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Abstract

   Multipath TCP has become the transmission technique of choice for the
   multi-homed environment.  Recently, there have been multiple attempts
   to verify the security of Multipath TCP; but an eavesdropper in the
   initial handshake breaches the primary security goal of Multipath
   TCP.  In this paper, we introduce a secure scheme against an initial
   eavesdropper, using asymmetric key exchange.

   We optimize the public parameters to overcome two challenges to the
   use of asymmetric cryptography.  Then we show that compared to
   previously proposed methods, our scheme has low overhead, and is more
   secure.  Our approach applies to many weak authentication-based
   protocols that seek to use asymmetric cryptography.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119]

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 27, 2017.
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Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   TCP is currently restricted to a single path per connection, yet most
   state-of-the-art devices often support multiple network interfaces.
   Multipath TCP (MPTCP) [RFC6824] is a major extension of TCP that
   enables hosts to use multiple paths to concurrently transfer data for
   a single connection.  Concurrent transfer through multiple subflows
   for a single TCP session could improve the throughput and overall
   usage of the network resource.

   The primary security goal of MPTCP aims at being no worse than TCP
   security.  MPTCP currently provides security by exchanging keys
   during the initial handshake.  These keys are used to create HMACs to
   authenticate other hosts.  Exchanging keys in plaintext during the
   initial handshake is vulnerable at the viewpoint of security.  An
   eavesdropper in the initial handshake can hijack the MPTCP session
   using exchanged keys even after leaving the on-path location.  An
   active attacker can hijack the session by dropping the request for
   adding subflow, and can then initiate the subflow using received
   values within the request.

   These threats are considered acceptable.  The root cause of the
   threats is that the attacker could exploit the authentication values,
   whether the shared keys are exposed or not.  After establishing the
   subflow, the attacker can launch the attack [RFC6181].

   Asymmetric key exchange allows hosts to share the key without
   exposure.  Adopting SSL, an MPTCP session can negotiate shared keys
   between the end-points.  However, the overhead of SSL handshake is
   too high, considering that it occurs at every establishment of MPTCP.
   The overhead of the initial handshake affects the overall TCP
   throughput.
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   Moreover, a short connection in MPTCP maximizes the reduction of
   throughput.  Our priority design goal is to minimize the initial
   handshake.  However, low-overhead design using asymmetric
   cryptography is difficult, since public information needs a large-
   sized space.  MPTCP uses the TCP option, and the maximum size of the
   option header is 40 byte, excluding the MPTCP header.  If public
   information could not be inserted in the option header, additional
   packets are required for an exchange, since SYN packets cannot
   involve TCP payload.  Additional packets cause time and space
   overhead.

   We solve these limitations to optimize the public parameters
   considering the characteristics of MPTCP.  We propose a secure design
   against an eavesdropper in the initial handshake.  The proposed
   design is low overhead, and more secure compared to other schemes
   that use asymmetric cryptography.

2.  Terminology

   This document makes use of the following terms:

   o  Multipath TCP, MPTCP: refers to [RFC6824].  And every operation in
      MPTCP follows [RFC6824]

   o  Eavesdropper in initial handshake: refers to an eavesdropper
      present in the inital handshake where the keys are exchanged can
      hijack the MPTCP session at any time in the future.  This is
      partial-time on-path eavesdropper and is decribed in [RFC7430]

   o  Off-path attacker in subflows: refers to an attacker not present
      in any subflows.  This type of attacker could be present in
      initial handshake.

   o  On-path eavesdropper in subflows: refers to an eavesdropper
      present in one or more subflows.  This type of attacker could be
      present in initial handshake.  This attacker can acquire
      information from the subflows, however, cannot change or drop the
      message between the legitimate parties.

   o  On-path active attacker in subflows: refers to an active attacker
      present in one or more subflows.  This type of attacker could be
      present in initial handshake, and this type of attacker can
      acquire, change and drop the message between the legitimate
      parties.

   o  ADD_ADDR Attack: refers to an attack using ADD_ADDR option.
      Detail explanation is described in [I-D.ietf-mptcp-rfc6824bis].
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   o  Data encryption: refers to the possibility of data encryption
      using any encryption algorithms without key exposure.  It simply
      means secure key exchange.

