

Active Queue Management Wolfram Lautenschlaeger
and Packet Scheduling (aqm) Alcatel-Lucent
Internet Draft Bell Labs
Intended status:

Expires: January 2015 July 4, 2014

Lautenschlaeger Expires January 4, 2015 [Page 1]

Global Synchronization Protection for Packet Queues

draft-lauten-aqm-gsp-01.txt

Abstract

The congestion avoidance processes of several transmission capacity
sharing TCP flows tend to be synchronized among each other, so that
the rate variations of the individual flows do not compensate. In
contrary, they accumulate into large variations of the whole
aggregate. The effect is known as global synchronization. Large
queuing buffer demand and large latency and jitter are the
consequences. Global Synchronization Protection (GSP) is an extension
of regular tail drop packet queuing schemes that prevents global
synchronization. For large traffic aggregates the de-correlation
between the individual flow variations reduces buffer demand and
packet sojourn time by an order of magnitude and more. Even though
quite simple, the solution has a theoretical background and is not
heuristic. It has been tested with a Linux kernel implementation and
shows equivalent performance as other relevant AQM schemes.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 2]

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

This Internet-Draft will expire on January 4, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.

Table of Contents

1. Introduction...2
2. Conventions used in this document..............................4
3. Root cause of global synchronization...........................4
4. Protecting queues of global synchronization....................5

4.1. Basic algorithm...5
4.2. Interval adaptation at large flow numbers.................5
4.3. Interval adaptation at small RTT..........................7
4.4. Threshold adaptation......................................7
4.5. Sanity checks and special cases...........................7

5. Delay based operation..7
5.1. Queue delay vs. queue size................................7
5.2. Delay based GSP...8

6. Security Considerations..9
7. IANA Considerations..9
8. Conclusions..9
9. References...9

9.1. Normative References......................................9
9.2. Informative References....................................9

10. Acknowledgments..10

1. Introduction

The congestion window (CWND) of a particular TCP connection, in
combination with the round trip time (RTT), limits the transmission
rate of the flow, which enables adaptation of the sending rate to the
actual network conditions, [1]. TCP uses a rather coarse congestion

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 3]

control feedback by halving the congestion window in response to
packet loss. To fill a bottleneck link by 100% anyway, a packet
buffer in front of the link is required. For a single TCP flow a

buffer in the range of bottleneck capacity multiplied by the round
trip time is required (bandwidth-delay product rule, BDP), [2]. For
aggregated traffic of many flows the picture is not so clear.
Conservative estimations tend towards BDP of the whole aggregate,
i.e. link capacity * RTT. At the other hand, rate reductions due to
CWND halving are still only in the range of a particular flow rate.
With the assumption of N sharing flows, this yields ideally a buffer
size of only (link capacity/N)*RTT. Unfortunately this value cannot
be reached in practice. It would require a uniform distribution of
rate reductions by the different flows over time. In opposite, rate
reductions of bottleneck sharing flows tend to synchronize among each
other, which is called global synchronization. In worst case, with
all flows synchronized, the buffer demand is back at BDP of the whole
traffic, thus confirming the conservative estimation.

There are cases where global synchronization does not occur, in
particular large number of flows (N>500), large spread of RTT between
the different flows, and high frequency of flow renewals. In these
cases the buffer size can be reduced to BDP/sqrt(N), which lies
between the conservative and overly optimistic estimations above,[3].
Nevertheless there are still doubts, whether the absence of global
synchronization is a general reliable design assumption for high
capacity links, [4].

Most Active Queue Management (AQM) algorithms are aiming at better
control of the queue size (RED [5]) or the queue delay (CoDel [6],
PIE [7]), which implies control over global synchronization. Global
Synchronization Protection (GSP) goes the other way round. It
suppresses the root cause of global synchronization and de-correlates
the CWND variations of the competing flows, but it does not try to
impact the behavior of a particular flow. This way it moves the
buffer size demand down from conservative BDP of the whole link into
the direction towards the ideal BDP of only one of the competing
flows.

Experiments show that the stabilizing effect of GSP is equivalent to
that of the other AQMs. It is a simple extension to plain tail drop
queues. The basic algorithm is memoryless and does not need
artificial randomization. Particularly for small numbers of flows it
performs better than randomized AQMs.

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 4]

2. Conventions used in this document

In this document, the term “packet drop” is used for congestion

notification, silently assuming that congestion marking for ECN could
be equally applied.

In this document, the term “queue size” is preferably applied in
number of bytes, however, the algorithm could be also applied to the
number of packets, or even to the queuing delay (milliseconds).

3. Root cause of global synchronization

Global synchronization occurs in cases where a number of greedy TCP
flows with comparably uniform RTT cross a tail drop queue in front of
a shared transmission link. Greedy TCP means, the flow is probing the
available capacity on this particular link and is not limited
elsewhere (up- or downstream). Tail drop means, a newly arriving
packet is placed at the end of the queue if buffer space permits.
Otherwise it is dropped. The queue is drained from head of the queue
at the speed of the link as long as packets are available.

