
Crypto Forum Research Group A. Huelsing
Internet-Draft TU Eindhoven
Intended status: Informational D. Butin
Expires: July 6, 2016 TU Darmstadt
 S. Gazdag
 genua GmbH
 A. Mohaisen
 SUNY Buffalo
 January 3, 2016

 XMSS: Extended Hash-Based Signatures
 draft-irtf-cfrg-xmss-hash-based-signatures-02

Abstract

 This note describes the eXtended Merkle Signature Scheme (XMSS), a
 hash-based digital signature system. It follows existing
 descriptions in scientific literature. The note specifies the WOTS+
 one-time signature scheme, a single-tree (XMSS) and a multi-tree
 variant (XMSS^MT) of XMSS. Both variants use WOTS+ as a main
 building block. XMSS provides cryptographic digital signatures
 without relying on the conjectured hardness of mathematical problems.
 Instead, it is proven that it only relies on the properties of
 cryptographic hash functions. XMSS provides strong security
 guarantees and, besides some special instantiations, is even secure
 when the collision resistance of the underlying hash function is
 broken. It is suitable for compact implementations, relatively
 simple to implement, and naturally resists side-channel attacks.
 Unlike most other signature systems, hash-based signatures withstand
 attacks using quantum computers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 6, 2016.

Huelsing, et al. Expires July 6, 2016 [Page 1]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions Used In This Document 5
 2. Notation . 5
 2.1. Data Types . 5
 2.2. Operators . 5
 2.3. Functions . 6
 2.4. Integer to Byte Conversion 6
 2.5. Hash Function Address Scheme 6
 2.6. Strings of Base w Numbers 9
 2.7. Member Functions . 10
 3. Primitives . 11
 3.1. WOTS+ One-Time Signatures 11
 3.1.1. WOTS+ Parameters 11
 3.1.1.1. WOTS+ Functions 12
 3.1.2. WOTS+ Chaining Function 12
 3.1.3. WOTS+ Private Key 12
 3.1.4. WOTS+ Public Key 13
 3.1.5. WOTS+ Signature Generation 13
 3.1.6. WOTS+ Signature Verification 15
 3.1.7. Pseudorandom Key Generation 15
 4. Schemes . 16
 4.1. XMSS: eXtended Merkle Signature Scheme 16
 4.1.1. XMSS Parameters 17
 4.1.2. XMSS Hash Functions 17
 4.1.3. XMSS Private Key 18
 4.1.4. Randomized Tree Hashing 18
 4.1.5. L-Trees . 18
 4.1.6. TreeHash . 19
 4.1.7. XMSS Public Key 20
 4.1.8. XMSS Signature 21
 4.1.9. XMSS Signature Generation 22

Huelsing, et al. Expires July 6, 2016 [Page 2]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 4.1.10. XMSS Signature Verification 23
 4.1.11. Pseudorandom Key Generation 25
 4.1.12. Free Index Handling and Partial Secret Keys 25
 4.2. XMSS^MT: Multi-Tree XMSS 25
 4.2.1. XMSS^MT Parameters 26
 4.2.2. XMSS Algorithms Without Message Hash 26
 4.2.3. XMSS^MT Private Key 26
 4.2.4. XMSS^MT Public Key 27
 4.2.5. XMSS^MT Signature 27
 4.2.6. XMSS^MT Signature Generation 28
 4.2.7. XMSS^MT Signature Verification 30
 4.2.8. Pseudorandom Key Generation 30
 4.2.9. Free Index Handling and Partial Secret Keys 31
 5. Parameter Sets . 31
 5.1. WOTS+ Parameters . 31
 5.2. XMSS Parameters . 32
 5.3. XMSS^MT Parameters 32
 6. Rationale . 33
 7. IANA Considerations . 34
 8. Security Considerations 37
 8.1. Security Proofs . 38
 8.2. Security Assumptions 39
 8.3. Post-Quantum Security 39
 9. Acknowledgements . 39
 10. References . 40
 10.1. Normative References 40
 10.2. Informative References 40
 Appendix A. WOTS+ XDR Formats 41
 Appendix B. XMSS XDR Formats 42
 Appendix C. XMSS^MT XDR Formats 47
 Appendix D. Changed since draft-irtf-cfrg-xmss-hash-based-
 signatures-01 52
 Authors’ Addresses . 53

1. Introduction

 A (cryptographic) digital signature scheme provides asymmetric
 message authentication. The key generation algorithm produces a key
 pair consisting of a private and a public key. A message is signed
 using a private key to produce a signature. A message/signature pair
 can be verified using a public key. A One-Time Signature (OTS)
 scheme allows using a key pair to sign exactly one message securely.
 A many-time signature system can be used to sign multiple messages.

 One-Time Signature schemes, and Many-Time Signature (MTS) schemes
 composed of them, were proposed by Merkle in 1979 [Merkle79]. They
 were well-studied in the 1990s and have regained interest from 2006
 onwards because of their resistance against quantum-computer-aided

Huelsing, et al. Expires July 6, 2016 [Page 3]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 attacks. These kinds of signature schemes are called hash-based
 signature schemes as they are built out of a cryptographic hash
 function. Hash-based signature schemes generally feature small
 private and public keys as well as fast signature generation and
 verification but large signatures and relatively slow key generation.
 In addition, they are suitable for compact implementations that
 benefit various applications and are naturally resistant to most
 kinds of side-channel attacks.

 Some progress has already been made toward standardizing and
 introducing hash-based signatures. McGrew and Curcio have published
 an Internet-Draft [DC14] specifying the "textbook" Lamport-Diffie-
 Winternitz-Merkle (LDWM) scheme based on early publications.
 Independently, Buchmann, Dahmen and Huelsing have proposed XMSS
 [BDH11], the eXtended Merkle Signature Scheme, offering better
 efficiency and a modern security proof. Very recently, the stateless
 hash-based signature scheme SPHINCS was introduced [BHH15], with the
 intent of being easier to deploy in current applications. A
 reasonable next step toward introducing hash-based signatures would
 be to complete the specifications of the basic algorithms - LDWM,
 XMSS, SPHINCS and/or variants [Kaliski15].

 The eXtended Merkle Signature Scheme (XMSS) [BDH11] is the latest
 stateful hash-based signature scheme. It has the smallest signatures
 out of such schemes and comes with a multi-tree variant that solves
 the problem of slow key generation. Moreover, it can be shown that
 XMSS is secure, making only mild assumptions on the underlying hash
 function. Especially, it is not required that the cryptographic hash
 function is collision-resistant for the security of XMSS.

 This document describes a single-tree and a multi-tree variant of
 XMSS. It also describes WOTS+, a variant of the Winternitz OTS
 scheme introduced in [Huelsing13] that is used by XMSS. The schemes
 are described with enough specificity to ensure interoperability
 between implementations.

 This document is structured as follows. Notation is introduced in
 Section 2. Section 3 describes the WOTS+ signature system. MTS
 schemes are defined in Section 4: the eXtended Merkle Signature
 Scheme (XMSS) in Section 4.1, and its Multi-Tree variant (XMSS^MT) in
 Section 4.2. Parameter sets are described in Section 5. Section 6
 describes the rationale behind choices in this note. The IANA
 registry for these signature systems is described in Section 7.
 Finally, security considerations are presented in Section 8.

Huelsing, et al. Expires July 6, 2016 [Page 4]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

1.1. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Notation

2.1. Data Types

 Bytes and byte strings are the fundamental data types. A byte is a
 sequence of eight bits. A single byte is denoted as a pair of
 hexadecimal digits with a leading "0x". A byte string is an ordered
 sequence of zero or more bytes and is denoted as an ordered sequence
 of hexadecimal characters with a leading "0x". For example, 0xe534f0
 is a byte string of length 3. An array of byte strings is an
 ordered, indexed set starting with index 0 in which all byte strings
 have identical length. If not stated or handled otherwise, we assume
 big-endian representation of data types.

2.2. Operators

 When a and b are integers, mathematical operators are defined as
 follows:

 ^ : a ^ b denotes the result of a raised to the power of b.

 * : a * b denotes the product of a and b. This operator is
 sometimes used implicitly in the absence of ambiguity, as in usual
 mathematical notation.

 / : a / b denotes the quotient of a by b.

 % : a % b denotes the non-negative remainder of the integer
 division of a by b.

 + : a + b denotes the sum of a and b.

 - : a - b denotes the difference of a and b.

 The standard order of operations is used when evaluating arithmetic
 expressions.

 Arrays are used in the common way, where the i^th element of an array
 A is denoted A[i]. Byte strings are treated as arrays of bytes where
 necessary: If X is a byte string, then X[i] denotes its i^th byte,
 where X[0] is the leftmost byte.

Huelsing, et al. Expires July 6, 2016 [Page 5]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 If A and B are byte strings of equal length, then:

 A AND B denotes the bitwise logical conjunction operation.

 A XOR B denotes the bitwise logical exclusive disjunction
 operation.

 When B is a byte and i is an integer, then B >> i denotes the logical
 right-shift operation. Similarly, B << i denotes the logical left-
 shift operation.

 If X is a x-byte string and Y a y-byte string, then X || Y denotes
 the concatenation of X and Y, with X || Y = X[0] ... X[x-1] Y[0] ...
 Y[y-1].

2.3. Functions

 If x is a non-negative real number, then we define the following
 functions:

 ceil(x) : returns the smallest integer greater or equal than x.

 floor(x) : returns the largest integer less or equal than x.

 lg(x) : returns the logarithm to base 2 of x.

2.4. Integer to Byte Conversion

 If x and y are non-negative integers, we define Z = toByte(x,y) to be
 the y-byte string containing the binary representation of x in big
 endian byte-order.

2.5. Hash Function Address Scheme

 The schemes described in this document randomize each hash function
 call. This means that aside of the initial message digest, for each
 hash function call a different key and different bitmask is used.
 These values are pseudorandomly generated using a pseudorandom
 generator that takes a seed S and a 16-byte address A. The latter is
 used to select the A-th n-byte block from the PRG output where n is
 the security parameter. Here we explain the structure of address A.
 We explain the construction of the addresses in the following
 sections where they are used.

 The schemes in the next two sections use two kinds of hash functions
 parameterized by security parameter n. For the hash tree
 constructions a hash function that maps 2n-byte inputs and an n-byte
 key to n-byte outputs is used. To randomize this function, 3n bytes

Huelsing, et al. Expires July 6, 2016 [Page 6]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 are needed - n bytes for the key and 2n bytes for a bitmask. For the
 one-time signature scheme constructions a hash function that maps
 n-byte inputs and n-byte keys to n-byte outputs is used. To
 randomize this function, 2n bytes are needed - n bytes for the key
 and n bytes for a bitmask. Consequently, three addresses are needed
 for the first function and two addresses for the second one.

 There are three different address formats for the different use
 cases. One format for the hashes used in one-time signature schemes,
 one for hashes used within the main Merkle-tree construction, and one
 for hashes used in the L-trees. The latter being used to compress
 one-time public keys. All these formats share as much format as
 possible. In the following we describe these formats in detail.

 An address is structured as follows. It always starts with 46 zero
 bits in the most significant bits. These are followed by a layer
 address of 8 bits, and a tree address of 24 bits. The next bit
 decides whether it is an OTS construction or a hash tree address.
 This OTS bit is set to zero for a tree hash address and it is set to
 one for an OTS hash address.

 We first describe the OTS address case as the hash tree case again
 splits into two cases. In this case, the OTS bit is followed by a
 24-bit OTS address that encodes the index of the OTS key pair within
 a tree. The next 16 bits encode the chain address followed by 8 bits
 that encode the address of the hash function call within a chain.
 The key bit is used to generate two different addresses for one hash
 function call. The bit is set to one to generate the key. To
 generate the n-byte bitmask, the key bit is set to zero.

