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Abstract

JSON Web Encryption (JWE) is a means of representing encrypted content using JSON data
structures. Related signature capabilities are described in the separate JSON Web Signature
(JWS) specification.
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The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in  [RFC2119].
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1.  Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It provides a
wrapper for encrypted content using JSON  [RFC4627] data structures. The JWE
encryption mechanisms are independent of the type of content being encrypted. A related
signature capability is described in a separate JSON Web Signature (JWS)  specification.

2.  Terminology

JSON Web Encryption (JWE)
A data structure representing an encrypted version of a Plaintext. The structure
consists of three parts: the JWE Header, the JWE Encrypted Key, and the JWE
Ciphertext.

Plaintext
The bytes to be encrypted - a.k.a., the message.

Ciphertext
The encrypted version of the Plaintext.

Content Encryption Key (CEK)
A symmetric key generated to encrypt the Plaintext for the recipient to produce
the Ciphertext, which is encrypted to the recipient as the JWE Encrypted Key.

JWE Header
A string containing a JSON object that describes the encryption operations applied
to create the JWE Encrypted Key and the JWE Ciphertext.

JWE Encrypted Key
The Content Encryption Key (CEK) is encrypted with the intended recipient's key
and the resulting encrypted content is recorded as a byte array, which is referred
to as the JWE Encrypted Key.

JWE Ciphertext
A byte array containing the Ciphertext.

Encoded JWE Header
Base64url encoding of the bytes of the UTF-8  [RFC3629]
representation of the JWE Header.

Encoded JWE Encrypted Key

RFC 4627

[JWS]

RFC 3629
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Base64url encoding of the JWE Encrypted Key.
Encoded JWE Ciphertext

Base64url encoding of the JWE Ciphertext.
Header Parameter Names

The names of the members within the JWE Header.
Header Parameter Values

The values of the members within the JWE Header.
Base64url Encoding

For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in  [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix C of  for notes on implementing base64url encoding without
padding.)

3.  JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. The
representation consists of three parts: the JWE Header, the JWE Encrypted Key, and the JWE
Ciphertext. The three parts are base64url-encoded for transmission, and typically
represented as the concatenation of the encoded strings in that order, with the three strings
being separated by period ('.') characters, as is done when used in JSON Web Tokens (JWTs)

.

JWE utilizes encryption to ensure the confidentiality of the contents of the Plaintext. JWE does
not add a content integrity check if not provided by the underlying encryption algorithm. If
such a check is needed, an algorithm providing it such as AES-GCM  can be
used, or alternatively, it can be provided through composition by encrypting a representation
of the signed content.

3.1.  Example JWE

The following example JWE Header declares that:

the Content Encryption Key is encrypted to the recipient using the RSA-
PKCS1_1.5 algorithm to produce the JWE Encrypted Key,
the Plaintext is encrypted using the AES-256-GCM algorithm to produce the JWE
Ciphertext,
the specified 64-bit Initialization Vector with the base64url encoding __79_Pv6-
fg was used, and
the thumbprint of the X.509 certificate that corresponds to the key used to
encrypt the JWE has the base64url encoding 7noOPq-hJ1_hCnvWh6IeYI2w9Q0.

{"alg":"RSA1_5",
 "enc":"A256GCM",
 "iv":"__79_Pv6-fg",
 "x5t":"7noOPq-hJ1_hCnvWh6IeYI2w9Q0"}

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

TBD

TBD: Finish this example by showing generation of a Content Encryption Key (CEK), using the
CEK to encrypt the Plaintext to produce the Ciphertext (and base64url encoding it), and using
the recipient's key to encrypt the CEK to produce the JWE Encrypted Key (and base64url
encoding it).

RFC 4648

[JWS]

[JWT]

[NIST‑800‑38D]
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4.  JWE Header

The members of the JWE Header describe the encryption applied to the Plaintext.
Implementations MUST understand the entire contents of the header; otherwise, the JWE
MUST be rejected for processing.

The member names within the JWE Header are referred to as Header Parameter Names.
These names MUST be unique. The corresponding values are referred to as Header
Parameter Values.

4.1.  Reserved Header Parameter Names

The following header parameter names are reserved. All the names are short because a core
goal of JWE is for the representations to be compact.

TBD: Describe the relationship between the JWS and JWE header parameters - especially the
alg parameter, which can contain either signature algorithms (from JWS) or encryption
algorithms (from JWE), and the key reference parameters jku, kid, x5u, and x5t.

