
SPEECHSC D. Burnett
Internet-Draft Voxeo
Intended status: Standards Track S. Shanmugham
Expires: January 12, 2012 Cisco Systems, Inc.
 July 11, 2011

 Media Resource Control Protocol Version 2 (MRCPv2)
 draft-ietf-speechsc-mrcpv2-25

Abstract

 The MRCPv2 protocol allows client hosts to control media service
 resources such as speech synthesizers, recognizers, verifiers and
 identifiers residing in servers on the network. MRCPv2 is not a
 "stand-alone" protocol - it relies on other protocols, such as
 Session Initiation Protocol (SIP) to rendezvous MRCPv2 clients and
 servers and manage sessions between them, and the Session Description
 Protocol (SDP) to describe, discover and exchange capabilities. It
 also depends on SIP and SDP to establish the media sessions and
 associated parameters between the media source or sink and the media
 server. Once this is done, the MRCPv2 protocol exchange operates
 over the control session established above, allowing the client to
 control the media processing resources on the speech resource server.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 12, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

Burnett & Shanmugham Expires January 12, 2012 [Page 1]

Internet-Draft MRCPv2 July 2011

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Burnett & Shanmugham Expires January 12, 2012 [Page 2]

Internet-Draft MRCPv2 July 2011

Table of Contents

 1. Introduction . 9
 2. Document Conventions . 10
 2.1. Definitions . 10
 2.2. State-Machine Diagrams 11
 2.3. URI Schemes . 11
 3. Architecture . 11
 3.1. MRCPv2 Media Resource Types 13
 3.2. Server and Resource Addressing 14
 4. MRCPv2 Protocol Basics 14
 4.1. Connecting to the Server 15
 4.2. Managing Resource Control Channels 15
 4.3. SIP session example 17
 4.4. Media Streams and RTP Ports 22
 4.5. MRCPv2 Message Transport 24
 4.6. MRCPv2 Session Termination 24
 5. MRCPv2 Specification . 25
 5.1. Common Protocol Elements 25
 5.2. Request . 28
 5.3. Response . 29
 5.4. Status Codes . 30
 5.5. Events . 31
 6. MRCPv2 Generic Methods, Headers, and Result Structure 32
 6.1. Generic Methods . 33
 6.1.1. SET-PARAMS . 33
 6.1.2. GET-PARAMS . 34
 6.2. Generic Message Headers 35
 6.2.1. Channel-Identifier 36
 6.2.2. Accept . 36
 6.2.3. Active-Request-Id-List 37
 6.2.4. Proxy-Sync-Id 37
 6.2.5. Accept-Charset 38
 6.2.6. Content-Type . 38
 6.2.7. Content-ID . 38
 6.2.8. Content-Base . 39
 6.2.9. Content-Encoding 39
 6.2.10. Content-Location 39
 6.2.11. Content-Length 40
 6.2.12. Fetch Timeout 40
 6.2.13. Cache-Control 41
 6.2.14. Logging-Tag . 42
 6.2.15. Set-Cookie and Set-Cookie2 42
 6.2.16. Vendor Specific Parameters 44
 6.3. Generic Result Structure 45
 6.3.1. Natural Language Semantics Markup Language 46
 7. Resource Discovery . 46
 8. Speech Synthesizer Resource 48

Burnett & Shanmugham Expires January 12, 2012 [Page 3]

Internet-Draft MRCPv2 July 2011

 8.1. Synthesizer State Machine 48
 8.2. Synthesizer Methods 49
 8.3. Synthesizer Events 49
 8.4. Synthesizer Header Fields 50
 8.4.1. Jump-Size . 50
 8.4.2. Kill-On-Barge-In 51
 8.4.3. Speaker Profile 52
 8.4.4. Completion Cause 52
 8.4.5. Completion Reason 53
 8.4.6. Voice-Parameter 53
 8.4.7. Prosody-Parameters 54
 8.4.8. Speech Marker 54
 8.4.9. Speech Language 55
 8.4.10. Fetch Hint . 55
 8.4.11. Audio Fetch Hint 56
 8.4.12. Failed URI . 56
 8.4.13. Failed URI Cause 56
 8.4.14. Speak Restart 56
 8.4.15. Speak Length . 57
 8.4.16. Load-Lexicon . 57
 8.4.17. Lexicon-Search-Order 58
 8.5. Synthesizer Message Body 58
 8.5.1. Synthesizer Speech Data 58
 8.5.2. Lexicon Data . 60
 8.6. SPEAK Method . 61
 8.7. STOP . 63
 8.8. BARGE-IN-OCCURRED 64
 8.9. PAUSE . 66
 8.10. RESUME . 67
 8.11. CONTROL . 70
 8.12. SPEAK-COMPLETE . 72
 8.13. SPEECH-MARKER . 73
 8.14. DEFINE-LEXICON . 75
 9. Speech Recognizer Resource 75
 9.1. Recognizer State Machine 77
 9.2. Recognizer Methods 77
 9.3. Recognizer Events 78
 9.4. Recognizer Header Fields 78
 9.4.1. Confidence Threshold 80
 9.4.2. Sensitivity Level 80
 9.4.3. Speed Vs Accuracy 81
 9.4.4. N Best List Length 81
 9.4.5. Input Type . 81
 9.4.6. No Input Timeout 82
 9.4.7. Recognition Timeout 82
 9.4.8. Waveform URI . 82
 9.4.9. Media Type . 83
 9.4.10. Input-Waveform-URI 83

