The Architecture of an RBridge Solution to TRILL
draft-ietf-trill-rbridge-arch-04.txt

Abstract

RBridges are link layer (L2) devices that use a routing protocol as a control plane. This combines several of the benefits of the link layer with those of the network layer. For example, RBridges use existing link state routing, without necessarily requiring configuration, to improve aggregate throughput, for RBridge to
RBridge traffic. RBridges also may support IP multicast and IP address resolution optimizations. They are intended to be applicable to L2 network sizes similar to those of conventional bridges and are intended to be backward compatible with those bridges as both ingress/egress and transit. They also support VLANs (although this generally requires configuration) while otherwise attempting to retain as much 'plug and play' as is already available in existing bridges. This document proposes an architecture for RBridge systems as a solution to the TRILL problem, defines terminology, and describes basic components and desired behavior. One (or more) separate documents will specify protocols and mechanisms that satisfy the architecture presented herein.
Table of Contents

1. Introduction .. 4
2. Background .. 7
 2.1. Existing Terminology 7
 2.2. RBridge Terminology 10
3. Components ... 12
 3.1. RBridge Device .. 13
 3.2. RBridge Data Model 13
 3.2.1. Unicast TRILL Forwarding Database 13
 3.2.2. Multi-destination TRILL Forwarding Database 14
 3.2.3. Ingress TRILL Forwarding Database 16
4. Functional Description 17
 4.1. TRILL Campus Auto-configuration....................... 17
 4.2. RBridge Peer Discovery 17
 4.3. Topology Discovery 18
 4.4. Designated RBridge (DRB) Election 18
 4.5. Learning .. 19
 4.6. Tunneling ... 19
5. RBridge Operation .. 19
 5.1. RBridge General Operation............................. 20
 5.2. Ingress/Egress Operations............................. 20
 5.3. Transit Forwarding Operations 22
 5.3.1. Unicast ... 22
 5.3.2. Broadcast, Multicast and Flooding 23
 5.3.2.1. Broadcast 23
 5.3.2.2. Multicast .. 24
 5.3.2.3. Flooding .. 26
 5.4. Routing Protocol Operation 27
 5.5. Other Bridging and Ethernet Protocol Operations ... 27
 5.5.1. Wiring Closet Problem 28
6. How RBridges Address the TRILL Problem Space 29
7. Conclusions .. 30
8. Security Considerations 30
9. IANA Considerations .. 31
10. Acknowledgments ... 31
11. References .. 32
 11.1. Normative References 32
 11.2. Informative References 32
12. Author's Addresses .. 32
 Intellectual Property Statement 33
 Disclaimer of Validity 34
 Copyright Statement .. 34
 Acknowledgment .. 34
1. Introduction

This document describes an architecture that addresses the TRILL problem and applicability statement [2]. This architecture describes a solution that is composed of a set of devices called Rbridges. Rbridges cooperate together in an Ethernet network to provide a layer two delivery service that makes efficient use of available links using a link state routing protocol. The service provided is analogous to creation of a single, virtual device composed of an overlay of tunnels, constructed between Rbridge devices, using paths determined by link state routing. Rbridges thus support increased aggregate RBridge to RBridge bandwidth, and fault tolerance, when compared to conventional Ethernet bridges (which forward frames via a spanning tree, in a non-VLAN or single VLAN context, or multiple spanning trees), while still being compatible with bridges and hubs.

The principal objectives of this architecture is to provide an overview of the use of these Rbridges in meeting the following goals:

1) Provide a form of optimized layer two delivery service.
2) Use existing technology as much as possible.
3) Allow for configuration free (or minimal configuration) deployment.

In providing a (optimized) layer two (L2) service, key factors we want to maintain are: transparency to higher layer (layer 3 and above) delivery services and mechanisms, and use of location independent addressing. Optimization of the L2 delivery service consists of: use of an optimized subset of all available paths and support for optimization of ARP/ND and pruning of multicast traffic delivery paths.

Not all optimizations are necessarily expected to be supported in initial specification and some subset of these optimizations may be specified at a later time. This architecture should allow some level of optimization support to be provided in compliant implementations, in as many case as possible.

To accomplish the goal of using existing technologies as much as possible, we intend to specify minimal extensions to an existing link-state routing protocol, as well as defining specific subsets of existing bridging technologies that this architecture is intended to makes use of.
The extent to which routing protocol extensions may be required depends on the closeness of the "fit" of the chosen routing protocol (in this case, IS-IS) to RBridge protocol requirements. The specific of routing protocol use - along with appropriate extensions and enhancements - will be defined in corresponding RBridge protocol specifications (see [3] for example).

Specific protocol specifications will also describe the details of interactions between the RBridge protocol and specific L2 technologies - i.e. - Virtual Local Area Networking (VLAN), L2 Multicast, etc. This document describes the general nature of the RBridge solution without restricting related specifications.

As an overview, however, the intention is to use a link-state routing protocol to accomplish the following:

1) Discover RBridge peers.

2) Determine RBridge link topology.

3) **Potentiality advertise** L2 reachability information; note that - at this time - the default method for acquiring L2 reachability information specified in [3] depends on use of data-plane learning (see Bridge Learning in the terminology section below).

4) Establish L2 delivery using shortest path (versus STP, RSTP or MSTP).

There are additional RBridge protocol requirements - above and beyond those addressed by any existing routing protocol - that are identified in this document and need to be addressed in corresponding RBridge protocol specifications.

To allow for configuration free deployment, specific protocol specifications should explicitly define the conditions under which R Bridges may - and may not - be deployed as-is (plug and play), and the mechanisms that are required to allow this. For example, the first requirement any RBridge protocol must meet is to derive information required by link-state routing protocol(s) for protocol start-up and communications between peers - such as higher-layer addressing and/or identifiers, encapsulation header information, etc.

At the abstract level, R Bridges need to maintain the following information:
1) Peer information,
2) Topology information,
3) Forwarding information –
 a. unicast,
 b. flooded, and
 c. multicast.

In addition, RBridge specifications may suggest (or require) the maintenance of other information as needed to support ARP/ND and multicast optimizations.

Peer information may be acquired via the routing protocol, or may be discovered as a result of RBridge-specific peer discovery mechanisms. Details of specific peer information requirements – as well as how this information will be acquired is specified in protocol specifications (e.g. – [3]).

Topology information is expected to be acquired via the link-state routing protocol.

Forwarding information is derived from the combination of attached MAC address learning, snooping of multicast-related protocols (e.g. – IGMP), and routing advertisements and path computations using the link-state routing protocol.

Other information – such as the mapping of MAC and IP addresses, or multicast pruning information – may be learned using snooping of ARP/ND or IGMP (for example) and it is possible that RBridges may need to participate actively in these protocols.

The remainder of this document outlines the TRILL architecture of an RBridge-based solution and describes RBridge components, interactions and functions. Note that this document is not intended to represent the only solution to the TRILL problem statement, nor does it specify the protocols that instantiate this architecture – or that only one such set of protocols is prescribed. The former may be contained in other architecture documents and the latter would be contained in separate specification documents (see – e.g. – [3]).
2. Background

This architecture is based on the RBridge system described in an Infocom paper [1]. That paper describes the RBridge system as a specific instance; this document abstracts architectural features only. The remainder of this section describes the terminology of this document, which may differ from that of the original paper.

2.1. Existing Terminology

The following terminology is defined in other documents. A brief definition is included in this section for convenience and – in some cases – to remove any ambiguity in how the term may be used in this document, as well as in derivative documents intended to specify components, protocol, behavior and encapsulation relative to the architecture described in this document.

