
Network Working Group M. Koster
Internet-Draft ARM Limited
Intended status: Standards Track A. Keranen
Expires: April 30, 2015 J. Jimenez
 Ericsson
 October 27, 2014

 Publish-Subscribe in the Constrained Application Protocol (CoAP)
 draft-koster-core-coap-pubsub-00

Abstract

 The Constrained Application Protocol, CoAP, and related extensions
 are intended to support machine-to-machine communication in systems
 where one or more nodes are resource constrained, in particular for
 low power wireless sensor networks. This document defines publish-
 subscribe and message queuing functionality for CoAP that extends the
 capabilities for supporting nodes with long breaks in connectivity
 and/or up-time.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Koster, et al. Expires April 30, 2015 [Page 1]

Internet-Draft Publish-Subscribe in CoAP October 2014

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Architecture . 4
 3.1. RD Server with associated CoAP-PubSub Broker 4
 3.2. Client Endpoint . 5
 3.3. Server Endpoint . 5
 3.4. Publish-Subscribe Topics 5
 4. CoAP-PubSub Registration and discovery 5
 4.1. Register CoAP-PubSub Endpoint 6
 4.2. Unregister Endpoint 6
 5. CoAP-PubSub Functions and Interactions 7
 5.1. Client Role Endpoint Functions 7
 5.1.1. Client Endpoint PUBLISH to CoAP-PubSub broker 7
 5.1.2. Client Endpoint SUBSCRIBE, Broker PUBLISH 8
 5.1.3. Client Endpoint GET from CoAP-PubSub Broker 9
 5.2. Server Role Endpoint Functions 9
 5.2.1. CoAP-PubSub broker SUBSCRIBES to Server Role EP . . . 9
 5.2.2. CoAP-PubSub Broker Publishes to Server Role Endpoint 10
 5.2.3. CoAP-PubSub Broker GET from Server Role Endpoint . . 10
 6. Enabling Multiple Publishers 11
 6.1. Creating a Topic . 11
 6.2. Publishing a Topic from Multiple Publishers 11
 6.3. Subscribing to a topic with multiple publishers 12
 7. Sleep-Wakeup Operation and Message Queueing 12
 8. Security Considerations 12
 9. IANA Considerations . 13
 9.1. Resource Type value ’core.pubsub.client’ 14
 9.2. Resource Type value ’core.pubsub.server’ 14
 10. Acknowledgements . 14
 11. References . 14
 11.1. Normative References 14
 11.2. Informative References 15
 Authors’ Addresses . 15

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] supports
 machine to machine communication across networks of constrained
 devices. One important class of constrained devices includes devices
 that are intended to run for years from a small battery, or by

Koster, et al. Expires April 30, 2015 [Page 2]

Internet-Draft Publish-Subscribe in CoAP October 2014

 scavenging energy from their environment. These devices spend most
 of their time in a sleeping state with no network connectivity.

 Devices may also have limited reachability due to certain middle-
 boxes, such as Network Address Translators (NATs) or firewalls. Such
 devices must communicate using a client role, whereby the endpoint is
 responsible for initiating communication.

 This document specifies the means for nodes with limited reachability
 to communicate using simple extensions to CoAP and the CoRE Resource
 Directory [I-D.ietf-core-resource-directory]. The extensions enable
 publish-subscribe communication using a broker node that enables
 store-and-forward messaging between two or more nodes.

 The mechanisms specified in this document are meant to address key
 design requirements from earlier CoRE drafts covering sleepy node
 support and mirror server.

2. Terminology

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 specification are to be interpreted as described in [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC5988] and [RFC6690]. Readers
 should also be familiar with the terms and concepts discussed in
 [RFC7252] and [I-D.ietf-core-resource-directory]. The URI template
 format, see [RFC6570], is used to describe the REST interfaces
 defined in this specification.

