
Cross-Device Flows: Security Best Current Practice

Abstract

This document describes threats against cross-device flows along with near term mitigations,

protocol selection guidance and the analytical tools needed to evaluate the effectiveness of these

mitigations. It serves as a security guide to system designers, architects, product managers,

security specialists, fraud analysts and engineers implementing cross-device flows.

Workgroup:

Internet-Draft:

Published:

Intended Status:

Expires:

Authors:

Web Authorization Protocol

draft-kasselman-cross-device-security-02

15 November 2022

Best Current Practice

19 May 2023

 P. Kasselman

Microsoft

D. Fett

yes.com

F. Skokan

Okta

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that

other groups may also distribute working documents as Internet-Drafts. The list of current

Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,

replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts

as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 May 2023.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Kasselman, et al. Expires 19 May 2023 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Cross Device Flow Concepts

2.1. Example A1: Authorize access to a video streaming service

2.2. Example A2: Authorize access to productivity services

2.3. Example A3: Authorize use of a bike sharing scheme

2.4. Example A4: Authorize a financial transaction

2.5. Example A5: Add a device to a network.

2.6. Example A6: Remote onboarding

2.7. Example A7: Transfer a session

3. Cross-Device Flow Exploits

3.1. Example B1: Illicit access to a video streaming service

3.2. Example B2: Illicit access to productivity services

3.3. Example B3: Illicit access to physical assets

3.4. Example B4: Illicit Transaction Authorization

3.5. Example B5: Illicit Network Join

3.6. Example B6: Illicit Onboarding

3.7. Example B7: Illicit session transfer

3.8. Out of Scope

4. Cross-Device Protocols and Standards

5. Mitigating Against Cross-Device Flow Attacks

5.1. Practical Mitigations

5.1.1. Establish Proximity

5.1.2. Short Lived/Timebound Codes

5.1.3. One-Time or Limited Use Codes

5.1.4. Unique Codes

5.1.5. Content Filtering

5.1.6. Detect and remediate

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 2

5.1.7. Trusted Devices

5.1.8. Trusted Networks

5.1.9. Limited Scopes

5.1.10. Short lived tokens

5.1.11. Rate Limits

5.1.12. Sender Constrained Tokens

5.1.13. User Experience

5.1.14. Authenticated flow

5.1.15. Practical Mitigation Summary

5.2. Protocol selection

5.2.1. IETF OAuth 2.0 Device Authorization Grant RFC8628:

5.2.2. OpenID Foundation Client Initiated Back-Channel Authentication (CIBA):

5.2.3. FIDO2/WebAuthn

5.2.4. Protocol Selection Summary

5.3. Foundational Pillars

6. Conclusion

7. Contributors

8. Informative References

Appendix A. Document History

Authors' Addresses

1. Introduction

Cross-device flows enable a user to initiate an authorization flow on one device (the initiating

device) and then use a second, personally trusted, device (authorization device) to authorize

access to a resource (e.g., access to a service).

These flows are increasingly popular and typically involve using a mobile phone to scan a QR

code or enter a user code displayed on an initiating device (e.g., Smart TV, Kiosk, Personal

Computer etc).

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 3

The channel between the initiating device and the authorization device is unauthenticated and

relies on the user's judgment to decide whether to trust a QR code, user code, or the

authorization request pushed to their authorization device.

Several publications have emerged in the public domain (, , ,

, ,), describing how the unauthenticated channel can be exploited

using social engineering techniques borrowed from phishing. Unlike traditional phishing attacks,

these attacks don't harvest credentials. Instead, they skip the step of collecting credentials by

persuading users to grant authorization using their authorization devices.

Once the user grants authorization, the attacker has access to the user's resources and in some

cases is able to collect access and refresh tokens. Once in possession of the access and refresh

tokens, the attacker may use these tokens to execute lateral attacks and gain additional access, or

monetize the tokens by selling them. These attacks are effective even when multi-factor

authentication is deployed, since the attacker's aim is not to capture and replay the credentials,

but rather to persuade the user to grant authorization.

In order to defend against these attacks, this document outlines three potential responses:

For protocols that are susceptible to unauthenticated channel exploits, deploy practical

mitigations.

Select protocols that are not susceptible to unauthenticated channel exploits when possible.

Conduct formal analysis of cross-device flows to assess susceptibility to these attacks and the

effectiveness of the proposed mitigations.

[Exploit1] [Exploit2] [Exploit3]

[Exploit4] [Exploit5] [Exploit6]

1.

2.

3.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD

NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are

to be interpreted as described in BCP 14 when, and only when, they appear

in all capitals, as shown here.

This specification uses the terms "access token", "refresh token", "authorization server", "resource

server", "authorization endpoint", "authorization request", "authorization response", "token

endpoint", "grant type", "access token request", "access token response", and "client" defined by

The OAuth 2.0 Authorization Framework .

[RFC2119] [RFC8174]

[RFC6749]

2. Cross Device Flow Concepts

In a cross-device flow, a user starts a scenario on the initiating device (e.g., a smart TV) and then

uses an authorization device (e.g., a smartphone) to authorize access to a resource (e.g., access to

a streaming service).

A typical example of a cross-device flow is shown below:

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 4

(A) The user takes an action on the initiating device by starting a purchase, adding a device

to a network or connecting a service to the initiating device.

(B) The initiating device retrieves a QR code or user code from an authorization server

(C) The QR code or user code is displayed on the initiating device where the user scans the

QR code or enters the user code on the authorization device

(D) The user authenticates to the authorization server before granting authorization.

(E) The Authorization Server issues tokens or grants authorization to the initiating device to

access the user's resources.

In some variants of these flows, the user receives a push notification on their authenticating

device that triggers the authorization flow, removing the need to scan a QR code or enter a user

code manually.

Cross device flows have several benefits, including:

Authorization on devices with limited input capabilities: End-users can authorize devices

with limited input capabilities to access content (e.g., smart TVs, digital whiteboards,

printers, etc).

Secure authentication on shared or public devices: End-users can perform authentication

and authorization using a personally trusted device, without risk of disclosing their

credentials to a public or shared device.

Ubiquitous multi-factor authentication: Enables a user to use multi-factor authentication,

independent of the device on which the service is being accessed (e.g., a kiosk, smart TV or

shared Personal Computer).

Convenience of a single, portable, credential store: Users can keep all their credentials in a

mobile wallet or mobile phone that they already carry with them.

