V\EBPUSH M Thonson

I nternet-Draft Mozilla
I ntended status: Standards Track E. Damaggi o
Expires: January 20, 2016 B. Raynor, Ed.

M crosoft

July 19, 2015

CGeneric Event Delivery Using HITP Push
draft-ietf-webpush-protocol-00

Abstract

A sinple protocol for the delivery of realtinme events to user agents
is described. This schenme uses HTTP/ 2 server push.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi mnum of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on January 20, 2016.
Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’s Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions wth respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided w thout warranty as
described in the Sinplified BSD License.

Thonson, et al. Expi res January 20, 2016 [Page 1]

I nternet-Draft HTTP Web Push July 2015

Tabl e of Contents

1. Introduction . 2
1.1. Conventions and Ternlnology . 3
2. Overview . . 4
2.1. HITP Resources . . 5
3. Subscribing for Push Nbssages . . . 6
4. Subscribing for Push Message Recelpts . 7
5. Requesting Push Message Delivery . . 7
5.1. Requesting Push Message Receipts 8
5.2. Push Message Tine-To-Live . . 8
6. Receiving Push Messages . . Ce e e 9
6.1. Acknow edgi ng Push Nbssages e I |
6.2. Receiving Push Message Receipts 11
7. Qperational Considerations 12
7.1. Load Managenent . . 4
7.2. Push Message Explratlon e %4
7.3. Subscription Expiration 13
7.4. Inmplications for Appllcatlon Rellablllty e
8. Security Considerations . . . e
8.1. Confidentiality from Push SerV|ce Access e v
8.2 Privacy Considerations 15
8.3 Aut hori zation . . . e e o« 16
8.4. Denial of Service CDnS|derat|ons T
8.5. Logging Risks ... 17
9. | ANA Considerations . . . e
9.1 Header Field Rbglstratlons e e e e 18
9.2. Link Relation URNs 18
10. Acknow edgenents .. 19
11. References . . T R
11.1. Normative References e K
11.2. Informative References 20
Authors’ Addresses 002
1. Introduction

Many applications on nobile and enbedded devi ces require continuous
access to network communications so that real-tine events - such as
incomng calls or nessages - can be delivered (or "pushed") in a
timely fashion. These devices typically have limted power reserves,
so finding nore efficient ways to serve application requirenents
greatly benefits the application ecosystem

One significant contributor to power usage is the radio. Radio

communi cations consune a significant portion of the energy budget on
a W rel ess devi ce.

Thonson, et al. Expi res January 20, 2016 [Page 2]

I nternet-Draft HTTP Web Push July 2015

Uncoor di nated use of persistent connections or sessions fromnultiple
applications can contribute to unnecessary use of the device radio,
since each independent session independently incurs overheads. In
particul ar, keep alive traffic used to ensure that m ddl eboxes do not
prematurely tinme out sessions, can result in significant waste.

Mai nt enance traffic tends to dom nate over the long term since
events are relatively rare.

Consolidating all real-tine events into a single session ensures nore
ef ficient use of network and radi o resources. A single service
consolidates all events, distributing those events to applications as
they arrive. This requires just one session, avoiding duplicated
over head costs.

The WBC Wb Push API [API] describes an APl that enables the use of a
consol i dat ed push service fromweb applications. This expands on
that work by describing a protocol that can be used to:

0 request the delivery of a push nessage to a user agent,
0 create new push nessage delivery subscriptions, and
o nonitor for new push nessages.

Requesting the delivery of events is particularly inportant for the
Web Push API. The subscription, managenent and nonitoring functions
are currently fulfilled by proprietary protocols; these are adequate,
but do not offer any of the advantages that standardization affords.

Thi s docunent intentionally does not describe how a push service is
di scovered. Discovery of push services is left for future efforts,
if it turns out to be necessary at all. User agents are expected to
be configured with a URL for a push servi ce.

1.1. Conventions and Term nol ogy

In cases where normative | anguage needs to be enphasized, this
docunent falls back on established shorthands for expressing
interoperability requirenments on inplenentations: the capitalized
words "MJST", "MJST NOT", "SHOULD' and "MAY". The neani ng of these
is described in [RFC2119].

Thi s docunent defines the follow ng terns:
application: Both the sender and ultinmate consunmer of push nessages.

Many applications have conponents that are run on a user agent and
ot her conponents that run on servers.