- IEEE 802.1D and IEEE 802.1Q: IEEE documents which include specification for bridged Ethernet, including Media Access Control (MAC) bridges and the BPDUs used in spanning tree protocol (STP) [1], [8].

- ARP: Address Resolution Protocol – a protocol used to find an address of form X, given a corresponding address of form Y. In this document, ARP refers to the well-known protocol used to find L2 (MAC) addresses, using a given L3 (IP) address. See [7] for further information on IP ARP.

- Bridge: an Ethernet (L2, 802.1D) device with multiple ports that receives incoming frames on a port and transmits them on zero or more of the other ports; bridges support both bridge learning and STP. Transparent bridges do not modify the L2 PDU being forwarded.

- Bridge Learning: process by which a bridge determines on which (if any) single outgoing port to transmit (forward or copy) an incoming unicast frame. This process depends on consistent forwarding as "learning" uses the source MAC address of frames received on each interface. Layer 2 (L2) forwarding devices "learn" the location of L2 destinations by peeking at layer 2 source addresses during frame forwarding, and store the association of source address and receiving interface. L2 forwarding devices use this information to create "filtering database" entries and - gradually - eliminate the need for flooding.
- Bridge Protocol Data Unit (BPDU): the frame type associated with bridge control functions (for example: STP/RSTP).

- Bridged LAN: see IEEE 802.1Q-2005, Section 3.3 [8].

- Broadcast Domain: the set of (layer 2) devices that must be reached (or reachable) by (layer 2) broadcast traffic injected into the domain.

- Broadcast Traffic: traffic intended for receipt by all devices in a broadcast domain.

- Ethernet: a common layer 2 networking technology that includes, and is often equated with, 802.3.

- Filtering Database: database containing association information of (source layer 2 address, arrival interface). The interface that is associated with a specific layer 2 source address, is the same interface which is used to forward frames having that address as a destination. When a layer 2 forwarding device has no entry for the destination layer 2 address of any frame it receives, the frame is "flooded".

- Flooded Traffic: traffic that is subject to flooding - i.e. - being forwarded on all interfaces, except the one on which it was received, within a LAN or VLAN.

- Flooding: the process of forwarding traffic to ensure that frames reach all possible destinations when the destination location is not known. In "flooding", an 802.1D forwarding device forwards a frame for any destination not "known" (i.e. - not in the filtering or forwarding database) on every active interface except that one on which it was received. See also VLAN flooding and flooded traffic.

- Frame: in this document, frame refers to an Ethernet (L2) unit of transmission (PDU), including header, data, and trailer (or payload and envelope).

- Hub: Ethernet device with multiple ports that transparently transmits frames arriving on any port to all other ports. This is a functional definition, as there are devices that combine this function with certain bridge-like functions that may - under certain conditions - be referred to as "hubs".
o **IS-IS:** Intermediate System to Intermediate System routing protocol. See [6] for further information on IS-IS.

- **LAN:** Local Area Network, is a computer network covering a small geographic area, like a home, office, or group of buildings, e.g., as based on IEEE 802.3 technology, see also IEEE 802.1Q-2005, Section 3.11 [8].

- **MAC:** Media Access Control – mechanisms and addressing for L2 frame forwarding.

- **Multicast Forwarding:** forwarding methods that apply to frames with broadcast or multicast destination MAC addresses.

- **Node:** a device with an L2 (MAC) address that sources and/or sinks L2 frames.

- **Packet:** in this document, packet refers to L3 (or above) data transmission units (PDU – e.g. – an IP Packet (RFC791 [4]), including header and data.

- **PDU:** Protocol Data Unit – unit of data to be transmitted by a protocol. To distinguish L2 and L3 PDUs, we refer to L2 PDUs as "frames" and L3 PDUs as "packets" in this (and related) document(s).

- **Router:** a device that performs forwarding of IP (L3) packets, based on L3 addressing and forwarding information. Routers forward packets from one L2 broadcast domain to another (one, or more in the IP multicast case) – distinct – L2 broadcast domain(s). A router terminates an L2 broadcast domain.

- **Spanning Tree Protocol (STP):** an Ethernet (802.1D) protocol for establishing and maintaining a single spanning tree among all the bridges on a local Ethernet segment. Also, Rapid Spanning Tree Protocol (RSTP). In this document, STP and RSTP are considered to be the same.

- **SPF:** Shortest Path First – an algorithm name associated with routing, used to determine a shortest path graph traversal.

- **TRILL:** Transparent Interconnect over Lots of Links – the working group and working name for the problem domain to be addressed in this document.

- **Unicast Forwarding:** forwarding methods that apply to frames with unicast destination MAC addresses.

Deleted:

- **IGP:** Interior Gateway Protocol – any of the potential (link-state) routing protocols candidates considered as potentially useful RBridge routing protocols.

- **Local Area Network. A LAN is an L2 forwarding domain. This term is synonymous with Ethernet Subnet in the context of this document.

- **OSPF:** Open Shortest Path First routing protocol. See [7] and [9] for further information on OSPF.

Routing Function: in this document, the "routing function" consists of forwarding IP packets between L2 broadcast domains, based on L3 addressing and forwarding information. In the process of performing the "routing function", devices (typically routers) use...
o Unknown Destination - a destination for which a receiving device has no filtering database entry. Destination (layer 2) addresses are typically "learned" by (layer 2) forwarding devices via a process commonly referred to as "bridge learning" (see definition above).

o VLAN: Virtual Local Area Network, see IEEE 802.1Q-2005 [8].

o VLAN Flooding: flooding as described previously, except that frames are only forwarded on those interfaces configured for participation in the applicable VLAN.

2.2. RBridge Terminology

The following terms are defined in this document and intended for use in derivative documents intended to specify components, protocol, behavior and encapsulation relative to the architecture specified in this document.

- **Adjacent R Bridges:** R Bridges that communicate directly with each other without relay through other R Bridges.

- **Cooperating R Bridges:** a set of communicating R Bridges that will share a consistent set of forwarding information.

- **Designated R Bridge (DRB):** the R Bridge that is elected to handle ingress and egress traffic to a particular Ethernet link having shared access and multiple R Bridges; that R Bridge is such a link's "Designated R Bridge". The Designated R Bridge is determined by an election process among those R Bridges having shared access via a single LAN.

- **Edge R Bridge (edge of a TRILL Campus):** describes R Bridges that may serve to ingress frames into the TRILL Campus and egress frames from the TRILL Campus. L2 frames traversing the TRILL Campus enter, and leave, it via an edge R Bridge.

- **Egress R Bridge:** for any specific frame, the R Bridge through which that frame leaves the TRILL Campus. For frames transiting a TRILL Campus, the egress R Bridge is an edge R Bridge where R Bridge encapsulation is removed from the transit frames prior to exiting the TRILL Campus.
Internet-Draft RBridge Architecture November, 2007

- Encapsulation database: in the TRILL context, the database that the Designated RBridge (ingress) uses to map the layer 2 destination address in the received frame to the egress RBridge.

- Forwarding Tunnels: in this document, Campus Forwarding Tunnels (or Forwarding Tunnels) is used to refer to the paths for forwarding transit frames, encapsulated at an RBridge ingress and decapsulated at an RBridge egress.

- Ingress RBridge: for any specific frame, the RBridge through which that frame enters the TRILL Campus. For frames transiting a TRILL Campus, the ingress RBridge is the edge RBridge where RBridge encapsulation is added to the transit traffic entering the TRILL Campus.

