
 TOC Network Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track D. Balfanz

Expires: June 15, 2012 Google

 J. Bradley

 independent

 Y. Goland

 Microsoft

 J. Panzer

 Google

 N. Sakimura

 Nomura Research Institute

 P. Tarjan

 Facebook

 December 13, 2011

JSON Web Signature (JWS)
draft-jones-json-web-signature-04

Abstract

JSON Web Signature (JWS) is a means of representing signed content using JSON data
structures. Related encryption capabilities are described in the separate JSON Web
Encryption (JWE) specification.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on June 15, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

RFC 2119

 TOC

 TOC

Table of Contents

1. Introduction
2. Terminology
3. JSON Web Signature (JWS) Overview
 3.1. Example JWS
4. JWS Header
 4.1. Reserved Header Parameter Names
 4.2. Public Header Parameter Names
 4.3. Private Header Parameter Names
5. Rules for Creating and Validating a JWS
6. Signing JWSs with Cryptographic Algorithms
 6.1. Creating a JWS with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512
 6.2. Creating a JWS with RSA SHA-256, RSA SHA-384, or RSA SHA-512
 6.3. Creating a JWS with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or
ECDSA P-521 SHA-512
 6.4. Additional Algorithms
7. IANA Considerations
8. Security Considerations
 8.1. Unicode Comparison Security Issues
9. Open Issues and Things To Be Done (TBD)
10. References
 10.1. Normative References
 10.2. Informative References
Appendix A. JWS Examples
 A.1. JWS using HMAC SHA-256
 A.1.1. Encoding
 A.1.2. Decoding
 A.1.3. Validating
 A.2. JWS using RSA SHA-256
 A.2.1. Encoding
 A.2.2. Decoding
 A.2.3. Validating
 A.3. JWS using ECDSA P-256 SHA-256
 A.3.1. Encoding
 A.3.2. Decoding
 A.3.3. Validating
Appendix B. Algorithm Identifier Cross-Reference
Appendix C. Notes on implementing base64url encoding without padding
Appendix D. Acknowledgements
Appendix E. Document History
§ Authors' Addresses

1. Introduction

JSON Web Signature (JWS) is a compact signature format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It represents
signed content using JSON data structures. The JWS signature mechanisms are
independent of the type of content being signed, allowing arbitrary content to be signed. A
related encryption capability is described in a separate JSON Web Encryption (JWE)
specification.

2. Terminology

JSON Web Signature (JWS)
A data structure cryptographically securing a JWS Header and a JWS Payload with a
JWS Signature.

JWS Header
A string representing a JSON object that describes the signature applied to the JWS
Header and the JWS Payload to create the JWS Signature.

JWS Payload

[RFC4627]

[JWE]

 TOC

 TOC

The bytes to be signed - a.k.a., the message.
JWS Signature

A byte array containing the cryptographic material that secures the contents of
the JWS Header and the JWS Payload.

Encoded JWS Header
Base64url encoding of the bytes of the UTF-8 [RFC3629]
representation of the JWS Header.

Encoded JWS Payload
Base64url encoding of the JWS Payload.

Encoded JWS Signature
Base64url encoding of the JWS Signature.

JWS Signing Input
The concatenation of the Encoded JWS Header, a period ('.') character, and the
Encoded JWS Payload.

Header Parameter Names
The names of the members within the JSON object represented in a JWS Header.

Header Parameter Values
The values of the members within the JSON object represented in a JWS Header.

Digital Signature
For the purposes of this specification, we use this term to encompass both Hash-
based Message Authentication Codes (HMACs), which can provide authenticity but
not non-repudiation, and digital signatures using public key algorithms, which can
provide both. Readers should be aware of this distinction, despite the decision to
use a single term for both concepts to improve readability of the specification.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See for notes on implementing base64url encoding without
padding.)

3. JSON Web Signature (JWS) Overview

JWS represents signed content using JSON data structures and base64url encoding. The
representation consists of three parts: the JWS Header, the JWS Payload, and the JWS
Signature. The three parts are base64url-encoded for transmission, and typically represented
as the concatenation of the encoded strings in that order, with the three strings being
separated by period ('.') characters.

The JWS Header describes the signature method and parameters employed. The JWS Payload
is the message content to be secured. The JWS Signature ensures the integrity of both the
JWS Header and the JWS Payload.

3.1. Example JWS

The following example JWS Header declares that the encoded object is a JSON Web Token
(JWT) and the JWS Header and the JWS Payload are signed using the HMAC SHA-256
algorithm:

{"typ":"JWT",
 "alg":"HS256"}

Base64url encoding the bytes of the UTF-8 representation of the JWS Header yields this
Encoded JWS Header value:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

The following is an example of a JSON object that can be used as a JWS Payload. (Note that

RFC 3629

RFC 4648

Appendix C

[JWT]

 TOC

 TOC

the payload can be any content, and need not be a representation of a JSON object.)

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Base64url encoding the bytes of the UTF-8 representation of the JSON object yields the
following Encoded JWS Payload (with line breaks for display purposes only):

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

Signing the UTF-8 representation of the JWS Signing Input (the concatenation of the Encoded
JWS Header, a period ('.') character, and the Encoded JWS Payload) with the HMAC SHA-256
algorithm and base64url encoding the result, as per , yields this Encoded JWS
Signature value:

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Concatenating these parts in the order Header.Payload.Signature with period characters
between the parts yields this complete JWS representation (with line breaks for display
purposes only):

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.
dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

This computation is illustrated in more detail in .

4. JWS Header

The members of the JSON object represented by the JWS Header describe the signature
applied to the Encoded JWS Header and the Encoded JWS Payload and optionally additional
properties of the JWS. The Header Parameter Names within this object MUST be unique.
Implementations MUST understand the entire contents of the header; otherwise, the JWS
MUST be rejected for processing.

The JWS Header MUST contain an alg parameter, the value of which is a string that
unambiguously identifies the algorithm used to sign the JWS Header and the JWS Payload to
produce the JWS Signature.

There are three classes of Header Parameter Names: Reserved Header Parameter Names,
Public Header Parameter Names, and Private Header Parameter Names.

4.1. Reserved Header Parameter Names

The following header parameter names are reserved. All the names are short because a core
goal of JWSs is for the representations to be compact.