Examples of cross-device flow scenarios include:

Figure 1: Typical Cross Device Flows

 (B) Initiating Device

 +--------------+ Get QR/User Code +---------------+

(A)User +---| Initiating |<--------------------->| |

 Start | | Device |(E) Grant Authorization| Authorization |

 Flow +-->| |<--------------------->| Server |

 +--------------+ | |

 | | |

 | (C) Scan QR code | |

 | or | |

 | enter User Code | |

 v | |

 +--------------+ | |

 | Authorization| | |

 | Device |<--------------------->| |

 | |(D) User Authenticates | |

 | | and Authorize Access | |

 +--------------+ +---------------+

•

•

•

•

•

•

•

•

•

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 5

2.1. Example A1: Authorize access to a video streaming service

An end-user sets up a new smart TV and wants to connect it to their favorite streaming service.

The TV displays a QR code that the user scans with their mobile phone. The user is redirected to

the streaming service provider's web page and asked to enter their credentials to authorize the

smart TV to access the streaming service. The user enters their credentials and grants

authorization, after which the streaming service is available on the smart TV.

2.2. Example A2: Authorize access to productivity services

An employee wants to access their files on an interactive whiteboard in a conference room. The

interactive whiteboard displays a URL and a code. The user enters the URL on their personal

computer and is prompted for the code. Once they enter the code, the user is asked to

authenticate and authorize the interactive whiteboard to access their files. The user enters their

credentials and authorizes the transaction and the interactive whiteboard retrieves their files

and allows the user to interact with the content.

2.3. Example A3: Authorize use of a bike sharing scheme

An end-user wants to rent a bicycle from a bike sharing scheme. The bicycles are locked in bike

racks on sidewalks throughout a city. To unlock and use a bike, the user scans a QR code on the

bike using their mobile phone. Scanning the QR code redirects the user to the bike sharing

scheme's authorization page where the user authenticates and authorizes payment for renting

the bike. Once authorized, the bike sharing service unlocks the bike, allowing the user to use it to

cycle around the city.

2.4. Example A4: Authorize a financial transaction

An end-user makes an online purchase. Before completing the purchase, they get a notification

on their mobile phone, asking them to authorize the transaction. The user opens their app and

authenticates to the service before authorizing the transaction.

2.5. Example A5: Add a device to a network.

An employee is issued with a personal computer that is already joined to a network. The

employee wants to add their mobile phone to the network to allow it to access corporate data

and services (e.g., files and e-mail). The personal computer displays a QR code, which the

employee scans with their mobile phone. The mobile phone is joined to the network and the

employee can start accessing corporate data and services on their mobile device.

2.6. Example A6: Remote onboarding

A new employee is directed to an onboarding portal to provide additional information to confirm

their identity on their first day with their new employer. Before activating the employee's

account, the onboarding portal requests that the employee present a government issued ID, proof

of a background check and proof of their qualifications. The onboarding portal displays a QR

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 6

code, which the user scans with their mobile phone. Scanning the QR code invokes the

employee's wallet on their mobile phone, and the employee is asked to present digital versions of

an identity document (e.g., a driving license), proof of a background check by an identity verifier,

and proof of their qualifications. The employee authorizes the release of the credentials and after

completing the onboarding process, their account is activated.

2.7. Example A7: Transfer a session

An employee is signed into an application on their personal computer and wants to bootstrap the

mobile application on their mobile phone. The employee initiates the cross-device flow and is

shown a QR code in their application. The employee launches the mobile application on their

phone and scans the QR code which results in the user being signed into the application on the

mobile phone.

3. Cross-Device Flow Exploits

The benefits of cross-device flows is compelling and is seeing adoption for a range of consumer

and enterprise scenarios such as those listed above. To ensure the user and service provider

enjoy the benefits of using their mobile phones as authentication and authorization devices, the

interaction between the two devices needs to be secure.

A common action in these cross-device flows is to present the user with a QR code or a user code

on the initiating device (e.g., Smart TV) and scanned or entered on the authorization device (the

mobile phone). When the user scans the code or copies the user code, they do so without any

proof that the QR code or user code is being displayed in the place or context intended by the

service provider. It is up to the user's judgment to decide on whether they can trust the QR code

or user code. In effect the user is asked to compensate for the absence of an authenticated

channel between the initiating device (smart TV) and the device on which the authentication/

authorization will take place (the mobile phone).

Attackers exploit this absence of an authenticated channel between the two devices by obtaining

QR codes or user codes (e.g., by initiating the authorization flows). They then use social

engineering techniques to change the context in which authorization is requested to trick end-

users to scan the QR code or enter it on their mobile devices. Once the end-user performs the

authorization on the mobile device, the attacker who initiated the authentication or

authorization request obtains access to the users resources. These attacks are also known as

illicit consent grant attacks. The figure below shows an example of such an attack.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 7

(A) The attacker initiates the protocol on the initiating device (or by mimicking the initiating

device) by starting a purchase, adding a device to a network or connecting a service to the

initiating device.

(B) The initiating device retrieves a QR code or user code from an authorization server

(C) The attacker copies the QR code or user code

(D) The attacker changes the context in which the QR code or user code is displayed in such a

way that the user is likely to scan the QR code or use the user code when completing the

authorization.

(E) The QR code or user code is displayed in a context chosen by the attacker and the user is

tricked into scanning the QR code or enter the user code on the authorization device.

(D) The user authenticates to the Authorization Server before granting authorization.

(E) The Authorization Server issues tokens or grants authorization to the initiating device,

which is under the attackers control, to access the users resources and the attacker gains

access to the resources and possibly any authorization artefacts like access and refresh

tokens.

The unauthenticated channel may also be exploited in variations of the above scenario where

the user initiates the flow and is then tricked into sending the QR code or user code to the

attacker. In these flows, the user is already authenticated and they request a QR code or user

Figure 2: Attacker Initiated Cross Device Flow Exploit

 (B) Initiating Device

 +--------------+ Get QR/User Code +---------------+

 | Attacker's |<--------------------->| |

 | Initiating |(E) Grant Authorization| Authorization |

 | Device |<--------------------->| Server |

 +--------------+ | |

 ^ | (C) Attacker Copy | |

(A) Attacker | | QR or User Code | |

 Start | | | |

 Flow | V | |

 +--------------+ | |

 | | | |

 | Attacker | | |

 | | (D) Attacker Change | |

 | | QR Code/User Code | |

 | | Context | |

 +--------------+ | |

 | (E) User is tricked and | |

 | Scan QR code or | |

 | enter User Code | |

 v | |

 +--------------+ | |

 | End User | | |

 | Authorization| | |

 | Device |<--------------------->| |

 | |(F) User Authenticates | |

 | | and Authorize Access | |

 +--------------+ +---------------+

•

•

•

•

•

•

•

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 8

code to transfer a session or obtain some other privilege such as joining a device to a network.