Thonson, et al. Expi res January 20, 2016 [Page 3]

I nternet-Draft HTTP Web Push July 2015
application server: The conponent of an application that runs on a
server and requests the delivery of a push nessage.
push nessage subscription: A nmessage delivery context that is
establ i shed between the user agent and the push service and shared
with the application server. Al push nessages are associ ated
with a push nmessage subscription.

push nessage: A nessage sent froman application server to a user
agent via a push service.

push nmessage receipt: A nessage delivery confirmation sent fromthe
push server to the application server

push service: A service that delivers push nessages to user agents.

user agent: A device and software that is the recipient of push
nmessages.

Exanples in this docunent use the HTTP/ 1.1 nmessage format [RFC7230].

Many of the exchanges can be conpl eted using HTTP/ 1.1, where HITP/ 2

i s necessary, the nore verbose frame format from [RFC7540] is used.
2. Overview

A general nodel for push services includes three basic actors: a user
agent, a push service, and an application (server).

|
| Push Message R |
| mrmmeee e | |

At the very beginning of the process, a new nessage subscription is
created by the user agent and then distributed to its application

Thonson, et al. Expi res January 20, 2016 [Page 4]

I nternet-Draft HTTP Web Push July 2015

server. This subscription is the basis of all future interactions
bet ween the actors.

To offer nmore control for authorization, a nessage subscription is
nodel ed as two resources with different capabilities:

0 A subscription resource is used to receive nessages froma
subscription and to delete a subscription. It is private to the
user agent.

0 A push resource is used to send nessages to a subscription. It is
public and shared by the user agent with its application server.

It is expected that a unique subscription will be distributed to each
appl i cation; however, there are no inherent cardinality constraints
in the protocol. Miltiple subscriptions mght be created for the
sane application, or nmultiple applications could use the sane
subscription. Note however that sharing subscriptions has security
and privacy inplications.

Subscriptions have a limted lifetime. They can also be term nated
by either the push service or user agent at any time. User agents
and application servers nust be prepared to manage changes in
subscription state.

2. 1. HTTP Resour ces

This protocol uses HITP resources [RFC7230] and link relations
[RFC5988]. The follow ng resources are defined:

push service: This resource is used to create push nessage
subscriptions (see Section 3). A URL for the push service is
configured into user agents.

push nmessage subscription: This resource provides read and del ete
access for a nessage subscription. A user agent receives push
messages (Section 6) using a push nessage subscription. Every
push nessage subscription has exactly one push resource associ at ed
withit.

push: A push resource is used by the application server to request
the delivery of a push nessage (see Section 5). A link relation
of type "urn:ietf:parans: push” is used to identify a push
resource.

push nessage: A push nessage resource is created to identify push
nmessages that have been accepted by the push service. The push

Thonson, et al. Expi res January 20, 2016 [Page 5]

I nternet-Draft HTTP Web Push July 2015

message resource is also used to acknow edge recei pt of a push
nmessage.

recei pt subscribe: A receipt subscribe resource is used by an
application server to create a receipt subscription (see
Section 4). Alink relation of type
"urn:ietf:parans: push:receipt” is used to identity a receipt
subscri be resource.

recei pt subscription: An application server receives delivery
confirmations (Section 5.1) for push nessages using a receipt
subscri ption.

3. Subscribing for Push Messages

A user agent sends a POST request to its configured push service
resource to create a new subscription

POST /subscribe/ HITP/1.1
Host: push. exanpl e. net

A response with a 201 (Created) status code includes a URI for a new
push nmessage subscription resource in the Location header field.

The push server MJST provide a URI for the push resource
corresponding to the push nmessage subscription using a link relation
of type "urn:ietf:parans: push”

The push server MJST provide a URI for a receipt subscribe resource
inalink relation of type "urn:ietf:parans: push:receipt"”.

An application-specific nethod is used to distribute the push and
recei pt subscribe URIs to the application server. Confidentiality
protection and application server authentication MJST be used to
ensure that these URIs are not disclosed to unauthorized recipients
(see Section 8.3).

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:52 GVl
Li nk: </ p/JzLQ@BrazJf FBROaqvOVsLrt 54wdr JUsV>;
rel ="urn:ietf:parans: push”
Li nk: </receipts/xj TG79I 3Vupt NWEODs Fu4i hT97aE6UQ]>;
rel ="urn:ietf:parans: push:receipt”
Location: https://push. exanpl e. net/s/ LBhhwOOohO W 4G 971UGsB7sdQGUI bx
Cache- Control : max-age: 864000, private

Thonson, et al. Expi res January 20, 2016 [Page 6]

I nternet-Draft HTTP Web Push July 2015

4.

