
Network Working Group S. Josefsson
Internet-Draft SJD AB
Intended status: Standards Track S. Leonard
Expires: June 16, 2015 Penango, Inc.

December 13, 2014

Textual Encodings of PKIX, PKCS, and CMS
Structures

draft-josefsson-pkix-textual-09

Abstract

This document describes and discusses the textual encodings of the Public-Key Infrastructure
X.509 (PKIX), Public-Key Cryptography Standards (PKCS), and Cryptographic Message Syntax
(CMS). The textual encodings are well-known, are implemented by several applications and
libraries, and are widely deployed. This document is intended to articulate the de-facto rules that
existing implementations operate by, and to give recommendations that will promote
interoperability.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 16, 2015.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

pkix-textual 12/13/14, 9:54 AM

1 of 13

Table of Contents

1. Introduction
2. General Considerations
3. ABNF
4. Guide
5. Textual Encoding of Certificates
5.1. Encoding
5.2. Explanatory Text
5.3. File Extension
6. Textual Encoding of Certificate Revocation Lists
7. Textual Encoding of PKCS #10 Certification Request Syntax
8. Textual Encoding of PKCS #7 Cryptographic Message Syntax
9. Textual Encoding of Cryptographic Message Syntax
10. Textual Encoding of PKCS #8 Private Key Info, and One Asymmetric Key
11. Textual Encoding of PKCS #8 Encrypted Private Key Info
12. Textual Encoding of Attribute Certificates
13. Textual Encoding of Subject Public Key Info
14. Security Considerations
15. IANA Considerations
16. Acknowledgements
17. References
17.1. Normative References
17.2. Informative References
Appendix A. Non-Conforming Examples
Appendix B. DER Expectations
Authors' Addresses

1. Introduction

Several security-related standards used on the Internet define ASN.1 data formats that are
normally encoded using the Basic Encoding Rules (BER) or Distinguished Encoding Rules (DER)
[X.690], which are binary, octet-oriented encodings. This document is about the textual
encodings of the following formats:

Certificates, Certificate Revocation Lists (CRLs), and Subject Public Key Info
structures in the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile [RFC5280].

1.

PKCS #10: Certification Request Syntax [RFC2986].2.
PKCS #7: Cryptographic Message Syntax [RFC2315].3.
Cryptographic Message Syntax [RFC5652].4.
PKCS #8: Private-Key Information Syntax [RFC5208], renamed to One Asymmetric
Key in Asymmetric Key Package [RFC5958], and Encrypted Private-Key Information
Syntax in the same standards.

5.

Attribute Certificates in An Internet Attribute Certificate Profile for Authorization6.

pkix-textual 12/13/14, 9:54 AM

2 of 13

[RFC5755].

Although other formats exist that use the encodings (or something like them) described in this
document, the included formats share a common property: algorithm agility. "Algorithm agility"
means that different algorithms to achieve the same purposes—such as content encryption or
integrity protection—can be used in different instances of the same format because the instance
data identifies the algorithms and associated parameters. Weakness in an algorithm does not
destroy the utility of the format.

A disadvantage of a binary data format is that it cannot be interchanged in textual transports,
such as e-mail or text documents. One advantage with text-based encodings is that they are easy
to modify using common text editors; for example, a user may concatenate several certificates to
form a certificate chain with copy-and-paste operations.

The tradition within the RFC series can be traced back to PEM [RFC1421], based on a proposal by
M. Rose in Message Encapsulation [RFC0934]. Originally called "PEM encapsulation mechanism",
"encapsulated PEM message", or (arguably) "PEM printable encoding", today the format is
sometimes referred to as "PEM encoding". Variations include OpenPGP ASCII Armor [RFC2015]
and OpenSSH Key File Format [RFC4716].

For reasons that basically boil down to non-coordination or inattention, many PKIX, PKCS, and
CMS libraries implement a text-based encoding that is similar to—but not identical with—PEM
encoding. This document specifies the textual encoding format, articulates the de-facto rules that
most implementations operate by, and provides recommendations that will promote
interoperability going forward. This document also provides common nomenclature for syntax
elements, reflecting the evolution of this de-facto standard format. Peter Gutmann's X.509 Style
Guide [X.509SG] contains a section "base64 Encoding" that describes the formats and contains
suggestions similar to what is in this document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are
to be interpreted as described in RFC 2119 [RFC2119].

2. General Considerations

Textual encoding begins with a line starting with -----BEGIN and ends with a line starting with
-----END . Between these lines, or "encapsulation boundaries", are base64-encoded data
according to Section 4 of [RFC4648]. Data before the -----BEGIN and after the -----END
encapsulation boundaries are permitted and parsers MUST NOT malfunction when processing
such data. Furthermore, parsers MUST ignore whitespace and other non-base64 characters and
MUST handle different newline conventions.