The attacker then proceeds to exploit the unauthenticated channel by using social engineering

techniques to trick the user into initiating a flow and send the QR code or user code to the

attacker, which they can then use to obtain the privileges that would have been assigned to the

user.

The following examples illustrate these attacks in practical settings and show how the

unauthenticated channel is exploited by attackers who can copy the QR codes and user codes,

change the context in which they are presented using social engineering techniques and mislead

end-users into granting consent to avail of services, access data and make payments.

3.1. Example B1: Illicit access to a video streaming service

An attacker obtains a smart TV and attempts to access an online streaming service. The smart TV

obtains a QR code from the authorization server and displays it on screen. The attacker copies

the QR code and embeds it in an e-mail that is sent to a large number of recipients. The e-mail

contains a message stating that the streaming service wants to thank them for their loyal support

and by scanning the QR code, they will be able to add a bonus device to their account for no

charge. One of the recipients open the e-mail and scan the QR code to register for early access to

premium content. The users perform multi-factor authentication, and when asked if they want a

new device to be added to their account, they authorize the action. The attacker's device is now

authorized to access the content and obtains an access and refresh token. The access token

allows the attacker to access content and the refresh token allows the attacker to obtain fresh

tokens whenever the access token expires.

The attacker scales up the attack by emulating a new smart TV, obtaining multiple QR codes and

widening the audience it sends the QR code to. Whenever a recipient scans the QR code and

authorizes the addition of a new device, the attacker obtains an access and refresh token, which

they sell for a profit.

3.2. Example B2: Illicit access to productivity services

An attacker emulates an enterprise application (e.g., an interactive whiteboard) and initiates a

cross-device flow by requesting a user code and URL from the authorization server. The attacker

obtains a list of potential victims and sends an e-mail informing users that their files will be

deleted within 24 hours if they don't follow the link, enter the user code and authenticate. The e-

mail reminds them that this is the third time that they have been notified and their last

opportunity to prevent deletion of their work files. One or more employees respond by following

the URL, entering the code and performing multi-factor authentication. Once these employees

authorized access, the attacker obtains access and refresh tokens from the authorization server

and uses it to access the users files, perform lateral attacks to obtain access to other information

and continuously refresh the session by requesting new access tokens. These tokens may be

exfiltrated and sold to third parties.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 9

3.3. Example B3: Illicit access to physical assets

An attacker copies a QR code from a bicycle locked in a bike rack in a city, prints it on a label and

places the label on a bicycle at the other end of the bike rack. A customer approaches the bike

that contains the replicated QR code and scans the code and authenticates before authorizing

payment for renting the bicycle. The bike rack unlocks the bike containing the original QR code

and the attacker removes the bicycle before cycling down the street while the customer is left

frustrated that the bike they were trying to use is not being unlocked . The customer

proceeds to unlock another bicycle and lodges a complaint with the bike renting company.

[NYC.Bike]

3.4. Example B4: Illicit Transaction Authorization

An attacker obtains a list of user identifiers for a financial institution and triggers a transaction

request for each of the users on the list. The financial institution's authorization server sends

push notifications to each of the users, requesting authorization of a transaction. The vast

majority of users ignore the request to authorize the transaction, but a small percentage grants

authorization by approving the transaction.

3.5. Example B5: Illicit Network Join

An attacker creates a message to all employees of a company, claiming to be from a trusted

technology provider investigating a suspected security breach. They ask employees to send them

the QR code typically used to join a new device to the network, along with detailed steps on how

to obtain the QR code. The employee, eager to assist, initiates the process to add a new mobile

device to the network. They authenticate to the network and obtain a QR code. They send the QR

code to the attacker. The attacker scans the QR code and adds their own device to the network.

They use this device access as an entry point and perform lateral moves to obtain additional

privileges and access to restricted resources.

3.6. Example B6: Illicit Onboarding

An attacker initiates an employee onboarding flow and obtains a QR code from the onboarding

portal to invoke a wallet and present a verifiable credential attesting to a new employee's

identity. The attacker obtains a list of potential new employees and sends an e-mail informing

them that it is time to present proof of their background check or government issued ID. The new

employee scans the QR code, invokes their wallet and presents their credentials. Once the

credentials are presented, the employee's account is activated. The employee portal accessed by

the attacker to obtain the QR code displays a message to the attacker with instructions on how to

access their account.

3.7. Example B7: Illicit session transfer

An attacker creates a message to all employees of a company, claiming to be from a trusted

technology provider investigating a suspected security breach. They ask employees to send them

the QR code typically used to transfer a session. The employee, eager to assist, initiates the

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 10

process to transfer a session. They authenticate and obtain a QR code and then send the QR code

to the attacker. The attacker scans the QR code with their mobile phone and access the users data

and resources.

3.8. Out of Scope

In all of the attack scenarios listed above, a user is tricked or exploited. For other attacks, where

the user is willingly colluding with the attacker, the security implications and potential

mitigations are very different. For example, a cooperating user can bypass software mitigations

on his device, share access to hardware tokens with the attacker, and install additional devices to

forward radio signals to trick proximity checks.

This document therefore only considers scenarios where a user does not collude with an

attacker.

4. Cross-Device Protocols and Standards

Cross-device flows that are subject to the attacks described earlier, typically share the following

characteristics:

The attacker can initiate the flow and manipulate the context of an authorization request. a.

E.g. the attacker can obtain a QR code or user code, or can request an authentication/

authorization decision from the user.

The interaction between the initiating device and authentication device is unauthenticated.

a. E.g. it is left ot the user to decide if the QR code, user code or authentication request is

being presented in a legitimate context

A number of protocols that have been standardized, or are in the process of being standardized

that share these characteristics include:

IETF OAuth 2.0 Device Authorization Grant (): A standard to enable authorization

on devices with constrained input capabilities (smart TVs, printers, kiosks). In this protocol,

the user code or QR code is displayed on the initiating device and entered on a second device

(e.g., a mobile phone).