- Multi-Destination Frames: Broadcast or Multicast frames, or Unicast frames destined to a MAC DA that is unknown i.e. - flooded frames (see flooded traffic). Frames that need to be delivered to multiple egress RBridges, via the RBridge Distribution Tree.

- Peer RBridge: The term "Peer RBridge", or (where usage is not ambiguous) the term "Peer", are used in the RBridge context to refer to any of the RBridges that make up a TRILL campus.

- RBridge: a logical device as described in this document, which incorporate both routing and bridging features, thus allowing for the achievement of TRILL Architecture goals. A single RBridge device which can cooperate with other RBridge devices to create a TRILL Campus.

- RBridge Distribution Tree: This term or (where usage is not ambiguous) the term "distribution tree", refers to a tree used by RBridges to deliver multi-destination frames. An RDT, or distribution tree, is computed using a specific RBridge as the root. May also be referred to as an R-tree.

- TRILL Campus: this term, or the term "Campus" (where usage is not ambiguous) is used in the RBridge context to refer to the set of cooperating RBridges and TRILL Links that connect them to each other.

- TRILL Forwarding Database: this term, or the term "forwarding database" (where not ambiguous) is used in an RBridge context to refer to the database that maps the egress TRILL address to the next hop TRILL link.
TRILL Header: a 'shim' header that encapsulates the ingress L2 frame and persists throughout the transit of a TRILL Campus, which may be further encapsulated within a hop-by-hop L2 header (and trailer). The hop-by-hop L2 encapsulation in this case includes the source MAC address of the immediate upstream RBridge transmitting the frame and destination MAC address of the receiving RBridge - at least in the unicast forwarding case.

TRILL Link: this term, or the term "Link" (where its usage is not ambiguous) is used in the RBridge context to refer to the Layer 2 connection that exists either between RBridges, or between an RBridge and Ethernet end stations.

3. Components

A TRILL Campus is composed of RBridge devices and the forwarding tunnels that connect them; all other Ethernet devices, such as bridges, hubs, and nodes, operate conventionally in the presence of an RBridge.

Figure 1: Simplified Architecture of an RBridge

Figure 1 shows an RBridge that contains:

- An RBridge Relay Entity connecting two RBridge ports
- At least one physical port (two in this example)
- Higher layer Entities, including at least the IS-IS protocol
- At the TRILL Layer, an RBridge encapsulates incoming Ethernet frames with a TRILL header to forward them to other RBridges.
3.1. RBridge Device

An RBridge is a device – having some of the characteristics of both bridges and routers – that forwards frames on an Ethernet link segment. It has one or more Ethernet ports which may be wired or wireless; the particular physical layer is not relevant. An RBridge is defined more by its behavior than its structure, although it logically contains three tables, which may be used to describe the externally visible behavior of an RBridge relative to its peers and may also distinguish RBridges from conventional bridges.

Conventional bridges contain a learned filtering (or forwarding) database, and spanning tree port state information. The bridge learns which nodes are accessible from a particular port by assuming bi-directional consistency: the source addresses of incoming frames indicate that the incoming port is to be used as output for frames destined to that address. Incoming frames are checked against the learned filtering (forwarding) database and forwarded to the particular port if a match occurs, otherwise they are flooded out all active ports (except the incoming port).

Spanning tree port state information indicates the ports that are active in the spanning tree. Details of STP operation are out of scope for this document, however the result of STP is to disable ports which would otherwise result in more than one path traversal of the spanning tree.

RBridges, by comparison, have a TRILL forwarding database, used for forwarding of RBridge encapsulated frames across the TRILL Campus and by the ingress RBridge to determine the encapsulation to use for frames received as un-encapsulated from non-RBridge devices. The TRILL forwarding database is described in the following sections.

3.2. RBridge Data Model

The following tables represent the logical model of the data required by RBridges in forwarding unicast and multicast data across a TRILL Campus.

3.2.1. Unicast TRILL Forwarding Database

The Unicast TRILL Forwarding Database is a forwarding table for unicast traffic within the TRILL Campus, allowing tunneled traffic to transit the TRILL Campus from ingress to egress. The...
size of a fully populated Unicast TRILL Forwarding Database at each RBridge is maximally bounded by the product of the number of Adjacent RBridge peers and VLANs.

RBridges may have separate Unicast TRILL Forwarding Databases for each VLAN, if this is supported by configuration. Note that scaling concerns may dictate otherwise, either in specific of RBridge protocol specification, or in deployment. The Unicast TRILL Forwarding Database is continually maintained by RBridge routing protocols and/or MAC learning. (see Section 5.4).

The Unicast TRILL Forwarding Database contains data specific to RBridge forwarding for unicast traffic. The specific fields contained in this table are to be defined in RBridge protocol specifications. In the abstract, however, the table should contain forwarding direction and encapsulation associated with an RBridge encapsulated frame received - determined by the TRILL "shim" header destination and VLAN (if applicable).

3.2.2. Multi-destination TRILL Forwarding Database

The Multi-destination TRILL Forwarding Database consists of a set of forwarding entries used for support of RBridge Distribution Trees (RDT). Multi-destination TRILL Forwarding Database entries are distinct from typical Unicast TRILL Forwarding Database entries because there may be zero or more of them that match for any incoming frame.

The Multi-destination TRILL Forwarding Database may overlap the Unicast TRILL Forwarding Database, or be instantiated as a separate table, in specific compliant implementations.

In discussing entries to be included in the Multi-destination TRILL Forwarding Database, the following entities are temporarily defined, or further qualified:

- **Root RBridge** - the RBridge that is the head end of an RDT. All RBridges within a TRILL Campus are potential Root RBridges.

- **Egress RBridge** - an RBridge that is the tail end of a path corresponding to a specific Multi-destination TRILL Forwarding Database entry. All RBridges within a TRILL Campus are potential egress RBridges. Not all RBridges within a TRILL Campus will be on the shortest path between any ingress RBridge and any other egress RBridge.
Local RBridge – the RBridge that forms and maintains the Multi-destination TRILL Forwarding Database entry (or entries) under discussion. The local RBridge may be a root RBridge, or an egress RBridge with respect to any set of entries in the Multi-destination TRILL Forwarding Database.

RBridge TRILL Campus Egress Interface – an interface on any RBridge where a transit RBridge encapsulated frame would be decapsulated prior to forwarding. With respect to such an interface, the local RBridge is the egress RBridge.

Each local RBridge will maintain – as a logical representation – a set of entries for at least the following, corresponding to a subset of all possible forwarding paths:

- Zero or more entries grouped for each root RBridge – keyed by some root RBridge identifier – used to determine forwarding of broadcast, multicast, and flooded frames originally RBridge encapsulated by that ingress within the TRILL Campus.

- Corresponding to each of these entry groups, one entry for each of zero or more egress RBridge – where the local RBridge is on the shortest path toward that egress RBridge.

- Corresponding to each of these entry groups, one entry for each of zero or more TRILL Campus egress interfaces.

Each entry would contain an indication of which single interface a broadcast, multicast or flooded frame would be forwarded for each (root RBridge, egress RBridge) pair. Entries would also contain any required encapsulation information, etc. required for forwarding on a given interface, and toward a corresponding specific egress RBridge.

Note that the above information is one logical representation of the information required to perform a reverse path forwarding check (or RPFC) as is discussed in [3].