Burnett & Shanmugham Expires January 12, 2012 [Page 4]

Internet-Draft MRCPv2 July 2011

 9.4.11. Completion Cause 83
 9.4.12. Completion Reason 85
 9.4.13. Recognizer Context Block 86
 9.4.14. Start Input Timers 86
 9.4.15. Speech Complete Timeout 87
 9.4.16. Speech Incomplete Timeout 87
 9.4.17. DTMF Interdigit Timeout 88
 9.4.18. DTMF Term Timeout 88
 9.4.19. DTMF-Term-Char 88
 9.4.20. Failed URI . 88
 9.4.21. Failed URI Cause 89
 9.4.22. Save Waveform 89
 9.4.23. New Audio Channel 89
 9.4.24. Speech-Language 90
 9.4.25. Ver-Buffer-Utterance 90
 9.4.26. Recognition-Mode 90
 9.4.27. Cancel-If-Queue 90
 9.4.28. Hotword-Max-Duration 91
 9.4.29. Hotword-Min-Duration 91
 9.4.30. Interpret-Text 92
 9.4.31. DTMF-Buffer-Time 92
 9.4.32. Clear-DTMF-Buffer 92
 9.4.33. Early-No-Match 92
 9.4.34. Num-Min-Consistent-Pronunciations 93
 9.4.35. Consistency-Threshold 93
 9.4.36. Clash-Threshold 93
 9.4.37. Personal-Grammar-URI 93
 9.4.38. Enroll-Utterance 94
 9.4.39. Phrase-Id . 94
 9.4.40. Phrase-NL . 94
 9.4.41. Weight . 94
 9.4.42. Save-Best-Waveform 95
 9.4.43. New-Phrase-Id 95
 9.4.44. Confusable-Phrases-URI 95
 9.4.45. Abort-Phrase-Enrollment 96
 9.5. Recognizer Message Body 96
 9.5.1. Recognizer Grammar Data 96
 9.5.2. Recognizer Result Data 100
 9.5.3. Enrollment Result Data 101
 9.5.4. Recognizer Context Block 101
 9.6. Recognizer Results 101
 9.6.1. Markup Functions 102
 9.6.2. Overview of Recognizer Result Elements and their
 Relationships 103
 9.6.3. Elements and Attributes 103
 9.7. Enrollment Results 108
 9.7.1. NUM-CLASHES Element 108
 9.7.2. NUM-GOOD-REPETITIONS Element 109

Burnett & Shanmugham Expires January 12, 2012 [Page 5]