 Index i for OTS hash
 +------------------------+
 | Padding = 0 (46 bit)|
 +------------------------+
 | layer address (8 bit)|
 +------------------------+
 | tree address (24 bit)|
 +------------------------+
 | OTS bit = 1 (1 bit)|
 +------------------------+
 | OTS address (24 bit)|
 +------------------------+
 | chain address (16 bit)|
 +------------------------+
 | hash address (8 bit)|
 +------------------------+
 | key bit (1 bit)|
 +------------------------+

Huelsing, et al. Expires July 6, 2016 [Page 7]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 Now we describe the hash tree address case. This case again splits
 into two. The OTS bit is followed by an L-tree bit. This bit is set
 to zero in case of an L-tree and set to one for main tree nodes. We
 first discuss the L-tree case. In this case the L-tree bit is
 followed by a 24 bit L-tree address, encoding the index of the leaf
 computed with this L-tree. The next 6 bits encode the height of the
 node inside the L-tree and the following 16 bit encode the index of
 the node at that height, inside the L-tree. The last two bits are
 used to generate three different addresses for one node. The first
 of these bits is set to one to generate the key. In that case the
 last bit is always zero. To generate the 2n-byte bitmask, the key
 bit is set to zero. The most significant n bytes are generated using
 the address with the last bit zero. The least significant bytes are
 generated using the address with the last bit set to one.

 An L-tree address
 +------------------------+
 | Padding = 0 (46 bit)|
 +------------------------+
 | layer address (8 bit)|
 +------------------------+
 | tree address (24 bit)|
 +------------------------+
 | OTS bit = 0 (1 bit)|
 +------------------------+
 | L-tree bit = 1 (1 bit)|
 +------------------------+
 | L-tree address (24 bit)|
 +------------------------+
 | tree height (6 bit)|
 +------------------------+
 | tree index (16 bit)|
 +------------------------+
 | key bit (1 bit)|
 +------------------------+
 | block bit (1 bit)|
 +------------------------+

 We now describe the remaining format for the main tree hash
 addresses. In this case the L-tree bit is set to zero and followed
 by 14 zero bits padding as there are less hash tree addresses
 required. The next 8 bits encode the height of the tree node to be
 computed within the tree, followed by 24 bits that encode the index
 of this node at that height. The last two bits are used to generate
 three different addresses for one node as described for the L-tree
 case. The first of these bits is set to one to generate the key. In
 that case the last bit is always zero. To generate the 2n-byte
 bitmask, the key bit is set to zero. The most significant n bytes

Huelsing, et al. Expires July 6, 2016 [Page 8]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 are generated using the address with the last bit zero. The least
 significant bytes are generated using the address with the last bit
 set to one.

 A hash tree address
 +------------------------+
 | Padding = 0 (46 bit)|
 +------------------------+
 | layer address (8 bit)|
 +------------------------+
 | tree address (24 bit)|
 +------------------------+
 | OTS bit = 0 (1 bit)|
 +------------------------+
 | L-tree bit = 0 (1 bit)|
 +------------------------+
 | Padding = 0 (14 bit)|
 +------------------------+
 | tree height (8 bit)|
 +------------------------+
 | tree index (24 bit)|
 +------------------------+
 | key bit (1 bit)|
 +------------------------+
 | block bit (1 bit)|
 +------------------------+

 All fields within these addresses encode unsigned integers. When
 describing the generation of addresses we use setter-methods that
 take positive integers and set the bits of a field to the binary
 representation of that integer of the length of the field. We also
 assume that setting the L-tree bit to zero, does also set the
 (second) padding block to zero.

2.6. Strings of Base w Numbers

 A byte string can be considered as a string of base w numbers, i.e.
 integers in the set {0, ... , w - 1}. The correspondence is defined
 by the function base_w(X, w) as follows. If X is an len_X-byte
 string, w is a member of the set {4, 16}, then base_w(X, w) outputs a
 length 8 * len_X / lg(w) array of integers between 0 and w - 1.

Huelsing, et al. Expires July 6, 2016 [Page 9]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 Algorithm 1: base_w(X, w)

 int in = 0;
 int out = 0;
 unsigned int total = 0;
 int bits = 0;
 int consumed;

 for (consumed = 0; consumed < 8 * len_X; consumed += lg(w)) {
 if (bits == 0) {
 total = X[in];
 in++;
 bits += 8;
 }
 bits -= lg(w);
 basew[out] = (total >> bits) AND (w - 1);
 out++;
 }
 return basew;

 For example, if X is the (big endian) byte string 0x1234, then
 base_w(X, 16) returns the array a = {1, 2, 3, 4}.

 X (represented as bits)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 X[0] | X[1]

 X (represented as base 16 numbers)
 +-----------+-----------+-----------+-----------+
 | 1 | 2 | 3 | 4 |
 +-----------+-----------+-----------+-----------+

 base_w(X, 16)
 +-----------+-----------+-----------+-----------+
 | 1 | 2 | 3 | 4 |
 +-----------+-----------+-----------+-----------+
 a[0] a[1] a[2] a[3]

2.7. Member Functions

 To simplify algorithm descriptions, we assume the existence of member
 functions. If a complex data structure like a public key PK contains
 a value X then getX(PK) returns the value of X for this public key.
 Accordingly, setX(PK, X, Y) sets value X in PK to the value hold by
 Y.

Huelsing, et al. Expires July 6, 2016 [Page 10]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

3. Primitives

3.1. WOTS+ One-Time Signatures

 This section describes the WOTS+ one-time signature system, in a
 version similar to [Huelsing13]. WOTS+ is a one-time signature
 scheme; while a private key can be used to sign any message, each
 private key MUST be used only once to sign a single message. In
 particular, if a secret key is used to sign two different messages,
 the scheme becomes insecure.

 The section starts with an explanation of parameters. Afterwards,
 the so-called chaining function, which forms the main building block
 of the WOTS+ scheme, is explained. It follows a description of the
 algorithms for key generation, signing and verification. Finally,
 pseudorandom key generation is discussed.

3.1.1. WOTS+ Parameters

 WOTS+ uses the parameters m, n, and w; they all take positive integer
 values. These parameters are summarized as follows:

 m : the message length in bytes

 n : the length, in bytes, of a secret key, public key, or
 signature element

 w : the Winternitz parameter; it is a member of the set {4, 16}

 The parameters are used to compute values len, len_1 and len_2:

 len : the number of n-byte string elements in a WOTS+ secret key,
 public key, and signature. It is computed as len = len_1 + len_2,
 with len_1 = ceil(8m/lg(w)) and len_2 =
 floor(lg(len_1*(w-1))/lg(w)) + 1

 The value of n is determined by the cryptographic hash function used
 for WOTS+. The hash function is chosen to ensure an appropriate
 level of security. The value of m is the input length that can be
 processed by the signing algorithm. It is often the length of a
 message digest. The parameter w can be chosen from the set {4, 16}.
 A larger value of w results in shorter signatures but slower overall
 signing operations; it has little effect on security. Choices of w
 are limited to the values 4 and 16 since these values yield optimal
 trade-offs and easy implementation.

Huelsing, et al. Expires July 6, 2016 [Page 11]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

3.1.1.1. WOTS+ Functions

 The WOTS+ algorithm uses a keyed cryptographic hash function F. F
 accepts and returns byte strings of length n using keys of length n.
 Security requirements on F are discussed in Section 8. In addition,
 WOTS+ uses a pseudorandom generator G. G takes as input an n-byte
 key and a 16-byte index and generates pseudorandom outputs of length
 n. Security requirements on G are discussed in Section 8.

3.1.2. WOTS+ Chaining Function

 The chaining function (Algorithm 2) computes an iteration of F on an
 n-byte input using outputs of G. It takes a hash function address as
 input. This address will have the first 119 bits set to encode the
 address of this chain. In each iteration, one output of G is used as
 key for F and a second output is XORed to the intermediate result
 before it is processed by F. In the following, ADRS is a 16-byte
 hash function address as specified in Section 2.5 and SEED is an
 n-byte string, both used to generate the outputs of G. The chaining
 function takes as input an n-byte string X, a start index i, a number
 of steps s, as well as ADRS and SEED. The chaining function returns
 as output the value obtained by iterating F for s times on input X,
 using the outputs of G.

 Algorithm 2: Chaining Function

 if (s is equal to 0) {
 return X;
 }
 if ((i+s) > w-1) {
 return NULL;
 }
 byte[n] tmp = chain(X, i, s-1, SEED, ADRS);
 ADRS.setHashAddress(i+s-1);
 ADRS.setKeyBit(0);
 BM = G(SEED, ADRS);
 ADRS.setKeyBit(1);
 KEY = G(SEED, ADRS);
 tmp = F(KEY, tmp XOR BM);
 return tmp;

3.1.3. WOTS+ Private Key

 The private key in WOTS+, denoted by sk, is a length len array of
 n-byte strings. This private key MUST be only used to sign exactly
 one message. Each n-byte string MUST either be selected randomly
 from the uniform distribution or using a cryptographically secure
 pseudorandom procedure. In the latter case, the security of the used

Huelsing, et al. Expires July 6, 2016 [Page 12]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 procedure MUST at least match that of the WOTS+ parameters used. For
 a further discussion on pseudorandom key generation see the end of
 this section. The following pseudocode (Algorithm 3) describes an
 algorithm for generating sk.

 Algorithm 3: Generating a WOTS+ Private Key

 for (i = 0; i < len; i = i + 1) {
 set sk[i] to a uniformly random n-byte string;
 }
 return sk;

3.1.4. WOTS+ Public Key

 A WOTS+ key pair defines a virtual structure that consists of len
 hash chains of length w. The len n-byte strings in the secret key
 each define the start node for one hash chain. The public key
 consists of the end nodes of these hash chains. Therefore, like the
 secret key, the public key is also a length len array of n-byte
 strings. To compute the hash chain, the chaining function (Algorithm
 2) is used. A hash function address ADRS and a seed SEED has to be
 provided by the calling algorithm. This address will encode the
 address of the WOTS+ key pair within a greater structure. Hence, a
 WOTS+ algorithm MUST NOT manipulate any other fields of ADRS than
 chain address, hash address and key bit. Please note that the SEED
 used here is public information also available to a verifier. The
 following pseudocode (Algorithm 4) describes an algorithm for
 generating the public key pk, where sk is the private key.

 Algorithm 4 (WOTS_genPK): Generating a WOTS+ Public Key From a
 Private Key

 for (i = 0; i < len; i = i + 1) {
 ADRS.setChainAddress(i);
 pk[i] = chain(sk[i], 0, w-1, SEED, ADRS);
 }
 return pk;

3.1.5. WOTS+ Signature Generation

 A WOTS+ signature is a length len array of n-byte strings. The WOTS+
 signature is generated by mapping a message to len integers between 0
 and w - 1. To this end, the message is transformed into base w
 numbers using the base_w function defined in Section 2.6. Next, a
 checksum is computed and appended to the transformed message as len_2
 base w numbers using the base_w function. Each of the base w
 integers is used to select a node from a different hash chain. The
 signature is formed by concatenating the selected nodes. The

Huelsing, et al. Expires July 6, 2016 [Page 13]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 pseudocode for signature generation is shown below (Algorithm 5),
 where M is the message and sig is the resulting signature.

 Algorithm 5 (WOTS_sign): Generating a signature from a private key
 and a message

 csum = 0;

 // convert message to base w
 msg = base_w(M,w);

 // compute checksum
 for (i = 0; i < len_1; i = i + 1) {
 csum = csum + w - 1 - msg[i];
 }

 // Convert csum to base w
 csum = csum << (8 - ((len_2 * lg(w)) % 8));
 len_2_bytes = ceil((len_2 * lg(w)) / 8);
 msg = msg || base_w(toByte(csum, len_2_bytes), w);
 for (i = 0; i < len; i = i + 1) {
 ADRS.setChainAddress(i);
 sig[i] = chain(sk[i], 0, msg[i], SEED, ADRS);
 }
 return sig;

 The data format for a signature is given below.