Header
Parameter
Name

JSON
Value
Type

Header
Parameter
Syntax

Header Parameter Semantics

alg string StringOrURI

The alg (algorithm) header parameter identifies the cryptographic
algorithm used to secure the JWE Encrypted Key. A list of reserved
alg values is presented in . The processing of the alg
(algorithm) header parameter requires that the value of the alg
header parameter MUST be one that is both supported and for
which there exists a key for use with that algorithm associated with
the intended recipient. The alg value is case sensitive. This
header parameter is REQUIRED.

enc string StringOrURI

The enc (encryption method) header parameter identifies the
symmetric encryption algorithm used to secure the Ciphertext. A
list of reserved enc values is presented in . The
processing of the enc (encryption method) header parameter
requires that the value of the enc header parameter MUST be one
that is supported. The enc value is case sensitive. This header
parameter is REQUIRED.

iv string String
Initialization Vector (iv) value for algorithms requiring it,
represented as a base64url encoded string. This header
parameter is OPTIONAL.

epk object
JWK Key
Object

Ephemeral Public Key (epk) value created by the originator for the
use in ECDH-ES  [RFC6090] encryption. This key is
represented in the same manner as a JSON Web Key  JWK
Key Object value, containing curve, x, and y members. The
inclusion of the JWK Key Object algorithm member is OPTIONAL.
This header parameter is OPTIONAL.

zip string String

Compression algorithm (zip) applied to the Plaintext before
encryption, if any. This specification defines the value GZIP to refer
to the encoding format produced by the file compression program
"gzip" (GNU zip) as described in ; this format is a
Lempel-Ziv coding (LZ77) with a 32 bit CRC. If no zip parameter is
present, or its value is none, no compression is applied to the
Plaintext before encryption. The zip value is case sensitive. This
header parameter is OPTIONAL.

jku string URL

The jku (JSON Web Key URL) header parameter is an absolute
URL that refers to a resource for a set of JSON-encoded public
keys, one of which corresponds to the key that was used to
encrypt the JWE. The keys MUST be encoded as described in the
JSON Web Key (JWK)  specification. The protocol used to

Table 3

Table 4

RFC 6090
[JWK]

[RFC1952]

[JWK]
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acquire the resource MUST provide integrity protection. An HTTP
GET request to retrieve the certificate MUST use TLS 
[RFC2818]  [RFC5246] with server authentication 

 [RFC6125]. This header parameter is OPTIONAL.

kid string String

The kid (key ID) header parameter is a hint indicating which key
was used to encrypt the JWE. This allows originators to explicitly
signal a change of key to recipients. The interpretation of the
contents of the kid parameter is unspecified. This header
parameter is OPTIONAL.

x5u string URL

The x5u (X.509 URL) header parameter is an absolute URL that
refers to a resource for the X.509 public key certificate or
certificate chain corresponding to the key used to encrypt the JWE.
The identified resource MUST provide a representation of the
certificate or certificate chain that conforms to 
[RFC5280] in PEM encoded form  [RFC1421]. The
protocol used to acquire the resource MUST provide integrity
protection. An HTTP GET request to retrieve the certificate MUST
use TLS  [RFC2818]  [RFC5246] with server
authentication  [RFC6125]. This header parameter is
OPTIONAL.

x5t string String

The x5t (x.509 certificate thumbprint) header parameter provides
a base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER
encoding of the X.509 certificate that corresponds to the key that
was used to encrypt the JWE. This header parameter is OPTIONAL.

typ string String
The typ (type) header parameter is used to declare the type of
the encrypted content. The typ value is case sensitive. This
header parameter is OPTIONAL.

 Table 1: Reserved Header Parameter Definitions 

Additional reserved header parameter names MAY be defined via the IANA JSON Web
Encryption Header Parameters registry, as per . The syntax values used above
are defined as follows:

Syntax
Name

Syntax Definition

String Any string value MAY be used.

StringOrURI Any string value MAY be used but a value containing a ":" character MUST be a URI as
defined in  [RFC3986].

URL A URL as defined in  [RFC1738].

 Table 2: Header Parameter Syntax Definitions 

4.2.  Public Header Parameter Names

Additional header parameter names can be defined by those using JWE. However, in order to
prevent collisions, any new header parameter name or algorithm value SHOULD either be
defined in the IANA JSON Web Encryption Header Parameters registry or be defined as a URI
that contains a collision resistant namespace. In each case, the definer of the name or value
MUST take reasonable precautions to make sure they are in control of the part of the
namespace they use to define the header parameter name.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

4.3.  Private Header Parameter Names

RFC 2818
RFC 5246 RFC

6125

RFC 5280
RFC 1421

RFC 2818 RFC 5246
RFC 6125

Section 10

RFC 3986

RFC 1738
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A producer and consumer of a JWE may agree to any header parameter name that is not a
Reserved Name  or a Public Name . Unlike Public Names, these
private names are subject to collision and should be used with caution.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

5.  Message Encryption

The message encryption process is as follows:

1. Generate a random Content Encryption Key (CEK). The CEK MUST have a length
at least equal to that of the required encryption keys and MUST be generated
randomly. See  [RFC4086] for considerations on generating random
values.