The type of data encoded is labeled depending on the type label in the -----BEGIN line
(pre-encapsulation boundary). For example, the line may be -----BEGIN CERTIFICATE----- to
indicate that the content is a PKIX certificate (see further below). Generators MUST put the same
label on the -----END line (post-encapsulation boundary) as the corresponding -----BEGIN
line. Parsers MAY disregard the label on the -----END line instead of signaling an error if there
is a label mismatch. There is exactly one space character (SP) separating the BEGIN or END from
the label. There are exactly five hyphen-minus (or dash) characters (-) on both ends of the

pkix-textual 12/13/14, 9:54 AM

3 of 13

encapsulation boundaries, no more, no less.

The label type implies that the encoded data follows the specified syntax. Parsers MUST handle
non-conforming data gracefully. However, not all parsers or generators prior to this
Internet-Draft behave consistently. A conforming parser MAY interpret the contents as another
label type, but ought to be aware of the security implications discussed in the Security
Considerations section. Consistent with algorithm agility, the labels described in this document
are not specific to any particular cryptographic algorithm.

Unlike legacy PEM encoding [RFC1421], OpenPGP ASCII armor, and the OpenSSH key file format,
textual encoding does not define or permit attributes to be encoded alongside the PKIX or CMS
data. Whitespace MAY appear between the pre-encapsulation boundary and the base64, but
generators SHOULD NOT emit such whitespace.

Files MAY contain multiple textual encoding instances. This is used, for example, when a file
contains several certificates. Whether the instances are ordered or unordered depends on the
context.

Generators MUST wrap the base64 encoded lines so that each line consists of exactly 64
characters except for the final line which will encode the remainder of the data (within the 64
character line boundary). Parsers MAY handle other line sizes. These requirements are
consistent with PEM [RFC1421].

3. ABNF

The ABNF [RFC5234] of the textual encoding is:

pkixmsg = preeb
 *eolWSP
 base64text
 posteb

preeb = "-----BEGIN " label "-----" eol

posteb = "-----END " label "-----" eol

base64char = ALPHA / DIGIT / "+" / "/"

base64pad = "="

base64line = 1*base64char eol

base64finl = *base64char (base64pad eol base64pad /
 *2base64pad) eol
 ; ...AB= <CRLF> = <CRLF> is not good, but is valid

base64text = *base64line base64finl
 ; we could also use <encbinbody> from RFC 1421, which requires
 ; 16 groups of 4 chars, which means exactly 64 chars per
 ; line, except the final line, but this is more accurate

labelchar = %x21-2C / %x2E-%7E ; any printable character,
 ; except hyphen

pkix-textual 12/13/14, 9:54 AM

4 of 13

label = labelchar *(labelchar / labelchar "-" / SP) labelchar

eol = CRLF / CR / LF

eolWSP = WSP / CR / LF ; compare with LWSP

Figure 1: ABNF

pkixmsgstrict = preeb
 strictbase64text
 posteb

strictbase64finl = *15(4base64char) (4base64char / 3base64char
 base64pad / 2base64char 2base64pad) eol

base64fullline = 64base64char eol

strictbase64text = *base64fullline strictbase64finl

Figure 2: ABNF (Strict)

New implementations SHOULD emit the strict format [abnf-strict-fig] specified above.

4. Guide

For convenience, these figures summarize the structures, encodings, and references in the
following sections:

Sec. Label ASN.1 Type Reference Module
----+----------------------+-----------------------+---------+----------
 5 CERTIFICATE Certificate [RFC5280] id-pkix1-e
 6 X509 CRL CertificateList [RFC5280] id-pkix1-e
 7 CERTIFICATE REQUEST CertificationRequest [RFC2986] id-pkcs10
 8 PKCS7 ContentInfo [RFC2315] id-pkcs7*
 9 CMS ContentInfo [RFC5652] id-cms2004
 10 PRIVATE KEY PrivateKeyInfo ::= [RFC5208] id-pkcs8
 OneAsymmetricKey [RFC5958] id-aKPV1
 11 ENCRYPTED PRIVATE KEY EncryptedPrivateKeyInfo [RFC5958] id-aKPV1
 12 ATTRIBUTE CERTIFICATE AttributeCertificate [RFC5755] id-acv2
 13 PUBLIC KEY SubjectPublicKeyInfo [RFC5280] id-pkix1-e