In congestion avoidance state, all senders gradually increase their
sending rate, which is, after a while, exceeding the link capacity so
that the queue in front of the link is filling up. At some point in
time, a first packet is dropped due to lack of buffer space. Ideally,
the TCP flow, where the dropped packet belongs to, reduces its
sending rate, the queue relaxes, its size goes down, and subsequently

arriving packets again can be placed in the buffer. Senders continue
to increase their sending rates until the next drop, and so on.

Unfortunately not one, but several packets get dropped in such
incident for following reason: The rate reduction due to the first
dropped packet needs at least one RTT to take effect at the queue
entry. During that RTT interval all senders continue to gradually
increase their sending rates, whereas the queue is still full.
Further packets need to be dropped. It can be shown analytically that
for N flows with NewReno and delayed ACK the number of drops is in
the range of N/2. Experiments confirm this and show an even higher
number with CUBIC. The outcome is that even though the rate reduction
by one flow would suffice, not one, but as much as half of the flows
are triggered within one RTT to reduce their sending rates – we have
global synchronization. A more detailed analytical and experimental
investigation of the effect can be found in [8].

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 5]

4. Protecting queues of global synchronization

4.1. Basic algorithm

The basic algorithm works as follows: Set a threshold on queue size
below the actual buffer size. If a new packet arrives and the queue
size is above the threshold, then immediately drop that packet. After
that, ignore any further threshold violation for a timeout interval
of 1 – 3 RTT. After expiry of the timeout proceed as above.

Algorithm:

initialization:

 interval = e.g. 2 * RTT

 threshold = e.g. 1/2 * buffer size

 timeout_expiry = now(), with now() returning the current time

at any packet arrival do:

 if queue_size > threshold && now() > timout_expiry:

 drop this packet

 timeout_expiry = now() + interval

 else

 enqueue this packet

The first dropped packet is triggering the rate reduction by one of

the end points. During the timeout the queue is growing further
beyond the threshold until the rate reduction takes effect at queue
entry. Afterwards the queue size should have dropped below the
threshold, so that at timeout expiry the threshold is typically not
violated anymore. No explicit action occurs at timeout expiry, which
makes the parameter rather insensitive to the actual traffic
characteristics. Even if the timeout interval is too short, the
algorithm still reduces global synchronization.

4.2. Interval adaptation at large flow numbers

The basic algorithm works well for moderate numbers of flows N, i.e.
in a range of 1 < N < 20. More precisely, at flow numbers N smaller
than the average CWND of one of the sharing flows. At larger numbers
the total rate increase during the timeout interval is larger than
the subsequent rate reduction by one of the flows. As consequence,
after timeout expiry the threshold is still violated, the queue is
growing further and further, and, eventually, reaches the buffer
limit and enters tail drop operation. The performance is still better

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 6]

than plain tail drop and one could rely on the observation that at
large flow numbers global synchronization disappears, anyway.

Alternatively the initial timeout interval can be reduced, depending
on the actual traffic, in a way, where not just once, but twice, or
even more times per RTT the timeout expires. The adaptation criterion
is the proportion of time above and below threshold. In regular
operation according to the basic algorithm, the queue is most of the
time below the threshold. If, however, the queue is more frequently
above than below threshold, the interval should be reduced until
equilibrium is reached. In this condition the queue is oscillating
around the threshold, periodically dropping during times above the
threshold, quite similar like PED [9].

Algorithm:

initialization:

 tau = e.g. 2 seconds; a preset parameter controlling the

 adaptation speed

 initial_interval – the preset timeout interval as in the basic

 algorithm

 cumTime = 0; the cumulative time above/below threshold

at any packet arrival do:

 update the cumulative time cumTime:

 account by twice the duration for queue episodes that are

 entirely ABOVE the threshold

 account by negated duration for queue episodes that are

 entirely BELOW the threshold but not ZERO

 don’t account for threshold crossing inter arrivals

 don’t account for queue episodes ZERO->BELOW->ZERO that

 are shorter than the timeout interval

 clamp the cumulative time:

 cumTime = max(cumTime, -tau)

 cumTime = min(cumTime, some sanity limit of several minutes)

 calculate timeout interval (to be used at next drop decision):

 k = max(1, cumTime/tau)

 interval = initial_interval/k

The adaptation algorithm intentionally ignores times of empty queue.
It is assumed that in these conditions the traffic offer is simply

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 7]

too small to fill the link at 100%. The previously reached adaptation
is kept until the queue is growing up again. However, the condition
“empty queue” in an AQM sense does not necessarily mean queue size

equals zero. Even at traffic offer much below 100% the queue might
operate like a stochastic M/G/1 queue with frequent short spikes of
up to dozens of packets. The clause “don’t account for episodes
ZERO->BELOW(threshold)->ZERO” is there to sort out those short
spikes. The clause “don’t account for threshold crossing inter
arrivals” is to resolve the uncertainty.

4.3. Interval adaptation at small RTT

The RTT is not known exactly but there should be at least a rough
idea on the range of RTT for setting up the timeout interval. If this
estimation is much too large, a similar situation occurs like in the
large flow numbers case. The total rate increase during the timeout
interval (which turns out to be multiple RTTs) is larger than the
subsequent rate reduction by one flow. The adaptation rule is the
same as for large flow numbers, section 4.2.