2. Encrypt the CEK for the recipient (see ).
3. Generate a random IV (if required for the algorithm).
4. Compress the Plaintext if a zip parameter was included.
5. Serialize the (compressed) Plaintext into a bitstring M.
6. Encrypt M using the CEK and IV to form the bitstring C.
7. Set the Encoded JWE Ciphertext equal to the base64url encoded representation

of C.
8. Create the JWE Header containing the encryption parameters used.
9. Base64url encoded the UTF-8 representation of the JWE Header to create the

Encoded JWE Header.
10. The three encoded parts, taken together, are the result of the encryption.

6.  Message Decryption

The message decryption process is the reverse of the encryption process. If any of these
steps fails, the JWE MUST be rejected.

1. The Encoded JWE Header, the Encoded JWE Encrypted Key, and the Encoded JWE
Ciphertext MUST be successfully base64url decoded following the restriction that
no padding characters have been used.

2. The resulting JWE Header MUST be completely valid JSON syntax conforming to
 [RFC4627].

3. The resulting JWE Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported.

4. Verify that the JWE Header appears to reference a key known to the recipient.
5. Decrypt the JWE Encrypted Key to produce the CEK.
6. Decrypt the binary representation of the JWE Ciphertext using the CEK.
7. Uncompress the result of the previous step, if a zip parameter was included.
8. Output the result.

7.  CEK Encryption

JWE supports two forms of CEK encryption:

Asymmetric encryption under the recipient's public key.
Symmetric encryption under a shared key.

7.1.  Asymmetric Encryption

In the asymmetric encryption mode, the CEK is encrypted under the recipient's public key.
The asymmetric encryption modes defined for use with this in this specification are listed in in

.

Section 4.1 Section 4.2

RFC 4086

Section 7

RFC 4627

Table 3
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7.2.  Symmetric Encryption

In the symmetric encryption mode, the CEK is encrypted under a symmetric key shared
between the sender and receiver. The symmetric encryption modes defined for use with this
in this specification are listed in in . For GCM, the random 64-bit IV is prepended to
the ciphertext.

8.  Composition

This document does not specify a combination signed and encrypted mode. However,
because the contents of a message can be arbitrary, encryption and data origin
authentication can be provided by recursively encapsulating multiple JWE and JWS messages.
In general, senders SHOULD sign the message and then encrypt the result (thus encrypting
the signature). This prevents attacks in which the signature is stripped, leaving just an
encrypted message, as well as providing privacy for the signer.

9.  Encrypting JWEs with Cryptographic Algorithms

JWE uses cryptographic algorithms to encrypt the Content Encryption Key (CEK) and the
Plaintext. This section specifies a set of specific algorithms for these purposes.

The table below  is the set of alg header parameter values that are reserved by this
specification. These algorithms are used to encrypt the CEK, which produces the JWE
Encrypted Key.

alg
Parameter
Value

Encryption Algorithm

RSA1_5 RSA using RSA-PKCS1-1.5 padding, as defined in  [RFC3447]

RSA-OAEP RSA using Optimal Asymmetric Encryption Padding (OAEP), as defined in 
[RFC3447]

ECDH-ES
Elliptic Curve Diffie-Hellman Ephemeral Static, as defined in  [RFC6090], and
using the Concat KDF, as defined in , where the Digest Method is
SHA-256

A128KW Advanced Encryption Standard (AES) Key Wrap Algorithm using 128 bit keys, as
defined in  [RFC3394]

A256KW Advanced Encryption Standard (AES) Key Wrap Algorithm using 256 bit keys, as
defined in  [RFC3394]

A128GCM Advanced Encryption Standard (AES) using 128 bit keys in Galois/Counter Mode, as
defined in  and 

A256GCM Advanced Encryption Standard (AES) using 256 bit keys in Galois/Counter Mode, as
defined in  and 

 Table 3: JWE Reserved alg Parameter Values 

The table below  is the set of enc header parameter values that are reserved by this
specification. These algorithms are used to encrypt the Plaintext, which produces the
Ciphertext.