Header JSON Header

Section 6.1

Appendix A.1

Header
Parameter
Name

JSON
Value
Type

Header
Parameter
Syntax

Header Parameter Semantics

alg string StringOrURI

The alg (algorithm) header parameter identifies the cryptographic
algorithm used to secure the JWS. A list of defined alg values is
presented in . The processing of the alg header
parameter requires that the value MUST be one that is both
supported and for which there exists a key for use with that
algorithm associated with the signer of the content. The alg
parameter value is case sensitive. This header parameter is
REQUIRED.

typ string String
The typ (type) header parameter is used to declare the type of
the signed content. The typ value is case sensitive. This header
parameter is OPTIONAL.

jku string URL

The jku (JSON Web Key URL) header parameter is an absolute
URL that refers to a resource for a set of JSON-encoded public
keys, one of which corresponds to the key that was used to sign
the JWS. The keys MUST be encoded as described in the JSON Web
Key (JWK) specification. The protocol used to acquire the
resource MUST provide integrity protection. An HTTP GET request
to retrieve the certificate MUST use TLS [RFC2818]

 [RFC5246] with server authentication
[RFC6125]. This header parameter is OPTIONAL.

kid string String

The kid (key ID) header parameter is a hint indicating which
specific key owned by the signer should be used to validate the
signature. This allows signers to explicitly signal a change of key to
recipients. The interpretation of the contents of the kid parameter
is unspecified. This header parameter is OPTIONAL.

x5u string URL

The x5u (X.509 URL) header parameter is an absolute URL that
refers to a resource for the X.509 public key certificate or
certificate chain corresponding to the key used to sign the JWS.
The identified resource MUST provide a representation of the
certificate or certificate chain that conforms to
[RFC5280] in PEM encoded form [RFC1421]. The
protocol used to acquire the resource MUST provide integrity
protection. An HTTP GET request to retrieve the certificate MUST
use TLS [RFC2818] [RFC5246] with server
authentication [RFC6125]. This header parameter is
OPTIONAL.

x5t string String

The x5t (x.509 certificate thumbprint) header parameter provides
a base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
encoding of an X.509 certificate that can be used to match the
certificate. This header parameter is OPTIONAL.

 Table 1: Reserved Header Parameter Definitions

Additional reserved header parameter names MAY be defined via the IANA JSON Web
Signature Header Parameters registry, as per . The syntax values used above are
defined as follows:

Syntax
Name

Syntax Definition

IntDate
The number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the desired
date/time. See [RFC3339] for details regarding date/times in general and
UTC in particular.

String Any string value MAY be used.

StringOrURI Any string value MAY be used but a value containing a ":" character MUST be a URI as
defined in [RFC3986].

URL A URL as defined in [RFC1738].

 Table 2: Header Parameter Syntax Definitions

Table 3

[JWK]

RFC 2818
RFC 5246 RFC 6125

RFC 5280
RFC 1421

RFC 2818 RFC 5246
RFC 6125

Section 7

RFC 3339

RFC 3986

RFC 1738

 TOC

 TOC

 TOC

4.2. Public Header Parameter Names

Additional header parameter names can be defined by those using JWSs. However, in order
to prevent collisions, any new header parameter name or algorithm value SHOULD either be
defined in the IANA JSON Web Signature Header Parameters registry or be defined as a URI
that contains a collision resistant namespace. In each case, the definer of the name or value
needs to take reasonable precautions to make sure they are in control of the part of the
namespace they use to define the header parameter name.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWSs.

4.3. Private Header Parameter Names

A producer and consumer of a JWS may agree to any header parameter name that is not a
Reserved Name or a Public Name . Unlike Public Names, these
private names are subject to collision and should be used with caution.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWSs.

5. Rules for Creating and Validating a JWS

To create a JWS, one MUST perform these steps:

1. Create the content to be used as the JWS Payload.
2. Base64url encode the bytes of the JWS Payload. This encoding becomes the

Encoded JWS Payload.
3. Create a JWS Header containing the desired set of header parameters. Note that

white space is explicitly allowed in the representation and no canonicalization is
performed before encoding.

4. Base64url encode the bytes of the UTF-8 representation of the JWS Header to
create the Encoded JWS Header.

5. Compute the JWS Signature in the manner defined for the particular algorithm
being used. The JWS Signing Input is always the concatenation of the Encoded
JWS Header, a period ('.') character, and the Encoded JWS Payload. The alg
header parameter MUST be present in the JSON Header, with the algorithm
value accurately representing the algorithm used to construct the JWS Signature.

6. Base64url encode the representation of the JWS Signature to create the
Encoded JWS Signature.

When validating a JWS, the following steps MUST be taken. If any of the listed steps fails, then
the signed content MUST be rejected.

1. The Encoded JWS Header MUST be successfully base64url decoded following the
restriction given in this specification that no padding characters have been used.

2. The JWS Header MUST be completely valid JSON syntax conforming to
 [RFC4627].

3. The JWS Header MUST be validated to only include parameters and values whose
syntax and semantics are both understood and supported.

4. The Encoded JWS Payload MUST be successfully base64url decoded following the
restriction given in this specification that no padding characters have been used.

5. The Encoded JWS Signature MUST be successfully base64url decoded following
the restriction given in this specification that no padding characters have been
used.

6. The JWS Signature MUST be successfully validated against the JWS Header and
JWS Payload in the manner defined for the algorithm being used, which MUST be
accurately represented by the value of the alg header parameter, which MUST
be present.

Section 4.1 Section 4.2

RFC
4627

 TOC

 TOC

Processing a JWS inevitably requires comparing known strings to values in the header. For
example, in checking what the algorithm is, the Unicode string encoding alg will be checked
against the member names in the JWS Header to see if there is a matching header
parameter name. A similar process occurs when determining if the value of the alg header
parameter represents a supported algorithm.

Comparisons between JSON strings and other Unicode strings MUST be performed as
specified below:

1. Remove any JSON applied escaping to produce an array of Unicode code points.
2. [USA15] MUST NOT be applied at any point to either

the JSON string or to the string it is to be compared against.
3. Comparisons between the two strings MUST be performed as a Unicode code

point to code point equality comparison.

