Network Working Group K. Vairavakkalai Internet-Draft N. Venkataraman Intended status: Standards Track B. Rajagopalan Expires: June 1, 2021 Juniper Networks, Inc. G. Mishra Verizon Communications Inc. November 28, 2020 BGP Classful Transport Planes draft-kaliraj-idr-bgp-classful-transport-planes-02 Abstract This document specifies a mechanism, referred to as "service mapping", to express association of overlay routes with underlay routes satisfying a certain SLA, using BGP. The document describes a framework for classifying underlay routes into transport classes, and mapping service routes to specific transport class. The transport class maps to a desired SLA. It specifies BGP protocol procedures that enable dissimination of such service mapping information that may span across administrative domains. It makes it possible to advertise multiple tunnels to the same destination. A new BGP transport layer address family (SAFI 76) is defined for this purpose that uses RFC-4364 technology and follows RFC-8277 NLRI encoding. This new address family is called "BGP Classful Transport", aka BGP-CT. It carries transport prefixes across tunnel domain boundaries (e.g. in Inter-AS Option-C networks), parallel to BGP-LU (SAFI 4) . It dissiminates "Transport class" information for the transport prefixes across the participating domains, which is not possible with BGP-LU. This makes the end-to-end network a "Transport Class" aware tunneled network. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. Vairavakkalai, et al. Expires June 1, 2021 [Page 1] Internet-Draft BGP Classful Transport Planes November 2020 Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on June 1, 2021. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Transport Class . . . . . . . . . . . . . . . . . . . . . . . 6 4. "Transport Class" Route Target Extended Community . . . . . . 7 5. Transport RIB . . . . . . . . . . . . . . . . . . . . . . . . 8 6. Transport Routing Instance . . . . . . . . . . . . . . . . . 8 7. Nexthop Resolution Scheme . . . . . . . . . . . . . . . . . . 8 8. BGP Classful Transport Family NLRI . . . . . . . . . . . . . 9 9. Comparison with other families using RFC-8277 encoding . . . 10 10. Protocol Procedures . . . . . . . . . . . . . . . . . . . . . 11 11. OAM considerations . . . . . . . . . . . . . . . . . . . . . 14 12. Illustration of procedures with example topology . . . . . . 15 12.1. Topology . . . . . . . . . . . . . . . . . . . . . . . . 15 12.2. Service Layer route exchange . . . . . . . . . . . . . . 16 Vairavakkalai, et al. Expires June 1, 2021 [Page 2] Internet-Draft BGP Classful Transport Planes November 2020 12.3. Transport Layer route propagation . . . . . . . . . . . 17 13. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19 13.1. New BGP SAFI . . . . . . . . . . . . . . . . . . . . . . 19 13.2. New Format for BGP Extended Community . . . . . . . . . 19 13.2.1. Existing registries to be modified . . . . . . . . . 19 13.2.2. New registries to be created . . . . . . . . . . . . 20 13.3. MPLS OAM code points . . . . . . . . . . . . . . . . . . 21 14. Security Considerations . . . . . . . . . . . . . . . . . . . 21 15. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 21 16. References . . . . . . . . . . . . . . . . . . . . . . . . . 22 16.1. Normative References . . . . . . . . . . . . . . . . . . 22 16.2. URIs . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 23 1. Introduction To facilitate service mapping, the tunnels in a network can be grouped by the purpose they serve into a "Transport Class". The tunnels could be created using any signaling protocol, such as LDP, RSVP, BGP-LU or SPRING. The tunnels could also use native IP or IPv6, as long as they can carry MPLS payload. Tunnels may exist between different pair of end points. Multiple tunnels may exist between the same pair of end points. Thus, a Transport Class consists of tunnels created by various protocols, that satisfy the properties of the class. For example, a "Gold" transport class may consist of tunnels that traverse the shortest path with fast re-route protection, a "Silver" transport class may hold tunnels that traverse shortest paths without protection, a "To NbrAS Foo" transport class may hold tunnels that exit to neighboring AS Foo, and so on. The extensions specified in this document can be used to create a BGP transport tunnel that potentially spans domains, while preserving its Transport Class. Examples of domain are Autonomous System (AS), or IGP area. Within each domain, there is a second level underlay tunnel used by BGP to cross the domain. The second level underlay tunnels could be hetrogeneous: Each domain may use a different type of tunnel (e.g. MPLS, IP, GRE), or use a differnet signaling protocol. A domain boundary is demarcated by a rewrite of BGP nexthop to 'self' while re-advertising tunnel routes in BGP. Examples of domain boundary are inter-AS links and inter-region ABRs. The path uses MPLS label-switching when crossing domain boundary and uses the native intra-AS tunnel of the desired transport class when traversing within a domain. Overlay routes carry sufficient indication of the Transport Classes they should be encapsulated over, in form of BGP community