
 
 
Active Queue Management   Wolfram Lautenschlaeger 
and Packet Scheduling (aqm)   Alcatel-Lucent 
Internet Draft  Bell Labs 
Intended status:   

Expires: January 2015 July 4, 2014 
  
 

 
 
 
Lautenschlaeger Expires January 4, 2015 [Page 1] 

 

 
Global Synchronization Protection for Packet Queues 

draft-lauten-aqm-gsp-01.txt 

Abstract 

The congestion avoidance processes of several transmission capacity 
sharing TCP flows tend to be synchronized among each other, so that 
the rate variations of the individual flows do not compensate. In 
contrary, they accumulate into large variations of the whole 
aggregate. The effect is known as global synchronization. Large 
queuing buffer demand and large latency and jitter are the 
consequences. Global Synchronization Protection (GSP) is an extension 
of regular tail drop packet queuing schemes that prevents global 
synchronization. For large traffic aggregates the de-correlation 
between the individual flow variations reduces buffer demand and 
packet sojourn time by an order of magnitude and more. Even though 
quite simple, the solution has a theoretical background and is not 
heuristic. It has been tested with a Linux kernel implementation and 
shows equivalent performance as other relevant AQM schemes. 
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1. Introduction 

The congestion window (CWND) of a particular TCP connection, in 
combination with the round trip time (RTT), limits the transmission 
rate of the flow, which enables adaptation of the sending rate to the 
actual network conditions, [1]. TCP uses a rather coarse congestion 
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control feedback by halving the congestion window in response to 
packet loss. To fill a bottleneck link by 100% anyway, a packet 
buffer in front of the link is required. For a single TCP flow a 

buffer in the range of bottleneck capacity multiplied by the round 
trip time is required (bandwidth-delay product rule, BDP), [2]. For 
aggregated traffic of many flows the picture is not so clear. 
Conservative estimations tend towards BDP of the whole aggregate, 
i.e. link capacity * RTT. At the other hand, rate reductions due to 
CWND halving are still only in the range of a particular flow rate. 
With the assumption of N sharing flows, this yields ideally a buffer 
size of only (link capacity/N)*RTT. Unfortunately this value cannot 
be reached in practice. It would require a uniform distribution of 
rate reductions by the different flows over time. In opposite, rate 
reductions of bottleneck sharing flows tend to synchronize among each 
other, which is called global synchronization. In worst case, with 
all flows synchronized, the buffer demand is back at BDP of the whole 
traffic, thus confirming the conservative estimation. 

There are cases where global synchronization does not occur, in 
particular large number of flows (N>500), large spread of RTT between 
the different flows, and high frequency of flow renewals. In these 
cases the buffer size can be reduced to BDP/sqrt(N), which lies 
between the conservative and overly optimistic estimations above,[3]. 
Nevertheless there are still doubts, whether the absence of global 
synchronization is a general reliable design assumption for high 
capacity links, [4]. 

Most Active Queue Management (AQM) algorithms are aiming at better 
control of the queue size (RED [5]) or the queue delay (CoDel [6], 
PIE [7]), which implies control over global synchronization. Global 
Synchronization Protection (GSP) goes the other way round. It 
suppresses the root cause of global synchronization and de-correlates 
the CWND variations of the competing flows, but it does not try to 
impact the behavior of a particular flow. This way it moves the 
buffer size demand down from conservative BDP of the whole link into 
the direction towards the ideal BDP of only one of the competing 
flows. 

Experiments show that the stabilizing effect of GSP is equivalent to 
that of the other AQMs. It is a simple extension to plain tail drop 
queues. The basic algorithm is memoryless and does not need 
artificial randomization. Particularly for small numbers of flows it 
performs better than randomized AQMs. 
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2. Conventions used in this document 

In this document, the term “packet drop” is used for congestion 

notification, silently assuming that congestion marking for ECN could 
be equally applied. 

In this document, the term “queue size” is preferably applied in 
number of bytes, however, the algorithm could be also applied to the 
number of packets, or even to the queuing delay (milliseconds). 

3. Root cause of global synchronization 

Global synchronization occurs in cases where a number of greedy TCP 
flows with comparably uniform RTT cross a tail drop queue in front of 
a shared transmission link. Greedy TCP means, the flow is probing the 
available capacity on this particular link and is not limited 
elsewhere (up- or downstream). Tail drop means, a newly arriving 
packet is placed at the end of the queue if buffer space permits. 
Otherwise it is dropped. The queue is drained from head of the queue 
at the speed of the link as long as packets are available.  