Open ID Foundation Client Initiated Back-Channel Authentication (CIBA) : A standard

developed in the OpenID Foundation that allows a device or service (e.g., a personal

computer, Smart TV, Kiosk) to request the OpenID Provider to initiate an authentication flow

if it knows a valid identifier for the user. The user completes the authentication flow using a

second device (e.g., a mobile phone). In this flow the user does not scan a QR code or obtain a

user code from the initiating device, but is instead contacted by the OpenID Provider to

complete the authentication using a push notification, e-mail, text message or any other

suitable mechanism.

OpenID for Verifiable Credential Protocol Suite (Issuance, Presentation): The OpenID for

Verifiable Credentials enables cross-device scenarios by allowing users to scan QR codes to

retrieve credentials (Issuance) or present credentials (Presentation). The QR code is

presented on a device that initiates the flow.

1.

2.

• [RFC8628]

• [CIBA]

•

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 11

Self-Issued OpenID Provider v2 (SIOP V2): A standard that allows end-user to present self-

attested or third party attested attributes when used with Opend ID for Verifiable Credential

protocols. The user scans a QR code presented by the relying party to initiate the flow.

Cross-device protocols should not be used for same-device scenarios. If the initiating device and

authorization device is the same device, protocols like OpenID Connect Core and

OAuth 2.0 Authorization Code Grant as defined in are more appropriate. If a protocol

supports both same-device and cross-device modes (e.g.), the cross-device mode

should not be used for same-device scenarios. If an implementor decides to use a cross-device

protocol or a protocol with a cross-device mode in a same-device scenario, the mitigations

recommended in this document should be implemented to reduce the risks that the

unauthenticated channel is exploited.

•

[OpenID.Core]

[RFC6749]

[OpenID.SIOPV2]

5. Mitigating Against Cross-Device Flow Attacks

The unauthenticated channel between the initiating device and the authenticating device allows

attackers to change the context in which the authorization request is presented to the user. This

shifts responsibility of "authenticating" the channel between the two devices to the end-user. End

users have "expertise elsewhere" and are typically not security experts and don't understand the

protocols and systems they interact with. As a result, end-users are poorly equipped to

authenticate the channel between the two devices. Mitigations should focus on:

Minimizing reliance on the user to make decisions to authenticate the channel.

Providing better information with which to make decisions to authenticate the channel.

Recovering from incorrect channel authentication decisions by users.

To achieve the above outcomes, mitigating the exploits of cross-device flows require a three-

pronged approach:

Secure deployed protocols with practical mitigations.

Adopt or develop more secure protocols where possible.

Provide analytical tools to assess vulnerabilities and effectiveness of mitigations.

1.

2.

3.

1.

2.

3.

5.1. Practical Mitigations

A number of protocols that enable cross-device flows that are susceptible to illicit consent grant

attacks are already deployed. The security profile of these protocols can be improved through

practical mitigations that provide defense in depth that either:

Prevents the attack from being initiated.

Disrupts the attack once it is initiated.

Remediates or reduces the impact if the attack succeeds.

1.

2.

3.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 12

It is recommended that one or more of the mitigations are applied whenever implementing a

cross-device flow. Every mitigation provides an additional layer of security that makes it harder

to initiate the attack, disrupts attacks when in process or reduces the impact of a successful

attack.

5.1.1. Establish Proximity

The unauthenticated channel between the initiating and authenticating device allows attackers

to obtain a QR code or user code in one location and display in another location. Establishing

proximity between the location of the initiating device and the authentication device limits an

attacker's ability to launch attacks by sending the user or QR codes to large numbers of users

across the globe. There are a couple of ways to establish proximity:

Physical connectivity: This is a good indicator of proximity, but requires specific ports, cables

and hardware and may be challenging from a user experience perspective or may not be

possible in certain settings (e.g., when USB ports are blocked or removed for security

purposes). Physical connectivity may be better suited to dedicated hardware like FIDO

devices that can be used with protocols that are resistant to the exploits described in this

document.

Wireless proximity: Near Field Communications (NFC), Bluetooth Low Energy (BLE), and

Ultra Wideband (UWB) services can be used to prove proximity between the two devices.

NFC technology is widely deployed in mobile phones as part of payment solutions, but NFC

readers are less widely deployed. BLE presents another alternative for establishing

proximity, but may present user experience challenges when setting up.

Shared network: Device proximity can be inferred by verifying that both devices are on the

same network. This check may be performed by the authorization server by comparing the

network addresses of the device where the code is displayed (initiating device) with that of

the authentication/authorization device. Alternatively the check can be performed on the

device, provided that the network address is available. This could be achieved if the

authorization server encodes the initiating device's network address in the QR code and uses

a digital signature to prevent tampering with the code. This does require the wallet to be

aware of the countermeasure and effectively enforce it.

Geo-location: Proximity can be established by comparing geo-location information derived

from global navigation satellite-system (GNSS) co-ordinates or geolocation lookup of IP

addresses and comparing proximity. Due to inaccuracies, this may require restrictions to be

at a more granular level (e.g., same city, country, region or continent). Similar to the shared

network checks, these checks may be performed by the authorization server or on the users

device, provided that the information encoded in a QR code is integrity protected using a

digital signature.

Note: There are scenarios that require that an authorization takes place in a different location

than the one in which the transaction is authorized. For example, there may be a primary and

secondary credit card holder and both can initiate transactions, but only the primary holder can

authorize it. There is no guarantee that the primary and secondary holders are in the same

•

•

•

•

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 13

location at the time of the authorization. In such cases, proximity may be an indicator of risk and

the system may deploy additional controls (e.g., transaction value limits, transaction velocity

limits) or use the proximity information as input to a risk management system.

Depending on how the proximity check is performed, an attacker may be able to circumvent the

protection relatively easily: The attacker can use a VPN to simulate a shared network or spoof a

GNSS position. For example, the attacker can try to request the location of the end-user's

authorization device through browser APIs and then simulate the same location on his initiating

device using standard debugging features available on many platforms.

5.1.2. Short Lived/Timebound Codes

The impact of an attack can be reduced by making codes short lived. If an attacker obtains a

short-lived token, the duration during which the unauthenticated channel can be exploited is

reduced, potentially increasing the cost of a successful attack.

5.1.3. One-Time or Limited Use Codes

By enforcing one-time use or limited use of user or QR codes, the authorization server can limit

the impact of attacks where the same user code or QR code is sent to multiple victims. One-time

use may be achieved by including a nonce or date-stamp in the QR code which is validated by the

authorization server when the user scans the QR code.

