryption and anti-replay). The transmission
 protocol is not required to fulfill any additional security
 requirements.

 For certain devices, a direct connection may not exist between the
 EAT-producing device and the Relying Party. In such cases, the EAT
 should be protected against malicious access. The use of COSE allows
 for signing and encryption of the EAT. Therefore even if the EAT is
 conveyed through intermediaries between the device and Relying Party,

Mandyam, et al. Expires September 25, 2019 [Page 6]

Internet-Draft EAT March 2019

 such intermediaries cannot easily modify the EAT payload or alter the
 signature.

1.4.2. Signing Scheme

 The term "signing scheme" is used to refer to the system that
 includes end-end process of establishing signing attestation key
 material in the entity, signing the EAT, and verifying it. This
 might involve key IDs and X.509 certificate chains or something
 similar but different. The term "signing algorithm" refers just to
 the algorithm ID in the COSE signing structure. No particular
 signing algorithm or signing scheme is required by this standard.

 There are three main implementation issues driving this. First,
 secure non-volatile storage space in the entity for the attestation
 key material may be highly limited, perhaps to only a few hundred
 bits, on some small IoT chips. Second, the factory cost of
 provisioning key material in each chip or device may be high, with
 even millisecond delays adding to the cost of a chip. Third,
 privacy-preserving signing schemes like ECDAA (Elliptic Curve Direct
 Anonymous Attestation) are complex and not suitable for all use
 cases.

 Eventually some form of standardization of the signing scheme may be
 required. This might come in the form of another standard that adds
 to this document, or when there is clear convergence on a small
 number of signing schemes this standard can be updated.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document reuses terminology from JWT [RFC7519], COSE [RFC8152],
 and CWT [RFC8392].

 StringOrURI. The "StringOrURI" term in this specification has the
 same meaning and processing rules as the JWT "StringOrURI" term
 defined in Section 2 of [RFC7519], except that it is represented
 as a CBOR text string instead of a JSON text string.

 NumericDate. The "NumericDate" term in this specification has the
 same meaning and processing rules as the JWT "NumericDate" term
 defined in Section 2 of [RFC7519], except that it is represented
 as a CBOR numeric date (from Section 2.4.1 of [RFC7049]) instead

Mandyam, et al. Expires September 25, 2019 [Page 7]

Internet-Draft EAT March 2019

 of a JSON number. The encoding is modified so that the leading
 tag 1 (epoch-based date/time) MUST be omitted.

 Claim Name. The human-readable name used to identify a claim.

 Claim Key. The CBOR map key used to identify a claim.

 Claim Value. The CBOR map value representing the value of the claim.

 CWT Claims Set. The CBOR map that contains the claims conveyed by
 the CWT.

 FloatOrNumber. The "FloatOrNumber" term in this specification is the
 type of a claim that is either a CBOR positive integer, negative
 integer or floating point number.

 Attestation Key Material (AKM). The key material used to sign the
 EAT token. If it is done symmetrically with HMAC, then this is a
 simple symmetric key. If it is done with ECC, such as an IEEE
 DevID [IDevID], then this is the private part of the EC key pair.
 If ECDAA is used, (e.g., as used by Enhanced Privacy ID, i.e.
 EPID) then it is the key material needed for ECDAA.

3. The Claims

3.1. Universal Entity ID (UEID) Claim

 UEID’s identify individual manufactured entities / devices such as a
 mobile phone, a water meter, a Bluetooth speaker or a networked
 security camera. It may identify the entire device or a submodule or
 subsystem. It does not identify types, models or classes of devices.
 It is akin to a serial number, though it does not have to be
 sequential.

 It is identified by Claim Key X (X is TBD).

 UEID’s must be universally and globally unique across manufacturers
 and countries. UEIDs must also be unique across protocols and
 systems, as tokens are intended to be embedded in many different
 protocols and systems. No two products anywhere, even in completely
 different industries made by two different manufacturers in two
 different countries. should have the same UEID (if they are not
 global and universal in this way then relying parties receiving them
 will have to track other characteristics of the device to keep
 devices distinct between manufacturers).

