
Network Working Group L. Levison
Internet-Draft Lavabit LLC
Intended status: Experimental May 10, 2018
Expires: November 11, 2018

 Safely Turn Authentication Credentials Into Entropy (STACIE)
 draft-ladar-stacie-01

Abstract

 This document specifies a method for Safely Turning Authentication
 Credentials Into Entropy (STACIE) using an efficient Zero Knowledge
 Password Proof (ZKPP), and is provided as a standalone component
 suitable for use as a building block in other protocol development
 efforts. The scheme was created to fill the emerging need for a
 standard which allows a single low entropy password to be used for
 user authentication and the derivation of strong encryption keys.
 The design is modular, and is conservative in its use of an arbitrary
 one-way cryptographic hash function. The security of the scheme
 depends on the difficulty associated with reversing the hash function
 output back into the plain text input. STACIE attempts to make
 discovering the plain text input through the use of brute force more
 difficult by correlating the amount of processing to the length of a
 user's plain text password. The shorter the plain text password, the
 more processing is required, with the amount of additional,
 artificially required, work scaling exponentially for each character.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 11, 2018.

Levison Expires November 11, 2018 [Page 1]

Internet-Draft stacie May 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Encodings . 4
 4. Derivation Process . 4
 4.1. Hash Rounds . 7
 4.2. Entropy Extraction 9
 4.3. Key Derivation . 12
 4.4. Token Derivation . 13
 4.5. Realm Key Derivation 14
 5. Encryption . 17
 5.1. Envelope . 17
 5.2. Payload . 18
 6. Password Changes . 21
 6.1. Shallow Password Change 21
 6.2. Deep Password Change 21
 6.3. Hybrid Password Change 21
 7. Protocol . 21
 7.1. Login . 21
 7.1.1. Login Request . 21
 7.1.2. Login Response 22
 7.2. Authenticate . 24
 7.2.1. Authenticate Request 24
 7.2.2. Authenticate Response 25
 7.3. Create . 26
 7.4. Password Changes . 27
 7.5. Fetch Realm Specific Shard Values 27
 7.6. Add Realm Specific Shard Value 27
 8. Security Considerations 28
 9. IANA Considerations . 28
 9.1. Servers . 28
 9.2. Clients . 28

Levison Expires November 11, 2018 [Page 2]

Internet-Draft stacie May 2018

 9.3. Shared . 29
 10. Feedback . 29
 11. Acknowledgments . 29
 12. Normative References . 30
 Appendix A. Test Vectors . 32
 A.1. Inputs . 32
 A.2. Outputs . 33
 Author's Address . 33

1. Introduction

 A number of emerging client/server protocols are currently being
 developed which rely on endpoint encryption schemes for protection
 against server compromises and pervasive surveillance efforts. All
 of these protocols share a common need for the ability to
 authenticate users based on their account password, without having to
 share a plain text password with the server. While several proposals
 have emerged which rely on a Zero Knowledge Password Proof (ZKPP),
 none of them provide a standardized method for deriving a symmetric
 encryption key suitable for use with Authenticated Encryption with
 Associated Data (AEAD) ciphers using the same user password.

 This specification describes a standalone scheme which solves these
 problems by Safely Turning Authentication Credentials Into Entropy
 (STACIE). Unlike previous efforts, STACIE can uniquely provide a
 configurable level of resistance against off-line brute force attacks
 aimed at recovering the original plain text password, or the derived
 encryption keys. Client side key stretching ensures attackers
 capable of eavesdropping on connections protected by Transport Layer
 Security (TLS), or with access to the authentication database on the
 server, will be unable to derive a user's password or their symmetric
 encryption keys.

 STACIE is intended for use as a standalone component in other client/
 server protocol and application development efforts. While the
 protocol examples provided below are simplified, the abstract
 mechanism should easily translate into other encapsulation and
 encoding formats. Likewise, STACIE has been designed in a modular
 fashion, making it capable of using an arbitrary, but suitably
 strong, one-way cryptographic hash function. To ensure
 interoperability among different implementations, the Secure Hash
 Algorithm (SHA2-512) [SHS] must be implemented, while support for the
 newer Secure Hash Algorithm (SHA3-512) [PBH] and the Skein hash
 function (Skein-512) [SKEIN], are optional.

 For improved security, STACIE has been designed to provide extension
 points making it possible for specifications to extend the scheme
 with support for alternate authentication factors. The goal of this

Levison Expires November 11, 2018 [Page 3]

Internet-Draft stacie May 2018

 specification is to accommodate a large variety of security
 requirements, while remaining conservative in its assumptions and its
 use of any particular cryptographic primitives.

 To accommodate the unpredictable pace of improvements in computer
 hardware and processing power, STACIE includes a mechanism which
 allows system operators to increase the difficulty level and
 processing required by clients for key derivation beyond what is
 mandated by this specification.

 The purpose of this document is to discourage the proliferation of
 multiple schemes for use by the variety of protocols currently in
 development which need to safely derive a symmetric encryption key,
 and authenticate a user with the server using a single low entropy
 password. While STACIE introduces strategies designed to strengthen
 key material against a variety of recently revealed threats, and
 provides a measure of protection associated with deficiencies in the
 randomness of human input, it is not intended as a call to change or
 update existing protocols and specifications.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [KEYWORDS] and indicate requirement levels for compliant STACIE
 implementations.

3. Encodings

 This document represents all of the request and responses using
 standard JavaScript Object Notation [JSON]. When an object value
 must always be text, the native UTF-8 representation is supplied.
 Otherwise the value is armored using the base64 encoding scheme
 defined in RFC 4648, with the URL and filename safe character set
 defined in Section 5, and assigned the identifier "base64url." In
 addition to the standard base64url conversion, all trailing pad
 characters, line breaks, white space, and other non-printable control
 characters must be removed, as permitted by Section 3.2. [BASE] For
 the examples in this document, line breaks only appear when the
 sample value exceeds the available space.

4. Derivation Process

 STACIE employs a multistage process which includes an extraction
 stage, two key derivation stages, and two token derivation stages.
 The stages must progress in a linear order because the output for
 each stage is used as an input for the subsequent stage. The

Levison Expires November 11, 2018 [Page 4]

Internet-Draft stacie May 2018

 extraction and key derivation stages require a user's plain text
 password, while the token derivation stages do not. This allows the
 token derivation stages to be used for authentication purposes,
 because tokens can be generated and verified by a server without
 access to the plain text password.

 Implementations must never store a user's plain text password.
 Client implementations which need the ability to authenticate and
 access encrypted user data without a user's password must only store
 the master key and the verification token. These values provide the
 ability to authenticate with a server, and access the realm specific
 encryption keys without additional user input. By storing just these
 values, an implementation ensures a user's plain text password is
 still required to alter account credentials. This means a user can
 recover from an endpoint compromise by restoring the security of
 their endpoint, and updating their password, allowing for a point in
 time recovery.