Internet-Draft MRCPv2 July 2011

 9.7.3. NUM-REPETITIONS-STILL-NEEDED Element 109
 9.7.4. CONSISTENCY-STATUS Element 109
 9.7.5. CLASH-PHRASE-IDS Element 109
 9.7.6. TRANSCRIPTIONS Element 109
 9.7.7. CONFUSABLE-PHRASES Element 109
 9.8. DEFINE-GRAMMAR . 109
 9.9. RECOGNIZE . 113
 9.10. STOP . 119
 9.11. GET-RESULT . 120
 9.12. START-OF-INPUT . 121
 9.13. START-INPUT-TIMERS 122
 9.14. RECOGNITION-COMPLETE 122
 9.15. START-PHRASE-ENROLLMENT 124
 9.16. ENROLLMENT-ROLLBACK 125
 9.17. END-PHRASE-ENROLLMENT 126
 9.18. MODIFY-PHRASE . 126
 9.19. DELETE-PHRASE . 127
 9.20. INTERPRET . 127
 9.21. INTERPRETATION-COMPLETE 128
 9.22. DTMF Detection . 130
 10. Recorder Resource . 130
 10.1. Recorder State Machine 131
 10.2. Recorder Methods . 131
 10.3. Recorder Events . 131
 10.4. Recorder Header Fields 131
 10.4.1. Sensitivity Level 132
 10.4.2. No Input Timeout 132
 10.4.3. Completion Cause 132
 10.4.4. Completion Reason 133
 10.4.5. Failed URI . 133
 10.4.6. Failed URI Cause 134
 10.4.7. Record URI . 134
 10.4.8. Media Type . 134
 10.4.9. Max Time . 135
 10.4.10. Trim-Length . 135
 10.4.11. Final Silence 135
 10.4.12. Capture On Speech 135
 10.4.13. Ver-Buffer-Utterance 136
 10.4.14. Start Input Timers 136
 10.4.15. New Audio Channel 136
 10.5. Recorder Message Body 136
 10.6. RECORD . 137
 10.7. STOP . 138
 10.8. RECORD-COMPLETE . 139
 10.9. START-INPUT-TIMERS 140
 10.10. START-OF-INPUT . 140
 11. Speaker Verification and Identification 141
 11.1. Speaker Verification State Machine 142

Burnett & Shanmugham Expires January 12, 2012 [Page 6]

Internet-Draft MRCPv2 July 2011

 11.2. Speaker Verification Methods 144
 11.3. Verification Events 145
 11.4. Verification Header Fields 145
 11.4.1. Repository-URI 146
 11.4.2. Voiceprint-Identifier 146
 11.4.3. Verification-Mode 147
 11.4.4. Adapt-Model . 148
 11.4.5. Abort-Model . 148
 11.4.6. Min-Verification-Score 148
 11.4.7. Num-Min-Verification-Phrases 148
 11.4.8. Num-Max-Verification-Phrases 149
 11.4.9. No-Input-Timeout 149
 11.4.10. Save-Waveform 149
 11.4.11. Media Type . 150
 11.4.12. Waveform-URI . 150
 11.4.13. Voiceprint-Exists 150
 11.4.14. Ver-Buffer-Utterance 151
 11.4.15. Input-Waveform-Uri 151
 11.4.16. Completion-Cause 151
 11.4.17. Completion Reason 153
 11.4.18. Speech Complete Timeout 153
 11.4.19. New Audio Channel 153
 11.4.20. Abort-Verification 153
 11.4.21. Start Input Timers 154
 11.5. Verification Message Body 154
 11.5.1. Verification Result Data 154
 11.5.2. Verification Result Elements 154
 11.6. START-SESSION . 158
 11.7. END-SESSION . 159
 11.8. QUERY-VOICEPRINT . 160
 11.9. DELETE-VOICEPRINT 161
 11.10. VERIFY . 162
 11.11. VERIFY-FROM-BUFFER 162
 11.12. VERIFY-ROLLBACK . 165
 11.13. STOP . 165
 11.14. START-INPUT-TIMERS 166
 11.15. VERIFICATION-COMPLETE 167
 11.16. START-OF-INPUT . 167
 11.17. CLEAR-BUFFER . 168
 11.18. GET-INTERMEDIATE-RESULT 168
 12. Security Considerations 169
 12.1. Rendezvous and Session Establishment 170
 12.2. Control channel protection 170
 12.3. Media session protection 170
 12.4. Indirect Content Access 171
 12.5. Protection of stored media 172
 12.6. DTMF and recognition buffers 172
 13. IANA Considerations . 172

Burnett & Shanmugham Expires January 12, 2012 [Page 7]