6. Signing JWSs with Cryptographic Algorithms

JWSs use specific cryptographic algorithms to sign the contents of the JWS Header and the
JWS Payload. The use of the following algorithms for producing JWSs is defined in this section.
The table below is the list of alg header parameter values defined by this specification, each
of which is explained in more detail in the following sections:

Alg Parameter Value Algorithm

HS256 HMAC using SHA-256 hash algorithm

HS384 HMAC using SHA-384 hash algorithm

HS512 HMAC using SHA-512 hash algorithm

RS256 RSA using SHA-256 hash algorithm

RS384 RSA using SHA-384 hash algorithm

RS512 RSA using SHA-512 hash algorithm

ES256 ECDSA using P-256 curve and SHA-256 hash algorithm

ES384 ECDSA using P-384 curve and SHA-384 hash algorithm

ES512 ECDSA using P-521 curve and SHA-512 hash algorithm

 Table 3: JWS Defined "alg" Parameter Values

See for a table cross-referencing the alg values used in this specification with
the equivalent identifiers used by other standards and software packages.

Of these algorithms, only HMAC SHA-256 MUST be implemented by conforming
implementations. It is RECOMMENDED that implementations also support the RSA SHA-256
and ECDSA P-256 SHA-256 algorithms. Support for other algorithms and key sizes is
OPTIONAL.

The signed content for a JWS is the same for all algorithms: the concatenation of the Encoded
JWS Header, a period ('.') character, and the Encoded JWS Payload. This character sequence
is referred to as the JWS Signing Input. Note that if the JWS represents a JWT, this corresponds
to the portion of the JWT representation preceding the second period character. The UTF-8
representation of the JWS Signing Input is passed to the respective signing algorithms.

6.1. Creating a JWS with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512

Hash based Message Authentication Codes (HMACs) enable one to use a secret plus a
cryptographic hash function to generate a Message Authentication Code (MAC). This can be
used to demonstrate that the MAC matches the hashed content, in this case the JWS Signing
Input, which therefore demonstrates that whoever generated the MAC was in possession of
the secret. The means of exchanging the shared key is outside the scope of this
specification.

Unicode Normalization

Appendix B

 TOC

The algorithm for implementing and validating HMACs is provided in [RFC2104].
This section defines the use of the HMAC SHA-256, HMAC SHA-384, and HMAC SHA-512
cryptographic hash functions as defined in [FIPS.180‑3]. The alg header
parameter values HS256, HS384, and HS512 are used in the JWS Header to indicate that the
Encoded JWS Signature contains a base64url encoded HMAC value using the respective hash
function.

The HMAC SHA-256 MAC is generated as follows:

1. Apply the HMAC SHA-256 algorithm to the UTF-8 representation of the JWS
Signing Input using the shared key to produce an HMAC value.

2. Base64url encode the resulting HMAC value.

The output is the Encoded JWS Signature for that JWS.

The HMAC SHA-256 MAC for a JWS is validated as follows:

1. Apply the HMAC SHA-256 algorithm to the UTF-8 representation of the JWS
Signing Input of the JWS using the shared key.

2. Base64url encode the resulting HMAC value.
3. If the JWS Signature and the base64url encoded HMAC value exactly match, then

one has confirmation that the shared key was used to generate the HMAC on
the JWS and that the contents of the JWS have not be tampered with.

4. If the validation fails, the signed content MUST be rejected.

Signing with the HMAC SHA-384 and HMAC SHA-512 algorithms is performed identically to
the procedure for HMAC SHA-256 - just with correspondingly longer key and result values.

6.2. Creating a JWS with RSA SHA-256, RSA SHA-384, or RSA SHA-512

This section defines the use of the RSASSA-PKCS1-v1_5 signature algorithm as defined in
 [RFC3447], Section 8.2 (commonly known as PKCS#1), using SHA-256, SHA-384,

or SHA-512 as the hash function. The RSASSA-PKCS1-v1_5 algorithm is described in
 [FIPS.186‑3], Section 5.5, and the SHA-256, SHA-384, and SHA-512 cryptographic

hash functions are defined in [FIPS.180‑3]. The alg header parameter values
RS256, RS384, and RS512 are used in the JWS Header to indicate that the Encoded JWS
Signature contains a base64url encoded RSA signature using the respective hash function.

The public keys employed can be identified using Header Parameter methods described in
 or can be distributed using methods that are outside the scope of this

specification.

A 2048-bit or longer key length MUST be used with this algorithm.

The RSA SHA-256 signature is generated as follows:

1. Generate a digital signature of the UTF-8 representation of the JWS Signing Input
using RSASSA-PKCS1-V1_5-SIGN and the SHA-256 hash function with the
desired private key. The output will be a byte array.

2. Base64url encode the resulting byte array.

The output is the Encoded JWS Signature for that JWS.

The RSA SHA-256 signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into a byte array. If
decoding fails, the signed content MUST be rejected.

2. Submit the UTF-8 representation of the JWS Signing Input and the public key
corresponding to the private key used by the signer to the RSASSA-PKCS1-V1_5-
VERIFY algorithm using SHA-256 as the hash function.

3. If the validation fails, the signed content MUST be rejected.

Signing with the RSA SHA-384 and RSA SHA-512 algorithms is performed identically to the
procedure for RSA SHA-256 - just with correspondingly longer key and result values.

RFC 2104

FIPS 180-3

RFC 3447
FIPS

186-3
FIPS 180-3

Section 4.1

 TOC

 TOC

6.3. Creating a JWS with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-
521 SHA-512

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined by [FIPS.186‑3].
ECDSA provides for the use of Elliptic Curve cryptography, which is able to provide equivalent
security to RSA cryptography but using shorter key lengths and with greater processing
speed. This means that ECDSA signatures will be substantially smaller in terms of length
than equivalently strong RSA Digital Signatures.

This specification defines the use of ECDSA with the P-256 curve and the SHA-256
cryptographic hash function, ECDSA with the P-384 curve and the SHA-384 hash function,
and ECDSA with the P-521 curve and the SHA-512 hash function. The P-256, P-384, and P-
521 curves are also defined in FIPS 186-3. The alg header parameter values ES256, ES384,
and ES512 are used in the JWS Header to indicate that the Encoded JWS Signature contains a
base64url encoded ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-521 SHA-
512 signature, respectively.