 This specification makes use of the following additional terminology:

 CoAP Publish-Subscribe (CoAP-PubSub) Service: A service provided by
 a node or system where CoAP messages sent by one endpoint to
 another are queued (stored) by intermediate node(s) and forwarded
 only when suitable, e.g., when the message recipient endpoint is
 not sleeping.

 CoAP-PubSub Broker: A server node capable of storing messages to and
 from other nodes and able to match subscriptions and publications
 in order to route messages to right destinations.

 CoAP-PubSub function set: A group of well-known REST resources that
 together provide the CoAP-PubSub service.

Koster, et al. Expires April 30, 2015 [Page 3]

Internet-Draft Publish-Subscribe in CoAP October 2014

 CoAP-PubSub Endpoint An endpoint that implements the CoAP-PubSub
 function set. A CoAP-PubSub endpoint has two potential modes,
 CoAP-PubSub Client and CoAP-PubSub Server.

 Publish-Subscribe (pub-sub): A messaging paradigm where messages are
 published (e.g., to a broker) and potential receivers can
 subscribe to receive the messages.

 Topic: In Publish-Subscribe systems a topic is a unique identifying
 string for a particular item or object being published and/or
 subscribed to.

3. Architecture

3.1. RD Server with associated CoAP-PubSub Broker

 Figure 1 shows an example architecture of a CoAP-PubSub capable
 service. A Resource Directory (RD) service accepts registrations and
 registration updates from one or more endpoints and hosts a resource
 discovery service for one or more web application clients. State
 information is updated from the endpoints to the CoAP-PubSub broker.
 Web clients subscribe to the state of the endpoint from the CoAP-
 PubSub broker, and publish updates to the endpoint state through the
 CoAP-PubSub broker. The CoAP-PubSub broker performs a store-and-
 forward function between web clients and the CoAP-PubSub capable
 endpoints. The CoAP-PubSub broker is also responsible for acting as
 a proxy, returning the last published value to web clients or other
 endpoints on behalf endpoints that are sleeping.

 Endpoints Service Applications
 +------+
 | |
 +- register -> | RD | <- discover -+
 +------+ | | | | +--------+
 | | --+ +------+ +-- | Web |
 | EP | | Client |
 | | <-+ +------+ +-> | app |
 +------+ | | CoAP | | +--------+
 | EP | +-- pub/sub -> |PubSub| <- pub/sub --+ | app |
 +------+ |Broker| +--------+
 +------+

 Figure 1: CoAP-PubSub Architecture

Koster, et al. Expires April 30, 2015 [Page 4]

Internet-Draft Publish-Subscribe in CoAP October 2014

3.2. Client Endpoint

 Client endpoints initiate all interactions with the RD and CoAP-
 PubSub broker. If the endpoint is an actuator it will need to either
 use CoAP Observe [I-D.ietf-core-observe] or periodically poll the
 PubSub broker to check for updates. A CoAP-PubSub client endpoint
 MUST use CoAP PUT operations to update its state on the PubSub
 broker. An endpoint SHOULD update the RD periodically to indicate
 that it is still alive even if it has no pending data updates.
 Endpoints can operate in the client role even if not directly
 reachable from the CoAP-PubSub broker or RD server.

3.3. Server Endpoint

 Server endpoint interactions require the CoAP-PubSub broker to
 perform the client role, initiating interaction with the server
 endpoint. The CoAP-PubSub broker MAY then use PUT operations to
 update state at the server endpoint, and MAY use GET or GET and
 Observe to subscribe to resources at the endpoint. Server mode
 endpoints are required to be reachable from the CoAP-PubSub broker.
 In a network containing both client and server endpoints, client
 endpoints MAY subscribe to server endpoints directly, in broker-less
 configurations, using RD or core-link-format metadata in .well-known/
 core to discover the CoAP-PubSub capabilities and using GET and
 Observe to subscribe to the desired topics.