 WOTS+ Signature

 +---------------------------------+
 | |
 | sig_ots[0] | n bytes
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | sig_ots[len-1] | n bytes
 | |
 +---------------------------------+

Huelsing, et al. Expires July 6, 2016 [Page 14]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

3.1.6. WOTS+ Signature Verification

 In order to verify a signature sig on a message M, the verifier
 computes a WOTS+ public key value from the signature. This can be
 done by "completing" the chain computations starting from the
 signature values, using the base w values of the message hash and its
 checksum. This step, called WOTS_pkFromSig, is described below in
 Algorithm 6. The result of WOTS_pkFromSig is then compared to the
 given public key. If the values are equal, the signature is
 accepted. Otherwise, the signature MUST be rejected.

 Algorithm 6 (WOTS_pkFromSig): Computing a WOTS+ public key from a
 message and its signature

 csum = 0;

 // convert message to base w
 msg = base_w(M,w);

 // compute checksum
 for (i = 0; i < len_1; i = i + 1) {
 csum = csum + w - 1 - msg[i];
 }

 // Convert csum to base w
 csum = csum << (8 - ((len_2 * lg(w)) % 8));
 len_2_bytes = ceil((len_2 * lg(w)) / 8);
 msg = msg || base_w(toByte(csum, len_2_bytes), w);
 for (i = 0; i < len; i = i + 1) {
 ADRS.setChainAddress(i);
 tmp_pk[i] = chain(sig[i], msg[i], w-1-msg[i], SEED, ADRS);
 }
 return tmp_pk;

 Note: XMSS uses WOTS_pkFromSig to compute a public key value and
 delays the comparison to a later point.

3.1.7. Pseudorandom Key Generation

 An implementation MAY use a cryptographically secure pseudorandom
 method to generate the secret key from a single n-byte value. For
 example, the method suggested in [BDH11] and explained below MAY be
 used. Other methods MAY be used. The choice of a pseudorandom
 method does not affect interoperability, but the cryptographic
 strength MUST match that of the used WOTS+ parameters.

 The advantage of generating the secret key elements from a random
 n-byte string is that only this n-byte string needs to be stored

Huelsing, et al. Expires July 6, 2016 [Page 15]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 instead of the full secret key. The key can be regenerated when
 needed. The suggested method from [BDH11] can be described using G.
 During key generation a uniformly random n-byte string S is sampled
 from a secure source of randomness. This string S is stored as
 secret key. The secret key elements are computed as sk[i] = G’(S,
 toByte(i,16)) whenever needed. Please note that this seed S MUST be
 different from the seed SEED used to randomize the hash function
 calls. Also, this seed S MUST be kept secret.

4. Schemes

 In this section, the eXtended Merkle Signature Scheme (XMSS) is
 described using WOTS+. XMSS comes in two flavors: First, a single-
 tree variant (XMSS) and second a multi-tree variant (XMSS^MT). Both
 allow combining a large number of WOTS+ key pairs under a single
 small public key. The main ingredient added is a binary hash tree
 construction. XMSS uses a single hash tree while XMSS^MT uses a tree
 of XMSS key pairs.

4.1. XMSS: eXtended Merkle Signature Scheme

 XMSS is a method for signing a potentially large but fixed number of
 messages. It is based on the Merkle signature scheme. XMSS uses
 five cryptographic components: WOTS+ as OTS method, two additional
 cryptographic hash functions H and H_m, a pseudorandom function
 PRF_m, and a pseudorandom generator G. One of the main advantages of
 XMSS with WOTS+ is that it does not rely on the collision resistance
 of the used hash functions but on weaker properties. Each XMSS
 public/private key pair is associated with a perfect binary tree,
 every node of which contains an n-byte value. Each tree leaf
 contains a special tree hash of a WOTS+ public key value. Each non-
 leaf tree node is computed by first concatenating the values of its
 child nodes, computing the XOR with a bitmask, and applying the keyed
 hash function H to the result. The bitmasks and the keys for the
 hash function H are generated from a (public) seed that is part of
 the public key using the pseudorandom generator G. The value
 corresponding to the root of the XMSS tree forms the XMSS public key
 together with the seed.

 To generate a key pair that can be used to sign 2^h messages, a tree
 of height h is used. XMSS is a stateful signature scheme, meaning
 that the secret key changes after every signature. To prevent one-
 time secret keys from being used twice, the WOTS+ key pairs are
 numbered from 0 to (2^h)-1 according to the related leaf, starting
 from index 0 for the leftmost leaf. The secret key contains an index
 that is updated after every signature, such that it contains the
 index of the next unused WOTS+ key pair.

Huelsing, et al. Expires July 6, 2016 [Page 16]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 A signature consists of the index of the used WOTS+ key pair, the
 WOTS+ signature on the message and the so-called authentication path.
 The latter is a vector of tree nodes that allow a verifier to compute
 a value for the root of the tree starting from a WOTS+ signature. A
 verifier computes the root value and compares it to the respective
 value in the XMSS public key. If they match, the signature is valid.
 The XMSS secret key consists of all WOTS+ secret keys and the actual
 index. To reduce storage, a pseudorandom key generation procedure,
 as described in [BDH11], MAY be used. The security of the used
 method MUST at least match the security of the XMSS instance.

4.1.1. XMSS Parameters

 XMSS has the following parameters:

 h : the height (number of levels - 1) of the tree

 n : the length in bytes of each node

 m : the length of the message digest

 w : the Winternitz parameter as defined for WOTS+ in Section 3.1

 There are N = 2^h leaves in the tree.

 For XMSS and XMSS^MT, secret and public keys are denoted by SK and
 PK. For WOTS+, secret and public keys are denoted by sk and pk,
 respectively. XMSS and XMSS^MT signatures are denoted by Sig. WOTS+
 signatures are denoted by sig.

4.1.2. XMSS Hash Functions

 Besides the cryptographic hash function F required by WOTS+, XMSS
 uses four more functions:

 A cryptographic hash function H. H accepts n-byte keys and byte
 strings of length (2 * n) and returns an n-byte string.

 A cryptographic hash function H_m. H_m accepts m-byte keys and
 byte strings of arbitrary length and returns an m-byte string.

 A pseudorandom function PRF_m. PRF_m accepts byte strings of
 arbitrary length and an m-byte key and returns an m-byte string.

 A pseudorandom generator G. G takes as input an n-byte key and a
 16-byte index and generates pseudorandom outputs of length n.

Huelsing, et al. Expires July 6, 2016 [Page 17]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

4.1.3. XMSS Private Key

 An XMSS private key contains N = 2^h WOTS+ private keys, the leaf
 index idx of the next WOTS+ private key that has not yet been used
 and SK_PRF, an m-byte key for the PRF. The leaf index idx is
 initialized to zero when the XMSS private key is created. The PRF
 key SK_PRF MUST be sampled from a secure source of randomness that
 follows the uniform distribution. The WOTS+ secret keys MUST be
 generated as described in Section 3.1. To reduce the secret key
 size, a cryptographic pseudorandom method MAY be used as discussed at
 the end of this section. For the following algorithm descriptions,
 the existence of a method getWOTS_SK(SK,i) is assumed. This method
 takes as inputs an XMSS secret key SK and an integer i and outputs
 the i^th WOTS+ secret key of SK.

4.1.4. Randomized Tree Hashing

 To improve readability we introduce a function RAND_HASH(LEFT, RIGHT,
 SEED, ADRS) that does the randomized hashing. It takes as input two
 n-byte values LEFT and RIGHT that represent the left and the right
 half of the hash function input, the seed SEED for G and the address
 ADRS of this hash function call. RAND_HASH first uses G with SEED
 and ADRS to generate a key KEY and n-byte bitmasks BM_0, BM_1. Then
 it returns the randomized hash H(KEY, (LEFT XOR BM_0)||(RIGHT XOR
 BM_1)).

 Algorithm 7: RAND_HASH

 ADRS.setKeyBit(0);
 ADRS.setBlockBit(0);
 BM_0 = G(SEED, ADRS);
 ADRS.setBlockBit(1);
 BM_1 = G(SEED, ADRS);
 ADRS.setKeyBit(1);
 ADRS.setBlockBit(0);
 KEY = G(SEED, ADRS);
 return H(KEY, (LEFT XOR BM_0) || (RIGHT XOR BM_1));

4.1.5. L-Trees

 To compute the leaves of the binary hash tree, a so-called L-tree is
 used. An L-tree is an unbalanced binary hash tree, distinct but
 similar to the main XMSS binary hash tree. The algorithm ltree
 (Algorithm 8) takes as input a WOTS+ public key pk and compresses it
 to a single n-byte value pk[0]. Towards this end it also takes an
 address ADRS as input that encodes the address of the L-tree. The
 algorithm uses G and the seed SEED generated during public key
 generation.

Huelsing, et al. Expires July 6, 2016 [Page 18]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 Algorithm 8: ltree

 unsigned int len’ = len;
 unsigned int i = 0;
 ADRS.setTreeHeight(0);
 while (len’ > 1) {
 for (i = 0; i < floor(len’ / 2); i = i + 1) {
 ADRS.setTreeIndex(i);
 pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
 }
 if (len’ % 2 == 1) {
 pk[floor(len’ / 2)] = pk[len’ - 1];
 }
 len’ = ceil(len’ / 2);
 ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
 }
 return pk[0];

4.1.6. TreeHash

 For the computation of the internal n-byte nodes of a Merkle tree,
 the subroutine treeHash (Algorithm 9) accepts an XMSS secret key SK,
 an unsigned integer s (the start index), an unsigned integer t (the
 target node height), a seed SEED, and an address ADRS that encodes
 the address of the containing tree. For the height of a node within
 a tree counting starts with the leaves at height zero. The treeHash
 algorithm returns the root node of a tree of height t with the
 leftmost leaf being the hash of the WOTS+ pk with index s. It is
 REQUIRED that s % 2^t = 0, i.e. that the leaf at index s is a left
 most leaf of a sub-tree of height t. Otherwise the hash-addressing
 scheme fails. The treeHash algorithm uses a stack holding up to
 (t-1) n-byte strings, with the usual stack functions push() and
 pop().

Huelsing, et al. Expires July 6, 2016 [Page 19]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 Algorithm 9: treeHash

 if(s % (1 << t) != 0) return -1;
 for (i = 0; i < 2^t; i = i + 1) {
 ADRS.setOTSBit(1);
 ADRS.setOTSAddress(s+i);
 pk = WOTS_genPK (getWOTS_SK(SK, s+i), SEED, ADRS);
 ADRS.setOTSBit(0);
 ADRS.setLTreeBit(1);
 ADRS.setLTreeAddress(s+i);
 node = ltree(pk, SEED, ADRS);
 ADRS.setLTreeBit(0);
 ADRS.setTreeHeight(0);
 ADRS.setTreeIndex(i+s);
 while (Top node on Stack has same height t’ as node) {
 ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
 node = RAND_HASH(Stack.pop(), node, SEED, ADRS);
 ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
 }
 Stack.push(node);
 }
 return Stack.pop();

4.1.7. XMSS Public Key

 The XMSS public key is computed as described in XMSS_genPK (Algorithm
 10). The algorithm takes the XMSS secret key SK, and the tree height
 h. The XMSS public key PK consists of the root of the binary hash
 tree and the seed SEED. SEED is generated as a uniformly random
 n-byte string. Although SEED is public, it is important that it is
 generated using a good entropy source. The root is computed using
 treeHash. For XMSS, there is only a single main tree. Hence, the
 used address is set to the all-zero-string.

 Algorithm 10: XMSS_genPK - Generate an XMSS public key from an XMSS
 private key

 set SEED to a uniformly random n-byte string;
 ADRS = toByte(0,16);
 root = treeHash(SK, 0, h, SEED, ADRS);
 PK = root || SEED;
 return PK;

 Public and private key generation MAY be interleaved to save space.
 Especially, when a pseudorandom method is used to generate the secret
 key, generation MAY be done when the respective WOTS+ key pair is
 needed by treeHash.