A local RBridge could maintain a full set of entries from every RBridge to every other RBridge, however – depending on topology – only a subset of these entries would ever be used. In addition, a topology change that changed selection of shortest paths would also very likely change other elements of the entries, negating possible benefits from having pre-computed Multi-destination TRILL Forwarding Database entries.
Multi-destination TRILL Forwarding Database entries should also include VLAN identification information relative to each set of Root RBridge(s), to allow scoping of broadcast, multicast and flooding forwarding by configured VLANs.

Multi-destination TRILL Forwarding Database entries may also include Multicast-Group Address specific information relative to each egress RBridge that is a member of a given well-known multicast group, to allow scoping of multicast forwarding by multicast group.

Implicit in this data model is the assumption that the TRILL "shim" header encapsulation will contain information that explicitly identifies the TRILL Campus ingress RBridge for any broadcast, multicast or flooded frame.

Maintenance of this Multi-destination TRILL Forwarding Database will be defined in appropriate protocol specifications used to instantiate this architecture. Note that doing this does not strictly require those specification to adopt this data model. The protocol specification needs to include mechanisms and procedures required to establish and maintain the Multi-destination TRILL Forwarding Database in consideration of potential SPF recomputations resulting from network topology changes.

3.2.3. Ingress TRILL Forwarding Database

The Ingress TRILL Forwarding Database determines how arriving traffic will be encapsulated, for forwarding toward the egress RBridge, via the TRILL Campus. It becomes configured in much the same way that bridge learning occurs: by snooping incoming traffic, and assuming bi-directional consistency.

This learned information at an egress RBridge may be propagated to all other R Bridges in the TRILL Campus via the RBridge routing protocol, as an alternative to direct MAC learning from data frames. However, the information propagated in this fashion may be quite large and filtering to prevent overwhelming edge R Bridges would require extensive per-VLAN state information in core R Bridges. Hence the current model is that the default mode for learning L2 reachability information is via learning from the data plane directly in a manner very analogous to bridge learning.
Using this approach, the ingress TRILL Forwarding Database may be as large as the number of nodes on the Ethernet LAN, for all VLANs in which a specific ingress RBridge is a participant.

The Ingress TRILL Forwarding Database essentially determines the tunnel encapsulation used to transport each specific frame across the TRILL Campus, for frames entering at this ingress.

4. Functional Description

The RBridge Architecture is largely defined by RBridge behavior; the logical components are minimal, as outlined in Section 3.

4.1. TRILL Campus Auto-configuration

Cooperating R Bridges self-organize to compose a single TRILL Campus system. The details for how this occurs are given in protocol specification(s).

At an architectural level, it is sufficient to note that every end station attached to a TRILL Campus is considered to have a primary point of attachment to the TRILL Campus, as defined by the Designated RBridge. Each TRILL Link attached to a TRILL Campus has a single Designated RBridge; that RBridge is where all traffic intended to transit a TRILL Campus enters and exits.

This rule applies strictly on a per-VLAN basis.

The high-level functional steps included in auto-configuration are RBridge peer discovery, topology discovery, DRB election, learning and forwarding (tunneling) TRILL encapsulated frames.

4.2. RBridge Peer Discovery

Proper operation of the TRILL solution using R Bridges depends on the existence of a mechanism for discovering peer R Bridges. Failure to discover all peer R Bridges leads inevitably to an incomplete discovery of the RBridge topology.

R Bridge peer discovery can be accomplished in a relatively easy re-use of well-known techniques based on broadcast - such as the use of IS-IS "hello" messages.

4.3. Topology Discovery

Proper operation of R Bridges also depends on the existence of a mechanism for determining the RBridge topology. An accurate
determination of RBridge topology is required in order to determine how traffic frames will flow in the topology and thus avoid the establishment of persistent loops in frame forwarding, or construction of a partitioned local LAN.

Fortunately, accurate topology determination is a fundamental requirement of a functioning link-state routing protocol. The complexity that applies in this architecture directly relates to the existence of multiple VLANs on a TRILL Link.

For this reason, RBridges (in terms of protocol definition, implementation and deployment) should avoid unnecessary use of multiple VLANs - in particular on links that will be, or may be, used for transit of TRILL encapsulated frames.

4.4. Designated RBridge (DRB) Election

The mechanisms and details of DRB election will be provided by protocol specification(s).

Architecturally, it is important to note that the DRB election must be based on an accurate view of the topology, including availability of certain links in a given topology for traffic associated with any given VLAN. Otherwise, it is possible to partition a local LAN (on the assumption that an RBridge is deployed and configured to replace an existing 802.1Q bridge) as a result of a failure - where such a partition would not have occurred with the previously deployed 802.1Q bridge.

The protocol specification(s) needs to define how an accurate VLAN topology is to be determined - and applied in the DRB election - and the limitations that any chosen mechanisms may impose on the solution (in terms of scalability and ease of deployment, for example).

4.5. Learning

The protocol specifications need to define how learning of MAC-layer reachability information is expected to occur – at least in the default case.

As described previously, a major consideration is the complexity associated with receiving reachability information for a lot of end-stations for which an Ingress RBridge has no interest. This is the case, for example, where a large number of VLANs are in use (see [8]). This issue does not arise if learning is based
on the data plane (similar to bridge learning) – as is currently described as a default learning mode in [3].

4.6. Tunneling

RBridges pass encapsulated frame traffic to each other effectively using tunnels. These tunnels use an Ethernet link layer header, together with a TRILL header.

Specifics of encapsulation are to be defined in appropriate protocol/encapsulation specifications.

It is the combination of the local MAC destination (which is for a locally attached RBridge) and the TRILL encapsulation that distinguishes RBridge to RBridge traffic from other traffic. The link-layer header includes source and destination addresses, which typically identify the local RBridges (the sending and receiving RBridges relative to the local TRILL Link).

The TRILL header is required to support loop mitigation for (at least) unicast traffic within the TRILL Campus; traffic loops in forwarding between RBridges and non-RBridge devices, as well as across non-RBridge devices between RBridges, is beyond the scope of this document.

The TRILL header and encapsulation:

- must clearly identify the traffic as RBridge traffic – the outer Ethernet header may, for instance, use an Ethertype number unique to RBridges;
- should also identify a specific (egress) RBridge – the TRILL header may, for example, include an identifier unique to the egress RBridge, in the unicast case;
- should include the RBridge transit route, a hopcount, or a timestamp to prevent indefinite looping of a frame.

5. RBridge Operation

This section is intended primarily to serve as a tutorial for RBridge operations. As such in any case where this section says anything in disagreement with specific protocol specifications, the protocol specification over-rides.
5.1. RBridge General Operation

As described in sections above, operations that apply to all RBridges include peer and topology discovery (including hello messaging, negotiation of RBridge identifiers and link-state routing), Designated RBridge election, SPF computation and learning or advertising reach-ability for specific L2 (MAC Ethernet destination) addresses within a broadcast domain.

In addition, all RBridges will compute RBridge Distribution Trees for delivery of (potentially VLAN scoped) broadcast, multicast and flooded frames to each peer RBridge. Setting up these trees early is important as there is otherwise no means for frame delivery across the TRILL Campus during the learning phase. Because it is very likely to be impossible (at an early stage) for RBridges to determine which RBridges are edge RBridges, it is preferable that each RBridge compute these trees for all RBridges as early as possible – even if some entries will not be used.

The specifics of each of these operational steps will be defined in protocol specifications (such as [3]).

5.2. Ingress/Egress Operations

Operation specific to edge RBridges involves RBridge learning, advertisement, encapsulation (at ingress RBridges) and decapsulation (at egress RBridges).