5.1.4. Unique Codes

By issuing unique user or QR codes, an authorization server can detect if the same codes are

being repeatedly submitted. This may be interpreted as anomalous behavior and the

authorizations server may choose to decline issuing access and refresh tokens if it detects the

same codes being presented repeatedly. This may be achieved by maintaining a deny list that

contains QR codes or user codes that were previously used. The authorization server may use a

sliding window eqaul to lifetime of a token if short lived/timebound tokens are used (see Short

Lived/Timebound Codes). This will limit the size of the deny list.

5.1.5. Content Filtering

Attackers exploit the unauthenticated channel by changing the context of the user code or QR

code and then sending a message to a user (e-mail, text, instant messaging etc). By deploying

content filtering (e.g., anti-spam filter), these messages can be blocked and prevented from

reaching the end-users. It may be possible to fine-tune content filtering solutions to detect

artifacts like QR codes or user codes that are being reused in multiple messages to disrupt spray

attacks.

5.1.6. Detect and remediate

The authorization server may be able to detect misuse of the codes due to repeated use as

described in Unique Codes, as an input from a content filtering engine as described in Content

Filtering, or through other mechanisms such as reports from end users. If an authorization

server determines that a user code or QR code is being used in an attack it may choose to

invalidate all tokens issued in response to these codes and make that information available

through a token introspection endpoint (see . In addition it may notify resource servers[RFC7662]

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 14

to stop accepting these tokens or to terminate existing sessions associated with these tokens

using Continious Access Evaluation Protocol (CAEP) messages using the Shared Signals

and Events (SSE) framework or an equivalent notification system.

[CAEP]

[SSE]

5.1.7. Trusted Devices

If an attacker is unable to initiate the protocol, they are unable to obtain a QR code or user code

that can be leveraged for the attacks described in this document. By restricting the protocol to

only be executed on devices trusted by the authorization server, it prevents attackers from using

arbitrary devices, or by mimicking devices to initiate the protocol. Trusted devices include

devices that are pre-registered with the authorization server or are subject to device

management policies. Device management policies may enforce patching, version updates, on-

device anti-malware deployment, revocation status and device location amongst others. Trusted

devices may have their identities rooted in hardware (e.g., a TPM or equivalent technology). By

only allowing trusted devices to initiate cross-device flows, it requires the attacker to have access

to such a device and maintain access in a way that does not result in the device's trust status

from being revoked.

5.1.8. Trusted Networks

An attacker can be prevented from initiating a cross device flow protocol by only allowing the

protocol to be initiated on a trusted network or within a security perimeter (e.g., a corporate

network). A trusted network may be defined as a set of IP addresses and joining the network is

subject to security controls managed by the network operator, which may include only allowinfg

trusted devices on the network, device management, user authentication and physical access

policies and systems. By limiting protocol initiation to a specific network, the attacker needs to

have access to a device on the network.

5.1.9. Limited Scopes

Authorization servers may choose to limit the scopes they include in access tokens issued

through cross-device flows where the unauthenticated channel between two devices are

susceptible to being exploited. Including limited scopes lessens the impact in case of a successful

attack. The decision about which scopes are included may be further refined based on whether

the protocol is initiated on a trusted device or the user's location relative to the initiating device.

5.1.10. Short lived tokens

Another mitigation strategy includes limiting the life of the access and refresh tokens. The

lifetime can be lengthened or shortened, depending on the user's location, the resources they are

trying to access or whether they are using a trusted device. Short lived tokens do not prevent or

disrupt the attack, but serve as a remedial mechanism in case the attack succeeded.

5.1.11. Rate Limits

An attacker that engages in a scaled spray attack needs to request a large number of user codes

(see exploit example 1) or initiate a large number of authorization requests (see exploit example

2) in a short period of time. An authorization server can apply rate limits to minimize the

number of requests it would accept from a client in a limited time period.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 15

5.1.12. Sender Constrained Tokens

Sender constrained tokens limit the impact of a successful attack by preventing the tokens from

being moved from the device on which the attack was successfully executed. This makes attacks

where an attacker gathers a large number of access and refresh tokens on a single device and

then sells them for profit more difficult, since the attacker would also have to export the

cryptographic keys used to sender constrain the tokens or be able to access them an generate

signatures for future use. If the attack is being executed on a trusted device to a device with anti-

malware, any attempts to exfiltrate tokens or keys may be detected and the device's trust status

may be changed. Using hardware keys for sender constraining tokens will further reduce the

ability of the attacker to move tokens to another device.

5.1.13. User Experience

The user experience should preserve the context within which the protocols were initiated and

communicate this clearly to the user when they are asked to authorize, authenticate or present a

credential. In preserving the context, it should be clear to the user who invoked the flow, why it

was invoked and what the consequence of completing the authorization, authentication or

credential presentation. The user experience should reinforce the message that unless the user

initiated the authorization request, or was expecting it, they should decline the request.

It should be clear to the user how to decline the request. To avoid accidental authorization

grants, the "decline" option may be the default option or given similar prominence in the user

experience as the "grant" option.

This information may be communicated graphically or in a simple message (e.g., "It looks like

you are trying to access your files on a digital whiteboard in your city center office. Click here to

grant access to your files. If you are not trying to access your files, you should decline this request

and notify the security department").

The service may provide out-of-band reinforcement to the user on the context and conditions

under which an authorization grant may be requested. For example if the service provider does

not send e-mails with QR codes requesting users to grant authorization, this may be reinforced in

marketing messages, in-app experiences and through anti-fraud awareness campaigns.

5.1.14. Authenticated flow

By requiring a user to authenticate on the initiating device with a phishing resistant

authentication method before initiating a cross-device flow, the server can prevent an attacker

from initiating a cross-device flow and obtaining QR codes or user codes. This prevents the

attacker from obtaining a QR code or user code that they can use to mislead an unsuspecting

user. This requires that the initiating device has sufficient input capabilities to support a

phishing resistant authentication mechanism. Note that this does not prevent the attacks

described in Example B5: Illicit Network Join and Example B7: Illicit Session Transfer and it is

recommended that additional mitigations described in this document is used if the cross-device

flows are used in scenarios such as Example A5: Add a device to a network and Example A7:

Transfer a session.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 16

5.1.15. Practical Mitigation Summary

The practical mitigations described in this section can prevent the attacks from being initiated,

disrupt attacks once they start or reduce the impact or remediate an attack if it succeeds. When

combining one or more of these mitigations the overall security profile of a cross-device flow

improves significantly. The following table provides a summary view of these mitigations:

Mitigation Prevent Disrupt Recover

Establish Proximity X X

Short Lived/Timebound Codes X

One-Time or Limited Use Codes X

Unique Codes X

Content Filtering X

Detect and remediate X

Trusted Devices X

Trusted Networks X

Limited Scopes X

Short Lived Tokens X

Rate Limits X X

Sender Constrained Tokens X

User Experience X

Authenticated flow X

Table 1: Practical Mitigation Summary

5.2. Protocol selection

Some cross-device protocols are more susceptible to the exploits described in this document than

others. In this section we will compare three different cross-device protocols in terms of their

susceptibility to exploits focused on the unauthenticated channel, the prerequisites to implement

and deploy them along with guidance on when it is appropriate to use them.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 17

5.2.1. IETF OAuth 2.0 Device Authorization Grant [RFC8628]:

5.2.1.1. Description

A standard to enable authorization on devices with constrained input capabilities (smart TVs,

printers, kiosks). In this protocol, the user code or QR code is displayed or made available on the

initiating device (smart TV) and entered on a second device (e.g., a mobile phone).

5.2.1.2. Susceptibility

There are several reports in the public domain outlining how the unauthenticated channel may

be exploited to execute an illicit consent grant attack.

5.2.1.3. Device capabilities

There are no assumptions in the protocol about underlying capabilities of the device, making it a

"least common denominator" protocol that is expected to work on the broadest set of devices and

environments.

5.2.1.4. Mitigations

In addition to the security considerations section in the standard, it is recommended that one or

more of the mitigations outlined in this document be considered, especially mitigations that can

help establish proximity or prevent attackers from obtaining QR or user codes.

5.2.1.5. When to use

Only use this protocol if other cross-device protocols are not viable due to device or system

constraints. Avoid using if the protected resources are sensitive, high value or business critical.

Always deploy additional mitigations like proximity or only allow with pre-registered devices. Do

not use for same-device scenarios (e.g. if the initiating device and authorization device is the

same device).

5.2.2. OpenID Foundation Client Initiated Back-Channel Authentication (CIBA):

5.2.2.1. Description

Client Initiated Back-Channel Authentication (CIBA) : A standard developed in the OpenID

Foundation that allows a device or service (e.g., a personal computer, Smart TV, Kiosk) to request

the OpenID Provider to initiate an authentication flow if it knows a valid identifier for the user.

The user completes the authentication flow using a second device (e.g., a mobile phone). In this

flow the user does not scan a QR code or obtain a user code from the initiating device, but is

instead contacted by the OpenID Provider to complete the authentication using a push

notification, e-mail, text message or any other suitable mechanism.

[CIBA]

5.2.2.2. Susceptibility

Less susceptible to unauthenticated channel attacks, but still vulnerable to attackers who know

or can guess the user identifier and initiate a spray attack as described in Example 4.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 18

5.2.2.3. Device capabilities

There is no requirement on the initiating device to support specific hardware. The authorizing

device must be registered/associated with the user and it must be possible for the Authorization

Server to trigger an authorization on this device.

5.2.2.4. Mitigations

In addition to the security considerations section in the standard, it is recommended that one or

more of the mitigations outlined in this document be considered, especially mitigations that can

help establish proximity or prevent attackers from initiating authorization requests.

5.2.2.5. When to use

Use CIBA instead of Device Authorization Grant if it is possible for the initiating device to obtain

a user identifier on the initiating device (e.g., through an input or selection mechanism) and if

the Authorization Server can trigger an authorization on the authorization device. Do not use for

same-device scenarios (e.g. if the initiating device and authorization device is the same device).

5.2.3. FIDO2/WebAuthn

5.2.3.1. Description

FIDO2/WebAuthn is a stack of standards developed in the FIDO Alliance and W3C respectively

which allow for origin-bound, phishing-resistant user authentication using asymmetric

cryptography that can be invoked from a web browser or native client. Version 2.2 of the FIDO

Client to Authenticator Protocol (CTAP) supports a new cross-device authentication protocol,

called "hybrid", which enables an external device, such as a phone or tablet, to be used as a

roaming authenticator for signing into the primary device, such as a personal computer. This is

commonly called FIDO Cross-Device Authentication (CDA).

When a user wants to authenticate using their mobile device (authenticator) for the first time,

they need to link their authenticator to their main device. This is done using a scan of a QR code.

When the authenticator scans the QR code, the device sends an encrypted BLE advertisement

containing keying material and a tunnel ID. The main device and authenticator both establish

connections to the web service, and the normal CTAP protocol exchange occurs.

If the user chooses to keep their authenticator linked with the main device, the QR code link step

is not necessary for subsequent use. The user will receive a push notification on the

authenticator.

5.2.3.2. Susceptibility

The Cross-Device Authentication flow proves proximity by leveraging BLE advertisements for

service establishment, significantly reducing the susceptibility to any of the exploits described in

Examples 1-6.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 19

5.2.3.3. Device capabilities

Both the initiating device and the authenticator require BLE support. The initiating device must

support both FIDO2/WebAuthn, specifically CTAP 2.2 with hybrid transport. The mobile phone

must support CTAP 2.2+ to be used as a cross-device authenticator.

5.2.3.4. Mitigations

FIDO Cross-Device Authentication (CDA) establishes proximity through the use of BLE, reducing

the need for additional mitigations. An implementer may still choose to implement additional

mitigation as described in this document.

5.2.3.5. When to use

FIDO2/WebAuthn should be used for cross-device authentication scenarios whenever the devices

are capable of doing so. It may be used as an authentication method with the Authorization Code

Grant and PKCE , to grant authorization to an initiating device (e.g., Smart

TV or interactive whiteboard) using a mobile phone as the authenticating device. This

combination of FIDO2/WebAuthn and Authorization Code Flow with PKCE enables cross device

authorization flows, without the risks posed by the Device Authorization Grant .

[RFC6749] [RFC7663]

[RFC8628]

5.2.4. Protocol Selection Summary

The FIDO Cross-Device Authentication (CDA) flow provides the best protection against attacks on

the unauthenticated channel for cross device flows. It can be combined with OAuth 2.0 and

OpenID Connect protocols for standards based authorization and authentication flows. If FIDO2/

WebAuthn support is not available, Client Initiated Backchannel Authentication (CIBA) provides

an alternative, provided that there is a channel through which the authorizations server can

contact the end user. Examples of such a channel include device push notifications, e-mail or text

messages which the user can access from their device. If CIBA is used, additional mitigations to

enforce proximity and initiate transactions from trusted devices or trusted networks should be

considered. The OAuth 2.0 Device Authorization Grant provides the most flexibility and has the

lowest requirements on devices used, but it is recommended that it is only used when additional

mitigations are deployed to prevent attacks that exploit the unauthenticated channel between

devices.