Huelsing, et al. Expires July 6, 2016 [Page 20]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 The format of an XMSS public key is given below.

 XMSS Public Key

 +---------------------------------+
 | algorithm OID |
 +---------------------------------+
 | |
 | root node | n bytes
 | |
 +---------------------------------+
 | |
 | SEED | n bytes
 | |
 +---------------------------------+

4.1.8. XMSS Signature

 An XMSS signature is a (4 + m + (len + h) * n)-byte string consisting
 of

 the index idx_sig of the used WOTS+ key pair (4 bytes),

 a byte string r used for randomized message hashing (m bytes),

 a WOTS+ signature sig_ots (len * n bytes),

 the so-called authentication path ’auth’ for the leaf associated
 with the used WOTS+ key pair (h * n bytes).

 The authentication path is an array of h n-byte strings. It contains
 the siblings of the nodes on the path from the used leaf to the root.
 It does not contain the nodes on the path itself. These nodes are
 needed by a verifier to compute a root node for the tree from the
 WOTS+ public key. A node Node is addressed by its position in the
 tree. Node(x,y) denotes the x^th node on level y with x = 0 being
 the leftmost node on a level. The leaves are on level 0, the root is
 on level h. An authentication path contains exactly one node on
 every layer 0 <= x <= h-1. For the i^th WOTS+ key pair, counting
 from zero, the j^th authentication path node is

 Node(j, floor(i / (2^j)) XOR 1)

 Given an XMSS secret key SK and seed SEED, all nodes in a tree are
 determined. Their value is defined in terms of treeHash(Algorithm
 9). Hence, one can compute the authentication path:

Huelsing, et al. Expires July 6, 2016 [Page 21]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 ADRS = toByte(0, 16);
 for (j = 0; j < h; j++) {
 k = floor(i / (2^j)) XOR 1;
 auth[j] = treeHash(SK, k * 2^j, j, SEED, ADRS);
 }

 The data format for a signature is given below.

 XMSS Signature

 +---------------------------------+
 | |
 | index idx_sig | 4 bytes
 | |
 +---------------------------------+
 | |
 | randomness r | m bytes
 | |
 +---------------------------------+
 | |
 | WOTS+ signature sig_ots | len * n bytes
 | |
 +---------------------------------+
 | |
 | auth[0] | n bytes
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | auth[h-1] | n bytes
 | |
 +---------------------------------+

4.1.9. XMSS Signature Generation

 To compute the XMSS signature of a message M with an XMSS private
 key, the signer first computes a randomized message digest. Then a
 WOTS+ signature of the message is computed using the next unused
 WOTS+ private key. Next, the authentication path is computed.
 Finally, the secret key is updated, i.e. idx is incremented. An
 implementation MUST NOT output the signature before the updated
 private key.

 The node values of the authentication path MAY be computed in any
 way. This computation is assumed to be performed by the subroutine

Huelsing, et al. Expires July 6, 2016 [Page 22]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 buildAuth for the function XMSS_sign, as below. The fastest
 alternative is to store all tree nodes and set the array in the
 signature by copying them, respectively. The least storage-intensive
 alternative is to recompute all nodes for each signature online.
 There exist several algorithms in between, with different time/
 storage trade-offs. For an overview see [BDS09]. Note that the
 details of this procedure are not relevant to interoperability; it is
 not necessary to know any of these details in order to perform the
 signature verification operation. As a consequence, buildAuth is not
 specified here.

 The algorithm XMSS_sign (Algorithm 11) described below calculates an
 updated secret key SK and a signature on a message M. XMSS_sign
 takes as inputs a message M of an arbitrary length, an XMSS secret
 key SK and seed SEED. It returns the byte string containing the
 concatenation of the updated secret key SK and the signature Sig.

 Algorithm 11: XMSS_sign - Generate an XMSS signature and update the
 XMSS secret key

 idx_sig = getIdx(SK);
 ADRS = toByte(0,16);
 auth = buildAuth(SK, idx_sig, SEED, ADRS);
 byte[m] r = PRF_m(getSK_PRF(SK), M);
 byte[m] M’ = H_m(r, M);
 ADRS.setOTSBit(1);
 ADRS.setOTSAddress(idx_sig);
 sig_ots = WOTS_sign(getWOTS_SK(SK, idx_sig), M’, SEED, ADRS);
 Sig = (idx_sig || r || sig_ots || auth);
 setIdx(SK, idx_sig + 1);
 return (SK || Sig);

4.1.10. XMSS Signature Verification

 An XMSS signature is verified by first computing the message digest
 using randomness r and a message M. Then the used WOTS+ public key
 pk_ots is computed from the WOTS+ signature using WOTS_pkFromSig.
 The WOTS+ public key in turn is used to compute the corresponding
 leaf using an L-tree. The leaf, together with index idx_sig and
 authentication path auth is used to compute an alternative root value
 for the tree. These first steps are done by XMSS_rootFromSig
 (Algorithm 12). The verification succeeds if and only if the
 computed root value matches the one in the XMSS public key. In any
 other case it MUST return fail.

 The main part of XMSS signature verification is done by the function
 XMSS_rootFromSig (Algorithm 12) described below. XMSS_rootFromSig
 takes as inputs an XMSS signature Sig, a message M, and seed SEED.

Huelsing, et al. Expires July 6, 2016 [Page 23]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 XMSS_rootFromSig returns an n-byte string holding the value of the
 root of a tree defined by the input data.

 Algorithm 12: XMSS_rootFromSig - Compute a root node using an XMSS
 signature, a message, and seed SEED

 byte[m] M’ = H_m(r, M);
 ADRS = toByte(0,16);
 ADRS.setOTSBit(1);
 ADRS.setOTSAddress(idx_sig);
 pk_ots = WOTS_pkFromSig(sig_ots, M’, SEED, ADRS);
 ADRS.setOTSBit(0);
 ADRS.setLTreeBit(1);
 ADRS.setLTreeAddress(idx_sig);
 byte[n][2] node;
 node[0] = ltree(pk_ots, SEED, ADRS);
 ADRS.setLTreeBit(0);
 ADRS.setTreeIndex(idx_sig);
 for (k = 0; k < h; k = k + 1) {
 ADRS.setTreeHeight(k);
 if (floor(idx_sig / (2^k)) % 2 is equal to 0) {
 ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
 node[1] = RAND_HASH(node[0], auth[k], SEED, ADRS);
 } else {
 ADRS.setTreeIndex(ADRS.getTreeIndex() - 1 / 2);
 node[1] = RAND_HASH(auth[k], node[0], SEED, ADRS);
 }
 node[0] = node[1];
 }
 return node[0];

 The full XMSS signature verification is depicted below. XMSS^MT uses
 only XMSS_rootFromSig and delegates the comparison to a later
 comparison of data depending on its output.

 Algorithm 13: XMSS_verify - Verify an XMSS signature using an XMSS
 signature, the corresponding XMSS public key and a message

 byte[n] node = XMSS_rootFromSig(Sig, M, getSEED(PK));
 if (node is equal to root in PK) {
 return true;
 } else {
 return false;
 }

Huelsing, et al. Expires July 6, 2016 [Page 24]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

4.1.11. Pseudorandom Key Generation

 An implementation MAY use a cryptographically secure pseudorandom
 method to generate the XMSS secret key from a single n-byte value.
 For example, the method suggested in [BDH11] and explained below MAY
 be used. Other methods MAY be used. The choice of a pseudorandom
 method does not affect interoperability, but the cryptographic
 strength MUST match that of the used XMSS parameters.

 For XMSS a similar method than the one used for WOTS+ can be used.
 The suggested method from [BDH11] can be described using G. During
 key generation a uniformly random n-byte string S is sampled from a
 secure source of randomness. This seed S MUST NOT be confused with
 the public seed SEED. The seed S MUST be independent of SEED and as
 it is the main secret, it MUST be kept secret. This seed S is used
 to generate an n-byte value S_ots for each WOTS+ key pair. The
 n-byte value S_ots can then be used to compute the respective WOTS+
 secret key using the method described in Section 3.1.7. The seeds
 for the WOTS+ key pairs are computed as S_ots[i] = G(S,i). The
 second parameter of G is the index i of the WOTS+ key pair,
 represented as 16-byte string in the common way. An advantage of
 this method is that a WOTS+ key can be computed using only len + 1
 evaluations of G when S is given.

4.1.12. Free Index Handling and Partial Secret Keys

 Some applications might require to work with partial secret keys or
 copies of secret keys. Examples include delegation of signing rights
 / proxy signatures, and load balancing. Such applications MAY use
 their own key format and MAY use a signing algorithm different from
 the one described above. The index in partial secret keys or copies
 of a secret key MAY be manipulated as required by the applications.
 However, applications MUST establish means that guarantee that each
 index and thereby each WOTS+ key pair is used to sign only a single
 message.

4.2. XMSS^MT: Multi-Tree XMSS

 XMSS^MT is a method for signing a large but fixed number of messages.
 It was first described in [HRB13]. It builds on XMSS. XMSS^MT uses
 a tree of several layers of XMSS trees. The trees on top and
 intermediate layers are used to sign the root nodes of the trees on
 the respective layer below. Trees on the lowest layer are used to
 sign the actual messages. All XMSS trees have equal height.

 Consider an XMSS^MT tree of total height h that has d layers of XMSS
 trees of height h / d. Then layer d - 1 contains one XMSS tree,

Huelsing, et al. Expires July 6, 2016 [Page 25]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 layer d - 2 contains 2^(h / d) XMSS trees, and so on. Finally, layer
 0 contains 2^(h - h / d) XMSS trees.

4.2.1. XMSS^MT Parameters

 In addition to all XMSS parameters, an XMSS^MT system requires the
 number of tree layers d, specified as an integer value that divides h
 without remainder. The same tree height h / d and the same
 Winternitz parameter w are used for all tree layers.

 All the trees on higher layers sign root nodes of other trees which
 are n-byte strings. Hence, no message compression is needed and
 WOTS+ is used to sign the root nodes themselves instead of their hash
 values. Hence the WOTS+ message length for these layers is n not m.
 Accordingly, the values of len_1, len_2 and len change for these
 layers. The parameters len_1_n, len_2_n, and len_n denote the
 respective values computed using n as message length for WOTS+.

4.2.2. XMSS Algorithms Without Message Hash

 As all XMSS trees besides those on layer 0 are used to sign short
 fixed length messages, the initial message hash can be omitted. In
 the description below XMSS_sign_wo_hash and XMSS_rootFromSig_wo_hash
 are versions of XMSS_sign and XMSS_rootFromSig, respectively, that
 omit the initial message hash. They are obtained by setting M’ = M
 in the above algorithms. Accordingly, the evaluations of H_m and
 PRF_m MUST be omitted. This also means that no randomization element
 r for the message hash is required. XMSS signatures generated by
 XMSS_sign_wo_hash and verified by XMSS_rootFromSig_wo_hash MUST NOT
 contain a value r.

4.2.3. XMSS^MT Private Key

 An XMSS^MT private key SK_MT consists of one reduced XMSS private key
 for each XMSS tree. These reduced XMSS private keys contain no
 pseudorandom function key and no index. Instead, SK_MT contains a
 single m-byte pseudorandom function key SK_PRF and a single (ceil(h /
 8))-byte index idx_MT. The index is a global index over all WOTS+
 key pairs of all XMSS trees on layer 0. It is initialized with 0.
 It stores the index of the last used WOTS+ key pair on the bottom
 layer, i.e. a number between 0 and 2^h - 1.

 The algorithm descriptions below uses a function getXMSS_SK(SK, x, y)
 that outputs the reduced secret key of the x^th XMSS tree on the y^th
 layer.