 Client implementations with support for automatic login capabilities
 on platforms which provide a secure storage facility should make use
 of this capability to protect the master key and verification token.

 Required Inputs

 The derivation process requires the following inputs:

 username
 The normalized username.

 password
 The plain text user password.

 Optional Inputs

 salt
 An additional non-secret, per-site, or per-user source of random
 entropy. The salt value ensures output independence and provides
 protection against computational reuse and precomputed table
 lookups. Salt values must provide a minimum of 64 octets, and
 should be less than 1,024 octets, with 128 octets the recommended
 length. Salt values should be aligned along a 32 octet boundary.

 nonce
 An array of randomly generated octets created by a server for each
 login attempt, which must be combined with the verification token
 to derive the ephemeral login token. The nonce value must be a
 minimum of 64 octets, and should be less than 1,024 octets, with

Levison Expires November 11, 2018 [Page 5]

Internet-Draft stacie May 2018

 128 octets the recommended length. If the nonce should be aligned
 along a 32 octet boundary.

 bonus
 The fixed number of additional iterations added to the iteration
 count calculated dynamically based the password's length.

 Outputs

 rounds
 Required number of hash rounds used for the extraction and key
 derivation stages.

 master_key
 The derived key value required to decrypt and use the realm
 specific keys.

 password_key
 The output from the second key derivation phase, and required to
 authenticate password update requests.

 verification_token
 The persistent token stored on a server during account creation,
 or following a password update and then used to authenticate
 ephemeral login tokens in the future.

 ephemeral_login_token
 The ephemeral token value which proves knowledge of the
 verification token for a singular login attempt, and is required
 to authenticate a session or connection.

 Example

 The following code, written in Python, demonstrates how to derive the
 various outputs by calling the example functions provided in
 subsequent sections:

Levison Expires November 11, 2018 [Page 6]

Internet-Draft stacie May 2018

 # Derive the Rounds
 rounds = CalculateHashRounds(password, bonus)

 # Extract the Seed
 seed = ExtractEntropySeed(rounds, username, password, salt)

 # Keys
 master_key = HashedKeyDerivation(seed, rounds, username, password, \
 salt)
 password_key = HashedKeyDerivation(master_key, rounds, username, \
 password, salt)

 # Tokens
 verification_token = HashedTokenDerivation(password_key, username, \
 salt)
 ephemeral_login_token = HashedTokenDerivation(verification_token, \
 username, salt, nonce)

 # Derive the Realm Key
 realm_key = RealmKeyDerivation(master_key, realm, salt)

 # Extract the Cipher and Vector Keys
 vector_key = ExtractRealmVectorKey(realm_key)
 tag_key = ExtractRealmTagKey(realm_key)
 cipher_key = ExtractRealmCipherKey(realm_key)

4.1. Hash Rounds

 To improve the security of short passwords, STACIE requires client
 implementations to calculate the appropriate number of iterations, or
 "rounds" used for string concatenation during the seed stage and the
 number hash rounds required during the key derivation stages. The
 rounds variable is based on the number of characters, with short
 passwords requiring more rounds than long passwords. The variable
 number of rounds was designed to make systematically checking all of
 the possible plain text inputs more expensive in the event any of the
 derived tokens are compromised. It does not inherently provide
 security for predictable passwords which might be easily guessed.

 To ensure the formula used to calculate the number of rounds, and the
 required processing remains effective against brute force attacks in
 the future, a fixed number of "bonus" rounds may be added beyond what
 is required. The number of bonus rounds is dictated by the server
 configuration and must be added to the number calculated based on the
 length, and is primarily intended to offset improvements in computer
 performance in the future.

Levison Expires November 11, 2018 [Page 7]

Internet-Draft stacie May 2018

 When calculating the number of dynamic hash rounds clients must first
 determine the number of Unicode "characters" in a password, which is
 distinct from the number of octets. Many character encodings, such
 as UTF-8 use a variable number of octets per character, and the
 number of octets may change based on the input method editor. For
 consistency, the password must be converted into the UTF-8 encoding,
 and the number of Unicode characters determined. Because UTF-8 is
 capable of representing the same characters using multiple octets,
 and using different binary values based on the normalization form, it
 is critical that the length used for this calculation is always based
 on the number of Unicode characters. This will ensure the number of
 rounds remains deterministic.

 To determine the number of rounds, a client must subtract the number
 of Unicode characters from the constant value 24. If the result is
 negative, the value 1 should be used. The result of this calculation
 is used as the "dynamic" exponent, which is used to raise the base 2,
 and resulting value is the "variable" number of rounds. The "bonus"
 rounds are added to the "variable" number to derive the total number
 of rounds.

 If the combined value of the dynamic and bonus values is less than 8,
 the value 8 must be used. Alternatively, if the value exceeds
 16,777,216 the value must be reduced to this maximum value. The
 maximum value corresponds to the limit imposed by the use of 3 octet
 counter employed during the entropy extraction and key derivation
 stages.

 Because the token derivation must be performed without leaking any
 information about the password, including its length, they employ a
 fixed 8 rounds.

 Example

 The following Python code demonstrates the proper method for deriving
 the number of rounds:

Levison Expires November 11, 2018 [Page 8]

Internet-Draft stacie May 2018

 def CalculateHashRounds(password, bonus):
 # Accepts a user password and bonus value, and calculates
 # the number of iterative rounds required. This function will
 # always return a value between 8 and 16,777,216.

 # Identify the number of Unicode characters.
 characters = len(password.decode("utf-8"))

 # Calculate the difficulty exponent by subtracting 1
 # for each Unicode character in a password.
 dynamic = operator.sub(24, characters)

 # Use a minimum exponent value of 1 for passwords
 # equal to, or greater than, 24 characters.
 dynamic = max(1, dynamic)

 # Derive the variable number of rounds based on the length.
 # Raise 2 using the dynamic exponent determined above.
 variable = pow(2, dynamic)

 # If applicable, add the fixed number of bonus rounds.
 total = operator.add(variable, bonus)

 # If the value of rounds is smaller than 8, reset
 # the value to 8.
 total = max(8, total)

 # If the value of rounds is larger than 16,777,216, reset
 # the value to 16,777,216.
 total = min(pow(2, 24), total)

 return total

4.2. Entropy Extraction

 STACIE starts by deriving a fixed-length pseudorandom seed value
 which is "extracted" by "concentrating" the low-entropy user password
 into a short, but cryptographically strong pseudorandom value.
 Future extensions which incorporate a second authentication source
 that results in a quality pseudorandom value for the seed value may
 find this stage unnecessary.

 Unlike the key and token derivation stages, the entropy extraction
 stage uses the Hashed Message Authentication Code [HMAC] algorithm,
 which is also defined by National Institute of Standards and
 Technology (NIST) as a Federal Information Processing Standard (FIPS)

Levison Expires November 11, 2018 [Page 9]

Internet-Draft stacie May 2018

 [HMAC-FIPS]. Test vectors based on SHA2-512 are available
 [HMAC-SHA].