called the Vairavakkalai, et al. Expires June 1, 2021 [Page 3] Internet-Draft BGP Classful Transport Planes November 2020 "Mapping community". Based on the mapping community, "route resolution" procedure on the ingress node selects from the corresponding Transport Class an appropriate tunnel whose destination matches (LPM) the nexthop of the overlay route. If the overlay route is carried in BGP, the protocol nexthop (or, PNH) is generally carried as an attribute of the route. The PNH of the overlay route is also referred to as "service endpoint" (SEP). The service endpoint may exist in the same domain as the service ingress node or lie in a different domain, adjacent or non-adjacent. In the former case, reachability to the SEP is provided by an intra-domain tunneling protocol, and in the latter case, reachability to the SEP is via BGP transport families. In this architecture, the intra-domain transport protocols (e.g. RSVP, SRTE) are also "Transport Class aware", and they publish ingress routes in Transport RIB associated with the Transport Class, at the tunnel ingress node. These routes are then redistributed into BGP-CT to be advertised to adjacent domains. This document describes mechanisms to: Model a "Transport Class" as "Transport RIB" on a router, consisting of tunnel ingress routes of a certain class. Enable service routes to resolve over an intended Transport Class by virtue of carrying the appropriate "Mapping community". Which results in using the corresponding Transport RIB for finding nexthop reachability. Advertise tunnel ingress routes in a Transport RIB via BGP without any path hiding, using BGP VPN technology and Add-path. Such that overlay routes in the receiving domains can also resolve over tunnels of associated Transport Class. Provide a way for co-operating domains to reconcile between independently administered extended community namespaces, and interoperate between different transport signaling protocols in each domain. In this document we focus mainly on MPLS LSPs as the intra-domain transport tunnels, but the mechanisms would work in similar manner for non-MPLS transport tunnels too. This document assumes MPLS forwarding when crossing domain boundaries, as that is the defacto standard in deployed networks today. But mechanisms specified in this document can also support Vairavakkalai, et al. Expires June 1, 2021 [Page 4] Internet-Draft BGP Classful Transport Planes November 2020 different forwarding technologies (e.g. SRv6). A future document may describe such adaptations, it is out of scope of this document. 2. Terminology LSP: Label Switched Path. TE : Traffic Engineering. SN : Service Node. BN : Border Node. TN : Transport Node, P-router. BGP-VPN : VPNs built using RFC4364 mechanisms. RT : Route-Target extended community. RD : Route-Distinguisher. PNH : Protocol-Nexthop address carried in a BGP Update message. SEP : Service End point, the PNH of a Service route. LPM : Longest Prefix Match. Service Family : BGP address family used for advertising routes for "data traffic", as opposed to tunnels. Transport Family : BGP address family used for advertising tunnels, which are in turn used by service routes for resolution. Transport Tunnel : A tunnel over which a service may place traffic. These tunnels can be GRE, UDP, LDP, RSVP, or SR-TE. Tunnel Domain : A domain of the network containing SN and BN, under a single administrative control that has a tunnel between SN and BN. An end-to-end tunnel spanning several adjacent tunnel domains can be created by "stitching" them together using labels. Transport Class : A group of transport tunnels offering the same type of service. Transport Class RT : A Route-Target extended community used to identify a specific Transport Class. Vairavakkalai, et al. Expires June 1, 2021 [Page 5] Internet-Draft BGP Classful Transport Planes November 2020 Transport RIB : At the SN and BN, a Transport Class has an associted Transport RIB that holds its tunnel routes. Transport Plane : An end to end plane comprising of transport tunnels belonging to same transport class. Tunnels of same transport class are stitched together by BGP route readvertisements with nexthop- self, to span across domain boundaries using Label-Swap forwarding mechanism similar to Inter-AS option-b. Mapping Community : BGP Community/Extended-community on a service route, that maps it to resolve over a Transport Class. 3. Transport Class A Transport Class is defined as a set of transport tunnels that share certain characteristics useful for underlay selection. On the wire, a transport class is represented as the Transport Class RT, which is a new Route-Target extended community. A Transport Class is configured at SN and BN, along with attributes like RD and Route-Target. Creation of a Transport Class instantiates the associated Transport RIB and a Transport routing instance to contain them all. The operator may configure a SN/BN to classify a tunnel into an appropriate Transport Class, which causes the tunnel's ingress routes to be installed in the corresponding Transport RIB. At a BN, these tunnel routes may then be advertised into BGP CT. Alternatively, a router receiving the transport routes in BGP with appropriate signaling