Huelsing, et al. Expires July 6, 2016 [Page 26]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

4.2.4. XMSS^MT Public Key

 The XMSS^MT public key PK_MT contains the root of the single XMSS
 tree on layer d-1 and the seed SEED. The pseudorandom generator G is
 used with SEED to generate the bitmasks and keys for all XMSS trees.
 Algorithm 14 shows pseudocode to generate PK_MT. First, the n-byte
 SEED is chosen uniformly at random. The n-byte root node of the top
 layer tree is computed using treeHash. The algorithm XMSSMT_genPK
 takes the XMSS^MT secret key SK_MT as an input and outputs an XMSS^MT
 public key PK_MT.

 Algorithm 14: XMSSMT_genPK - Generate an XMSS^MT public key from an
 XMSS^MT private key

 set SEED to a uniformly random n-byte string;
 ADRS = toByte(0,16);
 ADRS.setLayerAddress(d-1);
 root = treeHash(getXMSS_SK(SK_MT, 0, d - 1), 0, h / d, SEED, ADRS);
 PK_MT = root || SEED;
 return PK_MT;

 The format of an XMSS^MT public key is given below.

 XMSS^MT Public Key

 +---------------------------------+
 | algorithm OID |
 +---------------------------------+
 | |
 | root node | n bytes
 | |
 +---------------------------------+
 | |
 | SEED | n bytes
 | |
 +---------------------------------+

4.2.5. XMSS^MT Signature

 An XMSS^MT signature Sig_MT is a byte string of length (ceil(h / 8) +
 m + (h + len + (d - 1) * len_n) * n). It consists of

 the index idx_sig of the used WOTS+ key pair on the bottom layer
 (ceil(h / 8) bytes),

 a byte string r used for randomized message hashing (m bytes),

 one reduced XMSS signature ((h + len) * n bytes),

Huelsing, et al. Expires July 6, 2016 [Page 27]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 d-1 reduced XMSS signatures with message length n ((h + len_n) * n
 bytes).

 The reduced XMSS signatures contain no index idx and no byte string
 r. They only contain a WOTS+ signature sig_ots and an authentication
 path auth. The first reduced XMSS signature contains a WOTS+
 signature that consists of len n-byte elements. The remaining
 reduced XMSS signatures contain a WOTS+ signature on an n-byte
 message that consists of len_n n-byte elements.

 The data format for a signature is given below.

 XMSS^MT signature

 +---------------------------------+
 | |
 | index idx_sig | ceil(h / 8) bytes
 | |
 +---------------------------------+
 | |
 | randomness r | m bytes
 | |
 +---------------------------------+
 | |
 | (reduced) XMSS signature Sig | (h + len) * n bytes
 | (bottom layer 0) |
 | |
 +---------------------------------+
 | |
 | (reduced) XMSS signature Sig | (h + len_n) * n bytes
 | (layer 1) |
 | |
 +---------------------------------+
 | |
 ˜ ˜
 | |
 +---------------------------------+
 | |
 | (reduced) XMSS signature Sig | (h + len_n) * n bytes
 | (layer d-1) |
 | |
 +---------------------------------+

4.2.6. XMSS^MT Signature Generation

 To compute the XMSS^MT signature Sig_MT of a message M using an
 XMSS^MT private key SK_MT and seed SEED, XMSSMT_sign (Algorithm 15)
 described below uses XMSS_sign and XMSS_sign_wo_hash as defined in

Huelsing, et al. Expires July 6, 2016 [Page 28]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 Section 4.2.2. First, the signature index is set to idx. Next,
 PRF_m is used to compute a pseudorandom m-byte string r. This m-byte
 string is then used to compute a randomized message digest of length
 m. The message digest is signed using the WOTS+ key pair on the
 bottom layer with absolute index idx. The authentication path for
 the WOTS+ key pair is computed as well as the root of the containing
 XMSS tree. The root is signed by the parent XMSS tree. This is
 repeated until the top tree is reached.

 Algorithm 15: XMSSMT_sign - Generate an XMSS^MT signature and update
 the XMSS^MT secret key

 ADRS = toByte(0,16);
 SK_PRF = getSK_PRF(SK_MT);
 idx_sig = getIdx(SK_MT);
 setIdx(SK_MT, idx_sig + 1);
 Sig_MT = idx_sig;
 unsigned int idx_tree = (h - h/d) most significant bits of idx_sig;
 unsigned int idx_leaf = (h / d) least significant bits of idx_sig;
 SK = idx_leaf || SK_PRF || getXMSS_SK(SK_MT, idx_tree, 0);
 ADRS.setLayerAddress(0);
 ADRS.setTreeAddress(idx_tree);
 Sig_tmp = XMSS_sign(M, SK, SEED, ADRS);
 Sig_tmp = Sig_tmp without idx;
 Sig_MT = Sig_MT || Sig_tmp;
 for (j = 1; j < d; j = j + 1) {
 root = treeHash(SK, 0, h / d, SEED, ADRS);
 idx_leaf = (h / d) least significant bits of idx_tree;
 idx_tree = (h - j * (h / d)) most significant bits of idx_tree;
 SK = idx_leaf || SK_PRF || getXMSS_SK(SK_MT, idx_tree, j);
 ADRS.setLayerAddress(j);
 ADRS.setTreeAddress(idx_tree);
 Sig_tmp = XMSS_sign_wo_hash(root, SK, SEED, ADRS)
 with idx removed;
 Sig_MT = Sig_MT || Sig_tmp;
 }
 return SK_MT || Sig_MT;

 Algorithm 15 is only one method to compute XMSS^MT signatures.
 Especially, there exist time-memory trade-offs that allow to reduce
 the signing time to less than the signing time of an XMSS scheme with
 tree height h / d. These trade-offs prevent certain values from
 being recomputed several times by keeping a state and distribute all
 computations over all signature generations. Details can be found in
 [Huelsing13a].

Huelsing, et al. Expires July 6, 2016 [Page 29]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

4.2.7. XMSS^MT Signature Verification

 XMSS^MT signature verification (Algorithm 16) can be summarized as d
 XMSS signature verifications with small changes. First, only the
 message is hashed. The remaining XMSS signatures are on the root
 nodes of trees which have a fixed length. Second, instead of
 comparing the computed root node to a given value, a signature on the
 root is verified. Only the root node of the top tree is compared to
 the value in the XMSS^MT public key. XMSSMT_verify uses
 XMSS_rootFromSig and XMSS_rootFromSig_wo_hash. XMSSMT_verify takes
 as inputs an XMSS^MT signature Sig_MT, a message M and a public key
 PK_MT. It outputs a boolean.

 Algorithm 16: XMSSMT_verify - Verify an XMSS^MT signature Sig_MT on a
 message M using an XMSS^MT public key PK_MT

 idx = getIdx(Sig_MT);
 SEED = getSEED(PK_MT);
 ADRS = toByte(0,16);
 unsigned int idx_leaf = (h / d) least significant bits of idx;
 unsigned int idx_tree = (h - h / d) most significant bits of idx;
 Sig’ = leaf || getR(Sig_MT) || getXMSSSignature(Sig, 0);
 ADRS.setLayerAddress(0);
 ADRS.setTreeAddress(idx_tree);
 byte[n] node = XMSS_rootFromSig(Sig’, M, SEED, ADRS);
 for (j = 1; j < d; j = j + 1) {
 idx_leaf = (h / d) least significant bytes of idx_tree;
 idx_tree = (h - j * h / d) most significant bytes of idx_tree;
 Sig’ = idx_leaf || getXMSSSignature(Sig, j);
 ADRS.setLayerAddress(j);
 ADRS.setTreeAddress(idx_tree);
 node = XMSS_rootFromSig_wo_hash(Sig’, node, SEED, ADRS);
 }
 if (node is equal to getRoot(PK_MT)) {
 return true;
 } else {
 return false;
 }

4.2.8. Pseudorandom Key Generation

 Like for XMSS, an implementation MAY use a cryptographically secure
 pseudorandom method to generate the XMSS^MT secret key from a single
 n-byte value. For example, the method explained below MAY be used.
 Other methods MAY be used, too. The choice of a pseudorandom method
 does not affect interoperability, but the cryptographic strength MUST
 match that of the used XMSS parameters.

Huelsing, et al. Expires July 6, 2016 [Page 30]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 For XMSS^MT a method similar to that for XMSS and WOTS+ can be used.
 The method uses a G as pseudorandom generator. During key generation
 a uniformly random n-byte string S_MT is sampled from a secure source
 of randomness. This seed S_MT is used to generate one n-byte value S
 for each XMSS key pair. This n-byte value can be used to compute the
 respective XMSS secret key using the method described in
 Section 4.1.11. Let S[x][y] be the seed for the x^th XMSS secret key
 on layer y. The seeds are computed as S[x][y] = G(G(S, y), x). The
 second parameter of G is the index x (resp. level y), represented as
 16-byte string in the common way.

4.2.9. Free Index Handling and Partial Secret Keys

 The content of Section 4.1.12 also applies to XMSS^MT.

5. Parameter Sets

 This note provides a first basic set of parameter sets which are
 assumed to cover most relevant applicants. Parameter sets for two
 classical security levels are defined: 256 and 512 bits. Function
 output sizes are n = m = 32 and 64 bytes. Considering quantum-
 computer-aided attacks, these output sizes yield post-quantum
 security of 128 and 256 bits, respectively.

 For the n = m = 32 and n = m = 64 settings, we give parameters that
 use SHA2-256 and SHA2-512 as defined in [FIPS180], respectively, and
 ChaCha20 as defined in [RFC7539]. SHA2 does not provide a keyed-mode
 itself. To implement a keyed hash-function, SHA2-256(toByte(0,32) ||
 KEY || M) and SHA2-512(toByte(0,64) || KEY || M) are used. This
 construction is used for the functions F, H, and H_m. To implement
 PRF_m, HMAC-SHA2-256 and HMAC-SHA2-512 are used, respectively. The
 pseudorandom generator G for n=32 is implemented as ChaCha20 using
 SEED as key, the most significant 12 bytes of the address input as
 nonce and the least significant 4 bytes as counter. The output
 consists of the first 32 bytes of the key stream. The pseudorandom
 generator G for n=64 is implemented as HMAC-SHA2-512.

5.1. WOTS+ Parameters

 To fully describe a WOTS+ signature method, the parameters m, n, and
 w, as well as the functions F and G MUST be specified. This section
 defines several WOTS+ signature systems, each of which is identified
 by a name. Values for len are provided for convenience.

Huelsing, et al. Expires July 6, 2016 [Page 31]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 +------------------------+-------+----------+----+----+----+-----+
 | Name | F | G | m | n | w | len |
 +------------------------+-------+----------+----+----+----+-----+
 | WOTSP_SHA2-256_M32_W16 | SHA-2 | ChaCha20 | 32 | 32 | 16 | 67 |
 | | | | | | | |
 | WOTSP_SHA2-512_M64_W16 | SHA-2 | SHA-2 | 64 | 64 | 16 | 131 |
 +------------------------+-------+----------+----+----+----+-----+

 Table 1

 The implementation of the single functions is done as described
 above. XDR formats for WOTS+ are listed in Appendix A.

5.2. XMSS Parameters

 To fully describe an XMSS signature method, the parameters m, n, w,
 and h, as well as the functions F, H, H_m, PRF_m, and G MUST be
 specified. This section defines different XMSS signature systems,
 each of which is identified by a name. We define parameter sets that
 implement the functions using SHA2 and ChaCha20 for n = 32 and only
 SHA2 for n=64 as described above.

 +---------------------------+----+----+----+-----+----+
 | Name | m | n | w | len | h |
 +---------------------------+----+----+----+-----+----+
 | XMSS_SHA2-256_M32_W16_H10 | 32 | 32 | 16 | 67 | 10 |
 | | | | | | |
 | XMSS_SHA2-256_M32_W16_H16 | 32 | 32 | 16 | 67 | 16 |
 | | | | | | |
 | XMSS_SHA2-256_M32_W16_H20 | 32 | 32 | 16 | 67 | 20 |
 | | | | | | |
 | XMSS_SHA2-512_M64_W16_H10 | 64 | 64 | 16 | 131 | 10 |
 | | | | | | |
 | XMSS_SHA2-512_M64_W16_H16 | 64 | 64 | 16 | 131 | 16 |
 | | | | | | |
 | XMSS_SHA2-512_M64_W16_H20 | 64 | 64 | 16 | 131 | 20 |
 +---------------------------+----+----+----+-----+----+

 Table 2

 The XDR formats for XMSS are listed in Appendix B.

