
CCNx Semantics
draft-irtf-icnrg-ccnxsemantics-01
Abstract

This document describes the core concepts of the CCNx architecture and presents a minimum network
protocol based on two messages: Interest and Content Object. It specifies the set of mandatory and optional
fields within those messages and describes their behavior and interpretation. This architecture and protocol
specification is independent of a specific wire encoding.

The protocol also uses a Control message called an InterestReturn, whereby one system can return an Interest
message to the previous hop due to an error condition. It indicates to the previous hop that the current system
will not respond to the Interest.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups
may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to
cite them other than as “work in progress.”

This Internet-Draft will expire on July 14, 2016.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these
documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

Table of Contents

1.  Introduction
    1.1.  Requirements Language
2.  Named Payload

1



3.  Names
    3.1.  Name Examples
4.  Interests
5.  Content Objects
6.  Link
7.  Hashes
8.  Validation
    8.1.  Validation Algorithm
9.  Interest to Content Object matching
10.  Request/Response Protocol
11.  Interest Return
    11.1.  Message Format
    11.2.  ReturnCode Types
    11.3.  Interest Return Protocol
        11.3.1.  No Route
        11.3.2.  HopLimit Exceeded
        11.3.3.  Interest MTU Too Large
        11.3.4.  No Resources
        11.3.5.  Path Error
        11.3.6.  Prohibited
        11.3.7.  Congestion
        11.3.8.  Unsupported Content Object Hash Algorithm
        11.3.9.  Malformed Interest
12.  Acknowledgements
13.  IANA Considerations
14.  Security Considerations
15.  References
    15.1.  Normative References
    15.2.  Informative References
§  Authors' Addresses

 TOC 

1.  Introduction

This document describes the principles of the CCNx architecture. It describes the network protocol based on
two message types: Interests and Content Objects. The description is not dependent on a specific wire format
or particular encodings.

CCNx uses subjective names to identify bytes of payload. The Name combines a routable prefix with an
arbitrary suffix assigned by the publisher to a piece of content. The result is a "named payload". This is
different from other systems that use only self-certifying names, where the payload name is intrinsically
derivable from the payload or its realization in a network object (e.g. a SHA-256 hash of the payload or
network object).

The key concept of CCNx is that a subjective name is bound to a fixed payload via cryptographic operations.
This implies that the fact that a given publisher bound a certain subjective name to a certain payload can be

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 Table of Contents

2



verified via cryptographic means. For example, a publisher could use a cryptographic hash over the name and
payload, sign the hash, and deliver the tuple {Name, Payload, Validation}. Additional information would be
included as needed by different validation mechanisms are used. A typical named payload is thus {Name,
Payload, ValidationAlgorithm}.

CCNx specifies a network protocol around Interests (request messages) and Content Objects (response
messages) to move named payloads. An Interest includes the Name, the desired payload, and two optional
restrictions to limit responses to a specific publisher or a specific Content Object. The Content Object
response carries a matching Name and the specified payload. Matching a Content Object to an Interest is an
exact match on the Name. The CCNx network protocol of Interests and Content Objects imposes a restriction
on Names: each Name should be hierarchical and is used to route towards an authoritative source. The CCNx
Name looks like a URI absolute path and we use URI terminology to describe CCN Names as made up of
name segments. In practice it has a binary encoding, not a text string.

The hierarchy of a CCNx Name is used for routing via the longest matching prefix in a Forwarder. The
longest matching prefix is computed name segment by name segment in the hierarchical path name, where
each name segment must be exactly equal to match. There is no requirement that the prefix be globally
routable. Within a deployment any local routing may be used, even one that only uses a single flat
(non-hierarchical) name segment. Some Forwarders may use more advanced matching rules that allow both
longest matching prefix and shorter prefixes.

Another central concept of CCNx is that there should be flow balance between Interest messages and Content
Object messages. At the network level, an Interest traveling along a single path should elicit no more than one
Content Object response. If some node sends the Interest along more than one path, that node should
consolidate the responses such that only one Content Object flows upstream from it to the requester.

There are additional optional attributes in an Interest message that can be used to select between multiple
Content Objects with matching Names (it is possible that multiple publishers could issue Content Objects with
the same Name). An Interest may carry an optional KeyIdRestriction and / or an optional
ContentObjectHashRestriction. If either or both of these are present, a Forwarder must ensure that they
exactly match the corresponding KeyId and computed ContentObjectHash in the Content Object.