information can associate those ingress routes to the appropriate Transport Class. E.g. for Classful Transport family (SAFI 76) routes, the Transport Class RT indicates the Transport Class. For BGP-LU family(SAFI 4) routes, import processing based on Communities or inter-AS source-peer may be used to place the route in the desired Transport Class. When the ingress route is received via SRTE [SRTE], which encodes the Transport Class as an integer 'Color' in the NLRI as "Color:Endpoint", the 'Color' is mapped to a Transport Class during import processing. SRTE ingress route for 'Endpoint' is installed in that transport class. The SRTE route when advertised out to BGP speakers will then be advertised in Classful Transport family with Transport Class RT and a new label. The MPLS swap route thus installed for the new label will pop the label and deliver decapsulated traffic into the path determined by SRTE route. Vairavakkalai, et al. Expires June 1, 2021 [Page 6] Internet-Draft BGP Classful Transport Planes November 2020 4. "Transport Class" Route Target Extended Community This document defines a new type of Route Target, called "Transport Class" Route Target Extended Community. "Transport Class" Route Target extended community is a transitive extended community EXT-COMM [RFC4360] of extended-type, with a new Format (Type high = 0xa) and SubType as 0x2 (Route Target). This new Route Target Format has the following encoding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type= 0xa | SubType= 0x02 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Transport Class ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ "Transport Class" Route Target Extended Community Type: 2 octets Type field contains value 0xa. SubType: 2 octets Subtype field contain 0x2. This indicates 'Route Target'. Transport Class ID: 4 octets The least significant 32-bits of the value field contain the "Transport Class" identifier, which is a 32-bit integer. The remaining 2 octets after SubType field are Reserved, they MUST be set to zero by originator, and ignored, left unaltered by receiver. The "Transport class" Route Target Extended community follows the mechanisms for VPN route import, export as specified in BGP-VPN [RFC4364], and Route Target Contrain mechanisms as specified in VPN- RTC [RFC4684] Vairavakkalai, et al. Expires June 1, 2021 [Page 7] Internet-Draft BGP Classful Transport Planes November 2020 A BGP speaker that implements RT Constraint VPN-RTC [RFC4684] MUST apply the RT Constraint procedures to the "Transport class" Route Target Extended community as-well. The Transport Class Route Target Extended community is carried on Classful Transport family routes, and allows associating them with appropriate Transport RIBs at receiving BGP speakers. Use of the Transport Class Route Target Extended community with a new Type code avoids conflicts with any VPN Route Target assignments already in use for service families. 5. Transport RIB A Transport RIB is a routing-only RIB that is not installed in forwarding path. However, the routes in this RIB are used to resolve reachability of overlay routes' PNH. Transport RIB is created when the Transport Class it represents is configured. Overlay routes that want to use a specific Transport Class confine the scope of nexthop resolution to the set of routes contained in the corresponding Transport RIB. This Transport RIB is the "Routing Table" referred in Section 9.1.2.1 RFC4271 [1] Routes in a Transport RIB are exported out in 'Classful Transport' address family. 6. Transport Routing Instance A BGP VPN routing instance that is a container for the Transport RIB. It imports, and exports routes in this RIB with Transport Class RT. Tunnel destination addresses in this routing instance's context come from the "provider namespace". This is different from user VRFs for e.g., which contain prefixes in "customer namespace" The Transport Routing instance uses the RD and RT configured for the Transport Class. 7. Nexthop Resolution Scheme An implementation may provide an option for the service route to resolve over less preferred Transport Classes, should the resolution over preferred, or "primary" Transport Class fail. To accomplish this, the set of service routes may be associated with a user-configured "resolution scheme", which consists of the primary Transport Class, and optionally, an ordered list of fallback Transport Classes. Vairavakkalai, et al. Expires June 1, 2021 [Page 8] Internet-Draft BGP Classful Transport Planes November 2020 A community called as "Mapping Community" is configured for a "resolution scheme". A Mapping community maps to exactly one resolution scheme. A resolution scheme comprises of one primary transport class and optionally one or more fallback transport classes. A BGP route is associated with a resolution scheme during import processing. The first community on the route that matches a mapping community of a locally configured resolution scheme is considered the effective mapping community for the route. The resolution scheme thus found is used when resolving the route's PNH. If a route contains more than one mapping community, it indicates that the route considers these multiple mapping communities as equivalent. So