5.3. XMSS^MT Parameters

 To fully describe an XMSS^MT signature method, the parameters m, n,
 w, h, and d, as well as the functions F, H, H_m, PRF_m, and G MUST be
 specified. This section defines several XMSS^MT signature systems,
 each of which is identified by a name. We define parameter sets that

Huelsing, et al. Expires July 6, 2016 [Page 32]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 implement the functions using SHA2 and ChaCha20 for n = 32 and only
 SHA2 for n=64 as described above.

 +---------------------------------+----+----+----+-----+----+----+
 | Name | m | n | w | len | h | d |
 +---------------------------------+----+----+----+-----+----+----+
 | XMSSMT_SHA2-256_M32_W16_H20_D2 | 32 | 32 | 16 | 67 | 20 | 2 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H20_D4 | 32 | 32 | 16 | 67 | 20 | 4 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H40_D2 | 32 | 32 | 16 | 67 | 40 | 2 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H40_D4 | 32 | 32 | 16 | 67 | 40 | 4 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H40_D8 | 32 | 32 | 16 | 67 | 40 | 8 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H60_D3 | 32 | 32 | 16 | 67 | 60 | 3 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H60_D6 | 32 | 32 | 16 | 67 | 60 | 6 |
 | | | | | | | |
 | XMSSMT_SHA2-256_M32_W16_H60_D12 | 32 | 32 | 16 | 67 | 60 | 12 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H20_D2 | 64 | 64 | 16 | 131 | 20 | 2 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H20_D4 | 64 | 64 | 16 | 131 | 20 | 4 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H40_D2 | 64 | 64 | 16 | 131 | 40 | 2 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H40_D4 | 64 | 64 | 16 | 131 | 40 | 4 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H40_D8 | 64 | 64 | 16 | 131 | 40 | 8 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H60_D3 | 64 | 64 | 16 | 131 | 60 | 3 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H60_D6 | 64 | 64 | 16 | 131 | 60 | 6 |
 | | | | | | | |
 | XMSSMT_SHA2-512_M64_W16_H60_D12 | 64 | 64 | 16 | 131 | 60 | 12 |
 +---------------------------------+----+----+----+-----+----+----+

 Table 3

 XDR formats for XMSS^MT are listed in Appendix C.

6. Rationale

 The goal of this note is to describe the WOTS+, XMSS and XMSS^MT
 algorithms following the scientific literature. Other signature
 methods are out of scope and may be an interesting follow-on work.

Huelsing, et al. Expires July 6, 2016 [Page 33]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 The description is done in a modular way that allows to base a
 description of stateless hash-based signature algorithms like SPHINCS
 [BHH15] on it.

 The draft slightly deviates from the scientific literature using a
 tweak that prevents multi-target attacks against the underlying hash-
 function. The security assumptions for this tweak are discussed in
 Section 8. The main difference to literature is that security now
 relies either on the random oracle model or some other seemingly
 natural heuristic assumptions.

 We suggest the value w = 16 for the Winternitz parameter. No bigger
 values are included since the decrease in signature size then becomes
 less significant. Furthermore, the value w = 16 considerably
 simplifies the implementations of some of the algorithms. Please
 note that we do allow w = 4, but limit the specified parameter sets
 to w = 16 for efficiency reasons.

 The signature and public key formats are designed so that they are
 easy to parse. Each format starts with a 32-bit enumeration value
 that indicates all of the details of the signature algorithm and
 hence defines all of the information that is needed in order to parse
 the format.

 The enumeration values used in this note are palindromes, which have
 the same byte representation in either host order or network order.
 This fact allows an implementation to omit the conversion between
 byte order for those enumerations. Note however that the idx field
 used in XMSS and XMSS^MT signatures and secret keys must be properly
 converted to and from network byte order; this is the only field that
 requires such conversion. There are 2^32 XDR enumeration values,
 2^16 of which are palindromes, which is adequate for the foreseeable
 future. If there is a need for more assignments, non-palindromes can
 be assigned.

7. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) is requested to create
 three registries: one for WOTS+ signatures as defined in Section 3,
 one for XMSS signatures and one for XMSS^MT signatures; the latter
 two being defined in Section 4. For the sake of clarity and
 convenience, the first sets of WOTS+, XMSS, and XMSS^MT parameter
 sets are defined in Section 5. Additions to these registries require
 that a specification be documented in an RFC or another permanent and
 readily available reference in sufficient details to make
 interoperability between independent implementations possible. Each
 entry in the registry contains the following elements:

Huelsing, et al. Expires July 6, 2016 [Page 34]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 a short name, such as "XMSS_SHA2-512_M64_W16_H20",

 a positive number, and

 a reference to a specification that completely defines the
 signature method test cases that can be used to verify the
 correctness of an implementation.

 Requests to add an entry to the registry MUST include the name and
 the reference. The number is assigned by IANA. These number
 assignments SHOULD use the smallest available palindromic number.
 Submitters SHOULD have their requests reviewed by the IRTF Crypto
 Forum Research Group (CFRG) at cfrg@ietf.org. Interested applicants
 that are unfamiliar with IANA processes should visit
 http://www.iana.org.

 The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF
 (decimal 4,294,967,295) inclusive, will not be assigned by IANA, and
 are reserved for private use; no attempt will be made to prevent
 multiple sites from using the same value in different (and
 incompatible) ways [RFC2434].

 The WOTS+ registry is as follows.

 +-------------------------+-------------+--------------------+
 | Name | Reference | Numeric Identifier |
 +-------------------------+-------------+--------------------+
 | WOTSP_SHA2-256_M32_W16 | Section 5.1 | 0x01000001 |
 | | | |
 | WOTSP_SHA2-512_M64_W16 | Section 5.1 | 0x02000002 |
 +-------------------------+-------------+--------------------+

 Table 4

 The XMSS registry is as follows.

Huelsing, et al. Expires July 6, 2016 [Page 35]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 +----------------------------+-------------+--------------------+
 | Name | Reference | Numeric Identifier |
 +----------------------------+-------------+--------------------+
 | XMSS_SHA2-256_M32_W16_H10 | Section 5.2 | 0x01000001 |
 | | | |
 | XMSS_SHA2-256_M32_W16_H16 | Section 5.2 | 0x02000002 |
 | | | |
 | XMSS_SHA2-256_M32_W16_H20 | Section 5.2 | 0x03000003 |
 | | | |
 | XMSS_SHA2-512_M64_W16_H10 | Section 5.2 | 0x04000004 |
 | | | |
 | XMSS_SHA2-512_M64_W16_H16 | Section 5.2 | 0x05000005 |
 | | | |
 | XMSS_SHA2-512_M64_W16_H20 | Section 5.2 | 0x06000006 |
 +----------------------------+-------------+--------------------+

 Table 5

 The XMSS^MT registry is as follows.

Huelsing, et al. Expires July 6, 2016 [Page 36]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 +---------------------------------+-------------+-------------------+
 | Name | Reference | Numeric |
 | | | Identifier |
 +---------------------------------+-------------+-------------------+
XMSSMT_SHA2-256_M32_W16_H20_D2	Section 5.3	0x01000001
XMSSMT_SHA2-256_M32_W16_H20_D4	Section 5.3	0x02000002
XMSSMT_SHA2-256_M32_W16_H40_D2	Section 5.3	0x03000003
XMSSMT_SHA2-256_M32_W16_H40_D4	Section 5.3	0x04000004
XMSSMT_SHA2-256_M32_W16_H40_D8	Section 5.3	0x05000005
XMSSMT_SHA2-256_M32_W16_H60_D3	Section 5.3	0x06000006
XMSSMT_SHA2-256_M32_W16_H60_D6	Section 5.3	0x07000007
XMSSMT_SHA2-256_M32_W16_H60_D12	Section 5.3	0x08000008
XMSSMT_SHA2-512_M64_W16_H20_D2	Section 5.3	0x09000009
XMSSMT_SHA2-512_M64_W16_H20_D4	Section 5.3	0x0a00000a
XMSSMT_SHA2-512_M64_W16_H40_D2	Section 5.3	0x0b00000b
XMSSMT_SHA2-512_M64_W16_H40_D4	Section 5.3	0x0c00000c
XMSSMT_SHA2-512_M64_W16_H40_D8	Section 5.3	0x0d00000d
XMSSMT_SHA2-512_M64_W16_H60_D3	Section 5.3	0x0e00000e
XMSSMT_SHA2-512_M64_W16_H60_D6	Section 5.3	0x0f00000f
XMSSMT_SHA2-512_M64_W16_H60_D12	Section 5.3	0x01010101
 +---------------------------------+-------------+-------------------+

 Table 6

 An IANA registration of a signature system does not constitute an
 endorsement of that system or its security.

8. Security Considerations

 A signature system is considered secure if it prevents an attacker
 from forging a valid signature. More specifically, consider a
 setting in which an attacker gets a public key and can learn
 signatures on arbitrary messages of his choice. A signature system

Huelsing, et al. Expires July 6, 2016 [Page 37]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 is secure if, even in this setting, the attacker can not produce a
 message signature pair of his choosing such that the verification
 algorithm accepts.

 Preventing an attacker from mounting an attack means that the attack
 is computationally too expensive to be carried out. There exist
 various estimates when a computation is too expensive to be done.
 For that reason, this note only describes how expensive it is for an
 attacker to generate a forgery. Parameters are accompanied by a bit
 security value. The meaning of bit security is as follows. A
 parameter set grants b bits of security if the best attack takes at
 least 2^(b-1) bit operations to achieve a success probability of 1/2.
 Hence, to mount a successful attack, an attacker needs to perform 2^b
 bit operations on average. How the given values for bit security
 were estimated is described below.

8.1. Security Proofs

 There exist formal security proofs for schemes very similar to those
 described here in the literature [Huelsing13a]. These proofs show
 that an attacker has to break at least one out of certain security
 properties of the used hash functions and PRFs to forge a signature.
 The proofs in [Huelsing13a] do not consider the initial message
 compression and the extended randomized hashing used here. For the
 original schemes, these proofs show that an attacker has to break
 certain minimal security properties. In particular, it is not
 sufficient to break the collision resistance of the hash functions to
 generate a forgery.

 It is folklore that one can securely combine a secure signature
 scheme for fixed length messages with an initial message digest. It
 is easy to prove that an attacker either must break the security of
 the fixed-input-length signature scheme or the collision resistance
 of the used hash function. The descriptions of XMSS and XMSS^MT in
 this note use a known trick to prevent the applicability of collision
 attacks. Namely, the schemes use a randomized message hash. For
 technical reasons, it is not possible to formally prove in the
 standard model that the resulting scheme is secure if the hash
 function is not collision-resistant but fulfills some weaker security
 properties. However, in the random oracle model such a proof is
 trivial.

 While the basic randomized hashing used in the original descriptions
 of the schemes allows to prove that it is not enough for an adversary
 to break the collision resistance of the underlying hash function.
 However, it turns out that an attacker could launch a multi-target
 second-preimage attack. The (simplified) reason is that the
 adversary learns in the order of 2^h hash function input-output pairs

Huelsing, et al. Expires July 6, 2016 [Page 38]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 and it suffices to find a second-preimage for one out of those.
 Hence, an attacker can do a brute force search until he finds an
 input that matches one of the given outputs.

 The extended randomized hashing used here makes the hash function
 calls position dependent. Hence, the above attack does not work
 anymore because each hash function evaluation during an attack can
 only target one output value. This can also be shown formally.

 The given bit security values were estimated based on the complexity
 of the best known generic attacks against the required security
 properties of the used hash functions and PRFs.