3.  Security Threats in Multipath TCP

   The fundamental goal of MPTCP is to provide security that is no worse
   than TCP.  IETF documentation does not concern itself with threats
   that are applied to both TCP and MPTCP.  Of course, threats on TCP
   can influence MPTCP, the extension of TCP.  IETF documentation
   considers only the threats that are specific to MPTCP and are
   impossible with TCP.  To guarantee security, MPTCP adopts the HMAC-
   based handshake described in Sections II.A and II.B.  Researches that
   analyze the possible threats of current MPTCP implementation are
   investigated to verify the security provided to at least TCP level
   [RFC7430][SecEval-MPTCP].  They classified the attackers depending on
   location as follows:

   o  An off-path attacker does not need to be located in any of the
      subflows of the MPTCP session.  The off-path attacker cannot
      eavesdrop any of the packets of the MPTCP session.

   o  An on-path attacker needs to be on at least one of the paths
      during the whole lifetime of the MPTCP session.

   The off-path attacker is the most restricted model to attack since
   she doesn’t know any information for an attack.  Vulnerabilities in
   conditions of the off-path attacker have great impact, because they
   are vulnerable to any attacker model.  It is most difficult to
   provide security against an on-path attacker who can eavesdrop every
   packet of information used for an attack.  [RFC7430] describes the
   major and minor threats to MPTCP.  Due to the limitations of space,
   we explain only three of them.

3.1.  Eavesdropper in Initial Handshake

   The attacker could eavesdrop both MPTCP keys in an initial three-way
   handshake.  This threat is mentioned in [RFC7430], and is considered
   acceptable.  In MPTCP, the valid user is the one who has a shared key
   from an initial handshake.  An eavesdropper to the initial handshake
   also has the same authority.  Reference [I-D.ietf-paasch-mptcp-ssl][I
   -D.ietf-bagnulo-mptcp-secure][I-D.ietf-bittau-tcp-crypt][Sec-MPTCP-co
   n-approach] describe possible solutions.

   An eavesdropper in initial handshake is the most powerful attacker
   model in MPTCP.  An active attacker in the initial handshake is out
   of the scope of this paper.  The initial handshake is a three or
   four-way handshake in TCP.  Modifying this connection is a problem of
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   TCP, not MPTCP.  Threats in MPTCP should arise due to the additional
   operations of MPTCP which are secure in TCP.  The integrity of the
   initial handshake should be guaranteed.

3.2.  DoS Attack on MP_JOIN

   A valid token in SYN+MP_JOIN makes the host turn into a receiving
   state.  The host stores two 32-bit random nonces for verifying HMAC.
   If the attacker does not respond to the third ACK of a three-way
   handshake, the host maintains the half-open state until the third ACK
   is received.  The number of half-open connections per MPTCP session
   is limited.

   The attacker simply sends multiple MP_JOINs with different four-
   tuples, evading the limitation of half-open connections to exhaust
   the resource.  The attacker only needs the valid token which is
   easily achieved, as the token is sent as plaintext, because the token
   is not to provide security, but to specify the MPTCP session.  A
   partial-time on-path eavesdropper inspecting any one of a MP_JOIN
   three-way handshake can perform a DoS Attack on MP_JOIN with a valid
   token.

3.3.  ADD_ADDR Attack

   The ADD_ADDR attack is a MPTCP session hijacking using a man-in-the-
   middle (MitM) attack.  An off-path active attacker can perform an
   ADD_ADDR attack.  The attacker creates MitM configuration using the
   ADD_ADDR option, even if she is not in the middle of the path between
   the hosts.  To prevent this, ADD_ADDR format is modified to include
   HMAC.  However, it is still vulnerable to an eavesdropper in the
   initial handshake.  First, we describe the attack for the previous
   ADD_ADDR format.  We then look at the threats of the modified format.