the first community that maps to a resolution scheme is chosen. A transport route received in BGP Classful Transport family SHOULD use a resolution scheme that contains the primary Transport Class without any fallback to best effort tunnels. The primary Transport Class is identified by the Transport Class RT carried on the route. Thus Transport Class RT serves as the Mapping Community for Classful Transport routes. A service route received in a BGP service family MAY map to a resolution scheme that contains the primary Transport Class identified by the mapping community on the route, and a fallback to best effort tunnels transport class. The primary Transport Class is identified by the Mapping community carried on the route. For e.g. the Extended Color community may serve as the Mapping Community for service routes. Color:0: MAY map to a resolution scheme that has primary transport class , and a fallback to best-effort transport class. 8. BGP Classful Transport Family NLRI The Classful Transport family will use the existing AFI of IPv4 or IPv6, and a new SAFI 76 "Classful Transport" that will apply to both IPv4 and IPv6 AFIs. The "Classful Transport" SAFI NLRI itself is encoded as specified in https://tools.ietf.org/html/rfc8277#section-2 [RFC8277]. When AFI is IPv4 the "Prefix" portion of Classful Transport family NLRI consists of an 8-byte RD followed by an IPv4 prefix. When AFI is IPv6 the "Prefix" consists of an 8-byte RD followed by an IPv6 prefix. Vairavakkalai, et al. Expires June 1, 2021 [Page 9] Internet-Draft BGP Classful Transport Planes November 2020 Attributes on a Classful Transport route include the Transport Class Route-Target extended community, which is used to leak the route into the right Transport RIBs on SNs and BNs in the network. 9. Comparison with other families using RFC-8277 encoding SAFI 128 (Inet-VPN) is a RF8277 encoded family that carries service prefixes in the NLRI, where the prefixes come from the customer namespaces, and are contexualized into separate user virtual service RIBs called VRFs, using RFC4364 procedures. SAFI 4 (BGP-LU) is a RFC8277 encoded family that carries transport prefixes in the NLRI, where the prefixes come from the provider namespace. SAFI 76 (Classful Transport) is a RFC8277 encoded family that carries transport prefixes in the NLRI, where the prefixes come from the provider namespace, but are contexualized into separate Transport RIBs, using RFC4364 procedures. It is worth noting that SAFI 128 has been used to carry transport prefixes in "L3VPN Inter-AS Carrier's carrier" scenario, where BGP- LU/LDP prefixes in CsC VRF are advertised in SAFI 128 towards the remote-end baby carrier. In this document a new AFI/SAFI is used instead of reusing SAFI 128 to carry these transport routes, because it is operationally advantageous to segregate transport and service prefixes into separate address families, RIBs. E.g. It allows to safely enable "per-prefix" label allocation scheme for Classful Transport prefixes without affecting SAFI 128 service prefixes which may have huge scale. "per prefix" label allocation scheme keeps the routing churn local during topology changes. A new family also facilitates having a different readvertisement path of the transport family routes in a network than the service route readvertisement path. viz. Service routes (Inet-VPN) are exchanged over an EBGP multihop session between Autonomous systems with nexthop unchanged; whereas Classful Transport routes are readvertised over EBGP single hop sessions with "nexthop- self" rewrite over inter-AS links. The Classful Transport family is similar in vein to BGP-LU, in that it carries transport prefixes. The only difference is, it also carries in Route Target an indication of which Transport Class the transport prefix belongs to, and uses RD to disambiguate multiple instances of the same transport prefix in a BGP Update. Vairavakkalai, et al. Expires June 1, 2021 [Page 10] Internet-Draft BGP Classful Transport Planes November 2020 10. Protocol Procedures This section summarizes the procedures followed by various nodes speaking Classful Transport family Preparing the network for deploying Classful Transport planes Operator decides on the Transport Classes that exist in the network, and allocates a Route-Target to identify each Transport Class. Operator configures Transport Classes on the SNs and BNs in the network with unique Route-Distinguishers and Route-Targets. Implementations may provide automatic generation and assignment of RD, RT values for a transport routing instance; they MAY also provide a way to manually override the automatic mechanism, in order to deal with any conflicts that may arise with existing RD, RT values in the different network domains participating in a deployment. Origination of Classful Transport route: At the ingress node of the tunnel's home domain, the tunneling protocols install routes in the Transport RIB associated with the Transport Class the tunnel belongs to. The ingress node then advertises this tunnel route into BGP as a Classful Transport route with NLRI RD:TunnelEndpoint, attaching a 'Transport Class' Route Target that identifies the Transport Class. Alternatively, the egress node of the