In congestion avoidance state, all senders gradually increase their 
sending rate, which is, after a while, exceeding the link capacity so 
that the queue in front of the link is filling up. At some point in 
time, a first packet is dropped due to lack of buffer space. Ideally, 
the TCP flow, where the dropped packet belongs to, reduces its 
sending rate, the queue relaxes, its size goes down, and subsequently 

arriving packets again can be placed in the buffer. Senders continue 
to increase their sending rates until the next drop, and so on. 

Unfortunately not one, but several packets get dropped in such 
incident for following reason: The rate reduction due to the first 
dropped packet needs at least one RTT to take effect at the queue 
entry. During that RTT interval all senders continue to gradually 
increase their sending rates, whereas the queue is still full. 
Further packets need to be dropped. It can be shown analytically that 
for N flows with NewReno and delayed ACK the number of drops is in 
the range of N/2. Experiments confirm this and show an even higher 
number with CUBIC. The outcome is that even though the rate reduction 
by one flow would suffice, not one, but as much as half of the flows 
are triggered within one RTT to reduce their sending rates – we have 
global synchronization. A more detailed analytical and experimental 
investigation of the effect can be found in [8]. 
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4. Protecting queues of global synchronization 

4.1. Basic algorithm 

The basic algorithm works as follows: Set a threshold on queue size 
below the actual buffer size. If a new packet arrives and the queue 
size is above the threshold, then immediately drop that packet. After 
that, ignore any further threshold violation for a timeout interval 
of 1 – 3 RTT. After expiry of the timeout proceed as above. 

Algorithm: 

initialization: 

    interval = e.g. 2 * RTT 

    threshold = e.g. 1/2 * buffer size 

    timeout_expiry = now(), with now() returning the current time  

 

at any packet arrival do: 

    if queue_size > threshold && now() > timout_expiry: 

        drop this packet 

        timeout_expiry = now() + interval 

  else 

    enqueue this packet 

 

The first dropped packet is triggering the rate reduction by one of 

the end points. During the timeout the queue is growing further 
beyond the threshold until the rate reduction takes effect at queue 
entry. Afterwards the queue size should have dropped below the 
threshold, so that at timeout expiry the threshold is typically not 
violated anymore. No explicit action occurs at timeout expiry, which 
makes the parameter rather insensitive to the actual traffic 
characteristics. Even if the timeout interval is too short, the 
algorithm still reduces global synchronization. 

4.2. Interval adaptation at large flow numbers 

The basic algorithm works well for moderate numbers of flows N, i.e. 
in a range of 1 < N < 20. More precisely, at flow numbers N smaller 
than the average CWND of one of the sharing flows. At larger numbers 
the total rate increase during the timeout interval is larger than 
the subsequent rate reduction by one of the flows. As consequence, 
after timeout expiry the threshold is still violated, the queue is 
growing further and further, and, eventually, reaches the buffer 
limit and enters tail drop operation. The performance is still better 
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than plain tail drop and one could rely on the observation that at 
large flow numbers global synchronization disappears, anyway. 

Alternatively the initial timeout interval can be reduced, depending 
on the actual traffic, in a way, where not just once, but twice, or 
even more times per RTT the timeout expires. The adaptation criterion 
is the proportion of time above and below threshold. In regular 
operation according to the basic algorithm, the queue is most of the 
time below the threshold. If, however, the queue is more frequently 
above than below threshold, the interval should be reduced until 
equilibrium is reached. In this condition the queue is oscillating 
around the threshold, periodically dropping during times above the 
threshold, quite similar like PED [9]. 

Algorithm: 

initialization: 

    tau = e.g. 2 seconds; a preset parameter controlling the  

        adaptation speed 

     initial_interval – the preset timeout interval as in the basic  

        algorithm 

    cumTime = 0; the cumulative time above/below threshold 

at any packet arrival do: 

    update the cumulative time cumTime: 

        account by twice the duration for queue episodes that are  

            entirely ABOVE the threshold  

        account by negated duration for queue episodes that are  

            entirely BELOW the threshold but not ZERO 

        don’t account for threshold crossing inter arrivals 

        don’t account for queue episodes ZERO->BELOW->ZERO that 

            are shorter than the timeout interval 

 

    clamp the cumulative time: 

        cumTime = max(cumTime, -tau) 

        cumTime = min(cumTime, some sanity limit of several minutes) 