   Assume that hosts-A and -B have the secure MPTCP session.  The
   attacker wants to add a subflow to host-A.  The attacker sends her IP
   address and Address ID to host-B, using the ADD_ADDR option.  Host-B
   considers it as the advertisement of a redundant IP address from
   host-A, and tries to begin an MP_JOIN handshake to the attacker’s IP
   address.

   Host-B is a valid user who can make the valid token for A, Token-A.
   Host-B sends Token-A and a random value, R-B to the attacker and she
   relay these values to host-A.  Host-A verifies Token_A then sends
   HMAC-B and R-A to the attacker.  The attacker delivers these values
   to host-B.  Finally, host-B sends HMAC-A to the attacker.  The
   attacker could finalize the authentication using HMAC-A.

Kim                      Expires April 27, 2017                 [Page 5]



Internet-Draft                   ESMPTCP                    October 2016

   The ADD_ADDR attack is a typical MitM attack except that the attacker
   could launch the attack whenever she wants.  The connection requests
   could be refused when Address ID in the received ADD_ADDR collides
   with that already assigned in the subflows.  However, the collision
   could be ignored, considering that the default number of the subflow
   in the current kernel is two, and that subflows are finite due to the
   lack of network interfaces in the normal network configuration.

   The root cause of an ADD_ADDR attack is that there are no
   authentication values for ADD_ADDR operation allowing the attacker to
   masquerade as hosts-A or -B.  [I-D.ietf-mptcp-rfc6824bis] modifies
   this to only legitimate users being able to advertise their IP
   address using truncated HMAC.  The parameters for HMAC are defined in
   Section II.C.  However, an eavesdropper in the initial handshake
   generates a truncated HMAC using both keys and still launches an
   ADD_ADDR attack.  Even then, that attacker could calculate the valid
   token and HMAC.  Using these values, she constructs the MitM
   configuration or adds a subflow to the victims.

3.4.  Design Consideration

   Considering the widespread nature of TCP, it is hard to use PKIX
   [RFC5280], which has scalability issues.  Even though it is possible,
   it has limited advantages because not all users have trusted
   certificates.  It is not practical to use trusted third parties.
   MPTCP is based on weak authentication [Weak-auth].  The weak
   authentication is cryptographically strong authentication among
   unknown parties without trusted third parties.  It does not authorize
   the hosts’ real identity such as X. 509 certificates, since there is
   no trusted third party, and pre-shared secrets cannot be used.

   The other host is unknown before establishing a connection.  MPTCP
   should exchange the secrets in the initial handshake.  Due to the
   leap of faith, which is one of the techniques supporting weak
   authentication, it cannot validate the actual credentials of
   entities, but ensures that entities are those who communicate from
   the beginning.  For example, hosts-A and -B are valid users who have
   a MPTCP session.  When host-B want to create a new subflow, hosts-A
   and -B authenticate each other with Key-A and Key-B, not using the
   real information of the hosts.  Assuming that the key exchange is
   secure, the entities who have both keys are the valid users.  The
   hosts cannot know if the other entities are hosts-A or -B, but they
   ensure that the other hosts are legitimate entities.  However, the
   key exchange proceeds in plaintext.  An eavesdropper in the initial
   subflow knows both keys, and this means that she is a valid user.
   Before the initial handshake, hosts-A and -B don’t know each other.
   It is difficult to send the key securely between unknown parties.
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3.4.1.  Asymmetric Key Exchange

   If using the asymmetric property, the key exchange could occur
   without key exposure between the unknown parties.  There are two
   challenges to adopting an asymmetric key in MPTCP.  The former is the
   space limitation of the TCP option and the latter is the cost of
   asymmetric computation.  MPTCP is over the TCP option.  The maximum
   length of TCP option is 40 bytes and the MPTCP header uses four
   bytes.  Asymmetric key exchange is hard to implement only using the
   TCP option without using TCP payload.  It generally needs a large
   space for trading cryptographic parameters.  However, a SYN flagged
   packet typically does not include the data for negotiating the
   initial sequence number.  At least two packets in TCP handshake could
   not be used for sending data, which results in extra packets for
   trading public parameters.  Despite space and time overheads, this
   concept was used in the prototypes of securing MPTCP [SecEval-MPTCP]
   and SMPTCP [I-D.ietf-bagnulo-mptcp-secure] to cover an eavesdropper
   in initial handshake.  They deal with additional packets in an
   initial handshake for key exchange.