Figure 3: Convenience Guide

 id-pkixmod OBJECT IDENTIFIER ::= {iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) mod(0)}
 id-pkix1-e OBJECT IDENTIFIER ::= {id-pkixmod pkix1-explicit(18)}
 id-acv2 OBJECT IDENTIFIER ::= {id-pkixmod mod-attribute-cert-v2(61)}
 id-pkcs OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1)}
 id-pkcs10 OBJECT IDENTIFIER ::= {id-pkcs 10 modules(1) pkcs-10(1)}
 id-pkcs7 OBJECT IDENTIFIER ::= {id-pkcs 7 modules(0) pkcs-7(1)}
 id-pkcs8 OBJECT IDENTIFIER ::= {id-pkcs 8 modules(1) pkcs-8(1)}
 id-sm-mod OBJECT IDENTIFIER ::= {id-pkcs 9 smime(16) modules(0)}
 id-aKPV1 OBJECT IDENTIFIER ::= {id-sm-mod mod-asymmetricKeyPkgV1(50)}
 id-cms2004 OBJECT IDENTIFIER ::= {id-sm-mod cms-2004(24)}

pkix-textual 12/13/14, 9:54 AM

5 of 13

*This OID does not actually appear in PKCS #7 v1.5 [RFC2315]. It was defined in the ASN.1
module to PKCS #7 v1.6 [P7v1.6], and has been carried forward through PKCS #12 [RFC7292].

Figure 4: ASN.1 Module Object Identifier Value Assignments

5. Textual Encoding of Certificates

5.1. Encoding

Public-key certificates are encoded using the CERTIFICATE label. The encoded data MUST be a
BER (DER strongly preferred) encoded ASN.1 Certificate structure as described in section 4 of
[RFC5280].

-----BEGIN CERTIFICATE-----
MIICLDCCAdKgAwIBAgIBADAKBggqhkjOPQQDAjB9MQswCQYDVQQGEwJCRTEPMA0G
A1UEChMGR251VExTMSUwIwYDVQQLExxHbnVUTFMgY2VydGlmaWNhdGUgYXV0aG9y
aXR5MQ8wDQYDVQQIEwZMZXV2ZW4xJTAjBgNVBAMTHEdudVRMUyBjZXJ0aWZpY2F0
ZSBhdXRob3JpdHkwHhcNMTEwNTIzMjAzODIxWhcNMTIxMjIyMDc0MTUxWjB9MQsw
CQYDVQQGEwJCRTEPMA0GA1UEChMGR251VExTMSUwIwYDVQQLExxHbnVUTFMgY2Vy
dGlmaWNhdGUgYXV0aG9yaXR5MQ8wDQYDVQQIEwZMZXV2ZW4xJTAjBgNVBAMTHEdu
dVRMUyBjZXJ0aWZpY2F0ZSBhdXRob3JpdHkwWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAARS2I0jiuNn14Y2sSALCX3IybqiIJUvxUpj+oNfzngvj/Niyv2394BWnW4X
uQ4RTEiywK87WRcWMGgJB5kX/t2no0MwQTAPBgNVHRMBAf8EBTADAQH/MA8GA1Ud
DwEB/wQFAwMHBgAwHQYDVR0OBBYEFPC0gf6YEr+1KLlkQAPLzB9mTigDMAoGCCqG
SM49BAMCA0gAMEUCIDGuwD1KPyG+hRf88MeyMQcqOFZD0TbVleF+UsAGQ4enAiEA
l4wOuDwKQa+upc8GftXE2C//4mKANBC6It01gUaTIpo=
-----END CERTIFICATE-----

Figure 5: Certificate Example

Historically the label X509 CERTIFICATE and also less commonly X.509 CERTIFICATE have been
used. Generators conforming to this document MUST generate CERTIFICATE labels and MUST
NOT generate X509 CERTIFICATE or X.509 CERTIFICATE labels. Parsers are NOT RECOMMENDED
to treat X509 CERTIFICATE or X.509 CERTIFICATE as equivalent to CERTIFICATE , but a valid
exception may be for backwards compatibility (potentially together with a warning).

5.2. Explanatory Text

Many tools are known to emit explanatory text before the BEGIN and after the END lines for PKIX
certificates, more than any other type. If emitted, such text SHOULD be related to the certificate,
such as providing a textual representation of key data elements in the certificate.

