Optimizing BFD Authentication
draft-mahesh-bfd-authentication-00

Abstract

This document describes an optimization to BFD Authentication as described in Section 6.7 of BFD [RFC5880].

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 17, 2015.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
1. Introduction

Authenticating every BFD [RFC5880] packet with a Simple Password, or with a MD5 Message-Digest Algorithm [RFC1321] and Secure Hash Algorithm (SHA-1) algorithms is computationally intensive process, making it difficult if not impossible to authenticate every packet – particularly at faster intervals. In addition, the recent escalating series of attacks on MD5 and SHA-1 [SHA-1-attack1] [SHA-1-attack2] raise concerns about their remaining useful lifetime as outlined in Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithm [RFC6151] and Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithm [RFC6194]. If replaced by stronger algorithms, the computational requirement of a stronger algorithms will make the task of authenticating every packet even more difficult to achieve.

This document proposes that only BFD frames that signal a state change in BFD be authenticated. The rest of the frames can be transmitted and received without authentication enabled. Bulk of the frames that are transmitted and received have no state change associated with them. Limiting authentication to frames that affect a BFD session state allows for more sessions to be supported for authentication. Moreover, most BFD frames that signal a state change are generally transmitted at a slower interval of 1s leaving enough time to compute the hash.

Section 2 talks about the changes to authentication mode as described in BFD [RFC5880].
2. Authentication Mode

The cryptographic authentication mechanisms specified in BFD [RFC5880] describes enabling and disabling of authentication as a one-time operation. As a security precaution, it mentions that authentication state be allowed to change at most once. Once turned on, the document talks about every packet being enabled with Authentication bit and payload. In addition, it states that an implementation SHOULD NOT allow the authentication state to be changed based on the receipt of a BFD Control packet.

This document proposes that the authentication mode be modified to be enabled on demand. Instead of every packet being authenticated, the two ends can decide which frames need to be authenticated, and authenticate only those frames. For example, the two ends can decide that BFD frames that indicate a state change should be authenticated and enable authentication on those frames only. If the two ends have not previously negotiated which frames they will transmit or receive with authentication enabled, then the BFD session will fail to come up, because at least one end will expect every frame to be authenticated.

3. IANA Considerations

This document makes no request of IANA.

Note to RFC Editor: this section may be removed on publication as an RFC.

4. Security Considerations

The approach described in this document enhances the ability to authentication a BFD session by taking away the onerous requirement that every frame be authenticated. By authenticating frames that affect the state of the session, the security of the BFD session is maintained. As such this document does not change the security considerations for BFD.

5. References

5.1. Normative References

[FIPS-180-2]
5.2. Informative References

Authors’ Addresses

Mahesh Jethanandani
Ciena Corporation
3939 North 1st Street
San Jose, CA 95134
USA

Phone: +1 (408) 904-2160
Email: mjethanandani@gmail.com
Ashesh Mishra
Ciena Corporation
3939 North 1st Street
San Jose, CA 95134
USA

Phone: +1 (408) 904-2114
Email: mishra.ashesh@gmail.com

Ankur Saxena
Ciena Corporation
3939 North 1st Street
San Jose, CA 95134
USA

Email: ankurpsaxena@gmail.com

Manav Bhatia
Ionos Networks
Bangalore
India

Email: manav@ionosnetworks.com