 Implementations supporting the optional SHA3-512 or Skein-512 hash
 functions must use an HMAC implementation bsaed on the appropriate
 SHA3-512 or Skein-512. Implementations should not use the Skein-MAC
 alternative described by the Skein paper [SKEIN]. Future STACIE
 extensions may provide alternative methods for seed extraction.

 Unlike a simple hash, HMAC requires a 128 octet key value. The key
 value for the entropy extraction stage is derived from the salt
 value. If no salt value is available the username must be hashed and
 used as a substitute for the salt value. If the provided salt value
 is precisely 128 octets, then it should be used as the HMAC key.

 When the provided salt is not 128 octets, then a key must be derived
 using the hash function. The 128 octet key is derived by digesting
 the salt value concatenated together with a counter variable. The
 process is performed twice, with the counter variable set to the
 values 0 and 1, respectively. The counter is digested as a 3 octet
 big endian integer value. The two hash digest output values must be
 concatenated to form the 128 octet HMAC key value.

 The HMAC primitive also requires a "message" which is created using
 the plain text password by providing the password repeatedly, with
 the precise number of repetitions dictated by the "rounds" variable.
 The digest produced by the HMAC function becomes the 64 octet seed
 value used for the master key derivation stage.

 Example

 The following Python code demonstrates the proper method for
 extracting the entropy seed value:

Levison Expires November 11, 2018 [Page 10]

Internet-Draft stacie May 2018

 def ExtractEntropySeed(rounds, username, password, salt=None):
 # Concentrates and then extracts the random entropy provided
 # by the password into a seed value for the first hash stage.

 # If if an explicit salt value is missing, use a hash of
 # the username as if it were the salt.
 if salt is None:
 salt = SHA512.new(username).digest()

 # Confirm the supplied salt meets the minimum length of 64
 # octets required, is aligned to a 32 octet boundary and does not
 # exceed 1,024 octets. Some implementations may not handle salt
 # values longer than 1,024 octets properly.
 elif len(salt) < 64:
 raise ValueError("The salt, if supplied, must be at least " \
 "64 octets in length.")
 elif operator.mod(len(salt), 32) != 0:
 warnings.warn("The salt, if longer than 64 octets, should " \
 "be aligned to a 32 octet boundary.")
 elif len(salt) > 1024:
 warnings.warn("The salt should not exceed 1,024 octets.")

 # For salt values which don't match the 128 octets required for
 # an HMAC key value, the salt is hashed twice using a 3 octet
 # counter value of 0 and 1, and the outputs are concatenated.
 if len(salt) != 128:
 key = \
 SHA512.new(salt + struct.pack('>I', 0)[1:4]).digest() + \
 SHA512.new(salt + struct.pack('>I', 1)[1:4]).digest()
 # If the supplied salt is 128 octets use it directly as the
 # key value.
 else:
 key = salt

 # Initialize the HMAC instance using the key created above.
 hmac = HMAC(key, None, SHA512)

 # Repeat the plain text password successively based on
 # the number of instances specified by the rounds variable.
 for unused in range(0, rounds):
 hmac.update(password)

 # Create the 64 octet seed value.
 seed = hmac.digest()

 return seed

Levison Expires November 11, 2018 [Page 11]

Internet-Draft stacie May 2018

4.3. Key Derivation

 There are two successive key derivation stages. The master key is
 first, and requires the extracted seed value derived in the previous
 stage, along with the calculated number of rounds, the username,
 password, and if available, the salt value. The master key must be
 kept private. It provides the secret material needed to derive the
 realm specific subkeys used to encrypt data on the client.

 The second key derivation stage provides the password key. It uses
 an identical process as the master key stage, with the exception of
 the seed value being replaced by the master key value derived in the
 first stage. The password key must be kept private until it comes
 time for a user to update their password. Password updates require
 sharing the password key with a server, which can then confirm the
 value translates into the current verification token, before updating
 the values stored in the authentication database. This ensures a
 that a compromised authentication database can't be used by an
 attacker to alter user passwords.

 Each key derivation stage repeats the hash process by the variable
 number of iterations dictated by the rounds variable. Assuming the
 hash function remains securely one-way, this strategy ensures key
 derivation requires a linear computational process. The amount of
 processing time is a product of the difficulty imposed by the rounds
 variable and a client's computational performance. The linear nature
 of the process means the time required for individual rounds may be
 shortened but the rounds can not be processed in parallel.

 Hash values are generated by concatenating the input seed (or master
 key value) together with the with the username, salt, password and
 counter value. Successive rounds repeat the process, using an
 incremented counter value, and include the output of the previous
 round prepended to the input. The counter value must be digested as
 a 3 octet big endian integer value, and represents a 0 based value
 corresponding to the current round.

 Example

 The following Python code demonstrates the proper method for key
 derivation, with the seed value either the extracted seed, or the
 master key, depending on the stage:

Levison Expires November 11, 2018 [Page 12]

Internet-Draft stacie May 2018

 def HashedKeyDerivation(seed, rounds, username, password, salt=""):
 # Hash the input values together using the input values, and
 # repeat the process, with the number of iterations dictated by
 # the rounds variable.

 count = 0
 hashed = ""

 while count < rounds:
 hashed = SHA512.new(hashed + seed + username + salt + \
 password + struct.pack('>I', count)[1:4]).digest()
 count = operator.add(count, 1)

 # The last digest output is returned as the key value.
 return hashed

4.4. Token Derivation

 The token derivation process is distinct from the key derivation
 process because it is repeatable without knowing a user's password.
 The password key is combined with other inputs to derive the
 verification token, and the verification token is then shared with
 the server, which can use it to authenticate future login attempts.
 To prevent replay attacks, the verification token is combined with a
 nonce value, and using the same token derivation process, a unique
 ephemeral login token is generated for each session or connection.

 Like the key derivation stages defined above, the seed value in the
 sample code below represents the output from the previous stage,
 which is either the password key or the verification token. This
 value is concatenated together with the salt value, if applicable,
 and a nonce value (when deriving the ephemeral token). A counter
 value is also appended, with the value representing a 3 octet big
 endian integer value, and corresponding to a 0 based count of the
 current round. The output for each round is prepended to the input
 of successive rounds, with a fixed 8 rounds performed during each
 token derivation stage.