As an Interest travels the forward path following the Forwarding Information Base (FIB), it leaves behind
state at each Forwarder. This state is stored in the Pending Interest Table (PIT), which tracks the ingress and
egress ports as well as the Name, KeyIdRestriction (if one exists), and ContentObjectHashRestriction (if one
exists) of each Interest. When a Content Object arrives at the node, it is exactly matched against that tuple to
see if it satisfies any Interests in the PIT. If it does, it is returned along the matching Interest's reverse path. If
it does not, the Content Object is dropped.

If multiple Interests with the same tuple {Name, KeyIdRestriction, ContentObjectHashRestriction} arrive at a
node before a Content Object matching the first Interest comes back, they are grouped in the same PIT entry
and their reverse paths aggregated. Thus, one Content Object might satisfy multiple pending Interests.

In CCNx, higher-layer protocols often become so-called "name-based protocols" because they operate on the
CCNx Name. For example, a versioning protocol might append additional name segments to convey state
about the version of payload. A content discovery protocol might append certain protocol-specific name
segments to a prefix to discover content under that prefix. Many such protocols may exist and apply their own
rules to Names. They may be layered with each protocol encapsulating (to the left) a higher layer's Name
prefix.

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 1.  Introduction

3



This document also describes a control message called an InterestReturn. A network element may return an
Interest message to a previous hop if there is an error processing the Interest. The returned Interest may be
further processed at the previous hop or returned towards the Interest origin. When a node returns an Interest
it indicates that the previous hop should not expect a response from that node for the Interest -- i.e. there is no
PIT entry left at the returning node for a Content Object to follow.

There are multiple ways to describe larger objects in CCNx. Some options may use the namespace while
others may use a structure such as a Manifest. This document does not address these options at this time.

The remainder of this document describes a named payload, and the Interest/Content Object network protocol
behavior in detail.

TODO -- we have not adopted the Requirements Language yet.

 TOC 

1.1.  Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC 2119 (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.)
[RFC2119].

 TOC 

2.  Named Payload

CCNx supports several cryptographic means to bind a Name to a payload. Interest and Content Object
messages include a section called the ValidationAlgorithm, which specifies the algorithm to use to verify the
binding. Several validation algorithms are supported including specific Message Integrity Checks (MICs),
Message Authentication Codes (MACs), and Signature types. These are over specific wire format encodings.
Additional schemes could be added in the future. Interest and Content Object messages also include a section
called the ValidationPayload which contains the validation output.

The KeyId is an optional field in the ValidationAlgorithm. It is an octet string that identifies the key used to
sign the Content Object. It uniquely identifies the publisher. It is similar to a Subject Key Identifier from
X509 [RFC 3280, Section 4.2.1.2]. It should be derived from the key used to sign, for example SHA-256 hash
of the key. It applies to both public/private key systems and to symmetric key systems using HMAC.

A PublicKeyLocator is an optional field in the ValidationAlgorithm. It may be one of (a) the signer's public
key, (b) the signer's certificate, or (c) a KeyName that points to the location of the signer's key or certificate.

A Key inside a PublicKeyLocator is a public key corresponding to the signer's private key. Examples would
be PEM or DER encodings. The exact encoding is up to the wire format.

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 1.1.  Requirements Language

4



A Certificate is an X.509 certificate of the signer's public key. Examples would be PEM or DER encodings of
the certificate. The exact encoding is up to the wire format.

A KeyName is a CCNx Name and optional signer's KeyId of that name's publisher. The CCNx Name points
to a Key or Certificate. The KeyName signer KeyId is of the signer of the target name's Content Object, not of
the target key or certificate.

A SignatureTime is an optional field in the ValidationAlgorithm. It may be used as part of the signature
validation check to ensure the signature was generated around the expected time. In particular, if the public
key is conveyed in a certificate with a validity period, the verifying system may enforce that the signature
came from a corresponding period. Some verifiers might determine a signature without a SignatureTime to be
invalid.

 TOC 

3.  Names

A CCNx name is a composition of name segments. Each name segment carries a label identifying the purpose
of the name segment, and a value. For example, some name segments are general names and some serve
specific purposes, such as carrying version information or the sequencing of many chunks of a large object
into smaller, signed Content Objects.