 The UEID should be permanent. It should never change for a given
 device / entity. In addition, it should not be reprogrammable.

Mandyam, et al. Expires September 25, 2019 [Page 8]

Internet-Draft EAT March 2019

 UEID’s are binary byte-strings (resulting in a smaller size than text
 strings). When handled in text-based protocols, they should be
 base-64 encoded.

 UEID’s are variable length with a maximum size of 33 bytes (1 type
 byte and 256 bits). A receivers of a token with UEIDs may reject the
 token if a UEID is larger than 33 bytes.

 UEID’s are not designed for direct use by humans (e.g., printing on
 the case of a device), so no textual representation is defined.

 A UEID is a byte string. From the consumer’s view (the rely party)
 it is opaque with no bytes having any special meaning.

 When the entity constructs the UEID, the first byte is a type and the
 following bytes the ID for that type. Several types are allowed to
 accommodate different industries and different manufacturing
 processes and to give options to avoid paying fees for certain types
 of manufacturer registrations.

Mandyam, et al. Expires September 25, 2019 [Page 9]

Internet-Draft EAT March 2019

 +------+--------+---+
 | Type | Type | Specification |
 | Byte | Name | |
 +------+--------+---+
0x01	GUID	This is a 128 to 256 bit random number generated
		once and stored in the device. The GUID may be
		constructed from various identifiers on the
		device using a hash function or it may be just
		the raw random number.
0x02	IEEE	This makes use of the IEEE company identification
	EUI	registry. An EUI is made up of an OUI and OUI-36
		or a CID, different registered company
		identifiers, and some unique per-device
		identifier. EUIs are often the same as or similar
		to MAC addresses. (Note that while devices with
		multiple network interfaces may have multiple MAC
		addresses, there is only one UEID for a device)
		TODO: normative references to IEEE.
0x03	IMEI	This is a 14-digit identifier consisting of an 8
		digit Type Allocation Code and a six digit serial
		number allocated by the manufacturer, which SHALL
		be encoded as a binary integer over 48 bits. The
		IMEI value encoded SHALL NOT include Luhn
		checksum or SVN information.
0x04	EUI-48	This is a 48-bit identifier formed by
		concatenating the 24-bit OUI with a 24-bit
		identifier assigned by the organisation that
		purchased the OUI.
0x05	EUI-60	This is a 60-bit identifier formed by
		concatenating the 24-bit OUI with a 36-bit
		identifier assigned by the organisation that
		purchased the OUI.
0x06	EUI-64	This is a 64-bit identifier formed by
		concatenating the 24-bit OUI with a 40-bit
		identifier assigned by the organisation that
		purchased the OUI.
 +------+--------+---+

 Table 1: UEID Composition Types

 The consumer (the Relying Party) of a UEID should treat a UEID as a
 completely opaque string of bytes and not make any use of its
 internal structure. For example they should not use the OUI part of
 a type 0x02 UEID to identify the manufacturer of the device. Instead
 they should use the OUI claim that is defined elsewhere. The reasons
 for this are:

 o UEIDs types may vary freely from one manufacturer to the next.

Mandyam, et al. Expires September 25, 2019 [Page 10]

Internet-Draft EAT March 2019

 o New types of UEIDs may be created. For example a type 0x04 UEID
 may be created based on some other manufacturer registration
 scheme.

 o Device manufacturers are allowed to change from one type of UEID
 to another anytime they want. For example they may find they can
 optimize their manufacturing by switching from type 0x01 to type
 0x02 or vice versa. The main requirement on the manufacturer is
 that UEIDs be universally unique.