Subject: CN=Atlantis
Issuer: CN=Atlantis
Validity: from 7/9/2012 3:10:38 AM UTC to 7/9/2013 3:10:37 AM UTC
-----BEGIN CERTIFICATE-----
MIIBmTCCAUegAwIBAgIBKjAJBgUrDgMCHQUAMBMxETAPBgNVBAMTCEF0bGFudGlz
MB4XDTEyMDcwOTAzMTAzOFoXDTEzMDcwOTAzMTAzN1owEzERMA8GA1UEAxMIQXRs
YW50aXMwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAu+BXo+miabDIHHx+yquqzqNh
Ryn/XtkJIIHVcYtHvIX+S1x5ErgMoHehycpoxbErZmVR4GCq1S2diNmRFZCRtQID
AQABo4GJMIGGMAwGA1UdEwEB/wQCMAAwIAYDVR0EAQH/BBYwFDAOMAwGCisGAQQB
gjcCARUDAgeAMB0GA1UdJQQWMBQGCCsGAQUFBwMCBggrBgEFBQcDAzA1BgNVHQEE
LjAsgBA0jOnSSuIHYmnVryHAdywMoRUwEzERMA8GA1UEAxMIQXRsYW50aXOCASow

pkix-textual 12/13/14, 9:54 AM

6 of 13

CQYFKw4DAh0FAANBAKi6HRBaNEL5R0n56nvfclQNaXiDT174uf+lojzA4lhVInc0
ILwpnZ1izL4MlI9eCSHhVQBHEp2uQdXJB+d5Byg=
-----END CERTIFICATE-----

Figure 6: Certificate Example with Explanatory Text

5.3. File Extension

Although textual encodings of PKIX structures can occur anywhere, many tools are known to
offer an option to output this encoding when serializing PKIX structures. To promote
interoperability and to separate DER encodings from textual encodings, the extension .crt
SHOULD be used for the textual encoding of a certificate. Implementations should be aware that
in spite of this recommendation, many tools still default to encode certificates in this textual
encoding with the extension .cer .

6. Textual Encoding of Certificate Revocation Lists

Certificate Revocation Lists (CRLs) are encoded using the X509 CRL label. The encoded data
MUST be a BER (DER strongly preferred) encoded ASN.1 CertificateList structure as described
in Section 5 of [RFC5280].

-----BEGIN X509 CRL-----
MIIB9DCCAV8CAQEwCwYJKoZIhvcNAQEFMIIBCDEXMBUGA1UEChMOVmVyaVNpZ24s
IEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRydXN0IE5ldHdvcmsxRjBEBgNVBAsT
PXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9yeS9SUEEgSW5jb3JwLiBieSBSZWYu
LExJQUIuTFREKGMpOTgxHjAcBgNVBAsTFVBlcnNvbmEgTm90IFZhbGlkYXRlZDEm
MCQGA1UECxMdRGlnaXRhbCBJRCBDbGFzcyAxIC0gTmV0c2NhcGUxGDAWBgNVBAMU
D1NpbW9uIEpvc2Vmc3NvbjEiMCAGCSqGSIb3DQEJARYTc2ltb25Aam9zZWZzc29u
Lm9yZxcNMDYxMjI3MDgwMjM0WhcNMDcwMjA3MDgwMjM1WjAjMCECEC4QNwPfRoWd
elUNpllhhTgXDTA2MTIyNzA4MDIzNFowCwYJKoZIhvcNAQEFA4GBAD0zX+J2hkcc
Nbrq1Dn5IKL8nXLgPGcHv1I/le1MNo9t1ohGQxB5HnFUkRPAY82fR6Epor4aHgVy
b+5y+neKN9Kn2mPF4iiun+a4o26CjJ0pArojCL1p8T0yyi9Xxvyc/ezaZ98HiIyP
c3DGMNR+oUmSjKZ0jIhAYmeLxaPHfQwR
-----END X509 CRL-----

Figure 7: CRL Example

Historically the label CRL has rarely been used. Today it is not common and many popular tools
do not understand the label. Therefore, this document standardizes X509 CRL in order to
promote interoperability and backwards-compatibility. Generators conforming to this document
MUST generate X509 CRL labels and MUST NOT generate CRL labels. Parsers SHOULD NOT treat
CRL as equivalent to X509 CRL .

7. Textual Encoding of PKCS #10 Certification Request Syntax

PKCS #10 Certification Requests are encoded using the CERTIFICATE REQUEST label. The encoded
data MUST be a BER (DER strongly preferred) encoded ASN.1 CertificationRequest structure as
described in [RFC2986].