3.4. Publish-Subscribe Topics

 Topic are strings used to identify particular resources and objects
 in publish-subscribe systems. Topics are conventionally formed as a
 hierarchy, e.g. "/sensors/weather/barometer/pressure".
 Implementations are free to map topics to resources, reusing existing
 resource addressing schemes.

4. CoAP-PubSub Registration and discovery

 An endpoint wishing to use a CoAP-PubSub broker registers with an RD
 server that advertises a link with the rt="core.pubsub" attribute as
 shown in Figure 2. This indicates that there is a CoAP-PubSub broker
 at the location returned by the discovery query as shown in Figure 2.
 The endpoint registers topics using the core link resource type (rt=)
 "core.pubsub.client" or "core.pubsub.server" (or both) attributes to
 indicate intention to use CoAP-PubSub and which modes are supported.

 A server that implements a CoAP-PubSub broker MAY advertize this
 capability by registering the rt="core.pubsub" with an associated
 Resource Directory. If a server advertizes as a CoAP-PubSub Broker,
 it MUST support the transactions described in section 5 of this

Koster, et al. Expires April 30, 2015 [Page 5]

Internet-Draft Publish-Subscribe in CoAP October 2014

 document. As server that implements the CoAP-PubSub Broker MAY also
 implement sleeping endpoint and message queueing support referred to
 in Section 6 of this document.

4.1. Register CoAP-PubSub Endpoint

 Figure 2 shows the flow of the registration operation. Discovery
 proceeds as per CoRE Resource Directory[I-D.ietf-core-resource-
 directory-01]. When an endpoint wishes to use CoAP-PubSub, it
 discovers the rt="core.pubsub" attribute at the RD service associated
 with the CoAP-PubSub broker and registers its CoAP-PubSub resources
 with the RD server by registering topics having the rt="core.pubsub"
 attribute. Topics are created using an initial POST operation to the
 registered topic or any valid sub-topic. For example, if the
 registered topic is "/sensors/weather", the sub-topic
 "/sensors/weather/barometer" is created using a POST to
 "/pubsub/sensors/weather/barometer". An implementation MAY mix CoAP-
 PubSub resources and CoAP REST resources on the same endpoint.
 Endpoint registration proceeds as per normal RD registration.

 EP Broker RD
 | PubSub DISCOVERY | |
 | ---- GET /.well-known/core?rt=core.pubsub --- | ------> |
 | | |
 | <--2.05 Content "</pubsub>;rt=core.pubsub"--- | ------- |
 | | |
 | | |
 | TOPIC REGISTRATION | |
 |POST /rd "</pubsub/0/xx>;rt=core.pubsub.client"| ------> |
 | | |
 | <-------- 2.01 Created Location: /rd/1234 --- | ------- |
 | | |
 | | |
 | FIRST PUBLISH | |
 | ------------ POST /pubsub/0/... ------------> | |
 | | |
 | <--------------- 2.01 Created---------------- | |
 | | |

 Figure 2: Discovery and Registration

4.2. Unregister Endpoint

 CoAP-PubSub endpoints indicate the end of their registration tenure
 by either explicitly unregistering, as in Figure 3, or allowing the
 lifetime of the previous registration to expire.

Koster, et al. Expires April 30, 2015 [Page 6]

Internet-Draft Publish-Subscribe in CoAP October 2014

 EP Broker RD
UNREGISTER	
---------------- DELETE /rd/1234 ------------	------>
<-------- 2.02 Deleted Location: /rd/1234 ---	-------

 Figure 3: Unregister Endpoint

5. CoAP-PubSub Functions and Interactions

 This section describes the transaction flows and interactions between
 CoAP-PubSub endpoints and CoAP-PubSub brokers. Client endpoint
 functions are used by endpoints implementing the client role, for
 example to enable sleep/wakeup and partial connectivity. Server role
 endpoint functions are used by endpoints implementing the server
 role, for example always on, reachable, endpoints. An endpoint
 implementation MAY support both client role and server role at an
 endpoint. A CoAP-PubSub broker MUST implement support for both
 client role and server role endpoints.