Subscri bing for Push Message Receipts

An application server requests the creation of a receipt subscription
by sending a HTTP POST request to the receipt subscribe resource
distributed to the application server by a user agent.

PCST /recei pts/ xj TG/91 3Vupt N\E0ODsFu4i hT97aE6UQI HTTP/ 1.1
Host: push. exanpl e. net

A successful response with a 201 (Created) status code includes a UR
for the receipt subscription resource in the Location header field.

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:52 GVl
Location: https://push. exanpl e. net/r/3Zt1 4YVNBnUUZhuoChl 6omiv&GAZMOnpN

An application server that sends push nessages to a |l arge popul ation
of user agents incurs a significant load if it has to nonitor a
recei pt subscription for each user agent. Reuse of receipt
subscriptions is critical in reducing |load on application servers. A
recei pt subscription can be used for all resources that have the sane
recei pt subscri be URI

A push service SHOULD provide the sane recei pt subscribe UR to al
user agents. Application servers SHOULD reuse recei pt subscription
URIs if the receipt subscribe URI provided with the push resource is
identical to the one used to create the recei pt subscription.
Checking that the recei pt subscribe URI is identical allows the
application server to avoid creating unnecessary receipt

subscri ptions.

Requesti ng Push Message Delivery

An application server requests the delivery of a push nessage by
sending a HTTP request to a push resource distributed to the
application server by a user agent. The push nessage is included in
t he body of the request.

Thonson, et al. Expi res January 20, 2016 [Page 7]

I nternet-Draft HTTP Web Push July 2015

POST / p/ JzL@Br azJf FBROaqvOMVsLrt 54wdr JUsV HTTP/ 1. 1

Host: push. exanpl e. net

Push- Recei pt: https://push. exanpl e. net/r/3Zt 1 4YVNBnUUZhuoChl 6omi&ZMBnpN
Content - Type: text/plain;charset=utf8

Content-Length: 36

i ChYul 3j Mzt 3i r 20P8r _j gRR- dSuN182x7i B

A 201 (Created) response indicates that the push nessage was
accepted. A URI for the push nessage resource that was created in
response to the request is included in the Location header field.
This does not indicate that the nessage was delivered to the user
agent .

HTTP/ 1.1 201 Created
Date: Thu, 11 Dec 2014 23:56:55 GMI
Location: https://push. exanpl e. net/d/ gDl YHNcf Al PP_5I TVvURr - d6B& YnTRnk

A push service MAY generate a 413 (Payl oad Too Large) status code in
response to requests that include an entity body that is too |arge.
Push services MJUST NOT generate a 413 status code in responses to an
entity body that is 4k (4096 bytes) or less in size.

5.1. Requesting Push Message Receipts

An application server can use the Push-Receipt header field to
request a confirmation fromthe push service when a push nessage is
deli vered and acknow edged by the user agent. The Push-Recei pt
header field is a URI -Reference as defined in Section 2.7 of

[RFC7230] .

Push- Recei pt = URI-reference

The application sets the Push-Recei pt header field value to a receipt
subscription URI. This receipt subscription resource MIST be created
fromthe sanme recei pt subscribe resource which was returned with the
push nessage subscription response (see Section 3).

5.2. Push Message Tinme-To-Live
A push service can inprove the reliability of push nessage delivery
consi derably by storing push nessages for a period. User agents are

often only intermttently connected, and so benefit from having short
term nessage storage at the push service.

Thonson, et al. Expi res January 20, 2016 [Page 8]

I nternet-Draft HTTP Web Push July 2015
Del ayi ng delivery mght also be used to batch comunication with the
user agent, thereby conserving radi o resources.

Some push nessages are not useful once a certain period of tine
el apses. Delivery of nessages after they have ceased to be rel evant

is wasteful. For exanple, if the push nessage contains a cal
notification, receiving a nessage after the caller has abandoned the
call is of no value; the application at the user agent is forced to

suppress the nessage so that it does not generate a useless alert.

An application server can use the TTL header field to limt the tine
that a push nessage is retained by a push service. The TTL header
field contains a value in seconds that describes how |l ong a push
nmessage is retained by the push service.