3.2. Origination (origination) Claims

 This claim describes the parts of the device or entity that are
 creating the EAT. Often it will be tied back to the device or chip
 manufacturer. The following table gives some examples:

 +-------------------+---+
 | Name | Description |
 +-------------------+---+
Acme-TEE	The EATs are generated in the TEE authored
	and configured by "Acme"
Acme-TPM	The EATs are generated in a TPM manufactured
	by "Acme"
Acme-Linux-Kernel	The EATs are generated in a Linux kernel
	configured and shipped by "Acme"
Acme-TA	The EATs are generated in a Trusted
	Application (TA) authored by "Acme"
 +-------------------+---+

 The claim is represented by Claim Key X+1. It is type StringOrURI.

 TODO: consider a more structure approach where the name and the URI
 and other are in separate fields.

 TODO: This needs refinement. It is somewhat parallel to issuer claim
 in CWT in that it describes the authority that created the token.

3.3. OEM identification by IEEE OUI

 This claim identifies a device OEM by the IEEE OUI. Reference TBD.
 It is a byte string representing the OUI in binary form in network
 byte order (TODO: confirm details).

 Companies that have more than one IEEE OUI registered with IEEE
 should pick one and prefer that for all their devices.

 Note that the OUI is in common use as a part of MAC Address. This
 claim is only the first bits of the MAC address that identify the

Mandyam, et al. Expires September 25, 2019 [Page 11]

Internet-Draft EAT March 2019

 manufacturer. The IEEE maintains a registry for these in which many
 companies participate. This claim is represented by Claim Key TBD.

3.4. Security Level (seclevel) Claim

 EATs have a claim that roughly characterizes the device / entities
 ability to defend against attacks aimed at capturing the signing key,
 forging claims and at forging EATs. This is done by roughly defining
 four security levels as described below. This is similar to the
 security levels defined in the Metadata Service definied by the Fast
 Identity Online (FIDO) Alliance (TODO: reference).

 These claims describe security environment and countermeasures
 available on the end-entity / client device where the attestation key
 reside and the claims originate.

 This claim is identified by Claim Key X+2. The value is an integer
 between 1 and 4 as defined below.

 1 - Unrestricted There is some expectation that implementor will
 protect the attestation signing keys at this level. Otherwise the
 EAT provides no meaningful security assurances.

 2- Restricted Entities at this level should not be general-purpose
 operating environments that host features such as app download
 systems, web browsers and complex productivity applications. It
 is akin to the Secure Restricted level (see below) without the
 security orientation. Examples include a WiFi subsystem, an IoT
 camera, or sensor device.

 3 - Secure Restricted Entities at this level must meet the critera
 defined by FIDO Allowed Restricted Operating Environments (TODO:
 reference). Examples include TEE’s and schemes using
 virtualization-based security. Like the FIDO security goal,
 security at this level is aimed at defending well against large-
 scale network / remote attacks against the device.

 4 - Hardware Entities at this level must include substantial defense
 against physical or electrical attacks against the device itself.
 It is assumed any potential attacker has captured the device and
 can disassemble it. Example include TPMs and Secure Elements.

 This claim is not intended as a replacement for a proper end-device
 security certification schemes such as those based on FIPS (TODO:
 reference) or those based on Common Criteria (TODO: reference). The
 claim made here is solely a self-claim made by the Entity Originator.

Mandyam, et al. Expires September 25, 2019 [Page 12]

Internet-Draft EAT March 2019

3.5. Nonce (nonce) Claim

 The "nonce" (Nonce) claim represents a random value that can be used
 to avoid replay attacks. This would be ideally generated by the CWT
 consumer. This value is intended to be a CWT companion claim to the
 existing JWT claim **_IANAJWT_ (TODO: fix this reference). The nonce
 claim is identified by Claim Key X+3.

3.6. Secure Boot and Debug Enable State Claims

3.6.1. Secure Boot Enabled (secbootenabled) Claim

 The "secbootenabled" (Secure Boot Enabled) claim represents a boolean
 value that indicates whether secure boot is enabled either for an
 entire device or an individual submodule. If it appears at the
 device level, then this means that secure boot is enabled for all
 submodules. Secure boot enablement allows a secure boot loader to
 authenticate software running either in a device or a submodule prior
 allowing execution. This claim is identified by Claim Key X+4.