enc
Parameter
Value

Symmetric Encryption Algorithm

Table 3

Table 3

RFC 3447

RFC 3447

RFC 6090
[NIST‑800‑56A]

RFC 3394

RFC 3394

[FIPS‑197] [NIST‑800‑38D]

[FIPS‑197] [NIST‑800‑38D]

Table 4
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A128CBC Advanced Encryption Standard (AES) using 128 bit keys in Cipher Block Chaining
mode, as defined in  and 

A256CBC Advanced Encryption Standard (AES) using 256 bit keys in Cipher Block Chaining
mode, as defined in  and 

A128GCM Advanced Encryption Standard (AES) using 128 bit keys in Galois/Counter Mode, as
defined in  and 

A256GCM Advanced Encryption Standard (AES) using 256 bit keys in Galois/Counter Mode, as
defined in  and 

 Table 4: JWE Reserved enc Parameter Values 

Of these algorithms, only RSA-PKCS1-1.5 with 2048 bit keys, AES-128-CBC, and AES-256-
CBC MUST be implemented by conforming implementations. It is RECOMMENDED that
implementations also support ECDH-ES with 256 bit keys, AES-128-GCM, and AES-256-GCM.
Support for other algorithms and key sizes is OPTIONAL.

9.1.  Encrypting a JWE with TBD

TBD: Descriptions of the particulars of each specified algorithm go here.

9.2.  Additional Algorithms

Additional algorithms MAY be used to protect JWEs with corresponding alg and enc header
parameter values being defined to refer to them. New alg and enc header parameter values
SHOULD either be defined in the IANA JSON Web Encryption Algorithms registry or be a URI
that contains a collision resistant namespace. In particular, the use of algorithm identifiers
defined in , ,
and related specifications is permitted.

10.  IANA Considerations

This specification calls for:

A new IANA registry entitled "JSON Web Encryption Header Parameters" for
reserved header parameter names is defined in . Inclusion in the
registry is RFC Required in the  [RFC5226] sense for reserved JWE
header parameter names that are intended to be interoperable between
implementations. The registry will just record the reserved header parameter
name and a pointer to the RFC that defines it. This specification defines inclusion
of the header parameter names defined in .
A new IANA registry entitled "JSON Web Encryption Algorithms" for reserved
values used with the alg and enc header parameter values, as defined in

. Inclusion in the registry is RFC Required in the 
[RFC5226] sense. The registry will record the alg or enc value and a pointer to
the RFC that defines it. This specification defines inclusion of the algorithm values
defined in  and .

11.  Security Considerations

TBD: Lots of work to do here. We need to remember to look into any issues relating to
security and JSON parsing. One wonders just how secure most JSON parsing libraries are.
Were they ever hardened for security scenarios? If not, what kind of holes does that open up?
Also, we need to walk through the JSON standard and see what kind of issues we have
especially around comparison of names. For instance, comparisons of header parameter
names and other parameters must occur after they are unescaped. Need to also put in text

[FIPS‑197] [NIST‑800‑38A]

[FIPS‑197] [NIST‑800‑38A]

[FIPS‑197] [NIST‑800‑38D]

[FIPS‑197] [NIST‑800‑38D]

[W3C.REC‑xmlenc‑core‑20021210] [W3C.CR‑xmlenc‑core1‑20110303]

Section 4.1
RFC 5226

Table 1

Section 9.2 RFC 5226

Table 3 Table 4
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about: Importance of keeping secrets secret. Rotating keys. Strengths and weaknesses of
the different algorithms.

TBD: Need to put in text about why strict JSON validation is necessary. Basically, that if
malformed JSON is received then the intent of the sender is impossible to reliably discern.
One example of malformed JSON that MUST be rejected is an object in which the same
member name occurs multiple times.

TBD: We need a section on generating randomness in browsers - it's easy to screw up.

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

11.1.  Unicode Comparison Security Issues

Header parameter names in JWEs are Unicode strings. For security reasons, the
representations of these names must be compared verbatim after performing any escape
processing (as per  [RFC4627], Section 2.5).

This means, for instance, that these JSON strings must compare as being equal ("enc",
"\u0065nc"), whereas these must all compare as being not equal to the first set or to each
other ("ENC", "Enc", "en\u0043").

JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as
"\uD834\uDD1E". Ideally, JWE implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

12.  Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

Describe the relationship between the JWE, JWS, and JWT header parameters. In
particular, point out that the set of "alg" values defined by each must be
compatible and non-overlapping.
Consider whether we want to define composite signing/encryption operations (as
was the consensus to do at IIW, as documented at http://self-issued.info/?
p=378).
Consider whether reusing the JWS jku, kid, x5u, and x5t parameters is the right
thing to do, particularly as it effectively precludes specifying composite
operations.
Consider whether to add parameters for directly including keys in the header,
either as JWK Key Objects, or X.509 cert values, or both.
Consider whether to add version numbers.
Consider which of the open issues from the JWS and JWT specs also apply here.
Think about how to best describe the concept currently described as "the bytes
of the UTF-8 representation of". Possible terms to use instead of "bytes of"
include "byte sequence", "octet series", and "octet sequence". Also consider
whether we want to add an overall clarifying statement somewhere in each spec
something like "every place we say 'the UTF-8 representation of X', we mean 'the
bytes of the UTF-8 representation of X'". That would potentially allow us to omit
the "the bytes of" part everywhere else.
Finish the Security Considerations section.
Write a note in the Security Considerations section about how x5t (x.509
certificate thumbprint) should be deprecated because of known problems with
SHA-1.
Should StringOrURI use IRIs rather than RFC 3986 URIs?
Provide a more robust description of the use of the IV. The current statement
"For GCM, the random 64-bit IV is prepended to the ciphertext" in the Symmetric
Encryption section is almost certainly out of place.
It would be good to say somewhere, in normative language, that eventually the

RFC 4627



 TOC 

 TOC 

 TOC 

algorithms and/or key sizes currently specified will no longer be considered
sufficiently secure and will be removed. Therefore, implementers MUST be
prepared for this eventuality.
Consider whether a media type should be proposed, such as "application/jwe".
Should we define the use of RFC 5649 key wrapping functions, which allow
arbitrary key sizes, in addition to the current use of RFC 3394 key wrapping
functions, which require that keys be multiples of 64 bits? Is this needed in
practice?
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Appendix A.  JWE Examples

This section provides several examples of JWEs.

A.1.  JWE Example using TBD Algorithm

A.1.1.  Encrypting

TBD: Demonstrate encryption steps with this algorithm

A.1.2.  Decrypting

TBD: Demonstrate decryption steps with this algorithm

Appendix B.  Algorithm Identifier Cross-Reference

This appendix contains a table cross-referencing the alg and enc values used in this
specification with the equivalent identifiers used by other standards and software packages.
See  [RFC3275] and  [JCA] for more
information about the names defined by those documents.

Algorithm JWE XML ENC JCA OID

RSA using RSA-
PKCS1-1.5
padding

RSA1_5 http://www.w3.org/2001/04/xmlenc#rsa-1_5 RSA/ECB/PKCS1Padding TBD

RSA using
Optimal
Asymmetric
Encryption
Padding
(OAEP)

RSA-
OAEP

http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p

RSA/ECB/OAEPWithSHA-
1AndMGF1Padding

TBD

Elliptic Curve
Diffie-Hellman
Ephemeral
Static

ECDH-ES http://www.w3.org/2009/xmlenc11#ECDH-
ES

TBD TBD

Advanced
Encryption
Standard (AES)
Key Wrap
Algorithm A128KW

http://www.w3.org/2001/04/xmlenc#kw-
aes128 TBD TBD

XML DSIG Java Cryptography Architecture

RFC

http://download.java.net/jdk7/docs/technotes/guides/security/SunProviders.html
http://jsonenc.info/jss/1.0/
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[RFC3394]
using 128 bit
keys

aes128

Advanced
Encryption
Standard (AES)
Key Wrap
Algorithm 

[RFC3394]
using 256 bit
keys

A256KW
http://www.w3.org/2001/04/xmlenc#kw-
aes256 TBD TBD

Advanced
Encryption
Standard (AES)
using 128 bit
keys in Cipher
Block Chaining
mode

A128CBC
http://www.w3.org/2001/04/xmlenc#aes128-
cbc AES/CBC/PKCS5Padding TBD

Advanced
Encryption
Standard (AES)
using 256 bit
keys in Cipher
Block Chaining
mode

A256CBC
http://www.w3.org/2001/04/xmlenc#aes256-
cbc AES/CBC/PKCS5Padding TBD

Advanced
Encryption
Standard (AES)
using 128 bit
keys in
Galois/Counter
Mode

A128GCM
http://www.w3.org/2009/xmlenc11#aes128-
gcm AES/GCM/NoPadding TBD

Advanced
Encryption
Standard (AES)
using 256 bit
keys in
Galois/Counter
Mode

A256GCM
http://www.w3.org/2009/xmlenc11#aes256-
gcm AES/GCM/NoPadding TBD

 Table 5: Algorithm Identifier Cross-Reference 
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