5.3. Foundational Pillars

Experience with web authorization and authentication protocols such as OAuth and OpenID

Connect has shown that securing these protocols can be hard. The major reason for this is that

the landscape in which they are operating - the web infrastructure with browsers, servers, and

the underlying network - is complex, diverse, and ever-evolving.

As is the case with other kinds of protocols, it can be easy to overlook vulnerabilities in this

environment. One way to reduce the chances of hidden security problems is to use

mathematical-logical models to describe the protocols, their environments and their security

goals, and then use these models to try to prove security. This approach is what is usually

subsumed as "formal security analysis".

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 20

There are two major strengths of formal analysis: First, finding new vulnerabilities does not

require creativity - i.e., new classes of attacks can be uncovered even if no one thought of these

attacks before. In a faithful model, vulnerabilities become clear during the proof process or even

earlier. Second, formal analysis can exclude the existence of any attacks within the boundaries of

the model (e.g., the protocol layers modeled, the level of detail and functionalities covered, the

assumed attacker capabilities, and the formalized security goals). As a downside, there is usually

a gap between the model (which necessarily abstracts away from details) and implementations.

In other words, implementations can introduce flaws where the model does not have any.

Nonetheless, for protocol standards, formal analysis can help to ensure that the specification is

secure when implemented correctly.

There are various different approaches to formal security analysis and each brings its own

strengths and weaknesses. For example, models differ in the level of detail in which they can

capture a protocol (granularity, expressiveness), in the kind of statements they can produce, and

whether the proofs can be assisted by tools or have to be performed manually. One of the most

successfully used approaches is the so-called Web Infrastructure Model (WIM), a model

specifically designed for the analysis of web authentication and authorization protocols. While it

is a manual (pen-and-paper) model, it captures details of browsers and web interactions in

unprecedented detail. Using the WIM, previously unknown flaws in OAuth, OpenID Connect, and

FAPI were discovered.

To ensure secure cross-device interactions, a formal analysis using the WIM therefore seems to

be in order. Such an analysis should comprise a generic model for cross-device flows, potentially

including different kinds of interactions. The aim of the analysis would be to evaluate the

effectiveness of selected mitigation strategies. To the best of our knowledge, this would be the

first study of this kind.

6. Conclusion

Cross-device flows enable authorization on devices with limited input capabilities, allow for

secure authentication when using public or shared devices, provide a path towards multi-factor

authentication and provide the convenience of a single, portable credential store.

The popularity of cross-device flows attracted the attention of attackers that exploit the

unauthenticated channel between the initiating and authentication/authorizing device using

techniques commonly used in phishing attacks. These attacks allow attackers to harvest access

and refresh tokens, rather than authentication credentials, resulting in access to resources even

if the user used multi-factor authentication.

To address these attacks, we propose a three pronged approach that includes the deployment of

practical mitigations to safeguard protocols that are already deployed, provide guidance on

when to use different protocols, including protocols that are not susceptible to these attacks, and

the introduction of formal methods to evaluate the impact of mitigations and find additional

issues.

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 21

[CAEP]

[CIBA]

[Exploit1]

[Exploit2]

[Exploit3]

[Exploit4]

[Exploit5]

[Exploit6]

[NYC.Bike]

[OpenID.Core]

8. Informative References

 and ,

, June 2021,

.

, , , , and ,

, September

2021,

.

, , July 2021,

.

, August 2021,

.

,

, October 2020,

.

,

, August 2021, .

, August 2021,

.

, August 2022,

.

,

, August 2021,

.

, , , , and ,

, November 2014,

.

7. Contributors

We would like to thank Tim Cappalli, Nick Ludwig, Adrian Frei, Nikhil Reddy Boreddy, Bjorn

Hjelm, Joseph Heenan, Brian Campbell, Damien Bowden, Kristina Yasuda and others (please let

us know, if you've been mistakenly omitted) for their valuable input, feedback and general

support of this work.

Tulshibagwale, A. T. Cappalli "OpenID Continuous Access Evaluation Profile

1.0 - draft 01" <https://openid.net/specs/openid-caep-

specification-1_0-01.html>

Fernandez, G. Walter, F. Nennker, A. Tonge, D. B. Campbell "OpenID

Connect Client-Initiated Backchannel Authentication Flow - Core 1.0"