As described previously, RBridge learning is similar to typical bridge learning – i.e. – all RBridges listen promiscuously to L2 Frames on each local LAN and acquire end station location information associated with source MAC addresses in L2 frames they observe.

By convention, a Designated RBridge election always occurs. In the degenerate case – where only one RBridge is connected to a specific Ethernet segment – obviously that RBridge will "win" the election and become the designated RBridge.

With this convention, only the Designated RBridge performs RBridge learning for interface(s) connected to that LAN.

As each RBridge learns segment-local MAC source addresses, it creates an entry in its learned filtering/forwarding database that associates that MAC source address with the interface on which it was learned.
Similarly – to support ARP/ND optimization – IP-to-MAC mappings may also be learned by snooping corresponding protocol messages. Protocol specifications may include either optional or required behaviors to support ARP/ND, or multicast, learning and distribution methods.

Periodically, as determined by RBridge protocol specification, each RBridge may advertise this learned information to its RBridge peers. These advertisements would propagate to all edge RBridges (as potentially scoped by associated VLAN information for each advertisement). Each edge RBridge would incorporate this information in the form of a Unicast TRILL Forwarding Database entry.

Note that currently, [3] specifies that this is not the default mode, and that learning primarily occurs via the data plane at ingress, as well as at egress.

The trade-off is between the complexity associated with flooding data verses the complexity associated with flooding reachability information.

For applications in which it is likely that most edge RBridges will not want to receive most of the reachability information, flooding avoidance requires either that the method is not used, or that intermediate (core, in at least some cases) RBridges need to keep VLAN specific state information to limit the scope of advertisement flooding.

RBridges also discover that they are an edge RBridge as a result of receiving un-encapsulated frames that require forwarding. If an RBridge is the Designated RBridge for a segment, and it has not previously learned that the MAC destination for a frame is local (this will be the case – for instance – for the very first frame it observes), then the RBridge would be required to forward (or flood) the frame via the TRILL Campus to all other RBridges (potentially within a VLAN scope).

The RBridge in this case would flood the frame unless it has already created a Unicast TRILL Forwarding Database entry for the frame's MAC destination address. If it has a corresponding Unicast TRILL Forwarding Database, then it would use that. This RBridge would be an ingress RBridge with respect to the frame being forwarded.

The encapsulation used by this ingress RBridge would be determined by the Unicast TRILL Forwarding Database – if one
exists - or the *Unicast TRILL Forwarding Database*-equivalent entry for the RBridge Distribution Tree.

When the encapsulated frame arrives at egress RBridge(s), it is decapsulated and forwarded via the egress interface(s) onto the local segment.

In using the approach of learning from the data plane, the egress RBridge stores information related to content of the frame’s TRILL encapsulation for use in subsequent reverse traffic in a manner directly analogous to bridge learning.

Note that an egress RBridge will be the Designated RBridge on the local segment accessed via its egress interface(s). If the received frame does not correspond to a learned MAC destination address at an egress interface, it will forward the frame on all interfaces for which it is either the designated RBridge. If the received frame does correspond to a learned MAC destination address at an egress interface, the RBridge will forward the frame via that interface only.

5.3. Transit Forwarding Operations

There are two models for transit forwarding within a TRILL Campus: unicast frame forwarding for known destinations, and everything else. The difference between the two is in how the encapsulation is determined. Exactly one of these models will be selected - in any instantiation of this architecture- for each of the following forwarding modes:

- Unicast frame forwarding
- Forwarding of non-unicast frames
 - Broadcast frame forwarding
 - Multicast frame forwarding
 - Frame flooding

5.3.1. Unicast

In unicast forwarding, the TRILL header is specific to the egress RBridge and MAC destination in the outer Ethernet encapsulation is specific to the next hop RBridge.

As the frame is prepared for transmission at each RBridge, the next hop MAC destination information is determined at that local RBridge using a corresponding *Unicast TRILL Forwarding Database* entry based on the TRILL "shim" header.
5.3.2. Broadcast, Multicast and Flooding

RBridge Distribution Trees are used for forwarding of broadcast, multicast and unknown destination frames across the TRILL Campus. In a simple implementation, it is possible to use the Multi-destination TRILL Forwarding Database entries for all frames of these types.

However, this approach results in possibly severe inefficiencies in at least the multicast case.

As a consequence, instantiations of this architecture should allow for local optimizations on a hop by hop basis.

Examples of such optimizations are included in the sections below.

5.3.2.1. Broadcast

The path followed in transit forwarding of broadcast frames will have been established through actions initiated by each RBridge (as any RBridge is eligible to subsequently become an ingress RBridge) in the process of computing Multi-destination TRILL Forwarding Database entries.

The protocol specification will most likely require each RBridge to assume that it may be a transit as well as an ingress and egress RBridge and establish forwarding information relative to itself and each of its peer RBridges, and stored in the Multi-destination TRILL Forwarding Database. At least one exception case exists and that is when RBridges are configured to treat a given link as a point to point link between two RBridges.

Forwarding information should logically exist in two forms: transit encapsulation information for interfaces over which the RBridge will forward a multipoint frame to one or more adjacent RBridges and a decapsulation indication for each interface over which the RBridge may egress frames from the TRILL Campus. In each case, the Multi-destination TRILL Forwarding Database includes some identification of the interface on which a frame is forwarded toward any specific egress RBridge for frames received from any specific ingress RBridge.

Note that an interface over which an RBridge may egress frames is any interface for which the RBridge is a Designated RBridge. RBridges must not wait to determine that one (or more) non-RBridge Ethernet nodes is present in an interface before
deciding to forward decapsulated broadcast frames on that interface. Again, an exception case would exist if RBridges have been configured to treat a local link as a point to point connection between two RBridges.

Forwarding information is selected for each broadcast frame received by any RBridge (based on identifying the ingress RBridge for the frame) for all corresponding Multi-destination TRILL Forwarding Database entries. Each RBridge is thus required to replicate one RBridge encapsulated broadcast frame for each interface that is determined from Multi-destination TRILL Forwarding Database entries corresponding to the frame's ingress RBridge. This includes decapsulated broadcast frames for each interface for which it is the designated RBridge.

Note that frame replication and forwarding should be scoped by VLAN if VLAN support is provided. Also note that a Designated RBridge (DRB) may be required to transmit a decapsulated frame on the interface on which it received the RBridge encapsulated frame.

This approach for broadcast forwarding might be considered to add complexity because replication occurs at all RBridges along the ingress RBridge tree, potentially for both RBridge encapsulated and decapsulated broadcast frames. However, the replication process is similar to replication of broadcast traffic in 802.1D bridges with the exception that additional replication may be required at each interface for egress from the TRILL Campus.

Note that the additional replication associated with TRILL Campus egress may be made to exactly conform to 802.1D bridge broadcast replication in implementations that model a TRILL Campus egress as a separate logical interface.

Using this approach results in one and only one copy of the broadcast frame being delivered to each egress RBridge.

5.3.2.2. Multicast

Multicast forwarding is reducible to broadcast forwarding in the simplest (default) case. However, protocol specifications may require, or recommend and implementations may choose - using mechanisms that are out of scope for this document - to optimize multicast forwarding. In order for this to work effectively, however, support for awareness of multicast "interest" is required for all RBridges.
Without optimization, multicast frames are injected by the ingress RBridge onto an RDT by – for instance – encapsulating the frame with a MAC destination multicast address, and forwarding it according to its local **Multi-destination TRILL Forwarding Database**. Again, without optimization, each RBridge along the path toward all egress RBridges will similarly forward the frame according to their local **Multi-destination TRILL Forwarding Database**.