-----BEGIN CERTIFICATE REQUEST-----
MIIBWDCCAQcCAQAwTjELMAkGA1UEBhMCU0UxJzAlBgNVBAoTHlNpbW9uIEpvc2Vm
c3NvbiBEYXRha29uc3VsdCBBQjEWMBQGA1UEAxMNam9zZWZzc29uLm9yZzBOMBAG

pkix-textual 12/13/14, 9:54 AM

7 of 13

ByqGSM49AgEGBSuBBAAhAzoABLLPSkuXY0l66MbxVJ3Mot5FCFuqQfn6dTs+9/CM
EOlSwVej77tj56kj9R/j9Q+LfysX8FO9I5p3oGIwYAYJKoZIhvcNAQkOMVMwUTAY
BgNVHREEETAPgg1qb3NlZnNzb24ub3JnMAwGA1UdEwEB/wQCMAAwDwYDVR0PAQH/
BAUDAwegADAWBgNVHSUBAf8EDDAKBggrBgEFBQcDATAKBggqhkjOPQQDAgM/ADA8
AhxBvfhxPFfbBbsE1NoFmCUczOFApEuQVUw3ZP69AhwWXk3dgSUsKnuwL5g/ftAY
dEQc8B8jAcnuOrfU
-----END CERTIFICATE REQUEST-----

Figure 8: PKCS #10 Example

The label NEW CERTIFICATE REQUEST is also in wide use. Generators conforming to this document
MUST generate CERTIFICATE REQUEST labels. Parsers MAY treat NEW CERTIFICATE REQUEST as
equivalent to CERTIFICATE REQUEST .

8. Textual Encoding of PKCS #7 Cryptographic Message Syntax

PKCS #7 Cryptographic Message Syntax structures are encoded using the PKCS7 label. The
encoded data MUST be a BER encoded ASN.1 ContentInfo structure as described in [RFC2315].

-----BEGIN PKCS7-----
MIHjBgsqhkiG9w0BCRABF6CB0zCB0AIBADFho18CAQCgGwYJKoZIhvcNAQUMMA4E
CLfrI6dr0gUWAgITiDAjBgsqhkiG9w0BCRADCTAUBggqhkiG9w0DBwQIZpECRWtz
u5kEGDCjerXY8odQ7EEEromZJvAurk/j81IrozBSBgkqhkiG9w0BBwEwMwYLKoZI
hvcNAQkQAw8wJDAUBggqhkiG9w0DBwQI0tCBcU09nxEwDAYIKwYBBQUIAQIFAIAQ
OsYGYUFdAH0RNc1p4VbKEAQUM2Xo8PMHBoYdqEcsbTodlCFAZH4=
-----END PKCS7-----

Figure 9: PKCS #7 Example

The label CERTIFICATE CHAIN has been in use to denote a degenerative PKCS #7 structure that
contains only a list of certificates. Several modern tools do not support this label. Generators
MUST NOT generate the CERTIFICATE CHAIN label. Parsers SHOULD NOT treat CERTIFICATE
CHAIN as equivalent to PKCS7 .

PKCS #7 is an old standard that has long been superseded by CMS [RFC5652]. Implementations
SHOULD NOT generate PKCS #7 when CMS is an alternative.

9. Textual Encoding of Cryptographic Message Syntax

Cryptographic Message Syntax structures are encoded using the CMS label. The encoded data
MUST be a BER encoded ASN.1 ContentInfo structure as described in [RFC5652].

-----BEGIN CMS-----
MIGDBgsqhkiG9w0BCRABCaB0MHICAQAwDQYLKoZIhvcNAQkQAwgwXgYJKoZIhvcN
AQcBoFEET3icc87PK0nNK9ENqSxItVIoSa0o0S/ISczMs1ZIzkgsKk4tsQ0N1nUM
dvb05OXi5XLPLEtViMwvLVLwSE0sKlFIVHAqSk3MBkkBAJv0Fx0=
-----END CMS-----

Figure 10: CMS Example

CMS is the IETF successor to PKCS #7. Section 1.1.1 of [RFC5652] describes the changes since
PKCS #7 v1.5. Implementations SHOULD generate CMS when it is an alternative, promoting
interoperability and forwards-compatibility.

pkix-textual 12/13/14, 9:54 AM

8 of 13

10. Textual Encoding of PKCS #8 Private Key Info, and One Asymmetric
Key

Unencrypted PKCS #8 Private Key Information Syntax structures (PrivateKeyInfo), renamed to
Asymmetric Key Packages (OneAsymmetricKey), are encoded using the PRIVATE KEY label. The
encoded data MUST be a BER (DER preferred) encoded ASN.1 PrivateKeyInfo structure as
described in PKCS #8 [RFC5208], or a OneAsymmetricKey structure as described in [RFC5958]. The
two are semantically identical, and can be distinguished by version number.