The public keys employed can be identified using Header Parameter methods described in
 or can be distributed using methods that are outside the scope of this

specification.

A JWS is signed with an ECDSA P-256 SHA-256 signature as follows:

1. Generate a digital signature of the UTF-8 representation of the JWS Signing Input
using ECDSA P-256 SHA-256 with the desired private key. The output will be the
EC point (R, S), where R and S are unsigned integers.

2. Turn R and S into byte arrays in big endian order. Each array will be 32 bytes
long.

3. Concatenate the two byte arrays in the order R and then S.
4. Base64url encode the resulting 64 byte array.

The output is the Encoded JWS Signature for the JWS.

The ECDSA P-256 SHA-256 signature for a JWS is validated as follows:

1. Take the Encoded JWS Signature and base64url decode it into a byte array. If
decoding fails, the signed content MUST be rejected.

2. The output of the base64url decoding MUST be a 64 byte array.
3. Split the 64 byte array into two 32 byte arrays. The first array will be R and the

second S. Remember that the byte arrays are in big endian byte order; please
check the ECDSA validator in use to see what byte order it requires.

4. Submit the UTF-8 representation of the JWS Signing Input, R, S and the public
key (x, y) to the ECDSA P-256 SHA-256 validator.

5. If the validation fails, the signed content MUST be rejected.

The ECDSA validator will then determine if the digital signature is valid, given the inputs. Note
that ECDSA digital signature contains a value referred to as K, which is a random number
generated for each digital signature instance. This means that two ECDSA digital signatures
using exactly the same input parameters will output different signatures because their K
values will be different. The consequence of this is that one must validate an ECDSA
signature by submitting the previously specified inputs to an ECDSA validator.

Signing with the ECDSA P-384 SHA-384 and ECDSA P-521 SHA-512 algorithms is performed
identically to the procedure for ECDSA P-256 SHA-256 - just with correspondingly longer key
and result values.

6.4. Additional Algorithms

Additional algorithms MAY be used to protect JWSs with corresponding alg header parameter
values being defined to refer to them. New alg header parameter values SHOULD either be
defined in the IANA JSON Web Signature Algorithms registry or be a URI that contains a
collision resistant namespace. In particular, it is permissible to use the algorithm identifiers
defined in [RFC3275] and related specifications as alg values.

FIPS 186-3

Section 4.1

XML DSIG

 TOC

 TOC

 TOC

 TOC

7. IANA Considerations

This specification calls for:

A new IANA registry entitled "JSON Web Signature Header Parameters" for
reserved header parameter names is defined in . Inclusion in the
registry is RFC Required in the [RFC5226] sense for reserved JWS
header parameter names that are intended to be interoperable between
implementations. The registry will just record the reserved header parameter
name and a pointer to the RFC that defines it. This specification defines inclusion
of the header parameter names defined in .
A new IANA registry entitled "JSON Web Signature Algorithms" for values of the
alg header parameter is defined in . Inclusion in the registry is RFC
Required in the [RFC5226] sense. The registry will just record the alg
value and a pointer to the RFC that defines it. This specification defines inclusion
of the algorithm values defined in .

8. Security Considerations

TBD: Lots of work to do here. We need to remember to look into any issues relating to
security and JSON parsing. One wonders just how secure most JSON parsing libraries are.
Were they ever hardened for security scenarios? If not, what kind of holes does that open up?
Also, we need to walk through the JSON standard and see what kind of issues we have
especially around comparison of names. For instance, comparisons of header parameter
names and other parameters must occur after they are unescaped. Need to also put in text
about: Importance of keeping secrets secret. Rotating keys. Strengths and weaknesses of
the different algorithms.

TBD: Need to put in text about why strict JSON validation is necessary. Basically, that if
malformed JSON is received then the intent of the sender is impossible to reliably discern.
One example of malformed JSON that MUST be rejected is an object in which the same
member name occurs multiple times.

TBD: Write security considerations about the implications of using a SHA-1 hash (for
compatibility reasons) for the x5t (x.509 certificate thumbprint).

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

8.1. Unicode Comparison Security Issues

Header parameter names in JWSs are Unicode strings. For security reasons, the
representations of these names must be compared verbatim after performing any escape
processing (as per [RFC4627], Section 2.5).

This means, for instance, that these JSON strings must compare as being equal ("sig",
"\u0073ig"), whereas these must all compare as being not equal to the first set or to each
other ("SIG", "Sig", "si\u0047").

JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as
"\uD834\uDD1E". Ideally, JWS implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

9. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Section 4.1
RFC 5226

Table 1

Section 6.4
RFC 5226

Table 3

RFC 4627

 TOC

 TOC

Consider whether there is a better term than "Digital Signature" for the concept
that includes both HMACs and digital signatures using public keys.
Clarify the optional ability to provide type information in the JWS header.
Specifically, clarify the intended use of the typ Header Parameter, whether it
conveys syntax or semantics, and indeed, whether this is the right approach.
Also clarify the relationship between these type values and [RFC2045]
types.
Clarify the semantics of the kid (key ID) header parameter. Open issues include:
What happens if a kid header is received with an unrecognized value? Is that an
error? Should it be treated as if it's empty? What happens if the header has a
recognized value but the value doesn't match the key associated with that value,
but it does match another key that is associated with the issuer? Is that an
error?
Consider whether a key type parameter should also be introduced.
Since RFC 3447 Section 8 explicitly calls for people NOT to adopt RSASSA-PKCS1
for new applications and instead requests that people transition to RSASSA-PSS,
we probably need some Security Considerations text explaining why RSASSA-
PKCS1 is being used (it's what's commonly implemented) and what the potential
consequences are.
Add Security Considerations text on timing attacks.
It would be good to have a confirmation method element so it could be used with
holder-of-key.
Consider whether to add parameters for directly including keys in the header,
either as JWK Key Objects, or X.509 cert values, or both.
Consider whether to add version numbers.
Think about how to best describe the concept currently described as "the bytes
of the UTF-8 representation of". Possible terms to use instead of "bytes of"
include "byte sequence", "octet series", and "octet sequence". Also consider
whether we want to add an overall clarifying statement somewhere in each spec
something like "every place we say 'the UTF-8 representation of X', we mean 'the
bytes of the UTF-8 representation of X'". That would potentially allow us to omit
the "the bytes of" part everywhere else.
Finish the Security Considerations section.
Add an example in which the payload is not a base64url encoded JSON object.
Consider having an algorithm that is a MAC using SHA-256 that provides content
integrity but for which there is no associated secret. This would be like the JWT
"alg":"none", in that no validation of the authenticity content is performed but a
checksum is provided.
Consider whether to define "alg":"none" here, rather than in the JWT spec.