5.1. Client Role Endpoint Functions

 This section describes the transaction flows and interactions between
 CoAP-PubSub endpoints and CoAP-PubSub brokers where the endpoint
 supports the client role. A client registering the
 "core.pubsub.client" attribute MUST support the client role endpoint
 functions and interactions described in this section.

5.1.1. Client Endpoint PUBLISH to CoAP-PubSub broker

 Client endpoint PUBLISHes updates to CoAP-PubSub broker. A CoAP-
 PubSub client endpoint MAY use PUT to publish state updates to the
 CoAP-PubSub broker.

Koster, et al. Expires April 30, 2015 [Page 7]

Internet-Draft Publish-Subscribe in CoAP October 2014

 EP Broker RD
PUBLISH	
-------------- PUT /pubsub/0/... ----------->	
<--------------- 2.04 Changed----------------	

 Figure 4: Client Role PUBLISH from EP to Broker

5.1.2. Client Endpoint SUBSCRIBE, Broker PUBLISH

 Client mode endpoint subscribes to the topic at the CoAP-PubSub
 broker using GET and Observe. Published updates to the CoAP-PubSub
 broker are published to the Endpoint using Observe response tokens.
 Client endpoint MAY update actuator or resource based on received
 values associated with responses. A CoAP-PubSub broker MUST publish
 updates to subscribed endpoints upon receiving published updates on
 the associated topics.

 EP Broker RD
SUBSCRIBE	
--- GET /pubsub/0/... Observe: Token:XX ---->	
PUBLISH	
<---------- 2.05 Content Observe:10----------	
PUBLISH	
<---------- 2.05 Content Observe:12----------	
PUBLISH	
<---------- 2.05 Content Observe:15----------	

 Figure 5: Client Role Endpoint SUBSCRIBE, Broker PUBLISH to Endpoint

Koster, et al. Expires April 30, 2015 [Page 8]

Internet-Draft Publish-Subscribe in CoAP October 2014

5.1.3. Client Endpoint GET from CoAP-PubSub Broker

 Client mode endpoint MAY issue GET to topic without Observe as needed
 to obtain last published state from the CoAP-PubSub broker.

 EP Broker RD
------------- GET /pubsub/0/... ------------>	
<--------------- 2.05 Content ---------------	

 Figure 6: Client EP GET from CoAP-PubSub Broker

5.2. Server Role Endpoint Functions

 This section describes the transaction flows and interactions between
 CoAP-PubSub endpoints and CoAP-PubSub brokers where the endpoint
 supports the server role. An endpoint registering the
 "core.pubsub.server" attribute MUST support these functions and
 interactions.

5.2.1. CoAP-PubSub broker SUBSCRIBES to Server Role EP

 The server mode endpoint requires the CoAP-PubSub broker to act as a
 client and subscribe to a resource on the endpoint using GET +
 Observe. A CoAP-PubSub broker MAY subscribe to topics registered by
 a server role endpoint at any time. A CoAP-PubSub broker MUST
 subscribe to a topic registered by a server role endpoint upon
 receiving a subscription on the associated topic. A CoAP-PubSub
 broker MUST forward state updates received from a publishing endpoint
 to all endpoints subscribed on the associated topic. Figure 7 shows
 the flow of a CoAP-PubSub Broker subscribing to a server role
 endpoint.

Koster, et al. Expires April 30, 2015 [Page 9]

Internet-Draft Publish-Subscribe in CoAP October 2014

 EP Broker RD
 | | |
 | | |
 | SUBSCRIBE | |
 | <------ GET /0/... Observe: Token:XX -------- | |
 | | |
 | PUBLISH | |
 | ---------- 2.05 Content Observe:10----------> | |
 | | |
 | PUBLISH | |
 | ---------- 2.05 Content Observe:12----------> | |
 | | |
 | PUBLISH | |
 | ---------- 2.05 Content Observe:15----------> | |
 | | |
 | | |

 Figure 7: Broker SUBSCRIBE to Server Role EP

5.2.2. CoAP-PubSub Broker Publishes to Server Role Endpoint

 CoAP-PubSub broker MUST update server mode endpoint using PUT when
 upon receiving updates published on the associated topics. Endpoint
 server MAY update actuator or resource upon receiving published state
 updates from the broker.