4.4. Threshold adaptation

Tbc

4.5. Sanity checks and special cases

An additional rule can be introduced that prevents large packet

bursts from immediately triggering the drop: Restart the timeout not
only after a packet drop but also whenever a packet is arriving at an
empty queue.

at any packet arrival do:
 if queue is empty:
 timeout_expiry = now() + interval

5. Delay based operation

5.1. Queue delay vs. queue size

Recent new AQM proposals ([6], [7]) are focusing on queue delay
rather than on queue size in bytes. One reason for this move is that
ideally the steady state queue oscillation depends only on the RTT
and on the number of sharing TCP flows - if measured in delay. The
oscillation sets the minimum queue size for 100% link utilization. A
larger queue creates only unnecessary delay (standing queue). If

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 8]

measured in bytes, however, the queue oscillation depends
additionally on the link capacity. (This is where the bandwidth delay
product rule comes from.)

Obviously it is preferable to stabilize the delay instead of the
size. It eliminates the interface rate from the parameter list, which
is particularly welcome in circumstances with unknown or variable
drain rate. Such situations are typical for low priority queues in
front of a priority scheduler and generally in wireless scenarios.

5.2. Delay based GSP

In section 4. we silently assumed queue size in bytes. However, the
algorithm can be equally applied to the queue delay (packet sojourn
time). In this case the threshold has to be in milliseconds, whereas
the empty queue condition remains the same as before.

While the queue size in bytes or packets is typically maintained by
ordinary queue implementations, obtaining the queue delay requires
additional effort. Two solutions are available and both are
applicable to GSP: Time stamping of packets like in CoDel [6] or
estimating the drain rate for a translation of size into delay like
in PIE [7].

Algorithm (time stamping):

at any arrival of a packet p do:

 p.time = now()

at any departure of a packet p do:
 queue_delay = now() – p.time

The basic algorithm of section 4.1. rephrased to delay based
operation:

at any packet arrival do:

 if queue_delay > threshold && now() > timout_expiry:

 drop this packet

 timeout_expiry = now() + interval

 else

 enqueue this packet

Please note that packe_delay is a per queue variable, not per packet,
i.e. the drop decision at enqueuing (tail drop) depends on the delay
that another, most recently dequeued packet experienced. This
approach is justified by the inherent inertance of the queue itself.

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 9]

6. Security Considerations

Global synchronization is a particular problem of many elastic flows

sharing a bottleneck. GSP is there to prevent this. But it does not
protect of unresponsive flows. If the congestion notification
according to section 4.1. randomly hits an unresponsive flow then the
expected rate reduction within the timeout interval might simply not
happen, which postpones the notification by one timeout interval. In
extreme cases, with a large amount of unresponsive traffic, GSP
behaves like plain tail drop.

7. IANA Considerations

There are no actions for IANA.

8. Conclusions

tbc

9. References

9.1. Normative References

9.2. Informative References

[1] Van Jacobson, Congestion avoidance and control, Proc. SIGCOMM
‘88, 1988

[2] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm, Comput.
Commun. Rev., 27.3, 1997, pp. 67–82.

[3] G. Appenzeller, I. Keslassy, and N. McKeown, Sizing router
buffers, Proc. ACM SIGCOMM ‘04, 2004.

[4] G. Vu-Brugier, R. S. Stanojevic, D. J. Leith, R. N. Shorten, A
critique of recently proposed buffer-sizing strategies, ACM
SIGCOMM Computer Communication Review, 37.1, 2007

[5] S. Floyd, Van Jacobsen, Random Early Detection Gateways for
Congestion Avoidance, IEEE/ACM Trans. Networking, 1.4, 1993

[6] K. Nichols, Van Jacobson, "Controlling Queue Delay", ACM Queue
- Networks, 2012

Internet-Draft Global Synchronization Protection July 2014

Lautenschlaeger Expires January 4, 2015 [Page 10]

[7] R. Pan, P. Natarajan, C. Piglione, M.S. Prabhu, V. Subramanian,
F. Baker, B. VerSteeg, PIE: A lightweight control scheme to
address the bufferbloat problem, 14th High Performance

Switching and Routing (HPSR), 2013 IEEE

[8] W. Lautenschlaeger, A deterministic TCP bandwidth sharing
model, 2014, online http://arxiv.org/pdf/1404.4173v1

[9] A. Francini, Beyond RED: Periodic Early Detection for On-Chip
Buffer Memories in Network Elements, Proc. IEEE High-
Performance Switching and Routing Conference (HPSR 2011),
Cartagena, Spain, July 4–6, 2011

10. Acknowledgments

This document was prepared using 2-Word-v2.0.template.dot.

Authors’ Addresses

Wolfram Lautenschlaeger
Alcatel-Lucent
Bell Labs
Lorenzstrasse 10
70435 Stuttgart
Germany

Email: Wolfram.Lautenschlaeger@alcatel-lucent.com

http://arxiv.org/pdf/1404.4173v1
mailto:Wolfram.Lautenschlaeger@alcatel-lucent.com