The name segment labels specified in this document are given in the table below. Name Segment is a general
name segment, typically occurring in the routable prefix and user-specified content name. Other segment
types are for functional name components that imply a specific purpose.

A forwarding table entry may contain name segments of any type. Routing protocol policy and local system
policy may limit what goes into forwarding entries, but there is no restriction at the core level. An Interest
routing protocol, for example, may only allow binary name segments. A load balancer or compute cluster may
route through additional component types, depending on their services.

Name Description

Name Segment A generic name segment that includes arbitrary octets.

Interest Payload
ID

An octet string that identifies the payload carried in an Interest. As an example, the Payload
ID might be a hash of the Interest Payload. This provides a way to differentiate between
Interests based on the Payload solely through a Name Segment without having to include
all the extra bytes of the payload itself.

Application
Components

An application-specific payload in a name segment. An application may apply its own
semantics to these components. A good practice is to identify the application in a Name
segment prior to the application component segments.

 Table 1: CCNx Name Segment Types 

At the lowest level, a Forwarder does not need to understand the semantics of name segments; it need only

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 2.  Named Payload

5



identify name segment boundaries and be able to compare two name segments (both label and value) for
equality. The Forwarder matches paths segment-by-segment against its forwarding table to determine a next
hop.

 TOC 

3.1.  Name Examples

This section uses the Labeled Content Information (LCI (Mosko, M., “Labeled Content Information (Internet
draft),” 2015.) [LCI]) URI representation of CCNx names .

Name Description

lci:/ A 0-length name, corresponds to a default route.

lci:/NAME= A name with 1 segment of 0 length, distinct from lci:/.

lci:/NAME=foo/APP:0=bar A 2-segment name, where the first segment is of type NAME and the second
segment is of type APP:0.

 Table 2: CCNx Name Examples 

 TOC 

4.  Interests

An Interest is composed of the tuple {Name, Metadata, Payload, Validator}. These fields are defined below.
Only the Name is mandatory. Other fields, if missing, should be interpreted as "do not care".

Name is a hierarchical path that identifies the resource. It is matched as described above.

An Interest may also have a Payload which carries state about the Interest but is not used to match a Content
Object. If an Interest contains a payload, the Interest name should contain an Interest Payload ID (IPID). The
IPID allows a PIT table entry to correctly multiplex Content Objects in response to a specific Interest with a
specific payload ID. The IPID could be derived from a hash of the payload or could be a GUID or a nonce. An
optional Metadata field defines the IPID field so other systems could verify the IPID, such as when it is
derived from a hash of the payload. No system is required to verify the IPID.

An Interest may contain Validation fields including a ValidationAlgorithm section describing the type of
validator to use and the ValidationPayload fields containing the output of the validation. Typically this would
only be a MIC - a crc, checksum, or digest.

An Interest contains additional fields with information about the query. Two fields - the KeyIdRestriction and
ContentObjectHashRestriction - serve as selectors to help identify the specific Content Object that should be
returned.

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 3.  Names

6



The Interest Lifetime element specifies the maximum number of milliseconds a Forwarder should retain the
Interest in its PIT. A lifetime of "0" means the requester does not expect a response from the Interest - it
serves as a type of notification. The lifetime is only a guideline for a Forwarder, which may keep an Interest
for a shorter or longer time, based on local conditions and system policy. It may change hop to hop if the
Interest is delayed for any signifiant amount of time. It is measured in millisecond resolution, so in fast
switching it normally would not need to change. This field does not affect the matching of Content Objects.

The Interest HopLimit element is a counter that is decremented with each hop. It limits the distance an Interest
may travel. The node originating the Interest may put in any value - up to the maximum - in network byte
order. Each node that receives an Interest with a HopLimit decrements the value upon reception. If the value
is 0 after the decrement, the Interest cannot be forwarded off the node. The PIT entry should also track the
maximum HopLimit forwarded. If an Interest with a longer HopLimit arrives, it should be forwarded even if it
is identical to a previously forwarded Interest.

Interest looping is not prevented in CCNx. An Interest traversing loops is eventually discarded using the
hop-limit field of the Interest, which is decremented at each hop traversed by the Interest. Other
implementations may define additional optional headers, for example Nonces for loop detection, headers for
Differentiated Services Code Points (DSCP), or Flow Labels.

 TOC 

5.  Content Objects

A Content Object is composed of the same tuple as an Interest: {Name, Metadata, Payload, Validator}.