8.2. Security Assumptions

 The security assumptions made to argue for the security of the
 described schemes are minimal. Any signature algorithm that allows
 arbitrary size messages relies on the security of a cryptographic
 hash function. For the schemes described here this is already
 sufficient to be secure. In contrast, common signature schemes like
 RSA, DSA, and ECDSA additionally rely on the conjectured hardness of
 certain mathematical problems.

8.3. Post-Quantum Security

 A post-quantum cryptosystem is a system that is secure against
 attackers with access to a reasonably sized quantum computer. At the
 time of writing this note, whether or not it is feasible to build
 such machine is an open conjecture. However, significant progress
 was made over the last few years in this regard.

 In contrast to RSA, DSA, and ECDSA, the described signature systems
 are post-quantum-secure if they are used with an appropriate
 cryptographic hash function. In particular, for post-quantum
 security, the size of m and n must be twice the size required for
 classical security. This is in order to protect against quantum
 square root attacks due to Grover’s algorithm. It has been shown
 that Grover’s algorithm is optimal for finding preimages and
 collisions.

9. Acknowledgements

 We would like to thank Scott Fluhrer, Burt Kaliski, Adam Langley,
 David McGrew, and Sean Parkinson for their help and comments.

Huelsing, et al. Expires July 6, 2016 [Page 39]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

10. References

10.1. Normative References

 [FIPS180] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS 180-4, 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434,
 DOI 10.17487/RFC2434, October 1998,
 <http://www.rfc-editor.org/info/rfc2434>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <http://www.rfc-editor.org/info/rfc4506>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <http://www.rfc-editor.org/info/rfc7539>.

10.2. Informative References

 [BDH11] Buchmann, J., Dahmen, E., and A. Huelsing, "XMSS - A
 Practical Forward Secure Signature Scheme Based on Minimal
 Security Assumptions", Lecture Notes in Computer Science
 volume 7071. Post-Quantum Cryptography, 2011.

 [BDS09] Buchmann, J., Dahmen, E., and M. Szydlo, "Hash-based
 Digital Signature Schemes", Book chapter Post-Quantum
 Cryptography, Springer, 2009.

 [BHH15] Bernstein, D., Hopwood, D., Huelsing, A., Lange, T.,
 Niederhagen, R., Papachristodoulou, L., Schneider, M.,
 Schwabe, P., and Z. Wilcox-O’Hearn, "SPHINCS: Practical
 Stateless Hash-Based Signatures", Lecture Notes in
 Computer Science volume 9056. Advances in Cryptology -
 EUROCRYPT, 2015.

 [DC14] McGrew, D. and M. Curcio, "Hash-based signatures", draft-
 mcgrew-hash-sigs-02 (work in progress), July 2014.

Huelsing, et al. Expires July 6, 2016 [Page 40]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 [HRB13] Huelsing, A., Rausch, L., and J. Buchmann, "Optimal
 Parameters for XMSS^MT", Lecture Notes in Computer Science
 volume 8128. CD-ARES, 2013.

 [Huelsing13]
 Huelsing, A., "W-OTS+ - Shorter Signatures for Hash-Based
 Signature Schemes", Lecture Notes in Computer Science
 volume 7918. Progress in Cryptology - AFRICACRYPT, 2013.

 [Huelsing13a]
 Huelsing, A., "Practical Forward Secure Signatures using
 Minimal Security Assumptions", PhD thesis TU Darmstadt,
 2013.

 [Kaliski15]
 Kaliski, B., "Panel: Shoring up the Infrastructure: A
 Strategy for Standardizing Hash Signatures", NIST Workshop
 on Cybersecurity in a Post-Quantum World, 2015.

 [Merkle79]
 Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Stanford University Information Systems
 Laboratory Technical Report 1979-1, 1979.

Appendix A. WOTS+ XDR Formats

 The WOTS+ signature and public key formats are formally defined using
 XDR [RFC4506] in order to provide an unambiguous, machine readable
 definition. Though XDR is used, these formats are simple and easy to
 parse without any special tools. To avoid the need to convert to and
 from network / host byte order, the enumeration values are all
 palindromes.

 WOTS+ parameter sets are defined using XDR syntax as follows:

 /* ots_algorithm_type identifies a particular
 signature algorithm */

 enum ots_algorithm_type {
 wotsp_reserved = 0x00000000,
 wotsp_sha2-256_m32_w16 = 0x01000001,
 wotsp_sha2-512_m64_w16 = 0x02000002,
 };

Huelsing, et al. Expires July 6, 2016 [Page 41]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 WOTS+ signatures are defined using XDR syntax as follows:

 /* Byte strings */

 typedef opaque bytestring32[32];
 typedef opaque bytestring64[64];

 union ots_signature switch (ots_algorithm_type type) {
 case wotsp_sha2-256_m32_w16:
 bytestring32 ots_sig_m32_len67[67];

 case wotsp_sha2-512_m64_w16:
 bytestring64 ots_sig_m64_len18[131];

 default:
 void; /* error condition */
 };

 WOTS+ public keys are defined using XDR syntax as follows:

 union ots_pubkey switch (ots_algorithm_type type) {
 case wotsp_sha2-256_m32_w16:
 bytestring32 ots_pubk_m32_len67[67];

 case wotsp_sha2-512_m64_w16:
 bytestring64 ots_pubk_m64_len18[131];

 default:
 void; /* error condition */
 };

Appendix B. XMSS XDR Formats

Huelsing, et al. Expires July 6, 2016 [Page 42]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 XMSS parameter sets are defined using XDR syntax as follows:

 /* Byte strings */

 typedef opaque bytestring4[4];

 /* Definition of parameter sets */

 enum xmss_algorithm_type {
 xmss_reserved = 0x00000000,

 /* 256 bit classical security, 128 bit post-quantum security */

 xmss_sha2-256_m32_w16_h10 = 0x01000001,
 xmss_sha2-256_m32_w16_h16 = 0x02000002,
 xmss_sha2-256_m32_w16_h20 = 0x03000003,

 /* 512 bit classical security, 256 bit post-quantum security */

 xmss_sha2-512_m64_w16_h10 = 0x04000004,
 xmss_sha2-512_m64_w16_h16 = 0x05000005,
 xmss_sha2-512_m64_w16_h20 = 0x06000006,
 };

 XMSS signatures are defined using XDR syntax as follows:

 /* Authentication path types */

 union xmss_path switch (xmss_algorithm_type type) {
 case xmss_sha2-256_m32_w16_h10:
 bytestring32 path_n32_t10[10];

 case xmss_sha2-256_m32_w16_h16:
 bytestring32 path_n32_t16[16];

 case xmss_sha2-256_m32_w16_h20:
 bytestring32 path_n32_t20[20];

 case xmss_sha2-512_m64_w16_h10:
 bytestring64 path_n64_t10[10];

 case xmss_sha2-512_m64_w16_h16:
 bytestring64 path_n64_t16[16];

 case xmss_sha2-512_m64_w16_h20:

Huelsing, et al. Expires July 6, 2016 [Page 43]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 bytestring64 path_n64_t20[20];

 default:
 void; /* error condition */
 };

 /* Types for XMSS random strings */

 union random_string_xmss switch (xmss_algorithm_type type) {
 case xmss_sha2-256_m32_w16_h10:
 case xmss_sha2-256_m32_w16_h16:
 case xmss_sha2-256_m32_w16_h20:
 bytestring32 rand_m32;

 case xmss_sha2-512_m64_w16_h10:
 case xmss_sha2-512_m64_w16_h16:
 case xmss_sha2-512_m64_w16_h20:
 bytestring64 rand_m64;

 default:
 void; /* error condition */
 };

 /* Corresponding WOTS+ type for given XMSS type */

 union xmss_ots_signature switch (xmss_algorithm_type type) {
 case xmss_sha2-256_m32_w16_h10:
 case xmss_sha2-256_m32_w16_h16:
 case xmss_sha2-256_m32_w16_h20:
 wotsp_sha2-256_m32_w16;

 case xmss_sha2-512_m64_w16_h10:
 case xmss_sha2-512_m64_w16_h16:
 case xmss_sha2-512_m64_w16_h20:
 wotsp_sha2-512_m64_w16;

 default:
 void; /* error condition */
 };

 /* XMSS signature structure */

 struct xmss_signature {
 /* WOTS+ key pair index */
 bytestring4 idx_sig;
 /* Random string for randomized hashing */
 random_string_xmss rand_string;
 /* WOTS+ signature */

Huelsing, et al. Expires July 6, 2016 [Page 44]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 xmss_ots_signature sig_ots;
 /* authentication path */
 xmss_path nodes;
 };

Huelsing, et al. Expires July 6, 2016 [Page 45]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 XMSS public keys are defined using XDR syntax as follows:

 /* Types for bitmask seed */

 union seed switch (xmss_algorithm_type type) {
 case xmss_sha2-256_m32_w16_h10:
 case xmss_sha2-256_m32_w16_h16:
 case xmss_sha2-256_m32_w16_h20:
 bytestring32 seed_n32;

 case xmss_sha2-512_m64_w16_h10:
 case xmss_sha2-512_m64_w16_h16:
 case xmss_sha2-512_m64_w16_h20:
 bytestring64 seed_n64;

 default:
 void; /* error condition */
 };

 /* Types for XMSS root node */

 union xmss_root switch (xmss_algorithm_type type) {
 case xmss_sha2-256_m32_w16_h10:
 case xmss_sha2-256_m32_w16_h16:
 case xmss_sha2-256_m32_w16_h20:
 bytestring32 root_n32;

 case xmss_sha2-512_m64_w16_h10:
 case xmss_sha2-512_m64_w16_h16:
 case xmss_sha2-512_m64_w16_h20:
 bytestring64 root_n64;

 default:
 void; /* error condition */
 };

 /* XMSS public key structure */

 struct xmss_public_key {
 xmss_root root; /* Root node */
 seed SEED; /* Seed for bitmasks */
 };

Huelsing, et al. Expires July 6, 2016 [Page 46]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

Appendix C. XMSS^MT XDR Formats

 XMSS^MT parameter sets are defined using XDR syntax as follows:

 /* Byte strings */

 typedef opaque bytestring3[3];
 typedef opaque bytestring5[5];
 typedef opaque bytestring8[8];

 /* Definition of parameter sets */

 enum xmssmt_algorithm_type {
 xmssmt_reserved = 0x00000000,

 /* 256 bit classical security, 128 bit post-quantum security */

 xmssmt_sha2-256_m32_w16_h20_d2 = 0x01000001,
 xmssmt_sha2-256_m32_w16_h20_d4 = 0x02000002,
 xmssmt_sha2-256_m32_w16_h40_d2 = 0x03000003,
 xmssmt_sha2-256_m32_w16_h40_d4 = 0x04000004,
 xmssmt_sha2-256_m32_w16_h40_d8 = 0x05000005,
 xmssmt_sha2-256_m32_w16_h60_d3 = 0x06000006,
 xmssmt_sha2-256_m32_w16_h60_d6 = 0x07000007,
 xmssmt_sha2-256_m32_w16_h60_d12 = 0x08000008,

 /* 512 bit classical security, 256 bit post-quantum security */

 xmssmt_sha2-512_m64_w16_h20_d2 = 0x09000009,
 xmssmt_sha2-512_m64_w16_h20_d4 = 0x0a00000a,
 xmssmt_sha2-512_m64_w16_h40_d2 = 0x0b00000b,
 xmssmt_sha2-512_m64_w16_h40_d4 = 0x0c00000c,
 xmssmt_sha2-512_m64_w16_h40_d8 = 0x0d00000d,
 xmssmt_sha2-512_m64_w16_h60_d3 = 0x0e00000e,
 xmssmt_sha2-512_m64_w16_h60_d6 = 0x0f00000f,
 xmssmt_sha2-512_m64_w16_h60_d12 = 0x01010101,
 };

 XMSS^MT signatures are defined using XDR syntax as follows:

 /* Type for XMSS^MT key pair index */
 /* Depends solely on h */

 union idx_sig_xmssmt switch (xmss_algorithm_type type) {
 case xmssmt_sha2-256_m32_w16_h20_d2:

Huelsing, et al. Expires July 6, 2016 [Page 47]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 case xmssmt_sha2-256_m32_w16_h20_d4:
 case xmssmt_sha2-512_m64_w16_h20_d2:
 case xmssmt_sha2-512_m64_w16_h20_d4:
 bytestring3 idx3;

 case xmssmt_sha2-256_m32_w16_h40_d2:
 case xmssmt_sha2-256_m32_w16_h40_d4:
 case xmssmt_sha2-256_m32_w16_h40_d8:
 case xmssmt_sha2-512_m64_w16_h40_d2:
 case xmssmt_sha2-512_m64_w16_h40_d4:
 case xmssmt_sha2-512_m64_w16_h40_d8:
 bytestring5 idx5;

 case xmssmt_sha2-256_m32_w16_h60_d3:
 case xmssmt_sha2-256_m32_w16_h60_d6:
 case xmssmt_sha2-256_m32_w16_h60_d12:
 case xmssmt_sha2-512_m64_w16_h60_d3:
 case xmssmt_sha2-512_m64_w16_h60_d6:
 case xmssmt_sha2-512_m64_w16_h60_d12:
 bytestring8 idx8;

 default:
 void; /* error condition */
 };

 union random_string_xmssmt switch (xmssmt_algorithm_type type) {
 case xmssmt_sha2-256_m32_w16_h20_d2:
 case xmssmt_sha2-256_m32_w16_h20_d4:
 case xmssmt_sha2-256_m32_w16_h40_d2:
 case xmssmt_sha2-256_m32_w16_h40_d4:
 case xmssmt_sha2-256_m32_w16_h40_d8:
 case xmssmt_sha2-256_m32_w16_h60_d3:
 case xmssmt_sha2-256_m32_w16_h60_d6:
 case xmssmt_sha2-256_m32_w16_h60_d12:
 bytestring32 rand_m32;

 case xmssmt_sha2-512_m64_w16_h20_d2:
 case xmssmt_sha2-512_m64_w16_h20_d4:
 case xmssmt_sha2-512_m64_w16_h40_d2:
 case xmssmt_sha2-512_m64_w16_h40_d4:
 case xmssmt_sha2-512_m64_w16_h40_d8:
 case xmssmt_sha2-512_m64_w16_h60_d3:
 case xmssmt_sha2-512_m64_w16_h60_d6:
 case xmssmt_sha2-512_m64_w16_h60_d12:
 bytestring64 rand_m64;

 default:
 void; /* error condition */

Huelsing, et al. Expires July 6, 2016 [Page 48]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 };

 struct xmss_reduced_bottom {
 xmss_ots_signature sig_ots; /* WOTS+ signature */
 xmss_path nodes; /* authentication path */
 };

 /* Type for individual reduced XMSS signatures on higher layers */

 union xmss_reduced_others (xmss_algorithm_type type) {
 case xmssmt_sha2-256_m32_w16_h20_d2:
 case xmssmt_sha2-256_m32_w16_h20_d4:
 bytestring32 xmss_reduced_n32_t87[87];

 case xmssmt_sha2-256_m32_w16_h40_d2:
 case xmssmt_sha2-256_m32_w16_h40_d4:
 case xmssmt_sha2-256_m32_w16_h40_d8:
 bytestring32 xmss_reduced_n32_t107[107];

 case xmssmt_sha2-256_m32_w16_h60_d3:
 case xmssmt_sha2-256_m32_w16_h60_d6:
 case xmssmt_sha2-256_m32_w16_h60_d12:
 bytestring32 xmss_reduced_n32_t127[127];

 case xmssmt_sha2-512_m64_w16_h20_d2:
 case xmssmt_sha2-512_m64_w16_h20_d4:
 bytestring64 xmss_reduced_n64_t151[151];

 case xmssmt_sha2-512_m64_w16_h40_d2:
 case xmssmt_sha2-512_m64_w16_h40_d4:
 case xmssmt_sha2-512_m64_w16_h40_d8:
 bytestring64 xmss_reduced_n64_t171[171];

 case xmssmt_sha2-512_m64_w16_h60_d3:
 case xmssmt_sha2-512_m64_w16_h60_d6:
 case xmssmt_sha2-512_m64_w16_h60_d12:
 bytestring64 xmss_reduced_n64_t191[191];

 default:
 void; /* error condition */
 };

 /* xmss_reduced_array depends on d */

 union xmss_reduced_array (xmss_algorithm_type type) {
 case xmssmt_sha2-256_m32_w16_h20_d2:
 case xmssmt_sha2-512_m64_w16_h20_d2:
 case xmssmt_sha2-256_m32_w16_h40_d2:

Huelsing, et al. Expires July 6, 2016 [Page 49]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 case xmssmt_sha2-512_m64_w16_h40_d2:
 xmss_reduced_others xmss_red_arr_d2[1];

 case xmssmt_sha2-256_m32_w16_h60_d3:
 case xmssmt_sha2-512_m64_w16_h60_d3:
 xmss_reduced_others xmss_red_arr_d3[2];

 case xmssmt_sha2-256_m32_w16_h20_d4:
 case xmssmt_sha2-512_m64_w16_h20_d4:
 case xmssmt_sha2-256_m32_w16_h40_d4:
 case xmssmt_sha2-512_m64_w16_h40_d4:
 xmss_reduced_others xmss_red_arr_d4[3];

 case xmssmt_sha2-256_m32_w16_h60_d6:
 case xmssmt_sha2-512_m64_w16_h60_d6:
 xmss_reduced_others xmss_red_arr_d6[5];

 case xmssmt_sha2-256_m32_w16_h40_d8:
 case xmssmt_sha2-512_m64_w16_h40_d8:
 xmss_reduced_others xmss_red_arr_d8[7];

 case xmssmt_sha2-256_m32_w16_h60_d12:
 case xmssmt_sha2-512_m64_w16_h60_d12:
 xmss_reduced_others xmss_red_arr_d12[11];

 default:
 void; /* error condition */
 };

 /* XMSS^MT signature structure */

 struct xmssmt_signature {
 /* WOTS+ key pair index */
 idx_sig_xmssmt idx_sig;
 /* Random string for randomized hashing */
 random_string_xmssmt randomness;
 /* Reduced bottom layer XMSS signature */
 xmss_reduced_bottom;
 /* Array of reduced XMSS signatures with message length n */
 xmss_reduced_array;
 };

 XMSS^MT public keys are defined using XDR syntax as follows:

 /* Types for bitmask seed */

Huelsing, et al. Expires July 6, 2016 [Page 50]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 union seed switch (xmssmt_algorithm_type type) {
 case xmssmt_sha2-256_m32_w16_h20_d2:
 case xmssmt_sha2-256_m32_w16_h40_d4:
 case xmssmt_sha2-256_m32_w16_h60_d6:
 case xmssmt_sha2-256_m32_w16_h20_d4:
 case xmssmt_sha2-256_m32_w16_h40_d8:
 case xmssmt_sha2-256_m32_w16_h60_d12:
 case xmssmt_sha2-256_m32_w16_h40_d2:
 case xmssmt_sha2-256_m32_w16_h60_d3:
 bytestring32 seed_n32;

 case xmssmt_sha2-512_m64_w16_h20_d2:
 case xmssmt_sha2-512_m64_w16_h40_d4:
 case xmssmt_sha2-512_m64_w16_h60_d6:
 case xmssmt_sha2-512_m64_w16_h20_d4:
 case xmssmt_sha2-512_m64_w16_h40_d8:
 case xmssmt_sha2-512_m64_w16_h60_d12:
 case xmssmt_sha2-512_m64_w16_h40_d2:
 case xmssmt_sha2-512_m64_w16_h60_d3:
 bytestring64 seed_n64;

 default:
 void; /* error condition */
 };

 /* Types for XMSS^MT root node */

 union xmssmt_root switch (xmssmt_algorithm_type type) {
 case xmssmt_sha2-256_m32_w16_h20_d2:
 case xmssmt_sha2-256_m32_w16_h20_d4:
 case xmssmt_sha2-256_m32_w16_h40_d2:
 case xmssmt_sha2-256_m32_w16_h40_d4:
 case xmssmt_sha2-256_m32_w16_h40_d8:
 case xmssmt_sha2-256_m32_w16_h60_d3:
 case xmssmt_sha2-256_m32_w16_h60_d6:
 case xmssmt_sha2-256_m32_w16_h60_d12:
 bytestring32 root_n32;

 case xmssmt_sha2-512_m64_w16_h20_d2:
 case xmssmt_sha2-512_m64_w16_h20_d4:
 case xmssmt_sha2-512_m64_w16_h40_d2:
 case xmssmt_sha2-512_m64_w16_h40_d4:
 case xmssmt_sha2-512_m64_w16_h40_d8:
 case xmssmt_sha2-512_m64_w16_h60_d3:
 case xmssmt_sha2-512_m64_w16_h60_d6:
 case xmssmt_sha2-512_m64_w16_h60_d12:
 bytestring64 root_n64;

Huelsing, et al. Expires July 6, 2016 [Page 51]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 default:
 void; /* error condition */
 };

 /* XMSS^MT public key structure */

 struct xmssmt_public_key {
 xmssmt_root root; /* Root node */
 seed SEED; /* Seed for bitmasks */
 };

Appendix D. Changed since draft-irtf-cfrg-xmss-hash-based-signatures-01

 1: Renamed m to len_X in description of base_w.

 2: base_w now uses big-endian byte order.

 3: Changed base_w example to use w=16 instead of w=4.

 4: toByte now uses big-endian byte order.

 5: The OID for the WOTS+ signatures is now omitted. For the correct
 use of WOTS+ in combination with XMSS or XMSS^MT please have a look
 at Section 5.

 6: Corrected WOTS_sign and WOTS_pkFromSig. In the two lines

 csum = csum << (8 - (len_2 % 8));
 len_2_bytes = ceil(len_2 / 8);

 len_2 had to be multiplied by lg(w):

 csum = csum << (8 - ((len_2 * lg(w)) % 8));
 len_2_bytes = ceil((len_2 * lg(w)) / 8);

 7: For WOTS+ signature verification the sentence "Otherwise, the
 signature is rejected" was changed to "Otherwise, the signature MUST
 be rejected.".

 8: Removed "padded with zeros in the most significant bit positions"
 in Section 2.4.

 9: Changed "pk[floor(l / 2) + 1] = pk[l];" to "pk[floor(l / 2)] =
 pk[l-1];" and "unsigned int j = 0;" to "unsigned int i = 0;" in
 algorithm 8.

Huelsing, et al. Expires July 6, 2016 [Page 52]

Internet-Draft XMSS: Extended Hash-Based Signatures January 2016

 10: Changed "ADRS.setOTSBit(0)" to "ADRS.setOTSBit(1)" in algorithm
 11.

 11: Changed "setR" to "getR" in algorithm 16.

Authors’ Addresses

 Andreas Huelsing
 TU Eindhoven
 P.O. Box 513
 Eindhoven 5600 MB
 The Netherlands

 Email: ietf@huelsing.net

 Denis Butin
 TU Darmstadt
 Hochschulstrasse 10
 Darmstadt 64289
 Germany

 Email: dbutin@cdc.informatik.tu-darmstadt.de

 Stefan-Lukas Gazdag
 genua GmbH
 Domagkstrasse 7
 Kirchheim bei Muenchen 85551
 Germany

 Email: stefan-lukas_gazdag@genua.eu

 Aziz Mohaisen
 SUNY Buffalo
 323 Davis Hall
 Buffalo, NY 14260
 US

 Phone: +1 716 645-1592
 Email: mohaisen@buffalo.edu

Huelsing, et al. Expires July 6, 2016 [Page 53]