TTL = 1*DIG T

Once the Tine-To-Live (TTL) period el apses, the push service MJST
remove the push nessage and cease any attenpt to deliver it to the
user agent. A push service mght retain values for a short duration
after the TTL period to account for tinme accounting errors in
processing. For instance, distributing a push nessage within a
server cluster mght accrue errors due to clock variation, or
processing and transit del ays.

A push service is not obligated to account for tinme spent by the
application server in sending a push nessage to the push service, or
del ays incurred while sending a push nmessage to the user agent. An
application server needs to account for transit delays in selecting a
TTL header field val ue.

Absence of the TTL header field is interpreted as equivalent to a
zero value. Push nessages with a zero TTL indicate that storage is
not needed and that the nmessage can be dropped if the user agent
isn't imediately avail able to receive the nessage. Push nessages
with a zero TTL can be delivered very efficiently.

A push service MAY choose to retain a push nmessage for a shorter
duration than that requested. It indicates this by including a TTL
header field in the response that includes the actual TTL. This TTL
val ue MJUST be | ess than or equal to the value provided by the
application server.

6. Receiving Push Messages
A user agent requests the delivery of new push nmessages by naking a

CET request to a push nessage subscription resource. The push
servi ce does not respond to this request, it instead uses HITP/ 2

Thonson, et al. Expi res January 20, 2016 [Page 9]

I nternet-Draft HTTP Web Push July 2015

server push [RFC7540] to send the contents of push nessages as they
are sent by application servers.

Each push nessage is pushed in response to a synthesized GET request.
The CGET request is nmade to the push nessage resource that was created
by the push server when the application server requested nmessage
delivery. The response body is the entity body fromthe nost recent
request sent to the push resource.

The foll owi ng exanpl e request is made over HITP/ 2.

HEADERS [stream 7] +END_STREAM +END_HEADERS
> et hod = GET
:path = / s/ LBhhwOOohO- W 40 971UGsB7sdQGUI bx

cauthority push. exanpl e. net

The push service permts the request to remain outstanding. Wen a
push nmessage is sent by an application server, a server push is
associated with the initial request. The response includes the push
nmessage.

PUSH PROM SE [stream 7; prom sed stream 4] +END_ HEADERS

: met hod = CGET
:path = /d/ gDl YHNcf Al PP_51 TvURr - d6B& YnTRnk
cauthority = push. exanpl e. net

HEADERS [stream 4] +END_HEADERS
»status = 200
dat e = Thu, 11 Dec 2014 23:56:56 GVI
| ast-nodified = Thu, 11 Dec 2014 23:56:55 GMI
cache-control = private
content-type = text/plain;charset=utf8
content-length = 36

DATA [stream 4] +END_STREAM

i ChYul 3j Mzt 3i r 20P8r _j gRR- dSuN182x7i B

In response to this request, the push server MJST generate a server
push for all push nessages that have not yet been delivered. In
addition, the push service SHOULD return link references to the push
and recei pt subscribe resources, plus expiration information for the
subscri ption.

A user agent can request the contents of the push nessage

subscription resource inmmediately by including a Prefer header field
[RFC7240] with a "wait" paranmeter set to "0".

Thonson, et al. Expi res January 20, 2016 [Page 10]

I nternet-Draft HTTP Web Push July 2015

A 204 (No Content) status code with no associ ated server pushes
i ndicates that no nessages are presently available. This could be
because push nmessages have expired.

6.1. Acknow edgi ng Push Messages

To ensure that a push nessage is properly delivered to the user agent
at | east once, the user agent MJUST acknow edge recei pt of the nmessage
by perform ng a HITP DELETE on t he push nessage resource.

DELETE /d/ gDl YHNcf Al PP_51 TVURr - d6B& YnTRnk HTTP/ 1.1
Host: push. exanpl e. net

If the application has requested a delivery receipt, the push server
MUST deliver a response to the application server nonitoring the
recei pt subscription resource.

6.2. Receiving Push Message Receipts

The application server requests the delivery of receipts fromthe
push server by meking a HTTP GET request to the recei pt subscription
resource. The push service does not respond to this request, it

i nstead uses HITP/ 2 server push [RFC7540] to send push recei pts when
nessages are acknow edged (Section 6.1) by the user agent.

Each receipt is pushed in response to a synthesized CGET request. The
CET request is nmade to the sane push nessage resource that was
created by the push server when the application server requested
nmessage delivery. A successful response includes a 410 (GONE) status
code with no dat a.