 Example

 The following Python code demonstrates the proper method for token
 derivation, with the seed value either the password key, or the
 verificiation token, depending on the stage:

Levison Expires November 11, 2018 [Page 13]

Internet-Draft stacie May 2018

 def HashedTokenDerivation(seed, username, salt="", nonce=""):
 # Hash the input values together using the input values, and
 # repeat the process eight times.

 count = 0
 rounds = 8
 hashed = ""

 # Confirm the nonce, if it was provided, meets the minimum
 # length of 64 octets, does not exceed 1,024 octets, and is
 # aligned along a 32 octet boundary. Implementations may not
 # handle nonce values larger than 1,024 octets properly.
 if len(nonce) > 0 and len(nonce) < 64:
 raise ValueError("Nonce values must be at least " \
 "64 octets in length.")
 elif operator.mod(len(nonce), 32) != 0:
 warnings.warn("The nonce value, if longer than 64 octets, " \
 "should be aligned to a 32 octet boundary.")
 elif len(nonce) > 1024:
 warnings.warn("The nonce should not exceed 1,024 octets.")

 while count < rounds:
 hashed = SHA512.new(hashed + seed + username + salt + \
 nonce + struct.pack('>I', count)[1:4]).digest()
 count = operator.add(count, 1)

 return hashed

4.5. Realm Key Derivation

 Realm specific keys are used to access and authenticate symmetrically
 encrypted user data. The realm label specifies the category and/or
 type of data protected by a given realm key. Protocols which
 incorporate STACIE may use a single realm, or seperate data into
 different realms based on the data type. Every realm is protected by
 a unique encryption key. The realms are isolated to allow seperable
 handling, and isolation, such that if one realm key is compromised,
 it is possible for the remaining realms to remain secure, provided
 the master key was not compromised, or the attacker is unable to gain
 access to the shard values for other realms.

 The shard value is a randomly generated string of 64 octets, provided
 after successful authentication, which allows a client to derive a
 realm key. Because the shard is stored on the server, an endpoint
 compromise won't yield the necessary information to decrypt any
 locally stored data, after the user updates their credentials. This

Levison Expires November 11, 2018 [Page 14]

Internet-Draft stacie May 2018

 will mitigate the damage that would occur when a device with cached
 data is lost or stolen.

 The unique key for a realm is derived by concatenating, then hashing
 the master key, realm label, and salt. The resulting digest is then
 combined with a realm shard value using the bitwise exclusive "or"
 operation. The result is a "realm key" which contains the
 concatenated vector key, tag key, and cipher key values. The vector
 key is comprised of the first 16 octets, the tag key is protected by
 the subsequent 16 octets, and the cipher key is comprised of the
 final 32 octets.

 Required Inputs

 The master key, as previously described, is combined with the
 following required inputs:

 label
 The realm label, a predefined lowercase string describing the
 category and/or type of data.

 The salt is only required if a salt value was used to derive the
 master key:

 salt An additional non-secret, per-site, or per-user source of
 random entropy. The salt value increases the unpredictability of
 the output. Salt values must provide a minimum of 64 octets, and
 should be less than 1,024 octets, with 128 octets the recommended
 length. Salt values should be aligned along a 32 octet boundary.

 Outputs

 realm_key
 The realm specific key distilled from the provided inputs, and is
 the combinatio n of the vector, tag and cipher key values.

 vector_key
 The key used to unlock the initialization vectors for a given
 realm.

 tag_key
 The key used to unlock the authentication tags for a given realm.

 cipher_key
 The key used by the symmetric cipher to decrypt user data
 associated with a given realm.

 Example

Levison Expires November 11, 2018 [Page 15]

Internet-Draft stacie May 2018

 The following Python code demonstrates how to derive and then
 seperate the keys for a given realm:

 def RealmKeyDerivation(master_key, label="", shard="", salt=""):

 if len(label) < 1:
 raise ValueError("The realm label is missing or invalid.")
 elif len(shard) != 64:
 raise ValueError("The shard length is not 64 octets.")
 elif len(master_key) != 64:
 raise ValueError("The master key length is not 64 octets.")

 # The salt value is optional, but if supplied, must be a minimum
 # of 64 octets in length, and no more than 1,024 octets in
 # length. It should be aligned to a 32 octet boundary. Some
 # implementations may not handle salt values longer than 1,024
 # octets properly.
 elif len(salt) != 0 and len(salt) < 64:
 raise ValueError("The salt, if supplied, must be at least " \
 "64 octets in length.")
 elif len(salt) != 0 and operator.mod(len(salt), 32) != 0:
 warnings.warn("The salt, if longer than 64 octets, should " \
 "be aligned to a 32 octet boundary.")
 elif len(salt) > 1024:
 warnings.warn("The salt should not exceed 1,024 octets."

 hashed = SHA512.new(master_key + label + salt).digest()
 realm_key = str().join(chr(operator.xor(ord(a), ord(b))) \
 for a,b in zip(hashed, shard))

 return realm_key

 def ExtractRealmVectorKey(realm_key):
 vector_key = realm_key[0:16]

 return vector_key

 def ExtractRealmTagKey(realm_key):
 tag_key = realm_key[16:32]

 return tag_key

 def ExtractRealmCipherKey(realm_key):
 cipher_key = realm_key[32:64]

 return cipher_key

Levison Expires November 11, 2018 [Page 16]

Internet-Draft stacie May 2018

5. Encryption

 STACIE requires client implementations to support the Advanced
 Encryption Standard [AES] using 256 bit key values. To ensure data
 integrity, and protect against manipulation by a malicious server,
 AES must be employed using the Galois Counter Mode [GCM]. The binary
 format specifies a 34 octet envelope, followed by a payload aligned
 to a 16 octet boundary. The payload includes a 4 octet prefix, and a
 variable amount of padding appended as a suffix for alignment
 purposes.

5.1. Envelope

 Symmetrically encrypted buffers are preceeded by an envelope,
 consisting of the realm serial number, the initialization vector
 shard, and the authentication tag shard. The serial number is a 2
 octet big endian integer corresponding to the realm key used to
 derive the key values associated with a given buffer. It is possible
 for a realm to have buffers encrypted using different serial numbers.
 The number may be increased when users update their password. The
 serial number is followed by a 16 octet initialization vector shard,
 which must be randomly generated whenever data is encrypted. The
 vector shard is combined with the vector key using a bitwise
 exclusive "or" operation to produce the initialization vector used
 for a given cipher text. The final envelope value is a 16 octet tag
 shard, which like the vector shard, must be combined with the tag key
 using a bitwise exclusive "or" operation to produce the
 authentication tag for a given cipher text.

 Envelope Parameters

 serial
 The serial number is a 2 octet big endian integer which delineates
 which shard value for a given realm should be used to derive the
 realm key.

 vector_shard
 The randomly generated 16 octet value generated during encryption,
 and then combined with the vector key to using a bitwise exclusive
 "or" operation. The result is the initialization vector for a
 given cipher text.

 tag_shard
 A 16 octet authentication tag is created during the encryption
 process, and then combined with the tag key using a bitwise
 exclusive "or" operation to create the tag shard. To produce the
 authentication tag for a cipher text, the tag key must be combined

Levison Expires November 11, 2018 [Page 17]

Internet-Draft stacie May 2018

 with the tag shard using to another bitwise exclusive "or"
 operation when the buffer is decrypted.