 EP Broker RD
 | | |
 | | |
 | PUBLISH | |
 | <--------------- PUT /0/... ----------------- | |
 | | |
 | | |
 | ---------------- 2.04 Changed---------------> | |
 | | |
 | | |

 Figure 8: Broker PUBLISH to Server Role EP

5.2.3. CoAP-PubSub Broker GET from Server Role Endpoint

 CoAP-PubSub broker MAY issue GET without Observe as needed to obtain
 state update from the server role endpoint.

Koster, et al. Expires April 30, 2015 [Page 10]

Internet-Draft Publish-Subscribe in CoAP October 2014

 EP Broker RD
 | | |
 | | |
 | | |
 | <---------------- GET /0/... ---------------- | |
 | | |
 | | |
 | ---------------- 2.05 Content --------------> | |
 | | |
 | | |

 Figure 9: Broker GET from Server Role Endpoint

6. Enabling Multiple Publishers

6.1. Creating a Topic

 After registration of the EP in the RD and discovering the CoAP-
 PubSub function, a designated EP acting as publisher for a particular
 topic is responsible for creating such topic. To do so, it will have
 to register the new topic in the RD and create it on the PubSub
 function by doing a first publication as shown in Figure 2.

 After the topic has been created in the CoAP-PubSub broker, the
 broker will be responsible of hosting this resource and to queue
 messages published on it as explained in Section 5

6.2. Publishing a Topic from Multiple Publishers

 After the topic has been registered in the RD and is created in the
 CoAP-PubSub broker, any device with the right access permissions can
 publish on that topic by using the topic field. For example in the
 following diagram, both EP1 and EP2 update the same topic that EP3
 has previously subscribed to.

 After the topic has been created in the CoAP-PubSub Broker, the
 broker will be responsible of hosting this resource and to queue
 messages published on it as explained in Section 5

Koster, et al. Expires April 30, 2015 [Page 11]

Internet-Draft Publish-Subscribe in CoAP October 2014

 EP1 EP2 Broker
 | | PUBLISH |
 | ------------ PUT /pubsub/0/TOPIC1 ----------> |
 | | |
 | <--------------- 2.04 Changed---------------- |
	PUBLISH
	---- PUT /pubsub/0/TOPIC1 ---------->
	<------- 2.04 Changed----------------

 Figure 10: Multiple CoAP-PubSub EPs PUBLISH to Broker

6.3. Subscribing to a topic with multiple publishers

 Subscription to this topic is the same as in Section 5, since it acts
 as any other resource. Following the previous example, if EP3 is
 subscribed to the shared topic, it should receive two updates from
 both EP1 and EP2.

 EP3 Broker
 | SUBSCRIBE |
 | ----- GET /pubsub/0/TOPIC1 Observe ---------> |
 | |
 | PUBLISH |
 | <----------- 2.05 Content EP1 -------------- |
 | |
 | PUBLISH |
 | <----------- 2.05 Content EP2 -------------- |
 | |

 Figure 11: CoAP-PubSub Endpoint SUBSCRIBE to Broker

7. Sleep-Wakeup Operation and Message Queueing

 A CoAP-PubSub broker MAY implement support for sleeping endpoints and
 queueing of messages as provided for in [OMALightweightM2M]

8. Security Considerations

 CoAP-PubSub re-uses CoAP [RFC7252], CoRE Resource Directory
 [I-D.ietf-core-resource-directory], and Web Linking [RFC5988] and
 therefore the security considerations of those documents also apply
 to this specification. Additionally, a CoAP-PubSub broker and the

Koster, et al. Expires April 30, 2015 [Page 12]