<https://openid.net/specs/openid-client-initiated-backchannel-

authentication-core-1_0.html>

Cooke, B. "The Art of the Device Code Phish" <https://0xboku.com/

2021/07/12/ArtOfDeviceCodePhish.html>

"Microsoft 365 OAuth Device Code Flow and Phishing" <https://

www.optiv.com/insights/source-zero/blog/microsoft-365-oauth-device-code-flow-

and-phishing>

Syynimaa, N. "Introducing a new phishing technique for compromising Office

365 accounts" <https://o365blog.com/post/phishing/#new-

phishing-technique-device-code-authentication>

Hwong, J. "New Phishing Attacks Exploiting OAuth Authentication Flows

(DEFCON 29)" <https://www.youtube.com/watch?v=9slRYvpKHp4>

"OAuth's Device Code Flow Abused in Phishing Attacks" <https://

www.secureworks.com/blog/oauths-device-code-flow-abused-in-phishing-

attacks>

"SquarePhish: Advanced phishing tool combines QR codes and OAuth 2.0 device

code flow" <https://www.helpnetsecurity.com/2022/08/11/

squarephish-video/>

Byrne, K.J. "Citi Bikes being swiped by joyriding scammers who have cracked

the QR code" <https://nypost.com/2021/08/07/citi-bikes-being-

swiped-by-joyriding-scammers-who-have-cracked-the-qr-code/>

Sakimura, N. Bradley, J. Jones, M.B. Medeiros, B.d. C. Mortimore "OpenID

Connect Core 1.0" <http://openid.net/specs/openid-connect-

core-1_0.html>

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 22

https://openid.net/specs/openid-caep-specification-1_0-01.html
https://openid.net/specs/openid-caep-specification-1_0-01.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://0xboku.com/2021/07/12/ArtOfDeviceCodePhish.html
https://0xboku.com/2021/07/12/ArtOfDeviceCodePhish.html
https://www.optiv.com/insights/source-zero/blog/microsoft-365-oauth-device-code-flow-and-phishing
https://www.optiv.com/insights/source-zero/blog/microsoft-365-oauth-device-code-flow-and-phishing
https://www.optiv.com/insights/source-zero/blog/microsoft-365-oauth-device-code-flow-and-phishing
https://o365blog.com/post/phishing/#new-phishing-technique-device-code-authentication
https://o365blog.com/post/phishing/#new-phishing-technique-device-code-authentication
https://www.youtube.com/watch?v=9slRYvpKHp4
https://www.secureworks.com/blog/oauths-device-code-flow-abused-in-phishing-attacks
https://www.secureworks.com/blog/oauths-device-code-flow-abused-in-phishing-attacks
https://www.secureworks.com/blog/oauths-device-code-flow-abused-in-phishing-attacks
https://www.helpnetsecurity.com/2022/08/11/squarephish-video/
https://www.helpnetsecurity.com/2022/08/11/squarephish-video/
https://nypost.com/2021/08/07/citi-bikes-being-swiped-by-joyriding-scammers-who-have-cracked-the-qr-code/
https://nypost.com/2021/08/07/citi-bikes-being-swiped-by-joyriding-scammers-who-have-cracked-the-qr-code/
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

[OpenID.SIOPV2]

[RFC2119]

[RFC6749]

[RFC7662]

[RFC7663]

[RFC8174]

[RFC8628]

[SSE]

, , and , ,

November 2022,

.

, , ,

, , March 1997,

.

, , ,

, October 2012, .

, , , ,

October 2015, .

 and ,

, ,

, October 2015, .

, ,

, , , May 2017,

.

, , , and ,

, , , August 2019,

.

, , , , and ,

, June 2021,

.

Yasuda, K. Jones, M. T. Lodderstedt "Self-Issued OpenID Provider v2"

<https://bitbucket.org/openid/connect/src/master/openid-

connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI

10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662

<https://www.rfc-editor.org/info/rfc7662>

Trammell, B., Ed. M. Kuehlewind, Ed. "Report from the IAB Workshop on

Stack Evolution in a Middlebox Internet (SEMI)" RFC 7663 DOI 10.17487/

RFC7663 <https://www.rfc-editor.org/info/rfc7663>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Denniss, W. Bradley, J. Jones, M. H. Tschofenig "OAuth 2.0 Device

Authorization Grant" RFC 8628 DOI 10.17487/RFC8628 <https://

www.rfc-editor.org/info/rfc8628>

Tulshibagwale, A. Cappalli, T. Scurtescu, M. Backman, A. J. Bradley

"OpenID Shared Signals and Events Framework Specification 1.0"

<https://openid.net/specs/openid-sse-framework-1_0-01.html>

Appendix A. Document History

[[To be removed from the final specification]]

-00

Initial draft adopted from document circulated to the OAuth Security Workshop Slack

Channel

Upload as draft-ietf-oauth-cross-device-security-best-practice-00

-01

Updated draft based on feedback from version circulated to OAuth working group

Upload as draft-ietf-oauth-cross-device-security-best-practice-01

-02

Minor edits and typos

Upload as draft-ietf-oauth-cross-device-security-best-practice-02

•

•

•

•

•

•

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 23

https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md
https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7663
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://openid.net/specs/openid-sse-framework-1_0-01.html

[[pre Working Group Adoption:]]

Authors' Addresses

Pieter Kasselman

Microsoft

 pieter.kasselman@microsoft.com Email:

Daniel Fett

yes.com

 mail@danielfett.de Email:

Filip Skokan

Okta

 panva.ip@gmail.com Email:

Internet-Draft CDFS November 2022

Kasselman, et al. Expires 19 May 2023 Page 24

mailto:pieter.kasselman@microsoft.com
mailto:mail@danielfett.de
mailto:panva.ip@gmail.com

	Cross-Device Flows: Security Best Current Practice
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Cross Device Flow Concepts
	2.1. Example A1: Authorize access to a video streaming service
	2.2. Example A2: Authorize access to productivity services
	2.3. Example A3: Authorize use of a bike sharing scheme
	2.4. Example A4: Authorize a financial transaction
	2.5. Example A5: Add a device to a network.
	2.6. Example A6: Remote onboarding
	2.7. Example A7: Transfer a session

	3. Cross-Device Flow Exploits
	3.1. Example B1: Illicit access to a video streaming service
	3.2. Example B2: Illicit access to productivity services
	3.3. Example B3: Illicit access to physical assets
	3.4. Example B4: Illicit Transaction Authorization
	3.5. Example B5: Illicit Network Join
	3.6. Example B6: Illicit Onboarding
	3.7. Example B7: Illicit session transfer
	3.8. Out of Scope

	4. Cross-Device Protocols and Standards
	5. Mitigating Against Cross-Device Flow Attacks
	5.1. Practical Mitigations
	5.1.1. Establish Proximity
	5.1.2. Short Lived/Timebound Codes
	5.1.3. One-Time or Limited Use Codes
	5.1.4. Unique Codes
	5.1.5. Content Filtering
	5.1.6. Detect and remediate
	5.1.7. Trusted Devices
	5.1.8. Trusted Networks
	5.1.9. Limited Scopes
	5.1.10. Short lived tokens
	5.1.11. Rate Limits
	5.1.12. Sender Constrained Tokens
	5.1.13. User Experience
	5.1.14. Authenticated flow
	5.1.15. Practical Mitigation Summary

	5.2. Protocol selection
	5.2.1. IETF OAuth 2.0 Device Authorization Grant [RFC8628]:
	5.2.1.1. Description
	5.2.1.2. Susceptibility
	5.2.1.3. Device capabilities
	5.2.1.4. Mitigations
	5.2.1.5. When to use

	5.2.2. OpenID Foundation Client Initiated Back-Channel Authentication (CIBA):
	5.2.2.1. Description
	5.2.2.2. Susceptibility
	5.2.2.3. Device capabilities
	5.2.2.4. Mitigations
	5.2.2.5. When to use

	5.2.3. FIDO2/WebAuthn
	5.2.3.1. Description
	5.2.3.2. Susceptibility
	5.2.3.3. Device capabilities
	5.2.3.4. Mitigations
	5.2.3.5. When to use

	5.2.4. Protocol Selection Summary

	5.3. Foundational Pillars

	6. Conclusion
	7. Contributors
	8. Informative References
	Appendix A. Document History
	Authors' Addresses