tunnel i.e. the tunnel endpoint can originate the same BGP Classful Transport route, with NLRI RD:TunnelEndpoint and PNH TunnelEndpoint, which will resolve over the tunnel route at the ingress node. When the tunnel is up, the Classful Transport BGP route will become usable and get re- advertised. Unique RD SHOULD be used by the originator of a Classful Transport route to disambiguate the multiple BGP advertisements for a transport end point. Ingress node receiving Classful Transport route On receiving a BGP Classful Transport route with a PNH that is not directly connected, e.g. an IBGP-route, a mapping community on the route (the Transport Class RT) indicates which Transport Class this route maps to. The routes in the associated Transport RIB are used to resolve the received PNH. If there does not exist a Vairavakkalai, et al. Expires June 1, 2021 [Page 11] Internet-Draft BGP Classful Transport Planes November 2020 route in the Transport RIB matching the PNH, the Classful Transport route is considered unusable, and MUST NOT be re- advertised further. Border node readvertising Classful Transport route with nexthop self: The BN allocates an MPLS label to advertise upstream in Classful Transport NLRI. The BN also installs an MPLS swap-route for that label that swaps the incoming label with a label received from the downstream BGP speaker, or pops the incoming label. And then pushes received traffic to the transport tunnel or direct interface that the Classful Transport route's PNH resolved over. Border node receiving Classful Transport route on EBGP : If the route is received with PNH that is known to be directly connected, e.g. EBGP single-hop peering address, the directly connected interface is checked for MPLS forwarding capability. No other nexthop resolution process is performed, as the inter-AS link can be used for any Transport Class. If the inter-AS links should honor Transport Class, then the BN SHOULD follow procedures of an Ingress node described above, and perform nexthop resolution process. The interface routes SHOULD be installed in the Transport RIB belonging to the associated Transport Class. Avoiding path-hiding through Route Reflectors When multiple BNs exist that advertise a RDn:PEn prefix to RRs, the RRs may hide all but one of the BNs, unless ADDPATH [RFC7911] is used for the Classful Transport family. This is similar to L3VPN option-B scenarios. Hence ADDPATH SHOULD be used for Classful Transport family, to avoid path-hiding through RRs. Ingress node receiving service route with mapping community Service routes received with mapping community resolve using Transport RIBs determined by the resolution scheme. If the resolution process does not find an usable Classful Transport route or tunnel route in any of the Transport RIBs, the service route MUST be considered unusable for forwarding purpose. Coordinating between domains using different community namespaces. Domains not agreeing on RT, RD, Mapping-community values because of independently administered community namespaces may deploy mechanisms to map and rewrite the Route-target values on domain Vairavakkalai, et al. Expires June 1, 2021 [Page 12] Internet-Draft BGP Classful Transport Planes November 2020 boundaries, using per ASBR import policies. This is no different than any other BGP VPN family. Mechanisms employed in inter-AS VPN deployments may be used with the Classful Transport family also. The resolution schemes SHOULD allow association with multiple mapping communities. This helps with renumbering, network mergers, or transitions. Though RD can also be rewritten on domain boundaries, deploying unique RDs is strongly RECOMMENDED, because it helps in trouble shooting by uniquely identifying originator of a route, and avoids path-hiding. This document defines a new format of Route-Target extended- community to carry Transport Class, this avoids collision with regular Route Target namespace used by service routes. Constrained distribution of PNHs to SNs. This section describes how the number of Protocol Nexthops advertised to a SN can be constrained using BGP Classsful Transport and VPN RTC [RFC4684] An egress SN MAY advertise BGP CT route for RD:eSN with two Route Targets: transport-target:0: and a RT carrying :. Where TC is the Transport Class identifier, and eSN is the IP- address used by SN as BGP nexthop in it's service route advertisements. transport-target:0: is the new type of route target (Transport Class RT) defined in this document. It is carried in BGP extended community attribute (BGP attribute code 16). The RT carrying : MAY be an IP-address specific regular RT (BGP attribute code 16), IPv6-address specific RT (BGP attribute code 25), or a Wide-communities based RT (BGP attribute code 34) as described in RTC-Ext [RTC-Ext] An ingress SN MAY import BGP CT routes with Route Target carrying: :. The ingress SN MAY learn the eSN values either by configuration, or it MAY discover them from the BGP nexthop field in the BGP VPN service routes received from eSN. A BGP ingress SN receiving a BGP service route with nexthop of eSN SHOULD generate a RTC/Extended-RTC route for Route Target prefix :/ in order to learn BGP CT transport routes to reach eSN. This allows constrained distribution of the transport routes to the PNHs actually required by iSN. Vairavakkalai, et al. Expires June 1, 2021 [Page 13] Internet-Draft BGP Classful Transport Planes November 2020 A BN in the core of the network SHOULD import BGP CT routes with Transport Class Route Target: 0:TC. Because it is interested in transport routes to all eSN nodes. 