The Name is an optional field that identifies the contents. If the name does not exist, then the ContentObject
can only be matched by a ContentObjectHashRestriction.

The Payload of a Content Object holds the upper layer payload. It may be encrypted, based on outside
information or a protocol information header.

The optional Metadata PayloadType field identifies the type of Content Object: "DATA" implies an opaque
payload; "LINK" is a Content Object with an encoded Link as a payload. "DATA" is the default.

The optional field ExpiryTime is a millisecond timestamp containing the number of milliseconds since the
epoch in UTC of when the contents will expire. If it is not present, there is no expiration on the Content
Object. The ExpiryTime should be part of the signed information covered by the Validator, if present.

A publisher or upstream node may include a Recommended Cache Time for Content Objects. It is represented
as the number of milliseconds since the epoch in UTC as the desired minimum time to keep the content object
in cache. This recommendation is a guideline as to the useful lifetime of a Content Object, but may be
ignored. The RecommendedCacheTime should not be covered by the Validator, if present, as nodes may
change the value based on their caching. The ExpiryTime takes precedence over the
RecommendedCacheTime, if both exist.

Other protocols, such as versioning or chunking, could place other kinds of metadata in the Content Object.

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 4.  Interests

7



 TOC 

6.  Link

A Link is the tuple {Name, KeyId, ContentObjectHashRestriction}. The information in a Link comprises the
fields the fields of an Interest which would retrieve the Link target. A Content Object with PayloadType =
"Link" is an object whose payload is a Link. This tuple may be used as a KeyName to identify a specific
object with the certificate wrapped key.

 TOC 

7.  Hashes

Several protocol fields use cryptographic hash functions, which must be secure against attack and collisions.
Because these hash functions change over time, which better ones appearing and old ones falling victim to
attacks, it is important that a CCNx protocol implementation support hash agility.

In this document, we suggest certain hashes (e.g. SHA-256), but a specific implementation may use what it
deems best. The normative CCNx Messages (Mosko, M. and I. Solis, “CCNx Messages in TLV Format
(Internet draft),” 2016.) [CCNMessages] specification should be taken as the definition of acceptable hash
functions and uses.

 TOC 

8.  Validation

 TOC 

8.1.  Validation Algorithm

The Validator consists of a ValidationAlgorithm that specifies how to verify the message and a
ValidationPayload containing the validation output. The ValidationAlgorithm section defines the type of
algorithm to use and includes any necessary additional information. The validation is calculated from the
beginning of the CCNx Message through the end of the ValidationAlgorithm section. The ValidationPayload
is the actual cryptographic bytes, such as a CRC value or an HMAC value or a signature value.

Some Validators contain a KeyId, identifying the publisher authenticating the Content Object. If an Interest
carries a KeyIdRestriction, then that KeyIdRestriction MUST exactly match the Content Object's KeyId.

Validation Algorithms fall into three categories: MICs, MACs, and Signatures. Validators using MIC
algorithms do not need to provide any additional information; they may be computed and verified based only
on the algorithm (e.g. CRC32C). MAC validators require the use of a KeyId identifying the secret key used by

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 5.  Content Objects

8



the authenticator. Because MACs are usually used between two parties that have already exchanged secret
keys via a key exchange protocol, the KeyId may be any agreed-upon value to identify which key is used.
Signature validators use public key cryptography such as RSA, DSA, or Elliptical Curve (EC). The KeyId
field in the ValidationAlgorithm identifies the public key used to verify the signature. A signature may
optionally include a KeyLocator, as described above, to bundle a Key or Certificate or KeyName. MAC and
Signature validators may also include a SignatureTime, as described above.

A PublicKeyLocator KeyName points to a Content Object with an X509 certificate in the payload. In this
case, the target KeyId must equal the first object's KeyId. The target KeyLocator must include the public key
corresponding to the KeyId. That key must validate the target Signature. The payload is an X.509 certificate
whose public key must match the target KeyLocator's key. It must be issued by a trusted authority, preferably
specifying the valid namespace of the key in the distinguished name.

 TOC 

9.  Interest to Content Object matching

A Content Object satisfies an Interest if and only if (a) the Content Object name, if given, exactly matches the
Interest name, and (b) the ValidationAlgorithm KeyId of the Content Object exactly equals the Interest
KeyIdRestriction, if given, and (c) the computed ContentObjectHash exactly equals the Interest
ContentObjectHashRestriction, if given.