-----BEGIN PRIVATE KEY-----
MIGEAgEAMBAGByqGSM49AgEGBSuBBAAKBG0wawIBAQQgVcB/UNPxalR9zDYAjQIf
jojUDiQuGnSJrFEEzZPT/92hRANCAASc7UJtgnF/abqWM60T3XNJEzBv5ez9TdwK
H0M6xpM2q+53wmsN/eYLdgtjgBd3DBmHtPilCkiFICXyaA8z9LkJ
-----END PRIVATE KEY-----

Figure 11: PKCS #8 PrivateKeyInfo (OneAsymmetricKey) Example

11. Textual Encoding of PKCS #8 Encrypted Private Key Info

Encrypted PKCS #8 Private Key Information Syntax structures (EncryptedPrivateKeyInfo), called
the same in [RFC5958], are encoded using the ENCRYPTED PRIVATE KEY label. The encoded data
MUST be a BER (DER preferred) encoded ASN.1 EncryptedPrivateKeyInfo structure as described
in PKCS #8 [RFC5208] and [RFC5958].

-----BEGIN ENCRYPTED PRIVATE KEY-----
MIHNMEAGCSqGSIb3DQEFDTAzMBsGCSqGSIb3DQEFDDAOBAghhICA6T/51QICCAAw
FAYIKoZIhvcNAwcECBCxDgvI59i9BIGIY3CAqlMNBgaSI5QiiWVNJ3IpfLnEiEsW
Z0JIoHyRmKK/+cr9QPLnzxImm0TR9s4JrG3CilzTWvb0jIvbG3hu0zyFPraoMkap
8eRzWsIvC5SVel+CSjoS2mVS87cyjlD+txrmrXOVYDE+eTgMLbrLmsWh3QkCTRtF
QC7k0NNzUHTV9yGDwfqMbw==
-----END ENCRYPTED PRIVATE KEY-----

Figure 12: PKCS #8 EncryptedPrivateKeyInfo Example

12. Textual Encoding of Attribute Certificates

Attribute certificates are encoded using the ATTRIBUTE CERTIFICATE label. The encoded data
MUST be a BER (DER strongly preferred) encoded ASN.1 AttributeCertificate structure as
described in [RFC5755].

-----BEGIN ATTRIBUTE CERTIFICATE-----
MIICKzCCAZQCAQEwgZeggZQwgYmkgYYwgYMxCzAJBgNVBAYTAlVTMREwDwYDVQQI
DAhOZXcgWW9yazEUMBIGA1UEBwwLU3RvbnkgQnJvb2sxDzANBgNVBAoMBkNTRTU5
MjE6MDgGA1UEAwwxU2NvdHQgU3RhbGxlci9lbWFpbEFkZHJlc3M9c3N0YWxsZXJA
aWMuc3VueXNiLmVkdQIGARWrgUUSoIGMMIGJpIGGMIGDMQswCQYDVQQGEwJVUzER
MA8GA1UECAwITmV3IFlvcmsxFDASBgNVBAcMC1N0b255IEJyb29rMQ8wDQYDVQQK
DAZDU0U1OTIxOjA4BgNVBAMMMVNjb3R0IFN0YWxsZXIvZW1haWxBZGRyZXNzPXNz
dGFsbGVyQGljLnN1bnlzYi5lZHUwDQYJKoZIhvcNAQEFBQACBgEVq4FFSjAiGA8z
OTA3MDIwMTA1MDAwMFoYDzM5MTEwMTMxMDUwMDAwWjArMCkGA1UYSDEiMCCGHmh0
dHA6Ly9pZGVyYXNobi5vcmcvaW5kZXguaHRtbDANBgkqhkiG9w0BAQUFAAOBgQAV
M9axFPXXozEFcer06bj9MCBBCQLtAM7ZXcZjcxyva7xCBDmtZXPYUluHf5OcWPJz
5XPus/xS9wBgtlM3fldIKNyNO8RsMp6Ocx+PGlICc7zpZiGmCYLl64lAEGPO/bsw

pkix-textual 12/13/14, 9:54 AM

9 of 13

Smluak1aZIttePeTAHeJJs8izNJ5aR3Wcd3A5gLztQ==
-----END ATTRIBUTE CERTIFICATE-----

Figure 13: Attribute Certificate Example

13. Textual Encoding of Subject Public Key Info

Public keys are encoded using the PUBLIC KEY label. The encoded data MUST be a BER (DER
preferred) encoded ASN.1 SubjectPublicKeyInfo structure as described in Section 4.1.2.7 of
[RFC5280].

-----BEGIN PUBLIC KEY-----
MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEn1LlwLN/KBYQRVH6HfIMTzfEqJOVztLe
kLchp2hi78cCaMY81FBlYs8J9l7krc+M4aBeCGYFjba+hiXttJWPL7ydlE+5UG4U
Nkn3Eos8EiZByi9DVsyfy9eejh+8AXgp
-----END PUBLIC KEY-----

Figure 14: Subject Public Key Info Example

14. Security Considerations

Data in this format often originates from untrusted sources, thus parsers must be prepared to
handle unexpected data without causing security vulnerabilities.