Internet-Draft MRCPv2 July 2011

 13.1. New registries . 172
 13.1.1. MRCPv2 resource types 172
 13.1.2. MRCPv2 methods and events 173
 13.1.3. MRCPv2 header fields 175
 13.1.4. MRCPv2 status codes 177
 13.1.5. Grammar Reference List Parameters 177
 13.1.6. MRCPv2 vendor-specific parameters 178
 13.2. NLSML-related registrations 178
 13.2.1. application/nlsml+xml Media Type registration . . . 178
 13.3. NLSML XML Schema registration 179
 13.4. MRCPv2 XML Namespace registration 179
 13.5. text Media Type Registrations 179
 13.5.1. text/grammar-ref-list 180
 13.6. session URI scheme registration 180
 13.7. SDP parameter registrations 181
 13.7.1. sub-registry "proto" 182
 13.7.2. sub-registry "att-field (media-level)" 182
 14. Examples . 183
 14.1. Message Flow . 183
 14.2. Recognition Result Examples 193
 14.2.1. Simple ASR Ambiguity 193
 14.2.2. Mixed Initiative 194
 14.2.3. DTMF Input . 195
 14.2.4. Interpreting Meta-Dialog and Meta-Task Utterances . 195
 14.2.5. Anaphora and Deixis 196
 14.2.6. Distinguishing Individual Items from Sets with
 One Member . 197
 14.2.7. Extensibility 198
 15. ABNF Normative Definition 198
 16. XML Schemas . 213
 16.1. NLSML Schema Definition 213
 16.2. Enrollment Results Schema Definition 214
 16.3. Verification Results Schema Definition 216
 17. References . 219
 17.1. Normative References 219
 17.2. Informative References 222
 Appendix A. Contributors . 224
 Appendix B. Acknowledgements 225
 Authors’ Addresses . 225

Burnett & Shanmugham Expires January 12, 2012 [Page 8]

Internet-Draft MRCPv2 July 2011

1. Introduction

 The MRCPv2 protocol is designed to allow a client device to control
 media processing resources on the network. Some of these media
 processing resources include speech recognition engines, speech
 synthesis engines, speaker verification and speaker identification
 engines. MRCPv2 enables the implementation of distributed
 Interactive Voice Response platforms using VoiceXML
 [W3C.REC-voicexml20-20040316] browsers or other client applications
 while maintaining separate back-end speech processing capabilities on
 specialized speech processing servers. MRCPv2 is based on the
 earlier Media Resource Control Protocol (MRCP) [RFC4463] developed
 jointly by Cisco Systems, Inc., Nuance Communications, and
 Speechworks Inc.

 The protocol requirements of SPEECHSC [RFC4313] include that the
 solution be capable of reaching a media processing server and setting
 up communication channels to the media resources, and sending and
 receiving control messages and media streams to/from the server. The
 Session Initiation Protocol (SIP) [RFC3261] meets these requirements.

 The proprietary version of MRCP ran over the Real Time Streaming
 Protocol (RTSP) [RFC2326]. At the time work on MRCPv2 was begun, the
 consensus was that this use of RTSP would break the RTSP protocol or
 cause backward-compatibility problems, something forbidden by Section
 3.2 of the above mentioned requirements document. This is the reason
 why MRCPv2 does not run over RTSP.

 MRCPv2 leverages these capabilities by building upon SIP and the
 Session Description Protocol (SDP) [RFC4566]. MRCPv2 uses SIP to
 setup and tear down media and control sessions with the server. In
 addition, the client can use a SIP re-INVITE method (an INVITE dialog
 sent within an existing SIP Session) to change the characteristics of
 these media and control session while maintaining the SIP dialog
 between the client and server. SDP is used to describe the
 parameters of the media sessions associated with that dialog. It is
 mandatory to support SIP as the session establishment protocol to
 ensure interoperability. Other protocols can be used for session
 establishment by prior agreement. This document only describes the
 use of SIP and SDP.

 MRCPv2 uses SIP and SDP to create the speech client/server dialog and
 set up the media channels to the server. It also uses SIP and SDP to
 establish MRCPv2 control sessions between the client and the server
 for each media processing resource required for that dialog. The
 MRCPv2 protocol exchange between the client and the media resource is
 carried on that control session. MRCPv2 protocol exchanges do not
 change the state of the SIP dialog, the media sessions, or other

Burnett & Shanmugham Expires January 12, 2012 [Page 9]

Internet-Draft MRCPv2 July 2011

 parameters of the dialog initiated via SIP. It controls and affects
 the state of the media processing resource associated with the MRCPv2
 session(s).

 MRCPv2 defines the messages to control the different media processing
 resources and the state machines required to guide their operation.
 It also describes how these messages are carried over a transport
 layer protocol such as the Transmission Control Protocol (TCP)
 [RFC0793] or the Transport Layer Security (TLS) Protocol [RFC5246]
 (Note: the Stream Control Transmission Protocol (SCTP) [RFC4960] is a
 viable transport for MRCPv2 as well, but the mapping onto SCTP is not
 described in this specification).

2. Document Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Since many of the definitions and syntax are identical to those for
 the HTTP/1.1 (Hypertext Transfer Protocol (HTTP/1.1) [RFC2616]), this
 specification refers to the section where they are defined rather
 than copying it. For brevity, [HX.Y] is to be taken to refer to
 Section X.Y of RFC 2616.

