Distributed mobility management deployment scenario and architecture
draft-liu-dmm-deployment-scenario-02

Abstract

This document discusses the deployment scenario of distributed
mobility management. The purpose of this document is to trigger the
discussion in the group to understand the DMM deployment scenario and
consideration from the operator’s perspective.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 5, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Conventions used in this document 3
 2.1. Terminology .. 3
3. Deployment Scenario and Model of DMM 4
4. Network Function Virtualization 4
 4.1. Network Function Virtualization Scenario 4
 4.2. Control and data plane separation 5
 4.3. Mobility management architecture 6
5. SIPTO deployment scenario 7
6. Conclusion .. 7
7. Security Considerations 7
8. IANA Considerations 7
9. Contributors ... 8
10. Acknowledgements 8
11. Normative References 8
Authors’ Addresses 8
1. Introduction

Distributed mobility management aims at solving the centralized mobility anchor problems of the traditional mobility management protocol. The benefit of DMM solution is that the data plane traffic does not need to traverse the centralized anchoring point. This document discusses the potential deployment scenario of DMM. The purpose of this document is to help the group to reach consensus regarding the deployment model of DMM and then develop the DMM solution based on the deployment model.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2.1. Terminology

All the general mobility-related terms and their acronyms used in this document are to be interpreted as defined in the Mobile IPv6 base specification [RFC6275], in the Proxy mobile IPv6 specification [RFC5213], and in Mobility Related Terminology [RFC3753]. These terms include the following: mobile node (MN), correspondent node (CN), and home agent (HA) as per [RFC6275]; local mobility anchor (LMA) and mobile access gateway (MAG) as per [RFC5213], and context as per [RFC3753].

In addition, this draft introduces the following terms.

Location information (LI) function

is the logical function that manages and keeps track of the internetwork location information of a mobile node which may change its IP address as it moves. The information may associate with each session identifier, the IP routing address of the MN, or of a node that can forward packets destined to the MN.

Forwarding management (FM)

is the logical function that intercepts packets to/from the IP address/prefix delegated to a mobile node and forwards them, based on internetwork location information, either directly towards their destination or to some other network element that knows how to forward the packets to their ultimate destination. With data plane and control plane separation, the forwarding management may be separated into a data-plane forwarding management (FM-DP).
3. Deployment Scenario and Model of DMM

As discussed in the DMM requirement document, the centralized mobility management has several drawbacks. The main problem of the centralized mobility management protocols is that all the traffic need to anchor to a centralized anchor point. This approach does not cause any problem in current mobile network deployment but in the scenario that will be discussed later in this document, centralized mobility management protocols will have many drawbacks and it is believed that DMM is more suitable in that scenario.

The main deployment scenario discussed in this document is divided into two types. The first one is the network function virtualization scenario. In this scenario, the mobile core network’s control plane function is centralized in the mobile cloud. Apparently, deploying the data plane function also in the same centralized mobile cloud is not optimized from the traffic forwarding’s perspective. Another deployment scenario is the SIPTO/LIPA scenario which is discussed in 3GPP. In this scenario, DMM can provide optimized traffic offloading solution.

4. Network Function Virtualization

This section discusses network function virtualization scenario, the associated control – data plane separation and the possible mobility management functions to support this scenario.

4.1. Network Function Virtualization Scenario

The network function virtualization scenario is shown in Figure 1.
4.2. Control and data plane separation

The cloud based mobile core network architecture implies separation of the control and data planes. The control plane is located in the cloud and the data plane should be distributed. Otherwise, all the data traffic will go through the cloud which is obviously not optimized for the mobile node to mobile node communication.

For the mobile node to Internet communication, the Internet access point is normally located in the metro IP transit network. In this case, the mobile node to Internet traffic should also go through the Internet access point instead of the mobile core in the cloud.
However, in some deployment scenario, the operator may choose to put the mobile core cloud in the convergence layer of IP metro network. In this case, the Internet access point may co-located with the mobile core cloud. In this case, the mobile node to Internet traffic may go through the mobile core cloud.

4.3. Mobility management architecture

Since the control plane and data plane are separated and the data plane is distributed, traditional mobility management cannot meet this requirement.

Distributed mobility management or SDN based mobility management may be used in this architecture to meet the traffic forwarding requirement (e.g. MN to MN and MN to Internet traffic should not go through from the mobile core cloud.).

The traditional mobility management functions is not separating the data plane from the control plane. Basic mobility management functions include location information (LI) function and Forwarding management (FM). The former is a control plane function. The latter can be separated into data plane forwarding management (FM-DP) and control plane forwarding management (FM-CP).

The data plane function is FM-DP, while the control plane functions include FM-CP and LI. Then the control plane functions in the cloud-based mobile core includes LI and FM-CP. They are of cause other functions in the control plane such as policy function. The distributed data plane may have multiple instances of FM-DP in the network.

```
core network controller
<table>
<thead>
<tr>
<th>LI, FM-CP</th>
</tr>
</thead>
</table>

  | FM-DP |   | FM-DP |   | FM-DP |
  |-------|   |-------|   |-------|

Figure 2: Mobility management functions with data plane - control plane separation under one controller
```

When the control of the access network is separate from that of the core, there will be separate controllers as shown in Figure 3.
5. SIPTO deployment scenario

Another deployment scenario is the SIPTO scenario which is discussed in 3GPP. DMM is believed to be able to provide dynamic anchoring. It allows the mobile node to have several anchoring points and to change the anchoring point according to the application requirement. In SIPTO scenario, the gateway function is located very near to the access network and to the user. If using current centralized mobility management, the traffic will need to tunnel back to the previous anchor point even when the mobile node has changed the point of attachment to a new one.

6. Conclusion

This document discusses the deployment scenario of DMM. Two types of deployment scenario is discussed in this document. Further types of deployment scenario can be added to this document according to the progress of the group’s discussion.

7. Security Considerations

N/A.

8. IANA Considerations

N/A.

9. Contributors
10. Acknowledgements

11. Normative References

[IEEE-802.11.2012] "

Authors’ Addresses

Dapeng Liu
China Mobile
No.32 Xuanwumen West Street
Beijing 100053
China

Email: liudapeng@chinamobile.com

H Anthony Chan
Huawei Technologies
5340 Legacy Dr. Building 3
Plano, TX 75024
USA

Email: h.a.chan@ieee.org