3.4.2.  Minimizing Initial Handshake

   The short connection of MPTCP subflow degrades the overall TCP
   performance [Shortflow].  Not every MPTCP session transfers a large
   amount of data.  Some of them are terminated right after or before
   subflow is established.  When a short connection occurs, the
   operation of adding subflow reduces the TCP performance since it
   makes an unnecessary connection.  However, a transport layer cannot
   estimate the volume of application data.  It is difficult to predict
   the necessity of subflow before making the connection.  Delaying the
   point of creating subflow reduces the damage of short connection
   problem.  Only the connection with long lifetime wants to make a new
   subflow.  But an initial handshake is inevitable.  The overhead of
   the initial handshake has a critical impact on the whole network
   since it occurs each connection.  To minimize the handshake, the
   current implementation exchanges keys in plaintext, even though these
   are vulnerable to an eavesdropper in initial handshake.

4.  The Proposed Design

   Previous methods using an asymmetric key increase the overhead of the
   initial handshake resulting from the additional packet.  This
   breaches the latter design consideration.  We minimize public
   parameters for an asymmetric key.  Optimized parameters are able to
   be embedded in the TCP option, and don’t require additional packets,
   except for a four-way handshake.  Considering SSL/TLS, the public
   information is too large to be in the TCP option.  MPTCP relies on
   weak authentication, which doesn’t care about other host’s real
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   identity.  Our scheme skips the exchange of certificates.  It cannot
   guarantee publicity of the asymmetric key, but authenticates the
   subflows that originate from the owner of the MPTCP session.  Another
   challenge is the size of the public key.  To reduce the key size, we
   apply the Elliptic Curve and Elliptic Curve Diffie-Hellman [RFC4492].

                 Host A                                   Host B
        ------------------------                      -------------
        Address A1 | Address A2                         Address B1
        ------------------------                      -------------
            |               |                                 |
            |               |                                 |
            |          SYN + MP_CAPABLE(A’s x point)          |
       -----|------------------------------------------------>|
       |    |          ACK + MP_CAPABLE(B’s x point)          |
       |    |------------------------------------------------>|
       A    |          SYN + MP_CAPABLE(A’s y point)          |
       |    |------------------------------------------------>|
       |    |          SYN + MP_CAPABLE(B’s y point)          |
       -----|------------------------------------------------>|
            |               |                                 |
            |             SYN + MP_JOIN(Token-B, HMAC-token, R-A)
            |               |-------------------------------->|-----
            |               |  SYN/ACK + MP_JOIN(Auth-B, R-B) |    |
            |               |<--------------------------------|    |
            |               |       ACK + MP_JOIN(Auth-A)     |    B
            |               |-------------------------------->|    |
            |               |                ACK              |    |
            |               |<--------------------------------|-----
            |               |                                 |

          Figure 1: Basic operation of the proposed Multipath TCP

        -----------------------------------------------------------
           Notations    |                  Value
        -----------------------------------------------------------
           K            |           Hash(X_AB||Y_AB)
           Token_B      |        lsb_32(Hash(X_B||Y_B))
           HMAC_Token   | lsb_32(HMAC(K, Token_B||Address ID||R_A))
           Auth_B       |      msb_64(HMAC(K, R_B||R_A))
           Auth_A       |           HMAC(K, R_A||R_B)
        -----------------------------------------------------------

   Figure 2: Parameter Notations and Thier Values for the Proposed MPTCP
                                  Scheme

Kim                      Expires April 27, 2017                 [Page 8]