11. OAM considerations Standard MPLS OAM procedures specified in [RFC8029] also apply to BGP Classful Transport. The 'Target FEC Stack' sub-TLV for IPv4 Classful Transport has a Sub- Type of [TBD], and a length of 13. The Value field consists of the RD advertised with the Classful Transport prefix, the IPv4 prefix (with trailing 0 bits to make 32 bits in all), and a prefix length, encoded as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Route Distinguisher | | (8 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv4 prefix | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prefix Length | Must Be Zero | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: Classful Transport IPv4 FEC The 'Target FEC Stack' sub-TLV for IPv6 Classful Transport has a Sub- Type of [TBD], and a length of 25. The Value field consists of the RD advertised with the Classful Transport prefix, the IPv6 prefix (with trailing 0 bits to make 128 bits in all), and a prefix length, encoded as follows: Vairavakkalai, et al. Expires June 1, 2021 [Page 14] Internet-Draft BGP Classful Transport Planes November 2020 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Route Distinguisher | | (8 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IPv6 prefix | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prefix Length | Must Be Zero | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: Classful Transport IPv6 FEC 12. Illustration of procedures with example topology 12.1. Topology [RR26] [RR27] [RR16] | | | | | | |+-[ABR23]--+|+--[ASBR21]---[ASBR13]-+|+--[PE11]--+ || ||| ` / ||| | [CE41]--[PE25]--[P28] [P29] `/ [P15] [CE31] | | | /` | | | | | | / ` | | | | | | / ` | | | +--[ABR24]--+ +--[ASBR22]---[ASBR14]-+ +--[PE12]--+ | | | | + + + + CE | region-1 | region-2 | |CE AS4 ...AS2... AS1 AS3 41.41.41.41 ------------ Traffic Direction ----------> 31.31.31.31 This example shows a provider network that comprises of two Autonomous systems, AS1, AS2. They are serving customers AS3, AS4 respectively. Traffic direction being described is CE41 to CE31. CE31 may request a specific SLA, e.g. Gold for this traffic, when traversing these provider networks. AS2 is further divided into two regions. So there are three tunnel domains in provider space. AS1 uses ISIS Flex-Algo intra-domain tunnels, whereas AS2 uses RSVP intra-domain tunnels. Vairavakkalai, et al. Expires June 1, 2021 [Page 15] Internet-Draft BGP Classful Transport Planes November 2020 The network has two Transport classes: Gold with transport-class id 100, Bronze with transport-class id 200. These transport classes are provisioned at the PEs and the Border nodes (ABRs, ASBRs) in the network. Following tunnels exist for gold transport class. PE25_to_ABR23_gold - RSVP tunnel PE25_to_ABR24_gold - RSVP tunnel ABR23_to_ASBR22_gold - RSVP tunnel ASBR13_to_PE11_gold - ISIS FlexAlgo tunnel ASBR14_to_PE11_gold - ISIS FlexAlgo tunnel Following tunnels exist for bronze transport class. PE25_to_ABR23_bronze - RSVP tunnel ABR23_to_ASBR21_bronze - RSVP tunnel ABR23_to_ASBR22_bronze - RSVP tunnel ABR24_to_ASBR21_bronze - RSVP tunnel ASBR13_to_PE12_bronze - ISIS FlexAlgo tunnel ASBR14_to_PE11_bronze - ISIS FlexAlgo tunnel These tunnels are either provisioned or auto-discovered to belong to transport class 100 or 200. 12.2. Service Layer route exchange Service nodes PE11, PE12 negotiate service families (SAFI 1, 128) on the BGP session with RR16. Service helpers RR16, RR26 have multihop EBGP session to exchange service routes between the two AS. Similarly PE25 negotiates service families with RR26. Forwarding happens using service routes at service nodes PE25, PE11, PE12 only. Routes received from CEs are not present in any other nodes' FIB in the network. CE31 advertises a route for example prefix 31.31.31.31 with nexthop self to PE11, PE12. CE31 can attach a mapping community Color:0:100 Vairavakkalai, et al. Expires June 1, 2021 [Page 16] Internet-Draft BGP Classful Transport Planes November 2020 on this route, to indicate its request for Gold SLA. Or, PE11 can attach the same using locally configured policies. The 31.31.31.31 route is readvertised by PE11 with nexthop self (1.1.1.1) to RR16 with the mapping community Color:0:100 attached. This route reaches PE25 via RR16, RR26 with the nexthop unchanged, as PE11. Now PE25 can resolve the PNH 1.1.1.1 using transport routes received in BGP-CT or BGP-LU. The IP FIB at PE25 will have a route for 31.31.31.31 with a nexthop thus found, that points to a gold tunnel in ingress domain. 