Implementers building implementations that rely on canonical representation or the ability to
fingerprint a particular data object need to understand that this Internet-Draft does not define
canonical encodings. The first ambiguity is introduced by permitting the text-encoded
representation instead of the binary BER or DER encodings, but further ambiguities arise when
multiple labels are treated as similar. Variations of whitespace and non-base64 alphabetic
characters can create further ambiguities. Data encoding ambiguities also create opportunities
for side channels. If canonical encodings are desired, the encoded structure must be decoded
and processed into a canonical form (namely, DER encoding).

15. IANA Considerations

This document implies no IANA Considerations.

16. Acknowledgements

Peter Gutmann suggested to document labels for Attribute Certificates and PKCS #7 messages,
and to add examples for the non-standard variants. Dr. Stephen Henson suggested
distinguishing when BER versus DER are appropriate or necessary.

17. References

17.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997.

pkix-textual 12/13/14, 9:54 AM

10 of 13

[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, March
1998.

[RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification
Version 1.7", RFC 2986, November 2000.

[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October
2006.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. and W. Polk, "Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC
5280, May 2008.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68,
RFC 5234, January 2008.

[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, September 2009.

[RFC5755] Farrell, S., Housley, R. and S. Turner, "An Internet Attribute Certificate Profile for
Authorization", RFC 5755, January 2010.

[RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, August 2010.

[X.690] International Telecommunications Union, "Information Technology - ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)", ITU-T Recommendation X.690, ISO/IEC
8825-1:2008, November 2008.

17.2. Informative References

[RFC0934] Rose, M. and E. Stefferud, "Proposed standard for message encapsulation", RFC 934,
January 1985.

[RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption
and Authentication Procedures", RFC 1421, February 1993.

[RFC2015] Elkins, M., "MIME Security with Pretty Good Privacy (PGP)", RFC 2015, October 1996.

[RFC4716] Galbraith, J. and R. Thayer, "The Secure Shell (SSH) Public Key File Format", RFC 4716,
November 2006.

[RFC5208] Kaliski, B., "Public-Key Cryptography Standards (PKCS) #8: Private-Key Information
Syntax Specification Version 1.2", RFC 5208, May 2008.

[RFC7292] Moriarty, K., Nystrom, M., Parkinson, S., Rusch, A. and M. Scott, "PKCS #12: Personal
Information Exchange Syntax v1.1", RFC 7292, July 2014.

[P7v1.6] Kaliski, B. and K. Kingdon, "Extensions and Revisions to PKCS #7 (Version 1.6 Bulletin)",
May 1997.

[X.509SG] Gutmann, P., "X.509 Style Guide", October 2000.

Appendix A. Non-Conforming Examples

This section contains examples for the non-recommended label variants described earlier in this
document. As discussed earlier, supporting these are not required and sometimes discouraged.
Still, they can be useful for interoperability testing and for easy reference.

-----BEGIN X509 CERTIFICATE-----

pkix-textual 12/13/14, 9:54 AM

11 of 13

MIIBHDCBxaADAgECAgIcxzAJBgcqhkjOPQQBMBAxDjAMBgNVBAMUBVBLSVghMB4X
DTE0MDkxNDA2MTU1MFoXDTI0MDkxNDA2MTU1MFowEDEOMAwGA1UEAxQFUEtJWCEw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATwoQSr863QrR0PoRIYQ96H7WykDePH
Wa0eVAE24bth43wCNc+U5aZ761dhGhSSJkVWRgVH5+prLIr+nzfIq+X4oxAwDjAM
BgNVHRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIfMdKS5F63lMnWVhi7uaKJzKCs
NnY/OKgBex6MIEAv2AIhAI2GdvfL+mGvhyPZE+JxRxWChmggb5/9eHdUcmW/jkOH
-----END X509 CERTIFICATE-----

Figure 15: Non-standard 'X509' Certificate Example

-----BEGIN X.509 CERTIFICATE-----
MIIBHDCBxaADAgECAgIcxzAJBgcqhkjOPQQBMBAxDjAMBgNVBAMUBVBLSVghMB4X
DTE0MDkxNDA2MTU1MFoXDTI0MDkxNDA2MTU1MFowEDEOMAwGA1UEAxQFUEtJWCEw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATwoQSr863QrR0PoRIYQ96H7WykDePH
Wa0eVAE24bth43wCNc+U5aZ761dhGhSSJkVWRgVH5+prLIr+nzfIq+X4oxAwDjAM
BgNVHRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIfMdKS5F63lMnWVhi7uaKJzKCs
NnY/OKgBex6MIEAv2AIhAI2GdvfL+mGvhyPZE+JxRxWChmggb5/9eHdUcmW/jkOH
-----END X.509 CERTIFICATE-----