Internet-Draft                   ESMPTCP                    October 2016

4.1.  New MP_CAPABLE handshake

   Fig.1.A describes the sequence of a modified handshake.  Parameters
   of the Elliptic Curve use the named curve defined in [SEC2].  The
   length of the x point and y point relates to the type of elliptic
   curve.  The modified MP_CAPABLE needs a four-way handshake.  First,
   Host-A sends SYN with A’s x point and stuffing the one of unused bits
   in MP_CAPABLE option.  Host-B responds with ACK including B’s x
   point.  Host-B sends SYN containing B’s y point.  Finally, Host-A
   responds with ACK with A’s y point.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+-------+-------+---------------+
   |     Kind      |    Length     |Subtype|Version|A|B|C|D|E|F|G|H|
   +---------------+---------------+-------+-------+---------------+
   |   EC type     |                                               |
   +---------------+                                               |
   |             Sender or Receiver’s x or y point in E            |
   |               (Length is depending on EC type)                |
   +---------------------------------------------------------------+

                      Figure 3: New MP_CAPABLE option

   Fig.3. shows the format of the new MP_CAPABLE.  The current
   implementation uses "A" and "H" flags and reserves "B" flag for an
   extension.  "C"-"G" flags remain for cryptographic negotiation.  Our
   design selects the flag among them.  The proposed design supports
   backward compatibility.  It requests a connection initiation set to
   an unused flag.  Receivers who do not support our scheme reject the
   connection, since our request uses an unused flag.  It simply returns
   to current implementation, which uses "H" flags.  Receivers who
   support our scheme but do not want to use asymmetric key exchange
   reply that "H" flag will be used with their key, Key-B.  Receivers do
   not drop the request packet, to avoid repetition of connection
   initiation.  Key-A is the least significant 64-bits of sender’s x
   point in the request packet.  The randomness of Key-A is ensured,
   because x point is also arbitrary value.
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        ----------------------------------------------------------
           EC type    |     Named Curved    |       RSA/DSA
        ----------------------------------------------------------
              0       |       secp160k1     |        1024
              1       |       secp160r1     |        1024
              2       |       secp160r2     |        1024
              3       |       secp192k1     |        1024
              4       |       secp192r1     |        1024
              5       |       secp224k1     |        2048
              6       |       secp224r1     |        2048
              7       |       secp256k1     |        3072
              8       |       secp256r1     |        3072
           Reserved   |       Reserved      |      Reserved
        ----------------------------------------------------------

    Figure 4: Supported Elliptic Curve Type and Security Level Compared
                                to RSA/DSA

4.2.  New MP_JOIN handshake

   A 32-bit token identifies an MPTCP session where a new subflow wants
   to join in.  Assume that a sender inserts a random value in a token
   to defend against reuse of the token.  It is problematic for a
   receiver to distinguish the requested MPTCP session.  The receiver
   generates hash values of all stored MPTCP identifiers with a random
   value to compare with the token.  This degrades overall TCP
   performance in proportion to the currently existed MPTCP sessions.
   To solve this problem, the proposed design sends the token in
   plaintext for clarity.  It protects the token using HMAC whose
   messages are the token, Address ID, and random value.  Although an
   attacker knows the valid token, she could not launch the attack,
   since calculating HMAC for a different Address ID is impossible.  In
   the case of reusing a previously delivered HMAC, the connection
   requests are refused, due to the collision of Address IDs.

   Fig.1.B describes the sequence of the new MP_JOIN handshake.  Fig.2
   describes details of the parameters.  Using (X-A, Y-A) and (X-B,
   Y-B), both hosts calculate (X-AB, Y-AB) with Elliptic Curve Diffie-
   Hellman key exchange.  Then, they calculate the Token-B and K.  These
   computations could be pre-processed.  Host-A sends SYN with Token-B,
   HMAC-Token, and a random value, R-A, in MP_JOIN.  Host-B verifies
   HMAC-Token, and checks that Address ID has no collision.  Host-B
   sends SYN/ACK with Auth-B, which originates from R-B, R-A, X-AB, and
   Y-AB.  Only a legitimate user who has the pre-shared secret, (X-AB,
   Y-AB), can make the right authentication values.  The responses ACK
   with Auth-A are made by R-A, R-B, X-AB, and Y-AB.
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4.3.  ADD_ADDR

   Assuming the ADD_ADDR operation is vulnerable, even in the proposed
   design, the attacker creates a subflow using the same method
   described in Section III.B without knowing the shared key.  The
   current MPTCP denies the requests when the sender’s IP address is
   different from the IP address, a component of HMAC.  But, an
   eavesdropper in initial handshake who knows both keys still derives a
   new HMAC with her IP address as an input.  In the proposed design,
   the attacker could not acquire the shared key.  Maintaining current
   ADD_ADDR format mitigates against ADD_ADDR attack.