3.6.2. Debug Disabled (debugdisabled) Claim

 The "debugdisabled" (Debug Disabled) claim represents a boolean value
 that indicates whether debug capabilities are disabled for an entity
 (i.e. value of ’true’). Debug disablement is considered a
 prerequisite before an entity is considered operational. This claim
 is identified by Claim Key X+5.

3.6.3. Debug Disabled Since Boot (debugdisabledsincebboot) Claim

 The "debugdisabledsinceboot" (Debug Disabled Since Boot) claim
 represents a boolean value that indicates whether debug capabilities
 for the entity were not disabled in any way since boot (i.e. value of
 ’true’). This claim is identified by Claim Key X+6.

3.6.4. Debug Permanent Disable (debugpermanentdisable) Claim

 The "debugpermanentdisable" (Debug Permanent Disable) claim
 represents a boolean value that indicates whether debug capabilities
 for the entity are permanently disabled (i.e. value of ’true’). This
 value can be set to ’true’ also if only the manufacturer is allowed
 to enabled debug, but the end user is not. This claim is identified
 by Claim Key X+7.

Mandyam, et al. Expires September 25, 2019 [Page 13]

Internet-Draft EAT March 2019

3.6.5. Debug Full Permanent Disable (debugfullpermanentdisable) Claim

 The "debugfullpermanentdisable" (Debug Full Permanent Disable) claim
 represents a boolean value that indicates whether debug capabilities
 for the entity are permanently disabled (i.e. value of ’true’). This
 value can only be set to ’true’ if no party can enable debug
 capabilities for the entity. Often this is implemented by blowing a
 fuse on a chip as fuses cannot be restored once blown. This claim is
 identified by Claim Key X+8.

3.7. Location (loc) Claim

 The "loc" (location) claim is a CBOR-formatted object that describes
 the location of the device entity from which the attestation
 originates. It is identified by Claim Key X+10. It is comprised of
 an array of additional subclaims that represent the actual location
 coordinates (latitude, longitude and altitude). The location
 coordinate claims are consistent with the WGS84 coordinate system
 [WGS84]. In addition, a subclaim providing the estimated accuracy of
 the location measurement is defined.

3.7.1. lat (latitude) claim

 The "lat" (latitude) claim contains the value of the device location
 corresponding to its latitude coordinate. It is of data type
 FloatOrNumber and identified by Claim Key X+11.

3.7.2. long (longitude) claim

 The "long" (longitude) claim contains the value of the device
 location corresponding to its longitude coordinate. It is of data
 type FloatOrNumber and identified by Claim Key X+12.

3.7.3. alt (altitude) claim

 The "alt" (altitude) claim contains the value of the device location
 corresponding to its altitude coordinate (if available). It is of
 data type FloatOrNumber and identified by Claim Key X+13.

3.7.4. acc (accuracy) claim

 The "acc" (accuracy) claim contains a value that describes the
 location accuracy. It is non-negative and expressed in meters. It
 is of data type FloatOrNumber and identified by Claim Key X+14.

Mandyam, et al. Expires September 25, 2019 [Page 14]

Internet-Draft EAT March 2019

3.7.5. altacc (altitude accuracy) claim

 The "altacc" (altitude accuracy) claim contains a value that
 describes the altitude accuracy. It is non-negative and expressed in
 meters. It is of data type FloatOrNumber and identified by Claim Key
 X+15.

3.7.6. heading claim

 The "heading" claim contains a value that describes direction of
 motion for the entity. Its value is specified in degrees, between 0
 and 360. It is of data type FloatOrNumber and identified by Claim
 Key X+16.