5.2. Payload

 The envelope data is immediately followed by the encrypted payload,
 which consists of the encrypted plain text value, a 4 octet prefix,
 and up to 255 octets of padding appended after the plain text. The
 entire encrypted/decrypted payload, including the prefix and suffix,
 must align to a 16 octet boundary. The prefix begins with a 3 octet
 big endian integer which denotes the length of the plain text value,
 and is is followed by a single octet pad value. The pad value
 indicates how many additional octets have been appended to the plain
 text value t0 align the payload to the 16 octet boundary. The amount
 of padding must include the requisite 0 to 15 octets required to
 align the payload, but may also include a random amount of optional
 padding in 16 octet increments. Specicially, the pad value may
 include an additional 16, 32, 48, 64, 80, 96, 112, 128, 144, 160,
 178, 192, 208, 224, or 240 octets beyond those required for
 alignment. The padding octets appended after the plain text value,
 or suffix, must match the value of the padding octet in the prefix.

 size
 The length of the plain text value represented as a 3 octet, big
 endian integer.

 pad
 The amount of padding appended to the plain text value generated
 16 octet value generated during encryption, and then combined with
 the vector key to using a bitwise exclusive "or" operation. The
 result is the initialization vector for a given cipher text.

 buffer
 A plain text value worthy of protection.

 padding
 Up to 255 octets of padding, with the padding octets all set to
 the pad value.

 Example

 The following Python code demonstrates how to encrypt a plain text
 value:

Levison Expires November 11, 2018 [Page 18]

Internet-Draft stacie May 2018

 def RealmEncrypt(vector_key, tag_key, cipher_key, buffer, serial=0):

 count = 0

 if serial < 0 or serial >= pow(2, 16):
 raise ValueError("Serial numbers must be greater than 0 " \
 "and less than 65,536.")
 elif len(cipher_key) != 32:
 raise ValueError("The encryption key must be 32 octets " \
 "in length.")
 elif len(vector_key) != 16:
 raise ValueError("The vector key must be 16 octets in " \
 "length.")
 elif len(buffer) == 0:
 raise ValueError("The secret being encrypted must be at " \
 "least 1 octet in length.")
 elif len(buffer) >= pow(2, 24):
 raise ValueError("The secret being encrypted must be at " \
 "less than 16,777,216 in length.")

 vector_shard = get_random_bytes(16)

 iv = str().join(chr(operator.xor(ord(a), ord(b))) \
 for a,b in zip(vector_key, vector_shard))

 size = len(buffer)
 pad = (16 - operator.mod(size + 4, 16))

 while count < pad:
 buffer += struct.pack(">I", pad)[3:4]
 count = operator.add(count, 1)

 encryptor = Cipher(algorithms.AES(cipher_key), modes.GCM(iv), \
 backend=default_backend()).encryptor()
 ciphertext = encryptor.update(struct.pack(">I", size)[1:4] \
 + struct.pack(">I", pad)[3:4] + buffer) \
 + encryptor.finalize()

 tag_shard = str().join(chr(operator.xor(ord(a), ord(b))) \
 for a,b in zip(tag_key, encryptor.tag))

 return struct.pack(">H", serial) + vector_shard + tag_shard \
 + ciphertext

 The following Python code demonstrates how to decrypt and validate
 the cipher text created by the encryption function above:

Levison Expires November 11, 2018 [Page 19]

Internet-Draft stacie May 2018

 def RealmDecrypt(vector_key, tag_key, cipher_key, buffer):

 count = 0

 # Sanity check the input values.
 if len(cipher_key) != 32:
 raise ValueError("The encryption key must be 32 octets " \
 "in length.")
 elif len(tag_key) != 16:
 raise ValueError("The tag key must be 16 octets in length.")
 elif len(vector_key) != 16:
 raise ValueError("The vector key must be 16 octets in " \
 "length.")
 elif len(buffer) < 54:
 raise ValueError("The minimum length of a correctly " \
 "formatted cipher text is 54 octets.")
 elif operator.mod(len(buffer) - 34, 16) != 0:
 raise ValueError("The cipher text was not aligned to " \
 "a 16 octet boundary or some of the data is missing.")

 # Parse the envelope.
 vector_shard = buffer[2:18]
 tag_shard = buffer[18:34]
 ciphertext = buffer[34:]

 # Combine the shard and key values to get the iv and tag.
 iv = str().join(chr(operator.xor(ord(a), ord(b))) \
 for a,b in zip(vector_key, vector_shard))

 tag = str().join(chr(operator.xor(ord(a), ord(b))) \
 for a,b in zip(tag_key, tag_shard))

 # Decrypt the payload.
 decryptor = Cipher(algorithms.AES(cipher_key), \
 modes.GCM(iv, tag), backend=default_backend()).decryptor()
 plaintext = decryptor.update(ciphertext) + decryptor.finalize()

 # Parse the prefix.
 size = struct.unpack(">I", '\x00' + plaintext[0:3])[0]
 pad = struct.unpack(">I", '\x00' + '\x00' + '\x00' + \
 plaintext[3:4])[0]

 # Validate the prefix values.
 if operator.mod(size + pad + 4, 16) != 0 or \
 len(plaintext) != size + pad + 4:
 raise ValueError("The encrypted buffer is invalid.")

 # Confirm the suffix values.

Levison Expires November 11, 2018 [Page 20]

Internet-Draft stacie May 2018

 for offset in xrange(size + 4, size + pad + 4, 1):
 if struct.unpack(">I", '\x00' + '\x00' + '\x00' + \
 plaintext[offset: offset + 1])[0] != pad:
 raise ValueError("The encrypted buffer contained " \
 an invalid padding value.")

 # Return just the plain text value.
 return plaintext[4:size + 4]

6. Password Changes

6.1. Shallow Password Change

6.2. Deep Password Change

6.3. Hybrid Password Change

7. Protocol

7.1. Login

 The process begins by submitting a "login" request with the response
 providing an array of method objects each with the parameters
 required to compute the secret values needed for key derivation and
 the tokens used for authentication. This includes the password
 object which provides the nonce value required to generate the
 ephemeral login token required to validate the session or connection.

7.1.1. Login Request

 A login request supplies a single username parameter, which is
 required, and ensures equivalent inputs always provide a common,
 deterministic outcome.

 Required Parameters

 username
 The username value provide must be submitted to the server for
 normalization, canonicalization and alias mapping to ensure a
 deterministic result. The specific rules applied are determined
 by the account policies and system locale for the server.
 Typically, this will include lower-case characters, decomposing
 ambiguous characters, adding, removing or altering the domain name
 component, and mapping aliases to a real username.

 Example

Levison Expires November 11, 2018 [Page 21]

Internet-Draft stacie May 2018

 { login:
 { username: "user-alias@example.tld" }
 }

7.1.2. Login Response

 The response provides an array of method objects corresponding to
 different authentication mechanisms along with any requisite
 parameters. A disposition attribute indicates whether a particular
 method is optional or required. Currently, STACIE only provides
 specifications for the password based method for key derivation and
 authentication. Future specifications may extend this scheme to
 support common alternate, or additional methods, including second
 factor mechanisms, which is indicated by the presence of multiple
 method objects marked as required.