5.  Evaluation

   This section evaluates the proposed design compared to the previous
   defense technique described in Section VI.  MPTLS and SMPTCP
   calculate the shared key for authentication right after a key
   exchange over the initial handshake.  Calculating the shared key
   occurs whenever an MPTCP session is established, causing the increase
   of overall overhead.  This calculation violates our design
   consideration, of minimizing the initial handshake.  The proposed
   design exchanges public keys in the initial handshake, but derives a
   shared key in adding subflows, to decrease the computational overhead
   of the whole network.  In the case of a short connection, it does not
   calculate a shared key, since MP_JOIN does not arise.  Our scheme
   optimizes not only the computational but also the space and time
   overheads, through MPTCP specific design.

Kim                      Expires April 27, 2017                [Page 11]



Internet-Draft                   ESMPTCP                    October 2016

   -----------------------------------------------------------------
                          |Proposed| SMPTCP | MPTLS | Hash  | MPTCP
                          |Design  |        |       | Chain |
   -----------------------------------------------------------------
   MP_CAPABLE
   - Key exchange(bytes)  |  148   |  202   | 7468  |   52  |   32
   - Number of RTT/2      |   3    |   4    |   7   |   3   |   3
   -----------------------------------------------------------------
   MP_JOIN
   - Identify MPTCP       |   16   |   12   |  12   |   24  |   12
     session(bytes)       |        |        |       |       |
   - Authentication(bytes)|   40   |   40   |  40   |   28  |   40
   -----------------------------------------------------------------
   Eavesdropper in initial handshake
   & Off-path attacker    |   O    |   O    |   O   |   O   |   X
     in subflows          |        |        |       |       |
   & On-path eavesdropper |   O    |   O    |   O   |   O   |   X
     in subflows          |        |        |       |       |
   & On-path active       |   O    |   O    |   O   |   X   |   X
     attacker in subflows |        |        |       |       |
   -----------------------------------------------------------------
   DoS Attack on MP_JOIN  |   O    |   X    |   X   |   X   |   X
   -----------------------------------------------------------------
   ADD_ADDR Attack
   & Eavesdropper         |   O    |   O    |   O   |   X   |   X
     in initial handshake |        |        |       |       |
   & On-path any attacker |   O    |   O    |   O   |   X   |   O
     in subflows          |        |        |       |       |
   -----------------------------------------------------------------
   Data encryption        |   O    |   O    |   O   |   X   |   X
   -----------------------------------------------------------------

      Figure 5: Comparison of the proposed design and previous MPTCP
      schemes in terms of space overhead(bytes), time overhead(RTT),
                       security, and data encryption

   Fig.5 outlines our evaluation.  We explain the overhead of the
   proposed design and then discuss the security aspect.  Asymmetric
   methods have a high space overhead represented by bytes, due to the
   size of public information.  Each method has a different handshake of
   packets for key exchange.  We adopt an expression as a notation,
   rather than using total bytes to declare this characteristic.  The
   operands of addition are the size of each packet, except the TCP
   header.  The proposed scheme has the lowest space overhead in
   MP_CAPABLE among asymmetric schemes.  To cover DoS attack on MP_JOIN,
   it includes HMAC of token causing a relatively big overhead caused by
   identifying the MPTCP session.  The time overhead represents the
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   number of RTT/2 which means the one-way message latency.  Although it
   needs a four-way handshake on MP_CAPABLE, the number of RTT/2 is
   three, since the second ACK packet and third SYN packet can pass
   concurrently.  MPTLS has a large overhead of space and time depending
   on the TLS handshake.  The number of RTT/2 of MP_JOIN is the same as
   three in every scheme, so we intentionally omit this outcome in
   Fig.5.