12.3. Transport Layer route propagation ASBR13 negotiates BGP-CT family with transport ASBRs ASBR21, ASBR22. They negotiate BGP-CT family with RR27 in region 2. ABR23, ABR24 negotiate BGP-CT family with RR27 in region 2 and RR26 in region 1. PE25 receives BGP-CT routes from RR26. BGP-LU family is also negotiated on these sessions alongside BGP-CT family. BGP-LU carries "best effort" transport class routes, BGP-CT carries gold, bronze transport class routes. ASBR13 is provisioned with transport class 100, RD value 1.1.1.3:10 and a transport route target 0:100. And a Transport class 200 with RD value 1.1.1.3:20, and transport route target 0:200. Similarly, these transoprt classes are also configured on ASBRs, ABRs and PEs, with same transport route target, but unique RDs. Ingress route for ASBR13_to_PE11_gold is advertised by ASBR13 in BGP- CT family with a NLRI containing RD prefix 1.1.1.3:10:1.1.1.1 with Label L1 and a route target extended community transport- target:0:100. MPLS swap route is installed at ASBR13 for L1 with a nexthop pointing to ASBR13_to_PE11_gold tunnel. Ingress route for ASBR13_to_PE11_bronze is advertised by ASBR13 in BGP-CT family with a NLRI containing RD prefix 1.1.1.3:20:1.1.1.1 with Label L2 and a route target extended community transport- target:0:200. MPLS swap route is installed at ASBR13 for label L2 with a nexthop pointing to ASBR13_to_PE11_bronze tunnel ASBR21 receives BGP-CT route 1.1.1.3:10:1.1.1.1 over the single hop EBGP sesion, and readvertises with nexthop self (loopback adderss 2.2.2.1) to RR27, advertising a new label L3. MPLS swap route is installed for label L3 at ASBR21 to swap to received label L1 and forwards to ASBR13. RR27 readvertises this BGP-CT route to ABR23, ABR24. Vairavakkalai, et al. Expires June 1, 2021 [Page 17] Internet-Draft BGP Classful Transport Planes November 2020 ASBR22 receives BGP-CT route 1.1.1.3:10:1.1.1.1 over the single hop EBGP sesion, and readvertises with nexthop self (loopback adderss 2.2.2.2) to RR27, advertising a new label L4. MPLS swap route is installed for label L4 at ASBR21 to swap to received label L2 and forwards to ASBR13. RR27 readvertises this BGP-CT route to ABR23, ABR24. Addpath is enabled for BGP-CT family on the sessions between RR27 and ASBRs, ABRs. Such that routes for 1.1.1.3:10:1.1.1.1 with the nexthops ASBR21 and ASBR22 are reflected to ABR23, ABR24 without any path hiding. Thus giving ABR23 visibiity of all available paths for gold SLA. ABR23 receives the route with nexthop 2.2.2.1, label L3 from RR27. The route target "transport-target:0:100" on this route acts as mapping community, and instructs ABR23 to strictly resolve the nexthop using transport class 100 routes only. ABR23 is unable to find a route for 2.2.2.1 with transport class 100. Thus it considers this route unusable and does not propagate it further. This prunes ASBR21 from gold SLA tunneled path. ABR23 also receives the route with nexthop 2.2.2.2, label L4 from RR27. The route target "transport-target:0:100" on this route acts as mapping community, and instructs ABR23 to strictly resolve the nexthop using transport class 100 routes only. ABR23 successfully resolves the nexthop to point to ABR23_to_ASBR22_gold tunnel. ABR23 readvertises this route with nexthop self (loopback address 2.2.2.3) and a new label L5 to RR26. Swap route for L5 is installed by ABR23 to swap to label L4, and forward into ABR23_to_ASBR22_gold tunnel. RR27 reflects the route from ABR23 to PE25. PE25 receives the BGP-CT route for prefix 1.1.1.3:10:1.1.1.1 with label L5, nexthop 2.2.2.3 and transport-target:0:100 from RR26. And it similarly resolves the nexthop 2.2.2.3 over transport class 100, pushing labels associated with PE25_to_ABR23_gold tunnel. In this manner, the tunnels ASBR13_to_PE11_gold, ABR23_to_ASBR22_gold and PE25_to_ABR23_gold are stitched together by MPLS swap routes to form an inter-domain BGP-CT LSP satisfying gold SLA end to end. MPLS swap routes are installed at ASBR13, ASBR21 and ABR23, when propagating the PE11 BGP-CT route with nexthop self towards PE25. When PE25 receives service routes with nexthop 1.1.1.1 and mapping community Color:0:100, it resolves over this BGP-CT route 1.1.1.3:10:1.1.1.1. Thus pushing label L5, and pushing as top label the labels associated with PE25_to_ABR23_gold tunnel. Vairavakkalai, et al. Expires June 1, 2021 [Page 18] Internet-Draft BGP Classful Transport Planes November 2020 13. IANA Considerations This document makes following requests of IANA. 13.1. New BGP SAFI New BGP SAFI code for "Classful Transport". Value 76. This will be used to create new AFI,SAFI pairs for IPv4, IPv6 Classful Transport families. viz: o "Inet, Classful Transport". AFI/SAFI = "1/76" for carrying IPv4 Classful Transport prefixes. o "Inet6, Classful Transport". AFI/SAFI = "2/76" for carrying IPv6 Classful Transport prefixes. 