Using this approach results in one and only one copy of the multicast frame being delivered to appropriate egress RBridges. However, using this approach, multicast delivery is identical to broadcast delivery – hence very inefficient.

In any optimization approach, RBridge encapsulated multicast frames will use either a broadcast or a group MAC destination address. In either case, the recognizably distinct destination addressing allows a frame forwarding decision to be made at each RBridge hop. RBridges may thus be able to take advantage of local knowledge of multicast distribution requirements to eliminate the forwarding requirement on interfaces for which there is no recipient interested in receiving frames associated with any specific group address.

As stated earlier, in order for RBridges to be able to implement multicast optimization, distribution of learned multicast group "interest" information must be provided - and propagated - by all RBridges. Mechanisms for learning and propagating multicast group participation by RBridges is out of scope in this document but may be defined in RBridge protocol specification(s).

Note that, because the multicast optimization would – in principle – further scope and reduce broadcast traffic, two things may be said:

- It is not necessary that all implementations in a deployment implement the optimization (though all must support the data required to implement it in RBridge peers) in order for any local multicast optimization (consistent with the above description) to work;
- Introduction of a multicast optimization will not result in potential forwarding loops where broadcast forwarding would not do so.

In the simplest case, the ingress RBridge for a given multicast frame will re-use the MAC destination group address of a received multicast frame. However this may not be required as
it is possible that the mechanisms specified to support multicast will require examination of the decapsulated MAC destination group address at each RBridge that implements the optimization.

Specifics of multicast forwarding are to be defined in protocol specifications.

5.3.2.3. Flooding

Flooding is similarly reducible to broadcast forwarding in the simplest (default) case – with the exception that a frame being flooded across the TRILL Campus is typically a unicast frame for which no Unicast TRILL Forwarding Database entry exists at the ingress RBridge. This is not a minor distinction, however, because it impacts the way that addressing may be used to accomplish flooding within the TRILL Campus.

An ingress RBridge that does not have a Unicast TRILL Forwarding Database entry for a received frame MAC destination address, will inject the frame onto the ingress RBridge Tree by – for instance – encapsulating the frame with a MAC destination broadcast address, and forwarding it according to its local Multi-destination TRILL Forwarding Database. Without optimization, each RBridge along the path toward all egress RBridges will similarly forward the frame according to their local Multi-destination TRILL Forwarding Database.

Using this approach results in one and only one copy of the flooded frame being delivered to all egress RBridges.

However implementations may choose to optimize flooding. A flooding optimization will only work at any specific RBridge if that RBridge re-evaluates the original (decapsulated) unicast frame.

Any flooding optimization would operate similarly to the multicast optimization described above, except that – instead of requiring local information about multicast distribution – each RBridge implementing the optimization will need only to lookup the MAC destination address of the original (decapsulated) frame in its local Unicast TRILL Forwarding Database. If an entry is found, the frame could then be forwarded only if the specific RBridge is on the shortest path between the originating ingress RBridge and the appropriate egress RBridge. This could be implemented – for example – as a specialized Multi-destination TRILL Forwarding Database entry.
Note that, because a flooding optimization would – in principle – further scope and reduce flooded traffic, two things may be said:

- It is not necessary that all implementations in a deployment support the optimization in order for any local flooding optimization (consistent with the above description) to work (hence such an optimization is optional);
- Introduction of the flooding optimization will not result in potential forwarding loops where flooded forwarding would not do so.

Because a forwarding decision can be made at each hop, it is possible to terminate flooding early if a Unicast TRILL Forwarding Database for the original MAC destination was in the process of being propagated when flooding for the frame was started. It is therefore possible to reduce the amount of flooding to some degree in this case.

Specifics of a flooding optimization – beyond the above proof of the concept that such a thing could be done safely – is out of scope for this document and should be out of scope generally in all protocol specifications for which the above analysis holds.

5.4. Routing Protocol Operation

The details of routing protocol operation are determined by the choice to use IS-IS routing. These details would be defined in appropriate protocol specification(s). Protocol specifications in this case may include both RBridge protocols (such as [3]), and specifications offering a generalized enhancement to IS-IS.

Protocol specifications should identify the means by which IS-IS meets the peer and topology discovery, and path computation needs of the specific protocol – including which IS-IS optional features and enhancements (if any) are required for support of specified RBridge operations.

5.5. Other Bridging and Ethernet Protocol Operations

In defining this architecture, several interaction models have been considered for protocol interaction between RBridges and other L2 forwarding devices – in particular, 802.1D bridges. Whatever model we adopt for these interactions must allow for the possibility of other types of L2 forwarding devices. Hence, a minimal participation model is most likely to be successful over the long term, assuming that RBridges are used in a L2
topology that would be functional if RBridges were replaced by other types of L2 forwarding devices.

Toward this end, RBridges – and the TRILL Campus as a whole – could (in theory) participate in Ethernet link protocols, notably the spanning tree protocol (STP) on the ingress/egress links using exactly one of the following interaction models:

- Transparent Participation (Transparent-STP)
- Active Participation (Participate-STP)
- Blocking Participation (Block-STP)

Only one of these variants would be supported by an instance of this architecture. All RBridges within a single TRILL Campus must use the same model for interacting with non-RBridge protocols. Furthermore, it is the explicit intent that only one of these models is ultimately supported – at least as a default mode of compliant implementations.

This architecture assumes RBridges block STP.

5.5.1. Wiring Closet Problem

There is at least one remaining issue with this assumption and that has been referred to as the "wiring closet problem." The essential problem is described in this subsection.

Given this configuration of bridges in a wiring closet, and an RBridge core:

\[\text{-----> B-1 <----------------> RB-a <-----} \]
\[\text{|} \]
\[\text{\ /} \]
\[\text{\ \ > RBridge CORE} \]
\[\text{\ /} \]
\[\text{\ \ |} \]
One – (near) zero-configuration – option we've considered would be to use a well-known bridge identifier that each RBridge would use as a common pseudo-bridge identifier. Such an ID, used in combination with other STP configuration parameters, would most likely have to be guaranteed to win the root bridge election process in order to be a reasonable and useful default.

However, because this architecture assumes R Bridges block STP, participation in any form of STP is assumed to take place in an in-line, co-located bridge function. Such a bridge function is in addition to RBridge architectural functionality described in this document. Implementations may include such functionality and will very likely require some minimal configuration to turn it on, in vendor specific RBridge implementations. An example of a minimal configuration would be to assign a pseudo-bridge identifier to (the local in-line co-located bridge associated with) a specific RBridge port.

For reasons of interoperability, specific protocol proposals to address the needs of this architecture may specify exactly how a co-located bridge will operate in this case (if such co-located bridge functionality is included in an implementation), as well as whether or not inclusion of such co-location is required.

As a further note, one of the problems that should be addressed – assuming that this problem is to be resolved – is how to make certain the solution is robust against configuration error. In any solution that requires configuration of a pseudo-bridge ID that is common across a TRILL Campus, for example, it is possible to guard against configuration errors by using an election process (based on the root bridge election process) to determine which configured ID will be used by all RBridges in common – assuming that multiple pseudo-bridge IDs are inadvertently configured.

Finally, note that there is a chicken-and-egg problem associated with RBridge participation in STP where R Bridges may themselves be connected by spanning trees.