The foll ow ng exanple request is nmade over HITP/ 2.

HEADERS [stream 13] +END_STREAM +END_HEADERS
: met hod = CGET
»path = /r/3Zt1 4YVNBnUUZhuoChl 6omi&ZMBnpN

cauthority push. exanpl e. net

Thonson, et al. Expi res January 20, 2016 [Page 11]

I nternet-Draft HTTP Web Push July 2015

The push service permts the request to remain outstanding. Wen the
user agent acknow edges the nessage, the push server pushes a
delivery receipt to the application server. A 410 (Gone) status code
confirms that the nessage was delivered and acknow edged.

PUSH PROM SE [stream 13; prom sed stream 82] +END_HEADERS

: met hod = CGET
path = /d/ gDl YHNcf Al PP_51 TvURr - d6BG YnTRnk
cauthority = push. exanpl e. net
HEADERS [stream 4] +END_STREAM
+END_HEADERS
»status = 410
dat e = Thu, 11 Dec 2014 23:56:56 GMVI

The push server MJST push a response with a status code of 5XX (TBD)
if the user agent fails to acknow edge the recei pt of the push
nmessage or the push server fails to deliver the nmessage prior to its
expi ration.

7. Operational Considerations

A push service is likely to have to maintain a very |arge nunber of
open TCP connections. Effective managenent of those connections can
depend on being able to nove connections between server instances.

7.1. Load Managenent

A user agent MJUST support the 307 (Tenporary Redirect) status code
[RFC7231], which can be used by a push service to redistribute |oad
at the time that a new subscription is requested.

A server that wishes to redistribute |oad can do so using alternative
services [I-D.ietf-httpbis-alt-svc]. Alternative services allows for
redi stribution of |oad whilst maintaining the sanme URIs for various
resources. User agents can ensure a graceful transition by using the
GOAVWAY frane once it has established a replacenment connecti on.

7.2. Push Message Expiration
St orage of push nessages based on the TTL header field conprises a
potentially significant amount of storage for a push service. A push

service is not obligated to store nessages indefinitely. A push
service is able to indicate howlong it intends to retain a nessage

Thonson, et al. Expi res January 20, 2016 [Page 12]

I nternet-Draft HTTP Web Push July 2015

to an application server using the TTL header field (see
Section 5.2).

A user agent that does not actively nonitor for push nessages will
not receive nessages that expire during that interval.

Push nessages that are stored and not delivered to a user agent are
del i vered when the user agent recommences nonitoring. Stored push
nmessages SHOULD i nclude a Last-Mdified header field (see Section 2.2
of [RFC7232]) indicating when delivery was requested by an
application server.

A CET request to a push nessage subscription resource that has only
expi red nessages results in response as though no push nmessage were
ever sent.

Push services mght need to limt the size and nunber of stored push
messages to avoid overloading. In addition to using the 413 (Payl oad
Too Large) status code for too | arge push nessages, a push service
MAY expire push nmessages prior to any advertised expiration tine. A
push service can reduce the inpact push nessage retention by reducing
the tinme-to-live of push nessages.

7.3. Subscription Expiration

In some cases, it may be necessary to term nate subscriptions so that
they can be refreshed. This applies to both push nessage
subscriptions and recei pt subscriptions.

A push service m ght choose to set a fixed expiration tinme. |If a
resource has a known expiration tinme, expiration information is
included in responses to requests that create the resource, or in
requests that retrieve a representation of the resource.

Expiration is indicated using either the Expires header field, or by
setting a "max-age" paranmeter on a Cache-Control header field (see

[RFC7234]). The Cache-Control header field MJST al so include the
"private" directive.

A push service can renove a subscription at any tine. |[If a user
agent or application server has an outstanding request to a
subscription resource (see Section 6), this can be signal ed by
returning a 400-series status code, such as 410 (Cone).

A user agent or application server can request that a subscription be

renmoved by sendi ng a DELETE request to the push message subscription
or receipt subscription UR

Thonson, et al. Expi res January 20, 2016 [Page 13]

I nternet-Draft HTTP Web Push July 2015

A push service MJIST return a 400-series status code, such as 404 (Not
Found) or 410 (CGone) if an application server attenpts to send a push
nessage to a renoved or expired push nmessage subscription.

7.4. Inplications for Application Reliability

A push server that does not support reliable delivery over
intermttent network connections or failing applications on devices,
forces the device to acknow edge receipt directly to the application
server, incurring additional power drain in order to establish
(usual ly secure) connections to the individual application servers.