13.2. New Format for BGP Extended Community Please assign a new Format (Type high = 0xa) of extended community EXT-COMM [RFC4360] called "Transport Class" from the following registries: the "BGP Transitive Extended Community Types" registry, and the "BGP Non-Transitive Extended Community Types" registry. Please assign the same low-order six bits for both allocations. This document uses this new Format with subtype 0x2 (route target), as a transitive extended community. The Route Target thus formed is called "Transport Class" route target extended community. Taking reference of RFC7153 [RFC7153] , following requests are made: 13.2.1. Existing registries to be modified 13.2.1.1. Registries for the "Type" Field 13.2.1.1.1. Transitive Types This registry contains values of the high-order octet (the "Type" field) of a Transitive Extended Community. Vairavakkalai, et al. Expires June 1, 2021 [Page 19] Internet-Draft BGP Classful Transport Planes November 2020 Registry Name: BGP Transitive Extended Community Types TYPE VALUE NAME + 0x0a Transitive Transport Class Extended + Community (Sub-Types are defined in the + "Transitive Transport Class Extended + Community Sub-Types" registry) 13.2.1.1.2. Non-Transitive Types This registry contains values of the high-order octet (the "Type" field) of a Non-transitive Extended Community. Registry Name: BGP Non-Transitive Extended Community Types TYPE VALUE NAME + 0x4a Non-Transitive Transport Class Extended + Community (Sub-Types are defined in the + "Non-Transitive Transport Class Extended + Community Sub-Types" registry) 13.2.2. New registries to be created 13.2.2.1. Transitive "Transport Class" Extended Community Sub-Types Registry This registry contains values of the second octet (the "Sub-Type" field) of an extended community when the value of the first octet (the "Type" field) is 0x07. Registry Name: Transitive Transport Class Extended Community Sub-Types RANGE REGISTRATION PROCEDURE 0x00-0xBF First Come First Served 0xC0-0xFF IETF Review SUB-TYPE VALUE NAME 0x02 Route Target Vairavakkalai, et al. Expires June 1, 2021 [Page 20] Internet-Draft BGP Classful Transport Planes November 2020 13.2.2.2. Non-Transitive "Transport Class" Extended Community Sub-Types Registry This registry contains values of the second octet (the "Sub-Type" field) of an extended community when the value of the first octet (the "Type" field) is 0x47. Registry Name: Non-Transitive Transport Class Extended Community Sub-Types RANGE REGISTRATION PROCEDURE 0x00-0xBF First Come First Served 0xC0-0xFF IETF Review SUB-TYPE VALUE NAME 0x02 Route Target 13.3. MPLS OAM code points The following two code points are sought for Target FEC Stack sub- TLVs: o IPv4 BGP Classful Transport o IPv6 BGP Classful Transport 14. Security Considerations Mechanisms described in this document carry Transport routes in a new BGP address family. That minimizes possibility of these routes leaking outside the expected domain or mixing with service routes. When redistributing between SAFI 4 and SAFI 76 Classful Transport routes, there is a possibility of SAFI 4 routes mixing with SAFI 1 service routes. To avoid such scenarios, it is RECOMMENDED that implementations support keeping SAFI 4 routes in a separate transport RIB, distinct from service RIB that contain SAFI 1 service routes. 15. Acknowledgements The authors thank Jeff Haas, John Scudder, Navaneetha Krishnan, Ravi M R, Chandrasekar Ramachandran, Shradha Hegde, Richard Roberts, Krzysztof Szarkowicz, John E Drake, Srihari Sangli, Vijay Kestur, Santosh Kolenchery, Robert Raszuk for the valuable discussions. Vairavakkalai, et al. Expires June 1, 2021 [Page 21] Internet-Draft BGP Classful Transport Planes November 2020 The decision to not reuse SAFI 128 and create a new address-family to carry these transport-routes was based on suggestion made by Richard Roberts and Krzysztof Szarkowicz. 16. References 16.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, . [RFC4360] Sangli, S., Tappan, D., and Y. Rekhter, "BGP Extended Communities Attribute", RFC 4360, DOI 10.17487/RFC4360, February 2006, . [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, . [RFC4684] Marques, P., Bonica, R., Fang, L., Martini, L., Raszuk, R., Patel, K., and J. Guichard, "Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)", RFC 4684, DOI 10.17487/RFC4684, November 2006, . [RFC7153] Rosen, E. and Y. Rekhter, "IANA Registries for BGP Extended Communities", RFC 7153, DOI 10.17487/RFC7153, March 2014, . [RFC7911] Walton, D., Retana, A., Chen, E., and J. Scudder, "Advertisement of Multiple Paths in BGP", RFC 7911, DOI 10.17487/RFC7911, July 2016, . [RFC8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N., Aldrin, S., and M. Chen, "Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures", RFC 8029, DOI 10.17487/RFC8029, March 2017, . Vairavakkalai, et al. Expires June 1, 2021 [Page 22] Internet-Draft BGP Classful Transport Planes November 2020 [RFC8277] Rosen, E., "Using BGP to Bind MPLS Labels to Address Prefixes", RFC 8277, DOI 10.17487/RFC8277, October 2017, . [RTC-Ext] Zhang, Z., Ed., "Route Target Constrain Extension", 07 2020, . [SRTE] Previdi, S., Ed., "Advertising Segment Routing Policies in BGP", 11 2019, . 16.2. URIs [1] https://www.rfc-editor.org/rfc/rfc4271#section-9.1.2.1 Authors' Addresses Kaliraj Vairavakkalai Juniper Networks, Inc. 1133 Innovation Way, Sunnyvale, CA 94089 US Email: kaliraj@juniper.net Natrajan Venkataraman Juniper Networks, Inc. 1133 Innovation Way, Sunnyvale, CA 94089 US Email: natv@juniper.net Balaji Rajagopalan Juniper Networks, Inc. Electra, Exora Business Park~Marathahalli - Sarjapur Outer Ring Road, Bangalore, KA 560103 India Email: balajir@juniper.net Vairavakkalai, et al. Expires June 1, 2021 [Page 23] Internet-Draft BGP Classful Transport Planes November 2020 Gyan Mishra Verizon Communications Inc. 13101 Columbia Pike Silver Spring, MD 20904 USA Email: gyan.s.mishra@verizon.com Vairavakkalai, et al. Expires June 1, 2021 [Page 24]