3.7.7. speed claim

 The "speed" claim contains a value that describes the velocity of the
 entity in the horizontal direction. Its value is specified in
 meters/second and must be non-negative. It is of data type
 FloatOrNumber and identified by Claim Key X+17.

3.8. ts (timestamp) claim

 The "ts" (timestamp) claim contains a timestamp derived using the
 same time reference as is used to generate an "iat" claim (see
 Section 3.1.6 of [RFC8392]). It is of the same type as "iat"
 (integer or floating-point), and is identified by Claim Key X+18. It
 is meant to designate the time at which a measurement was taken, when
 a location was obtained, or when a token was actually transmitted.
 The timestamp would be included as a subclaim under the "submod" or
 "loc" claims (in addition to the existing respective subclaims), or
 at the device level.

3.9. age claim

 The "age" claim contains a value that represents the number of
 seconds that have elapsed since the token was created, measurement
 was made, or location was obtained. Typical attestable values are
 sent as soon as they are obtained. However in the case that such a
 value is buffered and sent at a later time and a sufficiently
 accurate time reference is unavailable for creation of a timestamp,
 then the age claim is provided. It is identified by Claim Key X+19.

3.10. uptime claim

 The "uptime" claim contains a value that represents the number of
 seconds that have elapsed since the entity or submod was last booted.
 It is identified by Claim Key X+20.

Mandyam, et al. Expires September 25, 2019 [Page 15]

Internet-Draft EAT March 2019

3.11. The submods Claim

 Some devices are complex, having many subsystems or submodules. A
 mobile phone is a good example. It may have several connectivity
 submodules for communications (e.g., WiFi and cellular). It may have
 sub systems for low-power audio and video playback. It may have one
 or more security-oriented subsystems like a TEE or a Secure Element.

 The claims for each these can be grouped together in a submodule.

 Specifically, the "submods" claim is an array. Each item in the
 array is a CBOR map containing all the claims for a particular
 submodule. It is identified by Claim Key X+22.

 The security level of the submod is assumed to be at the same level
 as the main entity unless there is a security level claim in that
 submodule indicating otherwise. The security level of a submodule
 can never be higher (more secure) than the security level of the EAT
 it is a part of.

3.11.1. The submod_name Claim

 Each submodule should have a submod_name claim that is descriptive
 name. This name should be the CBOR txt type.

3.11.2. Nested EATs, the eat Claim

 It is allowed for one EAT to be embedded in another. This is for
 complex devices that have more than one subsystem capable of
 generating an EAT. Typically one will be the device-wide EAT that is
 low to medium security and another from a Secure Element or similar
 that is high security.

 The contents of the "eat" claim must be a fully signed, optionally
 encrypted, EAT token. It is identified by Claim Key X+23.

4. CBOR Interoperability

 EAT is a one-way protocol. It only defines a single message that
 goes from the entity to the server. The entity implementation will
 often be in a contained environment with little RAM and the server
 will usually not be. The following requirements for interoperability
 take that into account. The entity can generally use whatever
 encoding it wants. The server is required to support just about
 every encoding.

 Canonical CBOR encoding is explicitly NOT required as it would place
 an unnecessary burden on the entity implementation.

Mandyam, et al. Expires September 25, 2019 [Page 16]

Internet-Draft EAT March 2019

4.1. Integer Encoding (major type 0 and 1)

 The entity may use any integer encoding allowed by CBOR. The server
 MUST accept all integer encodings allowed by CBOR.

4.2. String Encoding (major type 2 and 3)

 The entity can use any string encoding allowed by CBOR including
 indefinite lengths. It may also encode the lengths of strings in any
 way allowed by CBOR. The server must accept all string encodings.

 Major type 2, bstr, SHOULD be have tag 21, 22 or 23 to indicate
 conversion to base64 or such when converting to JSON.

4.3. Map and Array Encoding (major type 4 and 5)

 The entity can use any array or map encoding allowed by CBOR
 including indefinite lengths. Sorting of map keys is not required.
 Duplicate map keys are not allowed. The server must accept all array
 and map encodings. The server may reject maps with duplicate map
 keys.