10. References

10.1. Normative References

[FIPS.180-
3]

National Institute of Standards and Technology, “Secure Hash Standard (SHS),” FIPS PUB 180-3, October 2008.

[FIPS.186-
3]

National Institute of Standards and Technology, “Digital Signature Standard (DSS),” FIPS PUB 186-3, June 2009.

[JWK] Jones, M., “JSON Web Key (JWK),” December 2011.

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, “Uniform Resource Locators (URL),” RFC 1738,
December 1994 (TXT).

[RFC2045] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies,” RFC 2045, November 1996 (TXT).

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for Message Authentication,”
RFC 2104, February 1997 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3339] Klyne, G., Ed. and C. Newman, “Date and Time on the Internet: Timestamps,” RFC 3339, July 2002 (TXT,
HTML, XML).

MIME

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-jones-json-web-key
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:timbl@info.cern.ch
mailto:masinter@parc.xerox.com
mailto:mpm@boombox.micro.umn.edu
http://tools.ietf.org/html/rfc1738
http://www.rfc-editor.org/rfc/rfc1738.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://www.rfc-editor.org/rfc/rfc3339.txt
http://xml.resource.org/public/rfc/html/rfc3339.html
http://xml.resource.org/public/rfc/xml/rfc3339.xml

 TOC

 TOC

 TOC

 TOC

[RFC3447] Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” RFC 3447, February 2003 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26,
RFC 5226, May 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and Verification of Domain-Based Application Service
Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security (TLS),” RFC 6125, March 2011 (TXT).

[USA15] Davis, M., Whistler, K., and M. Dürst, “Unicode Normalization Forms,” Unicode Standard Annex 15, 09 2009.

10.2. Informative References

[CanvasApp] Facebook, “Canvas Applications,” 2010.

[JCA] Oracle, “Java Cryptography Architecture,” 2011.

[JSS] Bradley, J. and N. Sakimura (editor), “JSON Simple Sign,” September 2010.

[JWE] Jones, M., Rescorla, E., and J. Hildebrand, “JSON Web Encryption (JWE),” December 2011.

[JWT] Jones, M., Balfanz, D., Bradley, J., Goland, Y., Panzer, J., Sakimura, N., and P. Tarjan, “JSON Web
Token (JWT),” December 2011.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” August 2010.

[RFC3275] Eastlake, D., Reagle, J., and D. Solo, “(Extensible Markup Language) XML-Signature Syntax and
Processing,” RFC 3275, March 2002 (TXT).

Appendix A. JWS Examples

This section provides several examples of JWSs. While these examples all represent JSON
Web Tokens (JWTs) , the payload can be any base64url encoded content.

A.1. JWS using HMAC SHA-256

A.1.1. Encoding

The following example JWS Header declares that the data structure is a JSON Web Token (JWT)
 and the JWS Signing Input is signed using the HMAC SHA-256 algorithm. Note that

white space is explicitly allowed in JWS Header strings and no canonicalization is performed
before encoding.

{"typ":"JWT",
 "alg":"HS256"}

The following byte array contains the UTF-8 characters for the JWS Header:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32, 34, 97, 108, 103, 34, 58,
34, 72, 83, 50, 53, 54, 34, 125]

Base64url encoding this UTF-8 representation yields this Encoded JWS Header value:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

[JWT]

[JWT]

http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc6125
http://www.rfc-editor.org/rfc/rfc6125.txt
mailto:markdavis@google.com
mailto:ken@unicode.org
http://developers.facebook.com/docs/authentication/canvas
http://download.java.net/jdk7/docs/technotes/guides/security/SunProviders.html
http://jsonenc.info/jss/1.0/
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-jones-json-web-encryption
mailto:mbj@microsoft.com
mailto:balfanz@google.com
mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:pt@fb.com
http://tools.ietf.org/html/draft-jones-json-web-token
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-experimental-00.html
http://tools.ietf.org/html/rfc3275
http://www.rfc-editor.org/rfc/rfc3275.txt

 TOC

The JWS Payload used in this example follows. (Note that the payload can be any base64url
encoded content, and need not be a base64url encoded JSON object.)

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

The following byte array contains the UTF-8 characters for the JWS Payload:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10, 32, 34, 101, 120, 112, 34,
58, 49, 51, 48, 48, 56, 49, 57, 51, 56, 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47,
101, 120, 97, 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111, 111, 116, 34,
58, 116, 114, 117, 101, 125]

Base64url encoding the above yields the Encoded JWS Payload value (with line breaks for
display purposes only):

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload
yields this JWS Signing Input value (with line breaks for display purposes only):

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The UTF-8 representation of the JWS Signing Input is the following byte array:

[101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81, 105, 76, 65, 48, 75, 73, 67,
74, 104, 98, 71, 99, 105, 79, 105, 74, 73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74,
112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101,
72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68, 81, 111,
103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108,
76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110,
86, 108, 102, 81]

HMACs are generated using keys. This example uses the key represented by the following
byte array:

[3, 35, 53, 75, 43, 15, 165, 188, 131, 126, 6, 101, 119, 123, 166, 143, 90, 179, 40, 230, 240,
84, 201, 40, 169, 15, 132, 178, 210, 80, 46, 191, 211, 251, 90, 146, 210, 6, 71, 239, 150, 138,
180, 195, 119, 98, 61, 34, 61, 46, 33, 114, 5, 46, 79, 8, 192, 205, 154, 245, 103, 208, 128,
163]

Running the HMAC SHA-256 algorithm on the UTF-8 representation of the JWS Signing Input
with this key yields the following byte array:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173, 187, 186, 22, 212, 37, 77,
105, 214, 191, 240, 91, 88, 5, 88, 83, 132, 141, 121]

Base64url encoding the above HMAC output yields the Encoded JWS Signature value:

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

A.1.2. Decoding

 TOC

 TOC

 TOC

Decoding the JWS first requires removing the base64url encoding from the Encoded JWS
Header, the Encoded JWS Payload, and the Encoded JWS Signature. We base64url decode the
inputs and turn them into the corresponding byte arrays. We translate the header input byte
array containing UTF-8 encoded characters into the JWS Header string.