 All the mechanisms specified in this document are described in both
 prose and an augmented Backus-Naur form (ABNF [RFC5234]).

 The complete message format in ABNF form is provided in Section 15
 and is the normative format definition. Note that productions may be
 duplicated within the main body of the document for reading
 convenience. If a production in the body of the text conflicts with
 one in the normative definition, the latter rules.

2.1. Definitions

 Media Resource
 An entity on the speech processing server that can be
 controlled through the MRCPv2 protocol.
 MRCP Server
 Aggregate of one or more "Media Resource" entities on
 a Server, exposed through the MRCPv2 protocol
 ("Server" for short).

Burnett & Shanmugham Expires January 12, 2012 [Page 10]

Internet-Draft MRCPv2 July 2011

 MRCP Client
 An entity controlling one or more Media Resources
 through the MRCPv2 protocol ("Client" for short).
 DTMF
 Dual Tone Multi-Frequency; a method of transmitting
 key presses in-band, either as actual tones (Q.23
 [Q.23]) or as named tone events (RFC 4733 [RFC4733]).
 Endpointing
 The process of automatically detecting the beginning
 and end of speech in an audio stream. This is
 critical both for speech recognition and for automated
 recording as one would find in voice mail systems.
 Hotword Mode
 A mode of speech recognition where a stream of
 utterances is evaluated for match against a small set
 of command words. This is generally employed to
 either trigger some action, or to control the
 subsequent grammar to be used for further recognition

2.2. State-Machine Diagrams

 The state-machine diagrams in this document do not show every
 possible method call. Rather, they reflect the state of the resource
 based on the methods that have moved to IN-PROGRESS or COMPLETE
 states (see Section 5.3). Note that since PENDING requests
 essentially have not affected the resource yet and are in queue to be
 processed, they are not reflected in the state-machine diagrams.

2.3. URI Schemes

 This document defines many protocol headers that contain URIs
 (Uniform Resource Identifier (URI) [RFC3986]) or lists of URIs for
 referencing media. The entire document, including the Security
 Considerations section (Section 12), assumes that HTTP or HTTP over
 TLS (HTTPS) [RFC2818] will be used as the URI addressing scheme
 unless otherwise stated. However, implementations MAY support other
 schemes (such as "file") provided they have addressed any security
 considerations described in this document and any others particular
 to the specific scheme. For example, implementations where the
 client and server both reside on the same physical hardware and the
 file system is secured by traditional user-level file access controls
 could be reasonable candidates for supporting the "file" scheme.

3. Architecture

 A system using MRCPv2 consists of a client that requires the
 generation and/or consumption of media streams and a media resource

Burnett & Shanmugham Expires January 12, 2012 [Page 11]

Internet-Draft MRCPv2 July 2011

 server that has the resources or "engines" to process these streams
 as input or generate these streams as output. The client uses SIP
 and SDP to establish an MRCPv2 control channel with the server to use
 its media processing resources. MRCPv2 servers are addressed using
 SIP URIs.

 The session initiation protocol (SIP) uses SDP with the offer/answer
 model described in RFC3264 [RFC3264] to set up the MRCPv2 control
 channels and describe their characteristics. A separate MRCPv2
 session is needed to control each of the media processing resources
 associated with the SIP dialog between the client and server. Within
 a SIP dialog, the individual resource control channels for the
 different resources are added or removed through SDP offer/answer
 carried in a SIP re-INVITE transaction.

 The server, through the SDP exchange, provides the client with an
 unambiguous channel identifier and a TCP port number. The client MAY
 then open a new TCP connection with the server on this port number.
 Multiple MRCPv2 channels can share a TCP connection between the
 client and the server. All MRCPv2 messages exchanged between the
 client and the server carry the specified channel identifier that the
 server MUST ensure is unambiguous among all MRCPv2 control channels
 that are active on that server. The client uses this channel
 identifier to indicate the media processing resource associated with
 that channel. For information on message framing, see Section 5.

 The session initiation protocol (SIP) also establishes the media
 sessions between the client (or other source/sink of media) and the
 MRCPv2 server using SDP m-lines. One or more media processing
 resources may share a media session under a SIP session, or each
 media processing resource may have its own media session.

 The following diagram shows the general architecture of a system that
 uses MRCPv2. To simplify the diagram only a few resources are shown.