 If a user or site specific salt value is available, it must be
 returned in the password object. The salt provides a non-secret
 random value which ensures independence between different uses of the
 same password at different points in time. The salt value is
 particularly important for sites with a policy of stripping the
 domain portion off usernames, as a unique salt will ensure
 independence between accounts with an identical username and
 password, but residing on different systems.

 The singular method defined by this specification is the password
 mechanism, which provides an object containing the following
 parameters specified below.

 Required Parameters

 username
 The username returns the normalized username in a form suitable
 for use as an input parameter to the cryptographic hash function.
 Presumably, this will involve matching the value provided by the
 client with a static username identifier to ensure a deterministic
 output.

 salt
 The salt provides additional entropy for the cryptographic hash
 function. The salt value should be randomly generated and unique
 for every username. A minimum of 64 octets should be returned,
 with additional octets allowed in 32 octet increments. Clients
 must be capable handling salt values up to 1,024 octets in length.

 nonce

Levison Expires November 11, 2018 [Page 22]

Internet-Draft stacie May 2018

 The nonce must be combined with the stored secret, which results
 in a session token. Server implementations must only allow a
 single a validation attempt per nonce value.

 Optional Parameters

 bonus
 The bonus value mandates an arbitrary number of additional hash
 rounds a client must perform during each stage, in addition to the
 base rounds, and may be used by system operators to mitigate
 improvements in computing performance, or simply provide
 additional security sensitive accounts. Clients must accept and
 support values between 0 to 1,024. Implementations may provide
 support higher than 1,024. If this attribute is missing, a client
 must assume a default value of 0.

 The authenticate object has the following parameters:

 hash The hash value provides an object which identifies the one-way
 hash function, along with any parameters specific to the supplied
 primitive. This specification defines the hash objects for the
 "sha2" and "skein" primitives. Clients must support the sha2
 algorithm, and optionally implement the skein algorithm. If the
 hash object is missing, a client should assume the sha2 algorithm
 with block and digest attribute values of 512 bits. If a sha2 or
 skein object is returned without block or digest values, a client
 must assume the default value of 512 bits.

 cipher The cipher value provides an object which identifies the
 symmetric cipher used to encrypt and decrypt data retrieved from
 the server along with any algorithm specific parameters. This
 specification mandates that all implementations must be capable of
 supporting the "aes" primitive using the "gcm" block mode with a
 256 bit key. If the cipher object is missing, clients must assume
 that AES [AES] is being used in the GCM [GCM] with a 256 bit key.
 These same default values must be used if the cipher object
 specifies AES, but lacks values for the mode and key attributes.

 disposition An enumerated value, with values of optional and
 required. If this value is missing, required is presumed as the
 default value. If two or more method objects are marked as
 required, then 2 factor authentication is required.

 Example

Levison Expires November 11, 2018 [Page 23]

Internet-Draft stacie May 2018

 { methods:
 [password:
 { username: "user@example.tld",
 salt: "lyrtpzN8cBRZvsiHX6y4j-pJOjIyJeuw5aVXzrItw1G4EOa-6CA4R9Bh
 VpinkeH0UeXyOeTisHR3Ik3yuOhxbWPyesMJvfp0IBtx0f0uorb8wPnhw5BxD
 JVCb1TOSE50PFKGBFMkc63Koa7vMDj-WEoDj2X0kkTtlW6cUvF8i-M",
 nonce: "oDdYAHOsiX7Nl2qTwT18onW0hZdeTO3ebxzZp6nXMTo__0_vr_AsmAm
 3vYRwWtSCPJz0sA2o66uhNm6YenOGz0NkHcSAVgQhKdEBf_BTYkyULDuw2fSk
 bO7mlnxEhxqrJEc27ZVam6ogYABfHZjgVUTAi_SICyKAN7KOMuImL2g",
 bonus: "131072",
 hash: "sha2",
 cipher: "aes"
 disposition: "required" }
]
 }

7.2. Authenticate

 The process for a password based authentication concludes by
 submitting an "authenticate" request with an ephemeral login token.
 The response provides a keys array, with objects corresponding to the
 various realm specific keys specific to the protocol. These values
 are combined with the master key to derive the symmetric keys for the
 various realms used to encrypt data on a client.

7.2.1. Authenticate Request

 Required Parameters

 username
 The normalized username.

 nonce
 A randomly generated value, which may be combined with the
 verification token to create an ephemeral login token. Every
 nonce value must only be used by one authenticate request. Failed
 login attempts require a new nonce value to retry the login
 attempt.

 token
 The ephemeral login token needed to authenticate a session or
 token.

 Example

Levison Expires November 11, 2018 [Page 24]

Internet-Draft stacie May 2018

 { authenticate:
 { username: "user@example.tld",
 nonce: "oDdYAHOsiX7Nl2qTwT18onW0hZdeTO3ebxzZp6nXMTo__0_vr_AsmAm
 3vYRwWtSCPJz0sA2o66uhNm6YenOGz0NkHcSAVgQhKdEBf_BTYkyULDuw2fSk
 bO7mlnxEhxqrJEc27ZVam6ogYABfHZjgVUTAi_SICyKAN7KOMuImL2g",
 token: "-Eu5mUcA7ko2BysV965hrf9bvMlh_S_iiI3tfMr0Qc7hf4oPmBCdGOU
 9VCeQ1qBrga-WyR-rko5l0-feoWuuuA"
 }
 }

7.2.2. Authenticate Response

 If the authentication attempt was successful the server will return
 an array of realm shards.

 Required Parameters

 index
 The an incrementing counter corresponding to each shard value.

 label
 A protocol specific string containing the realm where the key
 value is used.

 shard
 The random bytes which are combined with the master key to derive
 a realm specific key value.

 Example

 { realms: [
 { index: "1",
 label: "mail",
 shard: "gD65Kdeda1hB2Q6gdZl0fetGg2viLXWG0vmKN4HxE3Jp3Z0Gkt5prqS
 mcuY2o8t24iGSCOnFDpP71c3xl9SX9Q",
 }
]
 }

 However, if the authentication request is unsuccessful and the server
 is willing to allow the client another attempt, it will return a
 login response with a unique nonce value. A nonce value must only be
 used once regardless of whether the attempt is successful. The
 following example only contains the required parameters.

 Example

Levison Expires November 11, 2018 [Page 25]

Internet-Draft stacie May 2018

 { methods:
 [password:
 { username: "user@example.tld",
 salt: "lyrtpzN8cBRZvsiHX6y4j-pJOjIyJeuw5aVXzrItw1G4EOa-6CA4R9Bh
 VpinkeH0UeXyOeTisHR3Ik3yuOhxbWPyesMJvfp0IBtx0f0uorb8wPnhw5BxD
 JVCb1TOSE50PFKGBFMkc63Koa7vMDj-WEoDj2X0kkTtlW6cUvF8i-M",
 nonce: "vQmxYp9sznZJ1M62AxSGe3cQgMqTmVw92E1qfNR_Fl_u2zVFEiyV5dV
 2abGEhsWPDkHsxtJGj-NTEF1vet1mlgfD67mQO1IPG7RfxPmEAJwAWGWkbgPG
 kQI2tpfAs5LqQai-Any3I95Kq-eTPIP8ykQYXKW8qO-DJCw5SmmCrJs" }
]
 }

 Or if the server does not want to allow any further attempts to
 access the account, it may also return an error message.