The matching rules are given by this predicate, which if it evaluates true means the ContentObject matches the
Interest. Ni = Name in Interest (may not be empty), Ki = KeyIdRestriction in the interest (may be empty), Hi
= ContentObjectHashRestriction in Interest (may be empty). Likewise, No, Ko, Ho are those properties in the
ContentObject, where No and Ko may be empty; Ho always exists. For binary relations, we use & for AND
and | for OR. We use E for the EXISTS (not empty) operator and ! for the NOT EXISTS operator.

As a special case, if the ContentObjectHashRestriction in the Interest specifies an unsupported hash algorithm,
then no ContentObject can match the Interest so the system should drop the Interest and MAY send an
InterestReturn to the previous hop. In this case, the predicate below will never get executed because the
Interest is never forwarded. If the system is using the optional behavior of having a different system calculate
the hash for it, then the system may assume all hash functions are supported and leave it to the other system to
accept or reject the Interest.

(!No | (Ni=No)) & (!Ki | (Ki=Ko)) & (!Hi | (Hi=Ho)) & (E No | E Hi)

As one can see, there are two types of attributes one can match. The first term depends on the existence of the
attribute in the ContentObject while the next two terms depend on the existence of the attribute in the Interest.
The last term is the Nameless Object restriction that if a Content Object does not have a Name, then it must
match the Interest on at least the Hash restriction.

If a Content Object does not carry the ContentObjectHash as an expressed field, it must be calculated in
network to match against. It is sufficient within an autonomous system to calculate a ContentObjectHash at a
border router and carry it via trusted means within the autonomous system. If a Content Object
ValidationAlgorithm does not have a KeyId then the Content Object cannot match an Interest with a
KeyIdRestriction.

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 8.1.  Validation Algorithm

9



 TOC 

10.  Request/Response Protocol

As an Interest moves through the network following the FIB table based on longest matching prefix, it leaves
state at each forwarding node. The state is represented in a notional Pending Interest Table (PIT). The PIT
tracks the Name, KeyIdRestriction, and ContentObjectHashRestriction to be matched by a Content Object. If
a second Interest arrives with the same Name and selector values, it may be aggregated with the existing
pending Interest. If the second Interest extends the Lifetime of the pending Interest, it should be forwarded to
extend the life of downstream Interests.

When a Content Object arrives at a Forwarder, it is matched against the Interests in the PIT. For each
matching Interest, the Content Object is forwarded along the reverse path of that PIT entry and the PIT entry
is removed. A Content Object that does not match any Interest in the PIT is dropped.

A Forwarder may implement a Content Object cache called a Content Store. At the core protocol level, the
Content Store must obey similar rules as the Forwarder. If an Interest specifies a
ContentObjectHashRestriction, the Content Store SHOULD NOT respond unless it has verified the hash of
the Content Object. If the Interest carries a KeyIdRestriction then the Content Store MUST cryptographically
verify the signature or not respond.

TODO: Specify what to do in case of failure.

 TOC 

11.  Interest Return

This section describes the process whereby a network element may return an Interest message to a previous
hop if there is an error processing the Interest. The returned Interest may be further processed at the previous
hop or returned towards the Interest origin. When a node returns an Interest it indicates that the previous hop
should not expect a response from that node for the Interest -- i.e. there is no PIT entry left at the returning
node.

The returned message maintains compatibility with the existing TLV packet format (a fixed header, optional
hop-by-hop headers, and the CCNx message body). The returned Interest packet is modified in only two
ways:

The PacketType is set to InterestReturn to indicate a Feedback message.• 
The ReturnCode is set to the appropriate value to signal the reason for the return• 

The specific encodings of the Interest Return are specified in [CCNMessages] (Mosko, M. and I. Solis,
“CCNx Messages in TLV Format (Internet draft),” 2016.).

A Forwarder is not required to send any Interest Return messages.

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 9.  Interest to Content Object matching

10



A Forwarder is not required to process any received Interest Return message. If a Forwarder does not process
Interest Return messages, it should silently drop them.

The Interest Return message does not apply to a Content Object or any other message type.

An Interest Return message is a 1-hop message between peers. It is not propagated multiple hops via the FIB.
An intermediate node that receives an InterestReturn may take corrective actions or may propagate its own
InterestReturn to previous hops as indicated in the reverse path of a PIT entry.