4.4. Date and Time

 The entity should send dates as tag 1 encoded as 64-bit or 32-bit
 integers. The entity may not send floating point dates. The server
 must support tag 1 epoch based dates encoded as 64-bit or 32-bit
 integers.

 The entity may send tag 0 dates, however tag 1 is preferred. The
 server must support tag 0 UTC dates.

4.5. URIs

 URIs should be encoded as text strings and marked with tag 32.

4.6. Floating Point

 Encoding data in floating point is to be used only if necessary.
 Location coordinates are always in floating point. The server must
 support decoding of all types of floating point.

4.7. Other types

 Use of Other types like bignums, regular expressions and so SHOULD
 NOT be used. The server MAY support them, but is not required to.
 Use of these tags is

Mandyam, et al. Expires September 25, 2019 [Page 17]

Internet-Draft EAT March 2019

5. IANA Considerations

5.1. Reuse of CBOR Web Token (CWT) Claims Registry

 Claims defined for EAT are compatible with those of CWT so the CWT
 Claims Registry is re used. New new IANA registry is created. All
 EAT claims should be registered in the CWT Claims Registry.

5.1.1. Claims Registered by This Document

 o Claim Name: UEID

 o Claim Description: The Universal Entity ID

 o JWT Claim Name: N/A

 o Claim Key: X

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 TODO: add the rest of the claims in here

5.2. EAT CBOR Tag Registration

 How an EAT consumer determines whether received CBOR-formatted data
 actually represents a valid EAT is application-dependent, much like a
 CWT. For instance, a specific MIME type associated with the EAT such
 as "application/eat" could be sufficient for identification of the
 EAT. Note however that EAT’s can include other EAT’s (e.g. a device
 EAT comprised of several submodule EAT’s). In this case, a CBOR tag
 dedicated to the EAT will be required at least for the submodule
 EAT’s and the tag must be a valid CBOR tag. In other words - the EAT
 CBOR tag can optionally prefix a device-level EAT, but a EAT CBOR tag
 must always prefix a submodule EAT. The proposed EAT CBOR tag is 71.

5.2.1. Tag Registered by This Document

 o CBOR Tag: 71

 o Data Item: Entity Attestation Token (EAT)

 o Semantics: Entity Attestation Token (CWT), as defined in
 this_doc

Mandyam, et al. Expires September 25, 2019 [Page 18]

Internet-Draft EAT March 2019

 o Reference: *this_doc*

 o Point of Contact: Giridhar Mandyam, mandyam@qti.qualcomm.com

6. Privacy Considerations

 Certain EAT claims can be used to track the owner of an entity and
 therefore implementations should consider providing privacy-
 preserving options dependent on the intended usage of the EAT.
 Examples would include suppression of location claims for EAT’s
 provided to unauthenticated consumers.

6.1. UEID Privacy Considerations

 A UEID is usually not privacy preserving. Any set of relying parties
 that receives tokens that happen to be from a single device will be
 able to know the tokens are all from the same device and be able to
 track the device. Thus, in many usage situations ueid violates
 governmental privacy regulation. In other usage situations UEID will
 not be allowed for certain products like browsers that give privacy
 for the end user. it will often be the case that tokens will not
 have a UEID for these reasons.

 There are several strategies that can be used to still be able to put
 UEID’s in tokens:

 o The device obtains explicit permission from the user of the device
 to use the UEID. This may be through a prompt. It may also be
 through a license agreement. For example, agreements for some
 online banking and brokerage services might already cover use of a
 UEID.

 o The UEID is used only in a particular context or particular use
 case. It is used only by one relying party.

 o The device authenticates the relying party and generates a derived
 UEID just for that particular relying party. For example, the
 relying party could prove their identity cryptographically to the
 device, then the device generates a UEID just for that relying
 party by hashing a proofed relying party ID with the main device
 UEID.