Figure 16: Non-standard 'X.509' Certificate Example

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBWDCCAQcCAQAwTjELMAkGA1UEBhMCU0UxJzAlBgNVBAoTHlNpbW9uIEpvc2Vm
c3NvbiBEYXRha29uc3VsdCBBQjEWMBQGA1UEAxMNam9zZWZzc29uLm9yZzBOMBAG
ByqGSM49AgEGBSuBBAAhAzoABLLPSkuXY0l66MbxVJ3Mot5FCFuqQfn6dTs+9/CM
EOlSwVej77tj56kj9R/j9Q+LfysX8FO9I5p3oGIwYAYJKoZIhvcNAQkOMVMwUTAY
BgNVHREEETAPgg1qb3NlZnNzb24ub3JnMAwGA1UdEwEB/wQCMAAwDwYDVR0PAQH/
BAUDAwegADAWBgNVHSUBAf8EDDAKBggrBgEFBQcDATAKBggqhkjOPQQDAgM/ADA8
AhxBvfhxPFfbBbsE1NoFmCUczOFApEuQVUw3ZP69AhwWXk3dgSUsKnuwL5g/ftAY
dEQc8B8jAcnuOrfU
-----END NEW CERTIFICATE REQUEST-----

Figure 17: Non-standard 'NEW' PKCS #10 Example

-----BEGIN CERTIFICATE CHAIN-----
MIHjBgsqhkiG9w0BCRABF6CB0zCB0AIBADFho18CAQCgGwYJKoZIhvcNAQUMMA4E
CLfrI6dr0gUWAgITiDAjBgsqhkiG9w0BCRADCTAUBggqhkiG9w0DBwQIZpECRWtz
u5kEGDCjerXY8odQ7EEEromZJvAurk/j81IrozBSBgkqhkiG9w0BBwEwMwYLKoZI
hvcNAQkQAw8wJDAUBggqhkiG9w0DBwQI0tCBcU09nxEwDAYIKwYBBQUIAQIFAIAQ
OsYGYUFdAH0RNc1p4VbKEAQUM2Xo8PMHBoYdqEcsbTodlCFAZH4=
-----END CERTIFICATE CHAIN-----

Figure 18: Non-standard 'CERTIFICATE CHAIN' Example

Appendix B. DER Expectations

This appendix is informative. Consult the respective standards for the normative rules.

DER is a restricted profile of BER [X.690]; thus all DER encodings of data values are BER
encodings, but just one of the BER encodings is the DER encoding for a data value. Canonical
encoding matters when performing cryptographic operations; additionally, canonical encoding
has certain efficiency advantages for parsers. There are three principal reasons to do encode
with DER:

A digital signature is (supposed to be) computed over the DER encoding of the1.

pkix-textual 12/13/14, 9:54 AM

12 of 13

semantic content, so providing anything other than the DER encoding is
senseless. (In practice, an implementer might choose to have an implementation
parse and digest the data as-is, but this practice amounts to guesswork.)
In practice, cryptographic hashes are computed over the DER encoding for
identification.

2.

In practice, the content is small. DER always encodes data values in definite length
form (where the length is stated at the beginning of the encoding); thus, a parser
can anticipate memory or resource usage up-front.

3.

Sec. Label Reasons
----+----------------------+-------
 5 CERTIFICATE 1 2 ~3
 6 X509 CRL 1
 7 CERTIFICATE REQUEST 1 ~3
 8 PKCS7 *
 9 CMS *
 10 PRIVATE KEY 3
 11 ENCRYPTED PRIVATE KEY 3
 12 ATTRIBUTE CERTIFICATE 1 ~3
 13 PUBLIC KEY 2 3

Figure 19 matches the structures in this document with the particular reasons for DER encoding:

*Cryptographic Message Syntax is designed for content of any length; indefinite length encoding
enables one-pass processing (streaming) when generating the encoding. Only certain parts,
namely signed and authenticated attributes, need to be DER encoded.
~Although not always "small", these encoded structures should not be particularly "large" (e.g.,
more than 16 kilobytes). The parser ought to be informed of large things up-front in any event,
which is yet another reason to DER encode these things in the first place.

Figure 19: Guide for DER Encoding

Authors’ Addresses

Simon Josefsson
SJD AB
Johan Olof Wallins Väg 13
Solna, 171 64
SE
EMail: simon@josefsson.org
URI: http://josefsson.org/

Sean Leonard
Penango, Inc.
5900 Wilshire Boulevard
21st Floor
Los Angeles, CA 90036
USA
EMail: dev+ietf@seantek.com
URI: http://www.penango.com/

pkix-textual 12/13/14, 9:54 AM

13 of 13