   Asymmetric methods are secure against an eavesdropper in initial
   handshake.  Key exchange without key exposure makes data encryption
   possible.  Hash Chain is also a research into the same security
   threats, but that scheme is insecure to the on-path active attacker
   in subflow.  She drops the MP_JOIN requests of legitimate users and
   then makes her MP_JOIN request using the hash value received from the
   legitimate user.  Hash Chain has no mitigation for an ADD_ADDR
   attack.  It authenticates hosts using a hash chain, so there are no
   comments about the HMAC and its keys.  If it simply uses a stored
   hash as a key of HMAC, the exchange of hash values has the same
   meaning as the exchange of keys in plaintext.  It is still insecure
   to ADD_ADDR attack towards an eavesdropper in initial handshake.  But
   if it uses the ADD_ADDR format of the current MPTCP with the
   assumption that the hash value is a key, it would be changed to
   "secure" towards an on-path active attacker in Fig.5.  A notable
   difference is DoS Attack on MP_JOIN.  In other methods, the attacker
   can undertake a DoS attack using a valid token.  However, in the
   proposed design, the attacker knows a valid token but she could not
   make HMAC due to ignorance of the shared key.  If the attacker reuses
   HMAC, rather than making a new one, the receiver denies the
   connection, by checking the collision of address IDs.

6.  Related Work

   We discuss previous work for the secure schemes on security threats
   mentioned in Section III.  MPTLS [I-D.ietf-paasch-mptcp-ssl] uses an
   asymmetric key to avoid the key exposure caused by key exchange in
   plaintext.  Hosts negotiate the shared key for HMAC using TLS.  TLS
   authenticates both hosts with certificates and operates the key
   exchange algorithm to create the shared key.  MPTCP operations are
   performed with this key.  However, MPTLS inherit the overhead of TLS
   handshake.

   SMPTCP is another method that uses an asymmetric key.  It uses
   tcpcrypt [I-D.ietf-bittau-tcp-crypt] to secure an MPTCP session.
   Using tcpcrypt, both hosts negotiate a cryptographic protocol that
   protects the TCP payload.  A shared key calculated by the negotiated
   cryptographic protocol is used for authentication for MP_JOIN.
   Tcpcrypt uses the TCP option for implementation so it is easy to
   integrate with MPTCP.  Due to restrictions of the TCP option size,
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   tcpcrypt requires one additional message to perform the key exchange.
   Despite one-way message latency, tcpcrypt is much more efficient than
   TLS, since it focuses on the key exchange.  Likewise MPTLS,
   operations in SMPTCP perform the same as MPTCP, except the key for
   HMAC is determined by tcpcrypt.  Tcpcrypt is vulnerable in MitM
   attack, but MitM in the initial handshake is out of the scope of this
   paper.

   The Hash Chain-based solution [Sec-MPTCP-con-approach] makes a list
   consisting of chained hash values generated by recursively executing
   a hash function.  The host makes the key list, H0-Hn by repeating the
   hash function with the initial random value as a message until pre-
   defined length, n, of the hash chain.  During the initial handshake
   of the MPTCP session, both hosts exchange their last hash values Hn.
   During adding subflow, each host sends the next value of their
   previous hash values, i.e., Hn-1.  The one-way property of the hash
   function blocks the attacker from gaining the previous hash values.
   Only legitimate hosts know the full hash chain.  Next adding subflow
   authenticates both hosts using the hash chain in reverse order.  Once
   the subflow is established, the host replaces the stored hash with
   the last received hash.  However, an active attacker could drop the
   SYN+MP_JOIN from the legitimate host, and establish a new subflow
   using a hash value in that SYN packet, without knowing the hash
   chain.

7.  IANA Considerations

   This document requests an MPTCP unused flag for this option:

   o  Asymmetric Key Exchange Option

      NOTE: Implementations may use "e" flag among unused flags
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