 { error: "The authentication attempt failed." }

7.3. Create

 When the birds mate with the bees a new account is born.

Levison Expires November 11, 2018 [Page 26]

Internet-Draft stacie May 2018

 { register:
 { username: "user-alias@example.tld" }
 }

 { recruit:
 { username: "user-alias@example.tld",
 salt: "Wb4vfzSpBpDRKafDlhhba3KhjIh09_4-IAl22XOcaI2z9O0QNdvNxFiRBM
 qsyr4yD90OmDxBckHJzijGF7d1PEsrGwlGEb9YCVpNvKiIgLeAPxz1OB7mn03wL
 RCfzYA8Ab8kvkinoZjHVnr6Fd34RS6bYB-mBB5WX2iQ-TBKZlE",
 bonus: "131072",
 hash: "sha2" }
 }

 { error: "The registration is disabled." }
 { error: "The requested username is unavailable." }
 { error: "A dramatic increase in cosmic radiation means registration
 is temporarily unavailable." }

 { enroll:
 { username: "user-alias@example.tld",
 salt: "Wb4vfzSpBpDRKafDlhhba3KhjIh09_4-IAl22XOcaI2z9O0QNdvNxFiRBM
 qsyr4yD90OmDxBckHJzijGF7d1PEsrGwlGEb9YCVpNvKiIgLeAPxz1OB7mn03wL
 RCfzYA8Ab8kvkinoZjHVnr6Fd34RS6bYB-mBB5WX2iQ-TBKZlE",
 verification-token: "egf9dS64Z5b5qmrW4JYT86iNxDwHM5PvLF7DkyufIUwX
 2bAZ8p7iDcHNLVbT53_zZUMWgxWIxAxmWw6d8nAv9Q" }
 }

7.4. Password Changes

 Update the verification token, and salt values on the server. Note
 the salt value is only updated if user specific salt values are being
 used. Alter any existing realm specific shard values, and if
 required add new randomly generated realm specific shard values.

7.5. Fetch Realm Specific Shard Values

 Fetch the realm shard values. The result may be narrowed to a
 specific realm, and serial number.

7.6. Add Realm Specific Shard Value

 Add a shard, for a given realm, to the account using the next
 available serial number.

Levison Expires November 11, 2018 [Page 27]

Internet-Draft stacie May 2018

8. Security Considerations

 Client and server implementations should follow the recommendations
 provided here to avoid leakage, and improve difficulty.

9. IANA Considerations

 This document has no actions for IANA.

9.1. Servers

 Username Enumeration

 To avoid enumeration and avoid leaking the list of valid user
 accounts, servers should respond to authenticate requests with valid
 and invalid usernames in the same fashion. Because salt values are
 typically unavailable in this situation, servers should normalize and
 return the username along with a dynamically derived salt value
 generated by combining the username with a site specific value. This
 will ensure a consistent salt value is returned on subsequent
 requests for the same invalid username. Servers may choose to return
 an error if the username contains invalid characters, or was provided
 with an unrecognized domain name.

 Salt Values

 To ensure STACIE provides the maximum amount of protection,
 implementations should generate unique, random salt values for every
 user, and then rotate the salt value every time the password is
 updated. This will ensure independence between common inputs, and
 strengthen the security analysis underpinning the design [HKDF].

9.2. Clients

 Side Channels

 A properly implemented client should ensure it's impossible for an
 attacker to correlate the duration between client request/responses
 with the plain text password length. Several mitigation strategies
 are possible, including submitting authentication requests
 independently of when users input their password. Adding random
 delays between hash rounds which are independent of system load and
 processor speed, or using a constant duration for password processing
 which is independent of the actual length. Clients may round any
 artificial processing delays to aligned boundaries, which would also
 make correlation more difficult.

Levison Expires November 11, 2018 [Page 28]

Internet-Draft stacie May 2018

9.3. Shared

 Transport Security

 STACIE implementations must support TLS using a ciphersuite capable
 of protecting against network eavesdroppers, data tampering and
 ensure the confidentiality of messages. Protocols incorporating
 STACIE as a component must provide recommendations sensitive to their
 intended context, but should encourage the use of TLS version 1.2, or
 later, and limit implementations to the ciphersuites capable of
 providing perfect forward secrecy. Server deployments should ensure
 they provide valid TLS certificates, and client implementations
 should ensure they properly validate server certificates using the
 procedures described in RFC 6125 [TLS-PKIX] or optionally, using the
 procedures described in RFC 6698 [TLS-DANE].

 As of this writing, the recommended ciphersuite is
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, identified by the octet values
 {0xC0, 0x30}, or the equivalent ECDSA variant,
 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, which is identified by the
 octet values {0xC0,0x2C}. [TLS-GCM]

 Specific requirements and recommendations will need to be updated
 over time, based on what is widely deployed, and may need altering
 based on future vulnerability discoveries. To obtain contemporary
 guidance, or find additional recommendations, implementers and system
 operators should consult the Recommendations for Secure Use of TLS
 and DTLS [TLS-UTA].

10. Feedback

 The preceding document was excreted with the assistance of a
 diarrhoetic. As such, feedback is both welcome, and encouraged.

11. Acknowledgments

 The genesis for STACIE was the authentication and key derivation
 method used by Lavabit LLC to authenticate client connections and
 protect the user specific private keys. Improvements were made while
 adapting the original server based scheme to operate on clients being
 developed for the Privacy Respecting Internet Mail Environment
 (PRIME). The author would also like to acknowledge and thank the One
 Password Protocol [ONEPW] developed for Firefox Sync and the HKDF
 [HKDF] specification for inspiring some of the improvements
 incorporated into STACIE.

 The improvements were all focused on providing operational
 flexibility, extensibility, while improving the security

Levison Expires November 11, 2018 [Page 29]

Internet-Draft stacie May 2018

 characteristics of short, relatively simple passwords commonly chosen
 by bipedal hominids. Acknowledgment must also be given to the large
 online services which allowed their password databases to be publicly
 scrutinized. Analysis of these databases proved invaluable while
 selecting the constants used by STACIE, and allowed the author to see
 how variations effected the dynamic difficulty level for a random
 sampling of real passwords.