 Note that some of these privacy preservation strategies result in
 multiple UEIDs per device. Each UEID is used in a different context,
 use case or system on the device. However, from the view of the
 relying party, there is just one UEID and it is still globally
 universal across manufacturers.

Mandyam, et al. Expires September 25, 2019 [Page 19]

Internet-Draft EAT March 2019

7. Security Considerations

 TODO: Perhaps this can be the same as CWT / COSE, but not sure yet
 because it involves so much entity / device security that those do
 not.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [TIME_T] The Open Group Base Specifications, "Vol. 1: Base
 Definitions, Issue 7", Section 4.15 ’Seconds Since the
 Epoch’, IEEE Std 1003.1, 2013 Edition, 2013,
 <http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
 V1_chap04.html#tag_04_15>.

 [WGS84] National Imagery and Mapping Agency, "National Imagery and
 Mapping Agency Technical Report 8350.2, Third Edition",
 2000, <http://earth-
 info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf>.

Mandyam, et al. Expires September 25, 2019 [Page 20]

Internet-Draft EAT March 2019

8.2. Informative References

 [ASN.1] International Telecommunication Union, "Information
 Technology -- ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, 1994.

 [IDevID] "IEEE Standard, "IEEE 802.1AR Secure Device Identifier"",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [Webauthn]
 Worldwide Web Consortium, "Web Authentication: A Web API
 for accessing scoped credentials", 2016.

Mandyam, et al. Expires September 25, 2019 [Page 21]

Internet-Draft EAT March 2019

Appendix A. Examples

A.1. Very Simple EAT

 This is shown in CBOR diagnostic form. Only the payload signed by
 COSE is shown.

{
 / nonce / 11:h’948f8860d13a463e8e’,
 / UEID / 8:h’0198f50a4ff6c05861c8860d13a638ea4fe2f’,
 / secbootenabled / 13:true,
 / debugpermanentdisable / 15:true,
 / ts / 21:1526542894,
}

A.2. Example with Submodules, Nesting and Security Levels

{
 / nonce / 11:h’948f8860d13a463e8e’,
 / UEID / 8:h’0198f50a4ff6c05861c8860d13a638ea4fe2f’,
 / secbootenabled / 13:true,
 / debugpermanentdisable / 15:true,
 / ts / 21:1526542894,
 / seclevel / 10:3, / secure restriced OS /

 / submods / 30:
 [
 / 1st submod, an Android Application / {
 / submod_name / 30:’Android App "Foo"’,
 / seclevel / 10:1, / unrestricted /
 / app data / -70000:’text string’
 },
 / 2nd submod, A nested EAT from a secure element / {
 / submod_name / 30:’Secure Element EAT’,
 / eat / 31:71(18(
 / an embedded EAT / [/...COSE_Sign1 bytes with payload.../]
))
 }
 / 3rd submod, information about Linux Android / {
 / submod_name/ 30:’Linux Android’,
 / seclevel / 10:1, / unrestricted /
 / custom - release / -80000:’8.0.0’,
 / custom - version / -80001:’4.9.51+’
 }
]
}

Mandyam, et al. Expires September 25, 2019 [Page 22]

Internet-Draft EAT March 2019

Authors’ Addresses

 Giridhar Mandyam
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, California
 USA

 Phone: +1 858 651 7200
 EMail: mandyam@qti.qualcomm.com

 Laurence Lundblade
 Security Theory LLC

 EMail: lgl@island-resort.com

 Miguel Ballesteros
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, California
 USA

 Phone: +1 858 651 4299
 EMail: mballest@qti.qualcomm.com

 Jeremy O’Donoghue
 Qualcomm Technologies Inc.
 279 Farnborough Road
 Farnborough GU14 7LS
 United Kingdom

 Phone: +44 1252 363189
 EMail: jodonogh@qti.qualcomm.com

Mandyam, et al. Expires September 25, 2019 [Page 23]