 TOC 

11.1.  Message Format

The Interest Return message looks exactly like the original Interest message with the exception of the two
modifications mentioned above. The PacketType is set to indicate the message is an InterestReturn and the
reserved byte in the Interest header is used as a Return Code. The numeric values for the PacketType and
ReturnCodes are in [CCNMessages] (Mosko, M. and I. Solis, “CCNx Messages in TLV Format (Internet
draft),” 2016.).

 TOC 

11.2.  ReturnCode Types

This section defines the InterestReturn ReturnCode introduced in this RFC. The numeric values used in the
packet are defined in [CCNMessages] (Mosko, M. and I. Solis, “CCNx Messages in TLV Format (Internet
draft),” 2016.).

Name Description

No Route (No Route) The returning Forwarder has no route to the Interest name.

HopLimit Exceeded (HopLimit Exceeded) The HopLimit has decremented to 0 and need to forward the
packet.

Interest MTU too large (Interest MTU Too
Large)

The Interest's MTU does not conform to the required
minimum and would require fragmentation.

No Resources (No Resources) The node does not have the resources to process the Interest.

Path error (Path Error) There was a transmission error when forwarding the Interest
along a route (a transient error).

Prohibited (Prohibited) An administrative setting prohibits processing this Interest.

Congestion (Congestion) The Interest was dropped due to congestion (a transient
error).

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 11.  Interest Return

11



Unsupported Content Object Hash Algorithm
(Unsupported Content Object Hash
Algorithm)

The Interest was dropped because it requested a Content
Object Hash Restriction using a hash algorithm that cannot be
computed.

Malformed Interest (Malformed Interest) The Interest was dropped because it did not correctly parse.

 Table 3: Interest Return Reason Codes 

 TOC 

11.3.  Interest Return Protocol

This section describes the Forwarder behavior for the various Reason codes for Interest Return. A Forwarder
is not required to generate any of the codes, but if it does, it must conform to this specification.

If a Forwarder receives an Interest Return, it SHOULD take these standard corrective actions. A forwarder is
allowed to ignore Interest Return messages, in which case its PIT entry would go through normal timeout
processes.

Verify that the Interest Return came from a next-hop to which it actually sent the Interest.• 
If a PIT entry for the corresponding Interest does not exist, the Forwarder should ignore the Interest
Return.

• 

If a PIT entry for the corresponding Interest does exist, the Forwarder MAY do one of the following:
Try a different forwarding path, if one exists, and discard the Interest Return, or♦ 
Clear the PIT state and send an Interest Return along the reverse path.♦ 

• 

If a forwarder tries alternate routes, it MUST ensure that it does not use same same path multiple times. For
example, it could keep track of which next hops it has tried and not re-use them.

If a forwarder tries an alternate route, it may receive a second InterestReturn, possibly of a different type than
the first InterestReturn. For example, node A sends an Interest to node B, which sends a No Route return.
Node A then tries node C, which sends a Prohibited. Node A should choose what it thinks is the appropriate
code to send back to its previous hop

If a forwarder tries an alternate route, it should decrement the Interest Lifetime to account for the time spent
thus far processing the Interest.

 TOC 

11.3.1.  No Route

If a Forwarder receives an Interest for which it has no route, or for which the only route is back towards the
system that sent the Interest, the Forwarder SHOULD generate a "No Route" Interest Return message.

How a forwarder manages the FIB table when it receives a No Route message is implementation dependent.
In general, receiving a No Route Interest Return should not cause a forwarder to remove a route. The dynamic

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 11.2.  ReturnCode Types

12



routing protocol that installed the route should correct the route or the administrator who created a static route
should correct the configuration. A forwarder could suppress using that next hop for some period of time.

 TOC 

11.3.2.  HopLimit Exceeded

A Forwarder MAY choose to send HopLimit Exceeded messages when it receives an Interest that must be
forwarded off system and the HopLimit is 0.

 TOC 

11.3.3.  Interest MTU Too Large

If a Forwarder receives an Interest whose MTU exceeds the prescribed minimum, it MAY send an "Interest
MTU Too Large" message, or it may silently discard the Interest.

If a Forwarder receives an "Interest MTU Too Large" is SHOULD NOT try alternate paths. It SHOULD
propagate the Interest Return to its previous hops.