A.1.3. Validating

Next we validate the decoded results. Since the alg parameter in the header is "HS256", we
validate the HMAC SHA-256 signature contained in the JWS Signature. If any of the validation
steps fail, the signed content MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

To validate the signature, we repeat the previous process of using the correct key and the
UTF-8 representation of the JWS Signing Input as input to a SHA-256 HMAC function and then
taking the output and determining if it matches the JWS Signature. If it matches exactly, the
signature has been validated.

A.2. JWS using RSA SHA-256

A.2.1. Encoding

The JWS Header in this example is different from the previous example in two ways: First,
because a different algorithm is being used, the alg value is different. Second, for illustration
purposes only, the optional "typ" parameter is not used. (This difference is not related to the
signature algorithm employed.) The JWS Header used is:

{"alg":"RS256"}

The following byte array contains the UTF-8 characters for the JWS Header:

[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Base64url encoding this UTF-8 representation yields this Encoded JWS Header value:

eyJhbGciOiJSUzI1NiJ9

The JWS Payload used in this example, which follows, is the same as in the previous example.
Since the Encoded JWS Payload will therefore be the same, its computation is not repeated
here.

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload
yields this JWS Signing Input value (with line breaks for display purposes only):

eyJhbGciOiJSUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The UTF-8 representation of the JWS Signing Input is the following byte array:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101,
121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74,
108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68,
81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71,
120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

The RSA key consists of a public part (n, e), and a private exponent d. The values of the RSA
key used in this example, presented as the byte arrays representing big endian integers are:

Parameter
Name

Value

n

[161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, 45, 101, 98, 99, 54, 43, 146, 125,
190, 41, 225, 240, 36, 119, 252, 22, 37, 204, 144, 161, 54, 227, 139, 217, 52, 151, 197,
182, 234, 99, 221, 119, 17, 230, 124, 116, 41, 249, 86, 176, 251, 138, 143, 8, 154, 220,
75, 105, 137, 60, 193, 51, 63, 83, 237, 208, 25, 184, 119, 132, 37, 47, 236, 145, 79,
228, 133, 119, 105, 89, 75, 234, 66, 128, 211, 44, 15, 85, 191, 98, 148, 79, 19, 3, 150,
188, 110, 155, 223, 110, 189, 210, 189, 163, 103, 142, 236, 160, 198, 104, 247, 1, 179,
141, 191, 251, 56, 200, 52, 44, 226, 254, 109, 39, 250, 222, 74, 90, 72, 116, 151, 157,
212, 185, 207, 154, 222, 196, 199, 91, 5, 133, 44, 44, 15, 94, 248, 165, 193, 117, 3,
146, 249, 68, 232, 237, 100, 193, 16, 198, 182, 71, 96, 154, 164, 120, 58, 235, 156,
108, 154, 215, 85, 49, 48, 80, 99, 139, 131, 102, 92, 111, 111, 122, 130, 163, 150, 112,
42, 31, 100, 27, 130, 211, 235, 242, 57, 34, 25, 73, 31, 182, 134, 135, 44, 87, 22, 245,
10, 248, 53, 141, 154, 139, 157, 23, 195, 64, 114, 143, 127, 135, 216, 154, 24, 216,
252, 171, 103, 173, 132, 89, 12, 46, 207, 117, 147, 57, 54, 60, 7, 3, 77, 111, 96, 111,
158, 33, 224, 84, 86, 202, 229, 233, 161]

e [1, 0, 1]

d

[18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82, 108, 69, 0, 87, 31, 29, 97, 117, 29,
100, 233, 73, 112, 123, 98, 89, 15, 157, 11, 165, 124, 150, 60, 64, 30, 63, 207, 47, 44,
211, 189, 236, 136, 229, 3, 191, 198, 67, 155, 11, 40, 200, 47, 125, 55, 151, 103, 31,
82, 19, 238, 216, 193, 90, 37, 216, 213, 206, 160, 2, 94, 227, 171, 46, 139, 127, 121,
33, 111, 198, 59, 234, 86, 39, 83, 180, 6, 68, 198, 161, 81, 39, 217, 178, 149, 69, 64,
160, 187, 225, 163, 5, 86, 152, 45, 78, 159, 222, 95, 100, 37, 241, 77, 75, 113, 52, 65,
181, 93, 199, 59, 155, 74, 237, 204, 146, 172, 227, 146, 126, 55, 245, 125, 12, 253, 94,
117, 129, 250, 81, 44, 143, 73, 97, 169, 235, 11, 128, 248, 168, 7, 70, 114, 138, 85,
255, 70, 71, 31, 52, 37, 6, 59, 157, 83, 100, 47, 94, 222, 30, 132, 214, 19, 8, 26, 250,
92, 34, 208, 81, 40, 91, 214, 59, 148, 59, 86, 93, 137, 138, 5, 104, 84, 19, 229, 60, 60,
108, 101, 37, 255, 31, 227, 78, 61, 220, 112, 240, 213, 100, 80, 253, 164, 139, 161, 46,
16, 78, 157, 235, 159, 184, 24, 129, 225, 196, 189, 242, 93, 146, 71, 244, 80, 200, 101,
146, 121, 104, 231, 115, 52, 244, 65, 79, 117, 167, 80, 225, 57, 84, 110, 58, 138, 115,
157]

The RSA private key (n, d) is then passed to the RSA signing function, which also takes the
hash type, SHA-256, and the UTF-8 representation of the JWS Signing Input as inputs. The
result of the signature is a byte array S, which represents a big endian integer. In this
example, S is:

Result
Name

Value

S

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69, 243, 65, 6, 174, 27,
129, 255, 247, 115, 17, 22, 173, 209, 113, 125, 131, 101, 109, 66, 10, 253, 60, 150, 238,
221, 115, 162, 102, 62, 81, 102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69,
229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219, 61, 184, 151, 91, 23,
208, 148, 2, 190, 237, 213, 217, 217, 112, 7, 16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68,
87, 98, 184, 31, 190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 74,
230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1, 48, 121, 91, 212, 189, 59, 65,
238, 202, 208, 102, 171, 101, 25, 129, 253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175,
221, 59, 239, 177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202, 173, 21,
145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157, 105, 132, 41, 239, 90, 30, 136,
121, 130, 54, 195, 212, 14, 96, 69, 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108,
247, 202, 234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90, 193, 167, 72,
160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238, 251, 71]

 TOC

 TOC

 TOC

 TOC

Base64url encoding the signature produces this value for the Encoded JWS Signature (with
line breaks for display purposes only):

cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7
AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K
0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv
hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
p0igcN_IoypGlUPQGe77Rw

A.2.2. Decoding

Decoding the JWS from this example requires processing the Encoded JWS Header and
Encoded JWS Payload exactly as done in the first example.

A.2.3. Validating

Since the alg parameter in the header is "RS256", we validate the RSA SHA-256 signature
contained in the JWS Signature. If any of the validation steps fail, the signed content MUST be
rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is a little different from the previous example. First, we
base64url decode the Encoded JWS Signature to produce a signature S to check. We then
pass (n, e), S and the UTF-8 representation of the JWS Signing Input to an RSA signature
verifier that has been configured to use the SHA-256 hash function.

A.3. JWS using ECDSA P-256 SHA-256

A.3.1. Encoding

The JWS Header for this example differs from the previous example because a different
algorithm is being used. The JWS Header used is:

{"alg":"ES256"}

The following byte array contains the UTF-8 characters for the JWS Header:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

Base64url encoding this UTF-8 representation yields this Encoded JWS Header value:

eyJhbGciOiJFUzI1NiJ9

The JWS Payload used in this example, which follows, is the same as in the previous
examples. Since the Encoded JWS Payload will therefore be the same, its computation is not
repeated here.

 TOC

{"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload
yields this JWS Signing Input value (with line breaks for display purposes only):

eyJhbGciOiJFUzI1NiJ9
.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The UTF-8 representation of the JWS Signing Input is the following byte array:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101,
121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74,
108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68,
81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71,
120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

The ECDSA key consists of a public part, the EC point (x, y), and a private part d. The values
of the ECDSA key used in this example, presented as the byte arrays representing big endian
integers are:

Parameter
Name

Value

x [127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203, 238, 111, 219, 75, 123, 88, 7, 51,
53, 123, 233, 239, 19, 186, 207, 110, 60, 123, 209, 84, 69]

y [199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223, 237, 185, 238, 185, 244, 179, 105,
93, 110, 169, 11, 36, 173, 138, 70, 35, 40, 133, 136, 229, 173]

d [142, 155, 16, 158, 113, 144, 152, 191, 152, 4, 135, 223, 31, 93, 119, 233, 203, 41, 96,
110, 190, 210, 38, 59, 95, 87, 194, 19, 223, 132, 244, 178]

The ECDSA private part d is then passed to an ECDSA signing function, which also takes the
curve type, P-256, the hash type, SHA-256, and the UTF-8 representation of the JWS Signing
Input as inputs. The result of the signature is the EC point (R, S), where R and S are unsigned
integers. In this example, the R and S values, given as byte arrays representing big endian
integers are:

Result
Name

Value

R [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, 7, 212, 2, 163, 178, 40, 3, 58, 249,
124, 126, 23, 129, 154, 195, 22, 158, 166, 101]

S [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, 8, 74, 84, 128, 166, 101, 144, 197,
242, 147, 80, 154, 143, 63, 127, 138, 131, 163, 84, 213]

Concatenating the S array to the end of the R array and base64url encoding the result
produces this value for the Encoded JWS Signature (with line breaks for display purposes
only):

DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA
pmWQxfKTUJqPP3-Kg6NU1Q

A.3.2. Decoding

Decoding the JWS from this example requires processing the Encoded JWS Header and

 TOC

 TOC

Encoded JWS Payload exactly as done in the first example.

A.3.3. Validating

Since the alg parameter in the header is "ES256", we validate the ECDSA P-256 SHA-256
signature contained in the JWS Signature. If any of the validation steps fail, the signed
content MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is a little different from the first example. First, we base64url
decode the Encoded JWS Signature as in the previous examples but we then need to split the
64 member byte array that must result into two 32 byte arrays, the first R and the second S.
We then pass (x, y), (R, S) and the UTF-8 representation of the JWS Signing Input to an
ECDSA signature verifier that has been configured to use the P-256 curve with the SHA-256
hash function.

As explained in , the use of the k value in ECDSA means that we cannot validate
the correctness of the signature in the same way we validated the correctness of the HMAC.
Instead, implementations MUST use an ECDSA validator to validate the signature.

Appendix B. Algorithm Identifier Cross-Reference

This appendix contains a table cross-referencing the alg values used in this specification with
the equivalent identifiers used by other standards and software packages. See
[RFC3275] and [JCA] for more information about the
names defined by those documents.

Algorithm JWS XML DSIG JCA OID

HMAC using
SHA-256
hash
algorithm

HS256 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha256

HmacSHA256 1.2.840.113549.2.9

HMAC using
SHA-384
hash
algorithm

HS384 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha384

HmacSHA384 1.2.840.113549.2.10

HMAC using
SHA-512
hash
algorithm

HS512 http://www.w3.org/2001/04/xmldsig-
more#hmac-sha512

HmacSHA512 1.2.840.113549.2.11

RSA using
SHA-256
hash
algorithm

RS256 http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256

SHA256withRSA 1.2.840.113549.1.1.11

RSA using
SHA-384
hash
algorithm

RS384 http://www.w3.org/2001/04/xmldsig-
more#rsa-sha384

SHA384withRSA 1.2.840.113549.1.1.12

RSA using
SHA-512
hash
algorithm

RS512 http://www.w3.org/2001/04/xmldsig-
more#rsa-sha512

SHA512withRSA 1.2.840.113549.1.1.13

ECDSA using
P-256 curve
and SHA-256
hash
algorithm

ES256
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha256 SHA256withECDSA 1.2.840.10045.4.3.2

Section 6.3

XML DSIG
Java Cryptography Architecture

 TOC

ECDSA using
P-384 curve
and SHA-384
hash
algorithm

ES384
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha384 SHA384withECDSA 1.2.840.10045.4.3.3

ECDSA using
P-521 curve
and SHA-512
hash
algorithm

ES512
http://www.w3.org/2001/04/xmldsig-
more#ecdsa-sha512 SHA512withECDSA 1.2.840.10045.4.3.4

 Table 4: Algorithm Identifier Cross-Reference

Appendix C. Notes on implementing base64url encoding without padding

This appendix describes how to implement base64url encoding and decoding functions
without padding based upon standard base64 encoding and decoding functions that do use
padding.