Push nmessage reliability can be inportant if nmessages contain
information critical to the state of an application. Repairing state
can be costly, particularly for devices with |imted comuni cations
capacity. Knowi ng that a push nmessage has been correctly received
avoi ds costly retransm ssions, polling and state resynchroni zati on.

The availability of push nmessage delivery receipts ensures that the
application developer is not tenpted to create alternative nmechani sns
for nmessage delivery in case the push service fails to deliver a
critical message. Setting up a polling nmechanismor a backup
nmessagi ng channel in order to conpensate for these shortcom ngs
negates al nost all of the advantages a push service provides.

However, reliability m ght not be necessary for nessages that are
transient (e.g. an incomng call) or nessages that are quickly
superceded (e.g. the current nunmber of unread enmils).

8. Security Considerations

This protocol MJST use HITP over TLS [RFC2818]. This includes any
communi cati ons between user agent and push service, plus
comuni cati ons between the application and the push service. Al

URIs therefore use the "https" schene. This provides confidentiality
and integrity protection for subscriptions and push nessages from
external parties.

8.1. Confidentiality from Push Service Access

The protection afforded by TLS does not protect content fromthe push
service. Wthout additional safeguards, a push service is able to
see and nodify the content of the nessages.

Applications are able to provide additional confidentiality,
integrity or authentication nmechanisms within the push nessage
itself. The application server sending the push nessage and the
application on the user agent that receives it are frequently just

Thonson, et al. Expi res January 20, 2016 [Page 14]

I nternet-Draft HTTP Web Push July 2015

di fferent instances of the sanme application, so no standardized
protocol is needed to establish a proper security context. The
process of providing the application server with subscription

i nformati on provides a conveni ent nmedi um for key agreenent.

The Web Push APl codifies this practice by requiring that each push
subscription created by the browser be bound to a browser generated
encryption key. Pushed nessages are authenticated and decrypted by
the browser before delivery to applications. This schenme ensures
that the push service is unable to exam ne the contents of push
nessages.

The public key for a subscription ensures that applications using

t hat subscription can identify messages from unknown sources and

di scard them This depends on the public key only being disclosed to
entities that are authorized to send nessages on the channel. The
push server does not require access to this public key.

8.2. Privacy Considerations

Push nmessage confidentiality does not ensure that the identity of who
i s communi cati ng and when they are communi cating is protected.
However, the anount of information that is exposed can be |limted.

The URI's provided for push resources MJST NOT provide any basis to
correl ate communi cations for a given user agent. |t MJST NOT be
possible to correlate any two push resource URI's based solely on
their contents. This allows a user agent to control correlation
across different applications, or over tine.

Simlarly, the URIs provided by the push service to identify a push
message MUST NOT provide any information that allows for correl ation
across subscriptions. Push nessage URIs for the sane subscription
MAY contain information that would allow correlation with the

associ ated subscription or other push nessages for that subscription.

User and device informati on MJUST NOT be exposed through a push or
push nessage URI

In addition, push URIs established by the sane user agent or push
nmessage URIs for the sanme subscription MJST NOT include any
information that allows themto be correlated with the user agent.

Note: This need not be perfect as long as the resulting anonymty
set (see [RFC6973], Section 6.1.1) is sufficiently large. A push
URI necessarily identifies a push service or a single server
instance. It is also possible that traffic analysis could be used
to correl ate subscri ptions.

Thonson, et al. Expi res January 20, 2016 [Page 15]

I nternet-Draft HTTP Web Push July 2015

A user agent MUST be able to create new subscriptions with new
identifiers at any tine.

8.3. Authorization

This protocol does not define how a push service establishes whet her
a user agent is permtted to create a subscription, or whether push
nmessages can be delivered to the user agent. A push service MNAY
choose to authorize requests based on any HTTP-conpati bl e

aut hori zation nethod avail able, of which there are nunerous options.
The aut horization process and any associ ated credentials are expected
to be configured in the user agent along with the URI for the push
servi ce.

Aut hori zation is nmanaged using capability URLs for the push nessage
subscription, push, and recei pt subscription resources (see
[CAP-URI]). A capability URL grants access to a resource based
solely on know edge of the URL

Capability URLs are used for their "easy onward sharing” and "easy
client API" properties. These nmake it possible to avoid relying on
rel ati onshi ps bet ween push services and application servers, with the
protocol s necessary to build and support those rel ationshi ps.