 TOC 

11.3.4.  No Resources

If a Forwarder receives an Interest and it cannot process the Interest due to lack of resources, it MAY send an
InterestReturn. A lack of resources could be the PIT table is too large, or some other capacity limit.

 TOC 

11.3.5.  Path Error

If a forwarder detects an error forwarding an Interest, such as over a reliable link, it MAY send a Path Error
Interest Return indicating that it was not able to send or repair a forwarding error.

 TOC 

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 11.3.1.  No Route

13



11.3.6.  Prohibited

A forwarder may have administrative policies, such as access control lists, that prohibit receiving or
forwarding an Interest. If a forwarder discards an Interest due to a policy, it MAY send a Prohibited
InterestReturn to the previous hop. For example, if there is an ACL that says /parc/private can only come from
interface e0, but the Forwarder receives one from e1, the Forwarder must have a way to return the Interest
with an explanation.

 TOC 

11.3.7.  Congestion

If a forwarder discards an Interest due to congestion, it MAY send a Congestion InterestReturn to the previous
hop.

 TOC 

11.3.8.  Unsupported Content Object Hash Algorithm

If a Content Object Hash Restriction specifies a hash algorithm the forwarder cannot verify, the Interest
should not be accepted and the forwarder MAY send an InterestReturn to the previous hop.

 TOC 

11.3.9.  Malformed Interest

If a forwarder detects a structural or syntactical error in an Interest, it SHOULD drop the interest and MAY
send an InterestReturn to the previous hop. This does not imply that any router must validate the entire
structure of an Interest.

 TOC 

12.  Acknowledgements

 TOC 

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 11.3.6.  Prohibited

14



13.  IANA Considerations

This memo includes no request to IANA.

All drafts are required to have an IANA considerations section (see Guidelines for Writing an IANA
Considerations Section in RFCs (Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA
Considerations Section in RFCs,” May 2008.) [RFC5226] for a guide). If the draft does not require IANA to
do anything, the section contains an explicit statement that this is the case (as above). If there are no
requirements for IANA, the section will be removed during conversion into an RFC by the RFC Editor.

 TOC 

14.  Security Considerations

The Interest Return message has no authenticator from the previous hop. Therefore, the payload of the Interest
Return should only be used locally to match an Interest. A node should never forward that Interest payload as
an Interest. It should also verify that it send the Interest in the Interest Return to that node and not allow
anyone to negate Interest messages.

If two peers require authenticated messaging, they must use an external mechanism.

 TOC 

15.  References

 TOC 
15.1. Normative References

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997.

 TOC 
15.2. Informative References

[CCN] PARC, Inc., “CCNx Open Source,” 2007.
[CCNMessages] Mosko, M. and I. Solis, “CCNx Messages in TLV Format (Internet draft),” 2016.
[LCI] Mosko, M., “Labeled Content Information (Internet draft),” 2015.
[RFC3552] Rescorla, E. and B. Korver, “Guidelines for Writing RFC Text on Security

Considerations,” BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003.
[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 13.  IANA Considerations

15

http://www.rfc-editor.org/info/rfc2119
http://www.CCNx.org
http://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages-01
http://tools.ietf.org/html/draft-mosko-icnrg-ccnxlabeledcontent-01
http://www.rfc-editor.org/info/rfc3552
http://www.rfc-editor.org/info/rfc3552
http://www.rfc-editor.org/info/rfc5226


RFCs,” BCP 26, RFC 5226, DOI 10.17487/RFC5226, May 2008.

 TOC 
Authors' Addresses

Marc Mosko
PARC, Inc.
Palo Alto, California 94304
USA

Phone: +01 650-812-4405
Email: marc.mosko@parc.com

Ignacio Solis
PARC, Inc.
Palo Alto, California 94304
USA

Phone: +01 650-812-4405
Email: ignacio.solis@parc.com

Christopher Wood
PARC, Inc.
Palo Alto, California 94304
USA

Phone: +01 650-XXX-YYYY
Email: christopher.wood@parc.com

CCNx Semanticsdraft-irtf-icnrg-ccnxsemantics-01 15.2. Informative References

16

http://www.rfc-editor.org/info/rfc5226
mailto:marc.mosko@parc.com
mailto:ignacio.solis@parc.com
mailto:christopher.wood@parc.com

	CCNx Semantics