 

    calculate timeout interval (to be used at next drop decision): 

        k = max(1, cumTime/tau) 

        interval = initial_interval/k 

         

The adaptation algorithm intentionally ignores times of empty queue. 
It is assumed that in these conditions the traffic offer is simply 
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too small to fill the link at 100%. The previously reached adaptation 
is kept until the queue is growing up again. However, the condition 
“empty queue” in an AQM sense does not necessarily mean queue size 

equals zero. Even at traffic offer much below 100% the queue might 
operate like a stochastic M/G/1 queue with frequent short spikes of 
up to dozens of packets.  The clause “don’t account for episodes 
ZERO->BELOW(threshold)->ZERO” is there to sort out those short 
spikes. The clause “don’t account for threshold crossing inter 
arrivals” is to resolve the uncertainty. 

4.3. Interval adaptation at small RTT 

The RTT is not known exactly but there should be at least a rough 
idea on the range of RTT for setting up the timeout interval. If this 
estimation is much too large, a similar situation occurs like in the 
large flow numbers case. The total rate increase during the timeout 
interval (which turns out to be multiple RTTs) is larger than the 
subsequent rate reduction by one flow. The adaptation rule is the 
same as for large flow numbers, section 4.2.  

4.4. Threshold adaptation 

Tbc 

4.5. Sanity checks and special cases 

An additional rule can be introduced that prevents large packet 

bursts from immediately triggering the drop: Restart the timeout not 
only after a packet drop but also whenever a packet is arriving at an 
empty queue. 

at any packet arrival do: 
    if queue is empty: 
        timeout_expiry = now() + interval 

 

5. Delay based operation 

5.1. Queue delay vs. queue size 

Recent new AQM proposals ([6], [7]) are focusing on queue delay 
rather than on queue size in bytes. One reason for this move is that 
ideally the steady state queue oscillation depends only on the RTT 
and on the number of sharing TCP flows - if measured in delay. The 
oscillation sets the minimum queue size for 100% link utilization. A 
larger queue creates only unnecessary delay (standing queue). If 
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measured in bytes, however, the queue oscillation depends 
additionally on the link capacity. (This is where the bandwidth delay 
product rule comes from.) 

Obviously it is preferable to stabilize the delay instead of the 
size. It eliminates the interface rate from the parameter list, which 
is particularly welcome in circumstances with unknown or variable 
drain rate. Such situations are typical for low priority queues in 
front of a priority scheduler and generally in wireless scenarios. 

5.2. Delay based GSP 

In section 4. we silently assumed queue size in bytes. However, the 
algorithm can be equally applied to the queue delay (packet sojourn 
time). In this case the threshold has to be in milliseconds, whereas 
the empty queue condition remains the same as before. 

While the queue size in bytes or packets is typically maintained by 
ordinary queue implementations, obtaining the queue delay requires 
additional effort. Two solutions are available and both are 
applicable to GSP: Time stamping of packets like in CoDel [6] or 
estimating the drain rate for a translation of size into delay like 
in PIE [7]. 

Algorithm (time stamping): 

at any arrival of a packet p do: 

    p.time = now() 
 
at any departure of a packet p do: 
    queue_delay = now() – p.time 

The basic algorithm of section 4.1. rephrased to delay based 
operation: 

at any packet arrival do: 

    if queue_delay > threshold && now() > timout_expiry: 

        drop this packet 

        timeout_expiry = now() + interval 

  else 

       enqueue this packet 

Please note that packe_delay is a per queue variable, not per packet, 
i.e. the drop decision at enqueuing (tail drop) depends on the delay 
that another, most recently dequeued packet experienced. This 
approach is justified by the inherent inertance of the queue itself.  
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6. Security Considerations 

Global synchronization is a particular problem of many elastic flows 

sharing a bottleneck. GSP is there to prevent this. But it does not 
protect of unresponsive flows. If the congestion notification 
according to section 4.1. randomly hits an unresponsive flow then the 
expected rate reduction within the timeout interval might simply not 
happen, which postpones the notification by one timeout interval. In 
extreme cases, with a large amount of unresponsive traffic, GSP 
behaves like plain tail drop.  

7. IANA Considerations 

There are no actions for IANA. 

8. Conclusions 

tbc 
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