 The goal for STACIE was to ensure it provided sufficient resistance
 against brute force attacks for the vast majority of passwords which
 will inevitably be used. Admittedly the term "sufficient resistance"
 is very subjective, and is constantly being shifted by advances in
 technology. Thanks should be given to the critics. Their complaints
 led to a modular hash algorithm, and the strategy of combining a
 dynamically calculated difficulty with a policy based bonus.
 Hopefully these decisions will ensure the survival of users with
 short password who inevitably get stuck on the long tail. STACIE is
 not a substitute for long, truly random, and incredibly complex
 passwords used by any evolved hominids capable of remembering them.

 The author would also like to thank Stacie for inspiring the name.
 Her resistance to having a computer bear her name, inevitably, led to
 something far better.

12. Normative References

 [AES] National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES), FIPS 197", November 2001,
 <http://csrc.nist.gov/publications/fips/fips197/
 fips-197.pdf>.

 [BASE] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", October 2006, <https://www.ietf.org/rfc/
 rfc4648.txt>.

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC, SP
 800-38D", November 2007,
 <http://csrc.nist.gov/publications/nistpubs/800-38D/
 SP-800-38D.pdf>.

 [HKDF] Krawczyk, H., "Cryptographic Extraction and Key
 Derivation: The HKDF Scheme", May 2010,
 <https://eprint.iacr.org/2010/264>.

 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", February 1997,
 <https://www.ietf.org/rfc/rfc2104.txt>.

Levison Expires November 11, 2018 [Page 30]

Internet-Draft stacie May 2018

 [HMAC-FIPS]
 National Institute of Standards and Technology, "The
 Keyed-Hash Message Authentication Code (HMAC), FIPS
 198-1", July 2008,
 <http://csrc.nist.gov/publications/fips/fips198-1/
 FIPS-198-1_final.pdf>.

 [HMAC-SHA]
 Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
 December 2005, <https://www.ietf.org/rfc/4231.txt>.

 [JSON] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", December 2017,
 <https://www.ietf.org/rfc/rfc8259.txt>.

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997,
 <https://www.ietf.org/rfc/rfc2119.txt>.

 [ONEPW] Boulange, R., "One Password Protocol", May 2014,
 <https://github.com/mozilla/fxa-auth-server/wiki/onepw-
 protocols>.

 [PBH] National Institute of Standards and Technology, "SHA-3
 Standard: Permutation-Based Hash and Extendable-Output
 Functions, FIPS 202", August 2015,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard, FIPS 180-2", August 2015,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.180-4.pdf>.

 [SKEIN] Ferguson, N., Lucks, S., Schneier, B., Whiting, D.,
 Bellare, M., Kohno, T., Callas, J., and J. Walker, "The
 Skein Hash Function Family", November 2008,
 <http://www.skein-hash.info/sites/default/files/
 skein1.1.pdf>.

 [TLS-DANE]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", August 2012, <https://www.ietf.org/rfc/
 rfc6698.txt>.

Levison Expires November 11, 2018 [Page 31]

Internet-Draft stacie May 2018

 [TLS-GCM] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", August 2008,
 <https://www.ietf.org/rfc/rfc5289.txt>.

 [TLS-PKIX]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", March 2011, <https://www.ietf.org/rfc/
 rfc6125.txt>.

 [TLS-UTA] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", February
 2015, <https://www.ietf.org/id/draft-ietf-uta-tls-bcp-
 11.txt>.

Appendix A. Test Vectors

 This appendix provides test vectors. Binary values are provided
 using the base64url encoding, with line breaks added as necessary.

A.1. Inputs

 # User Inputs
 password = "password"
 username = "user@example.tld"

 # Server Inputs
 bonus = 131072
 salt = "lyrtpzN8cBRZvsiHX6y4j-pJOjIyJeuw5aVXzrItw1G4EOa-6CA4R" \
 "9BhVpinkeH0UeXyOeTisHR3Ik3yuOhxbWPyesMJvfp0IBtx0f0uorb8w" \
 "Pnhw5BxDJVCb1TOSE50PFKGBFMkc63Koa7vMDj-WEoDj2X0kkTtlW6cU" \
 "vF8i-M"
 nonce = "oDdYAHOsiX7Nl2qTwT18onW0hZdeTO3ebxzZp6nXMTo__0_vr_" \
 "AsmAm3vYRwWtSCPJz0sA2o66uhNm6YenOGz0NkHcSAVgQhKdEBf_BT" \
 "YkyULDuw2fSkbO7mlnxEhxqrJEc27ZVam6ogYABfHZjgVUTAi_SICy" \
 "KAN7KOMuImL2g"

 # Realm Inputs
 realm = "mail"
 shard = "gD65Kdeda1hB2Q6gdZl0fetGg2viLXWG0vmKN4HxE3Jp3Z" \
 "0Gkt5prqSmcuY2o8t24iGSCOnFDpP71c3xl9SX9Q"

 # Encrypted Data
 encrypted-data = "AADgUtNbxGHrQEI3hLFx6otzATOda5IeP7-a_wxJUEE" \
 "UXJ3xSwis3mph6D7iqTfJXwFQDN9gqVAdsxWw_zLC00jM"

Levison Expires November 11, 2018 [Page 32]

Internet-Draft stacie May 2018

A.2. Outputs

 rounds = 196608

 seed = "5f-3mTGTSf-sFPfMkGqHTyydDjJU-cqahwDmHWyh6DLQ2oLBlz3ht" \
 "PTZS6V-TYVBiwJxuTYmQv3fCZN3Fb8brg"

 master-key = "SDt67ZfTr8c1KO1Ym6BI69i7TQNNq5J2irym6gPQlEo0MGc" \
 "5x-b43bi1uXJDF4rhJJvfl9NFBQkDQ_X_2n66RA"
 password-key = "lYmvC3qutKIb6QrnxnTi_WuJR_PSiyMZ0CdH18DAxHIgw" \
 "jj0_e4W6X8bKckKNGugWMMXmNgXDYb_7LlvtfN3HQ"
 realm-key = "exoUw4lFSz_RU0uTSQTM22jEdjaP-rvjvrXMbhyqNPq8o9vL" \
 "Rg9pcuKaAj_JFzQenY13XGKwxPHKULrVjrCJKQ"

 verification-token = "-Eu5mUcA7ko2BysV965hrf9bvMlh_S_iiI3tfMr" \
 "0Qc7hf4oPmBCdGOU9VCeQ1qBrga-WyR-rko5l0-feoWuuuA"
 ephemeral-login-token = "8YEH_6kBdAdR5vlBaxs3KR3pZ429bEzF3AVF" \
 "hkA0P2WPt2h94omJq-d8NhX0rNLBESn2yTu_z0ugJcSVLyz5iQ"

 tag-key = "aMR2No_6u-O-tcxuHKo0-g"
 vector-key = "exoUw4lFSz_RU0uTSQTM2w"
 cipher-key = "vKPby0YPaXLimgI_yRc0Hp2Nd1xisMTxylC61Y6wiSk"

 decrypted-data = "Attack at dawn!"

Author's Address

 Ladar Levison
 Lavabit LLC

 Email: ladar@lavabit.com

Levison Expires November 11, 2018 [Page 33]