Capability URLs act as bearer tokens. Know edge of a push nessage
subscription URI inplies authorization to either receive push
nessages or del ete the subscription. Know edge of a push URI inplies
aut hori zation to send push nessages. Know edge of a push nessage UR
allows for readi ng and acknow edgi ng that specific nessage.

Knowl edge of a receipt subscription URl inplies authorization to
recei ve push receipts. Know edge of a receipt subscribe UR inplies
aut hori zation to create subscriptions for receipts.

Note that the same recei pt subscribe URI could be returned for
mul ti pl e push nessage subscriptions. Using the sanme value for a

| ar ge nunber of subscriptions allows application servers to reuse
recei pt subscriptions, which can provide a significant efficiency
advantage. A push service that uses a conmon receipt subscribe UR
| oses control over the creation of receipt subscriptions. This can
result in a potential exposure to denial of service; stateless
resource creation can be used to mtigate the effects of this
exposure.

Encoding a | arge anount of randomentropy (at |east 120 bits) in the

pat h conponent ensures that it is difficult to successfully guess a
valid capability URL.

Thonson, et al. Expi res January 20, 2016 [Page 16]

I nternet-Draft HTTP Web Push July 2015

8. 4. Deni al of Service Considerations

Di scardi ng unwant ed nessages at the user agent based on nessage

aut henti cati on doesn’t protect against a denial of service attack on
the user agent. Even a relatively small volune of push nessages can
cause battery-powered devices to exhaust power reserves.

An application can Iimt where valid push nessages can origi nate by
[imting the distribution of push URIs to authorized entities.
Ensuring that push URIs are hard to guess ensures that only
application servers that have been given a push URI can use it.

A malicious application with a valid push URl could use the greater
resources of a push service to nount a denial of service attack on a
user agent. Push services SHOULD limt the rate at which push
nessages are sent to individual user agents. A push service or user
agent MAY term nate subscriptions (Section 7.3) that receive too many
push nessages.

End-to-end confidentiality mechani sns, such as those in [API],

prevent an entity with a valid push nessage subscription URI from

| earning the contents of push nmessages. Push nmessages that are not
successfully authenticated will not be delivered by the APlI, but this
can present a denial of service risk.

Conversely, a push service is also able to deny service to user
agents. Intentional failure to deliver nessages is difficult to

di stinguish fromfaults, which m ght occur due to transient network
errors, interruptions in user agent availability, or genuine service
out ages.

8.5. Logging Ri sks

Server request |ogs can reveal subscription-related URIs. Acquiring
a push nessage subscription URl enables the recei pt of nessages or
del etion of the subscription. Acquiring a push URI permts the
sendi ng of push messages. Logging could also reveal relationships
bet ween different subscription-related URIs for the sane user agent.
Encrypt ed nmessage contents are not revealed to the push service.

Limtations on |l og retention and strong access control nechani sns can
ensure that URIs are not |earned by unauthorized entities.

9. | ANA Consi derations
This protocol defines new HTTP header fields in Section 9.1. New

link relation types are identified using the URNs defined in
Section 9. 2.

Thonson, et al. Expi res January 20, 2016 [Page 17]

I nternet-Draft HTTP Web Push July 2015

9.1. Header Field Registrations

HTTP header fields are registered within the "Message Headers"
regi stry nmaintained at <https://ww.iana. org/ assi gnnent s/ nessage-
header s/ >.

Thi s docunent defines the follow ng HITP header fields, so their
associ ated registry entries shall be added according to the pernmanent
regi strations bel ow (see [RFC3864]):

Fom e e S S S +
| Header Field Name | Protocol | Status | Reference

o e e e a o Fomm e e e o Fomm e e e o U +
| TTL | http | standard | Section 5.2

| Push-Recei pt | http | standard | Section 5.1 |
o e e e e e e R R o e e e o - +
The change controller is: "IETF (iesg@etf.org) - Internet

Engi neeri ng Task Force".

9.2. Link Relation URNs
Thi s docunent registers URNs for use in identifying link relation
types. These are added to a new "Web Push ldentifiers" registry
according to the procedures in Section 4 of [RFC3553]; the
correspondi ng "push" sub-nanespace is entered in the "I ETF URN Sub-
nanmespace for Regi stered Protocol Paraneter ldentifiers" registry.

The "Web Push Identifiers"” registry operates under the | ETF Revi ew
policy [RFC5226].