6. How RBridges Address the TRILL Problem Space

The RBridge architecture addresses the following aspects of the requirements identified in reference [2], through the use of a link-state routing protocol and defined forwarding behaviors:

o Inefficient Paths
Robustness to Link Interruption

In addition, using a logical model of "separation of functions" this architecture allows specifications and implementations to address existing and developing Ethernet extensions and enhancements, and provides a background against which protocol specifications may address: concerns about convergence under dynamic network changes, and optimizations for VLAN, ARP/ND, Multicast, etc.

7. Conclusions

This document discusses options considered and factors affecting any protocol specific choices that may be made in instantiating the TRILL architecture using RBridges.

Specific architectural and protocol instantiations should take these into consideration. In particular, protocol, encapsulation and procedure specifications should allow for potential optimizations described in the architectural document to the maximum extent possible.

Also, this document addresses considerations relative to interaction with existing technology and "future-proofing" solutions. For both simplicity in description, and robust long term implementation of the technology, this document recommends the use of clear distinction - at all possible points - of definitions, protocols, procedures, etc. from related (but not identical) specifications and interactions.

In particular, this document recommends the use of a "collocation model" in addressing issues with combining RBridge, Router and 802.1D bridge behavior.

9. Security Considerations

As one stated requirement of this architecture is the need to be able to provide an L2 delivery mechanism that is potentially configuration free, the default operation mode for instances of this architecture should assume a trust model that does not require configuration of security information. This is - in fact - an identical trust model to that used by Ethernet devices in general.

In consequence, the default mode does not require - but also does not preclude - the use of established security mechanisms.
associated with the existing protocols that may be extended or enhanced to satisfy this document's architectural definitions.

In general, this architecture suggests the use of a link-state routing protocol - modified as required to support L2 reachability and link state between RBridges. Any mechanisms defined to support secure protocol exchanges between link-state routing peers may be extended to support this architecture as well.

This architecture also suggests use of additional encapsulation mechanisms and - to the extent that any proposed mechanism may include (or be extended to include) secure transmission - it may be desirable to provide such (optional) extensions.

To the extent possible, any extensions of protocol or encapsulation should allow for at least one mode of operation that doesn't require configuration - if necessary, for limited use in a physically secure deployment.

9. IANA Considerations

This document has no direct IANA considerations. It does suggest, that protocols that instantiate the architecture use a TRILL header as a wrapper on the payload for RBridge to RBridge traffic, and this TRILL header may be identified by a new Ethertype in the tunneled Ethernet link header. This Ethertype, identified in an Ethernet header, could be allocated by the IEEE.

10. Acknowledgments

The initial work for this document was largely done by Joe Touch, based on work he and Radia Perlman completed earlier. Subsequent changes are not to be blamed on either of them.

In addition, the current text has been helped substantially by comments and suggestions from the TRILL working group, working group chairs, and from Ron Bonica, Stewart Bryant, Joel Halpern, Guillermo Ibanez and Russ White in particular. Also, a great deal of work was recently done - by Joe Touch, Radia Perlman, Dinesh Dutt and Silvano Gai - in an effort to align terminology and concepts used in this document with those also used in the other TRILL documents.
11. References

11.1. Normative References

None.

11.2. Informative References

12. Author's Addresses

Editor:
Eric Gray
Ericsson
900 Chelmsford Street
Lowell, MA, 01851
Phone: +1 (978) 275-7470
EMail: Eric.Gray@Ericsson.com

Contributors:

Joe Touch
USC/ISI
4676 Admiralty Way
Marina del Rey, CA 90292-6695, U.S.A.
Phone: +1 (310) 448-9151
EMail: touch@isi.edu
URL: http://www.isi.edu/touch

Radia Perlman
Sun Microsystems
EMail: Radia.Perlman@sun.com

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The IETF Trust (2007).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.
1. Introduction ... 4
2. Background ... 6
 2.1. Existing Terminology 6
 2.2. RBridge Terminology 10
3. Components .. 12
 3.1. RBridge Device 12
 3.2. RBridge Data Model 13
 3.2.1. Unicast TRILL Forwarding Database 13
 3.2.2. Multi-destination TRILL Forwarding Database... 13
 3.2.3. Ingress TRILL Forwarding Database 15
4. Functional Description 16
 4.1. TRILL Campus Auto-configuration 16
 4.2. RBridge Peer Discovery 18
 4.3. Tunneling .. 19
 4.4. RBridge General Operation 20
 4.5. Ingress/Egress Operations 21
 4.6. Transit Forwarding Operations 23
 4.6.1. Unicast 23
 4.6.2. Broadcast, Multicast and Flooding 23
 4.6.2.1. Broadcast 24
 4.6.2.2. Multicast 25
 4.6.2.3. Flooding 26
 4.7. Routing Protocol Operation 28
 4.8. Other Bridging and Ethernet Protocol Operations 28
 4.8.1. Wiring Closet Problem 29
5. How RBridges Address the TRILL Problem Space 30
6. Conclusions .. 30
7. Security Considerations 31
8. IANA Considerations 32
9. Acknowledgments 32
10. References .. 32
 10.1. Normative References 32
 10.2. Informative References 32
Author's Addresses 33
Intellectual Property Statement 34
Disclaimer of Validity 34
Copyright Statement 34
Acknowledgment ... 35
Routing Function: in this document, the "routing function" consists of forwarding IP packets between L2 broadcast domains, based on L3 addressing and forwarding information. In the process of performing the "routing function", devices (typically routers) usually forward packets from one L2 broadcast domain to another (one, or more in the IP multicast case) – distinct – L2 broadcast domain(s). RBridges cannot span the routing function.

Segment: an Ethernet link, either a single physical link or emulation thereof (e.g., via hubs) or a logical link or emulation thereof (e.g., via bridges).

Spanning Tree Table (STT): a table containing port activation status information as determined during STP.
Subnet, Ethernet: a single segment, or a set of segments interconnected by a CRED (see section 2.2); in the latter case, the subnet may or may not be equivalent to a single segment. Also a subnet may be referred to as a broadcast domain or LAN. By definition, all nodes within an Ethernet Subnet (broadcast domain or LAN) must have L2 connectivity with all other nodes in the same Ethernet subnet.

CRED: Cooperating RBridges and Encapsulation Tunnels - a topological construct consisting of a set of cooperating RBridges, and the forwarding tunnels connecting them.

CRED Forwarding Table (CFT): the per-hop forwarding table populated by the RBridge Routing Protocol; forwarding within the CRED is based on a lookup of the CRED Transit Header (CTH) encapsulated within the outermost received L2 header. The outermost L2 encapsulation in this case includes the source MAC address of the immediate upstream RBridge transmitting the frame and destination MAC address of the receiving RBridge for use in the unicast forwarding case.

CFT-RDT: a forwarding table used for propagation of broadcast, multicast or flooded frames along the RBridge Distribution Tree (RDT).

CRED Transit Header (CTH): a 'shim' header that encapsulates the ingress L2 frame and persists throughout the transit of a CRED, which is further encapsulated within a hop-by-hop L2 header (and trailer). The hop-by-hop L2 encapsulation in this case includes the source MAC address of the immediate upstream RBridge transmitting the frame and destination MAC address of the receiving RBridge - at least in the unicast forwarding case.