To be concrete, example C# code implementing these functions is shown below. Similar code
could be used in other languages.

static string base64urlencode(byte [] arg)
{
 string s = Convert.ToBase64String(arg); // Standard base64 encoder
 s = s.Split('=')[0]; // Remove any trailing '='s
 s = s.Replace('+', '-'); // 62nd char of encoding
 s = s.Replace('/', '_'); // 63rd char of encoding
 return s;
}

static byte [] base64urldecode(string arg)
{
 string s = arg;
 s = s.Replace('-', '+'); // 62nd char of encoding
 s = s.Replace('_', '/'); // 63rd char of encoding
 switch (s.Length % 4) // Pad with trailing '='s
 {
 case 0: break; // No pad chars in this case
 case 2: s += "=="; break; // Two pad chars
 case 3: s += "="; break; // One pad char
 default: throw new System.Exception(
 "Illegal base64url string!");
 }
 return Convert.FromBase64String(s); // Standard base64 decoder
}

As per the example code above, the number of '=' padding characters that needs to be
added to the end of a base64url encoded string without padding to turn it into one with
padding is a deterministic function of the length of the encoded string. Specifically, if the
length mod 4 is 0, no padding is added; if the length mod 4 is 2, two '=' padding characters
are added; if the length mod 4 is 3, one '=' padding character is added; if the length mod 4 is
1, the input is malformed.

An example correspondence between unencoded and encoded values follows. The byte
sequence below encodes into the string below, which when decoded, reproduces the byte
sequence.

3 236 255 224 193

 TOC

 TOC

 TOC

A-z_4ME

Appendix D. Acknowledgements

Solutions for signing JSON content were previously explored by
[MagicSignatures], [JSS], and [CanvasApp], all of
which influenced this draft.

Appendix E. Document History

-04

Removed "if present" clause from alg description.
Moved "MUST" requirements from the Overview to later in the spec.
Respect line length restrictions in examples.
Corrected OID numbers for ECDSA algorithms.
Applied other editorial improvements.

-03

Simplified terminology to better match JWE, where the terms "JWS Header" and
"Encoded JWS Header", are now used, for instance, rather than the previous
terms "Decoded JWS Header Input" and "JWS Header Input". Likewise the terms
"JWS Payload" and "JWS Signature" are now used, rather than "JWS Payload Input"
and "JWS Crypto Output".
The jku and x5u URLs are now required to be absolute URLs.
Removed this unnecessary language from the kid description: "Omitting this
parameter is equivalent to setting it to an empty string".
Changed StringAndURI to StringOrURI.

-02

Reference the JSON Web Key (JWK) specification from the jku header parameter.

-01

Changed RSA SHA-256 from MUST be supported to RECOMMENDED that it be
supported. Rationale: Several people have objected to the requirement for
implementing RSA SHA-256, some because they will only be using HMACs and
symmetric keys, and others because they only want to use ECDSA when using
asymmetric keys, either for security or key length reasons, or both.
Clarified that x5u is an HTTPS URL referencing a PEM-encoded certificate or
certificate chain.
Clarified that the alg parameter value is case sensitive.
Changed x5t (x.509 certificate thumbprint) to use a SHA-1 hash, rather than a
SHA-256 hash, for compatibility reasons.

-00

Created first signature draft using content split from draft-jones-json-web-token-
01. This split introduced no semantic changes.

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 Dirk Balfanz
 Google

Magic Signatures
JSON Simple Sign Canvas Applications

mailto:mbj@microsoft.com
http://self-issued.info/

Email: balfanz@google.com

 John Bradley
 independent

Email: ve7jtb@ve7jtb.com

 Yaron Y. Goland
 Microsoft

Email: yarong@microsoft.com

 John Panzer
 Google

Email: jpanzer@google.com

 Nat Sakimura
 Nomura Research Institute

Email: n-sakimura@nri.co.jp

 Paul Tarjan
 Facebook

Email: pt@fb.com

mailto:balfanz@google.com
mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:pt@fb.com

	JSON Web Signature (JWS) draft-jones-json-web-signature-04
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. JSON Web Signature (JWS) Overview
	3.1. Example JWS
	4. JWS Header
	4.1. Reserved Header Parameter Names
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Rules for Creating and Validating a JWS
	6. Signing JWSs with Cryptographic Algorithms
	6.1. Creating a JWS with HMAC SHA-256, HMAC SHA-384, or HMAC SHA-512
	6.2. Creating a JWS with RSA SHA-256, RSA SHA-384, or RSA SHA-512
	6.3. Creating a JWS with ECDSA P-256 SHA-256, ECDSA P-384 SHA-384, or ECDSA P-521 SHA-512
	6.4. Additional Algorithms
	7. IANA Considerations
	8. Security Considerations
	8.1. Unicode Comparison Security Issues
	9. Open Issues and Things To Be Done (TBD)
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. JWS Examples
	A.1. JWS using HMAC SHA-256
	A.1.1. Encoding
	A.1.2. Decoding
	A.1.3. Validating
	A.2. JWS using RSA SHA-256
	A.2.1. Encoding
	A.2.2. Decoding
	A.2.3. Validating
	A.3. JWS using ECDSA P-256 SHA-256
	A.3.1. Encoding
	A.3.2. Decoding
	A.3.3. Validating
	Appendix B. Algorithm Identifier Cross-Reference
	Appendix C. Notes on implementing base64url encoding without padding
	Appendix D. Acknowledgements
	Appendix E. Document History
	Authors' Addresses