Regi stry nane: Wb Push ldentifiers
URN Prefix: urn:ietf:parans: push
Specification: (this docunent)

Repository: [Editor/1ANA note: please include a link to the final
registry location.]

I ndex value: Values in this registry are URNs or URN prefixes that
start with the prefix "urn:ietf:parans: push". Each is registered
i ndependent | y.

New regi strations in the "Wb Push Identifiers"” are encouraged to
i nclude the follow ng information:

URN: A conplete URN or URN prefix.

Thonson, et al. Expi res January 20, 2016 [Page 18]

I nternet-Draft HTTP Web Push July 2015

Description: A summary description.

Specification: A reference to a specification describing the
semantics of the URN or URN prefix.

Contact: Email for the person or group maeking the registration.

I ndex value: As described in [RFC3553], URN prefixes that are
regi stered include a description of how the URN is constructed.
This is not applicable for specific URNs.

These values are entered as the initial content of the "Wb Push
Identifiers" registry.

URN: urn:ietf:parans: push

Description: This link relation type is used to identify a resource
for sendi ng push nessages.

Specification: (this docunent)
Contact: The Wb Push WG (webpush@etf. org)
URN: urn:ietf:parans: push:receipt

Description: This link relation type is used to identify a resource
for creating new push nessage recei pt subscriptions.

Specification: (this docunent)
Contact: The Web Push WG (webpush@etf. org)

10. Acknow edgenents
Significant technical input to this docunent has been provided by
Costin Manol ache, Robert Sparks, Mark Nottingham Matthew Kauf man and
many ot hers.

11. References

11.1. Normative References
[CAP-URI] Tennison, J., "Good Practices for Capability URLs", FPWD

capability-urls, February 2014,
<http://ww. w3. org/ TR/ capabi lity-urls/>.

Thonson, et al. Expi res January 20, 2016 [Page 19]

I nternet-Draft HTTP Web Push July 2015

[I-D.ietf-httpbis-alt-svc]
Notti ngham M, MMnus, P., and J. Reschke, "HITP
Al ternative Services", draft-ietf-httpbis-alt-svc-07 (work
in progress), My 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC2818] Rescorla, E., "HITP Over TLS", RFC 2818, May 2000.

[RFC3553] Mealling, M, Msinter, L., Hardie, T., and G Klyne, "An
| ETF URN Sub- nanespace for Registered Protocol
Paranmeters", BCP 73, RFC 3553, June 2003.

[RFC3864] Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept enber 2004.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5988] Nottingham M, "Wb Linking", RFC 5988, October 2010.

[RFC7230] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing”, RFC 7230, June
2014.

[RFC7231] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/ 1.1): Semantics and Content", RFC 7231, June 2014.

[RFC7232] Fielding, R and J. Reschke, "Hypertext Transfer Protocol
(HTTP/ 1.1): Conditional Requests", RFC 7232, June 2014.

[RFC7234] Fielding, R, Nottingham M, and J. Reschke, "Hypertext
Transfer Protocol (HITP/1.1): Caching", RFC 7234, June
2014.

[RFC7240] Snell, J., "Prefer Header for HITP', RFC 7240, June 2014.

[RFC7540] Belshe, M, Peon, R, and M Thonson, "Hypertext Transfer
Prot ocol Version 2", RFC 7540, May 2015.

11.2. Informative References
[API] Sullivan, B., Fullea, E., and M van Quwerkerk, "Wb Push
APl", ED push-api, February 2015, <https://w3c.github.io/
push-api / >.

Thonson, et al. Expi res January 20, 2016 [Page 20]

I nternet-Draft HTTP Web Push July 2015

[RFC6973] Cooper, A., Tschofenig, H, Aboba, B., Peterson, J.,
Morris, J., Hansen, M, and R Smith, "Privacy
Consi derations for Internet Protocols”, RFC 6973, July
2013.

Aut hors’ Addresses

Martin Thonson

Mozill a

331 E Evelyn Street
Mountain View, CA 94041
us

Email: martin.thonmson@nmail.com

El i o Damaggi o

M crosoft

One M crosoft \Way
Rednond, WA 98052
us

Email : el ioda@r crosoft.com
Brian Raynor (editor)

M crosoft

One M crosoft Wy

Rednond, WA 98052

US

Emai | : brian. raynor @ crosoft.com

Thonson, et al. Expi res January 20, 2016 [Page 21]