Internet-Draft Publish-Subscribe in CoAP October 2014

 endpoints SHOULD authenticate each other and enforce access control
 policies. A malicious EP could subscribe to data it is not
 authorized to or mount a denial of service attack against the broker
 by publishing a large number of resources. The authentication can be
 performed using the already standardized DTLS offered mechanisms,
 such as certificates. DTLS also allows communication security to be
 established to ensure integrity and confidentiality protection of the
 data exchanged between these relevant parties. Provisioning the
 necessary credentials, trust anchors and authorization policies is
 non-trivial and subject of ongoing work.

 The use of a CoAP-PubSub broker introduces challenges for the use of
 end-to-end security between the end device and the cloud-based server
 infrastructure since brokers terminate the exchange. While running
 separate DTLS sessions from the EP to the broker and from broker to
 the web application protects confidentially on those paths, the
 client/server EP does not know whether the commands coming from the
 broker are actually coming from the client web application.
 Similarly, a client web application requesting data does not know
 whether the data originated on the server EP. For scenarios where
 end-to-end security is desirable the use of application layer
 security is unavoidable. Application layer security would then
 provide a guarantee to the client EP that any request originated at
 the client web application. Similarly, integrity protected sensor
 data from a server EP will also provide guarantee to the client web
 application that the data originated on the EP itself. The protected
 data can also be verified by the intermediate broker ensuring that it
 stores/caches correct request/response and no malicious messages/
 requests are accepted. The broker would still be able to perform
 aggregation of data/requests collected.

 Depending on the level of trust users and system designers place in
 the CoAP-PubSub broker, the use of end-to-end encryption may also be
 envisioned. The CoAP-PubSub broken would then only be able to verify
 the request/response message/commands and store-and-forward without
 being able to inspect the content. The solution for providing
 application layer security will depend on the utilized data encoding.
 For example, with a JSON-based data encoding the work from the JOSE
 working group could be re-used. Distribution of the credentials for
 accomplishing end-to-end security might introduce challenges if
 previously unknown parties need to exchange data.

9. IANA Considerations

 This document registers two attribute values in the Resource Type
 (rt=) registry established with RFC 6690 [RFC6690].

Koster, et al. Expires April 30, 2015 [Page 13]

Internet-Draft Publish-Subscribe in CoAP October 2014

9.1. Resource Type value ’core.pubsub.client’

 o Attribute Value: core.pubsub.client

 o Description: Section X of [[This document]]

 o Reference: [[This document]]

 o Notes: None

9.2. Resource Type value ’core.pubsub.server’

 o Attribute Value: core.pubsub.server

 o Description: Section Y of [[This document]]

 o Reference: [[This document]]

 o Notes: None

10. Acknowledgements

 The authors would like to thank Hannes Tschofenig, Zach Shelby, Mohit
 Sethi, and Anders Eriksson for their contributions and reviews

11. References

11.1. Normative References

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-
 core-observe-14 (work in progress), June 2014.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Bormann, C., and S. Krco, "CoRE Resource
 Directory", draft-ietf-core-resource-directory-01 (work in
 progress), December 2013.

 [OMALightweightM2M]
 Open Mobile Alliance, "OMA LightweightM2M v1.0",
 http://technical.openmobilealliance.org/Technical/
 technical-information/release-program/current-releases/
 oma-lightweightm2m-v1-0, 12 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Koster, et al. Expires April 30, 2015 [Page 14]

Internet-Draft Publish-Subscribe in CoAP October 2014

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, August 2012.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, June 2014.

11.2. Informative References

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

Authors’ Addresses

 Michael Koster
 ARM Limited

 Email: Michael.Koster@arm.com

 Ari Keranen
 Ericsson

 Email: ari.keranen@ericsson.com

 Jaime Jimenez
 Ericsson

 Email: jaime.jimenez@ericsson.com

Koster, et al. Expires April 30, 2015 [Page 15]