CRED Transit Table (CTT): a table that maps ingress frame L2 destinations to egress RBridge addresses, used to determine encapsulation of ingress frames for transit of the CRED.
those RBridges within a single Ethernet Subnet (broadcast domain or LAN) not having been configured to ignore each other. By default, all RBridges within a single Ethernet subnet will cooperate with each other. It is possible for implementations to allow for configuration that will restrict "cooperation" between an RBridge and an apparent neighboring RBridge. One reason why this might occur is if the trust model that applies in a particular deployment imposes a need for configuration of security information. By default no such configuration is required however - should it be used in any specific scenario - it is possible (either deliberately or inadvertently) to configure neighboring RBridges so that they do not cooperate. In the remainder of this document, all RBridges are assumed to be in a cooperating (default) configuration.

a tree computed for each edge RBridge - and potentially for each VLAN in which that RBridge participates - for delivery of broadcast, multicast and flooded frames from that RBridge to all relevant egress RBridges. This is the point-to-multipoint delivery tree used by an ingress RBridge to deliver multicast, broadcast or flooded traffic. The tree consists of a set of one or more next-hops to be used when the ingress RBridge receives a multicast or broadcast frame (frame with a multicast or broadcast destination address), or frame with unknown destination addresses. If forwarding frames hop-by-hop, next hop RBridges will, in turn, have a similar set of one or more next-hops to be used for forwarding these frames - when received from an upstream, or ingress, RBridge. This progression continues until frames arrive at egress RBridges.

), CFT-RDT (used for flooding, broadcast or multicast forwarding of RBridge encapsulated frames across the CRED) and a CRED Transit Table (CTT - used
Ingress TRILL Forwarding Database can be considered a version of the learned filtering (forwarding) database.

TRILL Campus, as a whole, as another port.

RBridges may have separate Ingress TRILL Forwarding Databases for each VLAN, if separate VLANs are supported by configuration.

Consider first a set of bridges on a single Ethernet.
LAN (Figure 1). Here bridges are shown as 'b', hubs as 'h', and nodes as 'N'; bridges and hubs are numbered. Note that the figure does not distinguish between types of nodes, i.e., hosts and routers; both are end nodes at the link layer, and are otherwise indistinguishable to L2 forwarding devices. Bridges in this topology organize into a single spanning tree, as shown by double lines ('=' , '||', and '//') in the figure.

Conventionally bridged Ethernet LAN

It is useful to note that hubs are relatively transparent to bridges, both for traffic from nodes to bridges (h1) and for traffic between bridges (h2). Also note that the same hub can support traffic between bridges and from a host to a bridge (h2), but that the spanning tree is exclusively between bridges. Bridges are thus compatible with hubs, both as transits and ingress/egress.

TRILL Campus operates similarly, and can be viewed as a variant of the way bridges self-organize. Figure 2 shows the same topology where some of the bridges are replaced by RBridges (shown as 'r' in
the figure). In this figure, stars ('*') represent the paths the RBridge is capable of utilizing, due to the use of link state routing. RBridges can tunnel directly to each other (r4-r5), or through hubs (h2) or bridges (b8).

Note that the former b8-b9 path, which is b8-r9 in Figure 2 and had been disable by the hypothetical spanning tree in Figure 1, is now usable.

```
      N   N---b3---N
|         |
|         |
N---h1--r4***r5**h2**r6
   *   |   *
   *   N   *
   *     *
N---r7****b8*****r9------N
   |   |\
   |   |
N   N   N   N
```

RBriged Ethernet LAN
In Figure 2, it is easy to see that the nodes off of h1 must attach at r4; the nodes off of b3, however, attach at either r5 or r6, depending on which is the Designated RBridge.

Without loss of generality, an RBridge topology can be reorganized (ignoring link length) such that all nodes, hubs, and bridges are arranged around the periphery, and all RBridges are considered directly connected by their tunnels (Figure 3). Note that this view ignores the ways in which hubs and bridges may serve both on the ingress/egress and for transit, hence this view is not useful for traffic analysis. Using this view, it is easy to distinguish...
between RBridge to RBridge traffic and other traffic on shared devices, such as h2 and b8, because RBridge to RBridge traffic content is hidden from non RBridge devices by the RBridge encapsulation.

N N---b3---N
| ||
| ||
| h2
| /| \
| / N \
| / \
N---h1--r4***r5******r6
* * *
* * *
* * *
N---r7***********r9-----N
\ /|\ \
\ / | \
\ / N N \
\ / \
\ / b8 \
\ N

Reorganized RBridge Ethernet

LAN

Page 17: [31] Deleted Eric W Gray 11/18/2007 9:43:00 PM
and the RBridge topology

An accurate determination of RBridge topology is required in order to determine how traffic frames will flow in the topology and thus avoid the establishment of persistent loops in frame forwarding.

Page 17: [33] Formatted Eric W Gray 11/18/2007 9:43:00 PM
Heading 2
These protocol messages should be distinguished in a manner that is consistent with the chosen RBridge routing protocol, or any other discovery mechanism used. It is very likely that peer discovery will actually be done as part of the RBridge routing protocol's peer discovery; however this is to be determined by specific RBridge protocol specification(s).

An RBridge intercepts protocol messages that it recognizes as being of this type (peer discovery), performs any processing required and forwards these messages as required by the discovery protocol. For example, a receiving RBridge may first determine if it has seen this message before and insert itself in a list of RBridges traversed by this message prior to forwarding the message on at least all interfaces other than the one on which it was received.

Note that forwarding the modified message on all interfaces in the example above is safe, if somewhat wasteful.

RBridges must forward all other protocol messages in a manner consistent with L2 addressing and forwarding – as would be done by a typical 802.1D bridge.

Handling of 802.1D BPDUs is as determined in section 4.8.
For incoming multicast and broadcast traffic, one of these addresses may represent the multicast group or broadcast address. Additionally, these addresses may be VLAN-specific, i.e., such that each ingress and egress address have per-VLAN addresses.

limited by loop mediation and/or prevention mechanisms that are

(but may include a TTL-like mechanism, mechanisms to establish a loop free topology – such as STP/RSTP/MSTP – or both) on the applicable LAN links

The initial phase is the peer and topology discovery phase. This should continue for a sufficient amount of time to reduce the amount of re-negotiation (Designated RBridge and – possibly – identifiers) and re-computation that will be triggered by discovery of new peers. The timer values selected for delaying the next phase should take into account the time required for local STP and availability of segment connectivity between RBridge peers.

The next phase is election of Designated RBridges for all shared access segments. This phase cannot complete before completion of peer and topology discovery. In parallel, RBridge routing protocol should begin the process of building the link-state information – assuming this was not done during the peer and topology discovery phase.
At about this time, RBridges should establish RBridge Distribution Trees.

Once RBridges have established RBridge Distribution Trees, the learning and forwarding phase may begin. In this phase, RBridges initially forward frames by flooding via RBridge Distribution Tree(s). Also during this phase, RBridges begin "learning" MAC address locations from local segments and propagating L2 reach-ability information via the RBridge routing protocol to all other RBridges. Gradually, the

Unicast TRILL Forwarding Database will be built up for all RBridges, and fewer frames will require flooding via the

ARP/ND optimization may occur during this phase as information learned from ARP/ND queries may be propagated across the

TRILL Campus – potentially significantly reducing the impact of at least one source of broadcast traffic.

The learning phase typically does not complete as new MAC attachment information continues to be learned and old information may be timed out and discarded. Consequently, the learning phase is also the operational phase. During the combined learning and operational phase, all RBridges maintain both RBridge Distribution Trees and a
Unicast TRILL Forwarding Database. RBridges not elected as the Designated RBridge may be required to become one in the event that the DR goes off-line.