Burnett & Shanmugham Expires January 12, 2012 [Page 12]

Internet-Draft MRCPv2 July 2011

 MRCPv2 client MRCPv2 Media Resource Server
--------------------		------------------------------------												
	------------------				----------------------------------									
	Application Layer				Synthesis	Recognition	Verification							
	------------------				Engine	Engine	Engine							
	Media Resource API													
	------------------				Synthesis	Recognizer	Verifier							
	SIP	MRCPv2				Resource	Resource	Resource						
	Stack					Media Resource Management								

	------------------				SIP	MRCPv2								
	TCP/IP Stack		---MRCPv2---		Stack									

	------------------		----SIP-----		TCP/IP Stack									

 | ||----------------------------------||
 SIP |------------------------------------|
 | /
|-------------------| RTP
| | /
| Media Source/Sink |------------/

 Figure 1: Architectural Diagram

3.1. MRCPv2 Media Resource Types

 An MRCPv2 server may offer one or more of the following media
 processing resources to its clients.
 Basic Synthesizer
 A speech synthesizer resource with very limited
 capabilities, that can generate its media stream
 exclusively from concatenated audio clips. The speech
 data is described using a limited subset of the Speech
 Synthesis Markup Language (SSML)
 [W3C.REC-speech-synthesis-20040907] elements. A basic
 synthesizer MUST support the SSML tags <speak>,
 <audio>, <say-as> and <mark>.
 Speech Synthesizer
 A full capability speech synthesis resource capable of
 rendering speech from text. Such a synthesizer MUST
 have full SSML [W3C.REC-speech-synthesis-20040907]
 support.

Burnett & Shanmugham Expires January 12, 2012 [Page 13]

Internet-Draft MRCPv2 July 2011

 Recorder
 A resource capable of recording audio and providing a
 URI pointer to the recording. A recorder MUST provide
 some endpointing capabilities for suppressing silence
 at the beginning and end of a recording, and MAY also
 suppress silence in the middle of a recording. If
 such suppression is done, the recorder MUST maintain
 timing metadata to indicate the actual time stamps of
 the recorded media.
 DTMF Recognizer
 A recognition resource capable of extracting and
 interpreting Dual-Tone Multi-Frequency (DTMF) [Q.23]
 digits in a media stream and matching them against a
 supplied digit grammar It could also do a semantic
 interpretation based on semantic tags in the grammar.
 Speech Recognizer
 A full speech recognition resource that is capable of
 receiving a media stream containing audio and
 interpreting it to recognition results. It also has a
 natural language semantic interpreter to post-process
 the recognized data according to the semantic data in
 the grammar and provide semantic results along with
 the recognized input. The recognizer may also support
 enrolled grammars, where the client can enroll and
 create new personal grammars for use in future
 recognition operations.
 Speaker Verifier
 A resource capable of verifying the authenticity of a
 claimed identity by matching a media stream containing
 spoken input to a pre-existing voiceprint. This may
 also involve matching the caller’s voice against more
 than one voiceprint, also called multi-verification or
 speaker identification.

3.2. Server and Resource Addressing

 The MRCPv2 server is a generic SIP server, and is thus addressed by a
 SIP URI (RFC 3261 [RFC3261]).

 For example:

 sip:mrcpv2@example.net

4. MRCPv2 Protocol Basics

 MRCPv2 requires a connection-oriented transport layer protocol such
 as TCP or SCTP to guarantee reliable sequencing and delivery of

Burnett & Shanmugham Expires January 12, 2012 [Page 14]

Internet-Draft MRCPv2 July 2011

 MRCPv2 control messages between the client and the server. In order
 to meet the requirements for security enumerated in SpeechSC
 Requirements [RFC4313], clients and servers MUST implement TLS as
 well. One or more connections between the client and the server can
 be shared among different MRCPv2 channels to the server. The
 individual messages carry the channel identifier to differentiate
 messages on different channels. MRCPv2 protocol encoding is text
 based with mechanisms to carry embedded binary data. This allows
 arbitrary data like recognition grammars, recognition results,
 synthesizer speech markup etc. to be carried in MRCPv2 messages. For
 information on message framing, see Section 5.

4.1. Connecting to the Server

 MRCPv2 employs a session establishment and management protocol such
 as SIP in conjunction with SDP. The client reaches an MRCPv2 server
 using conventional INVITE and other SIP requests for establishing,
 maintaining, and terminating SIP dialogs. The SDP offer/answer
 exchange model over SIP is used to establish a resource control
 channel for each resource. The SDP offer/answer exchange is also
 used to establish media sessions between the server and the source or
 sink of audio.

4.2. Managing Resource Control Channels

 The client needs a separate MRCPv2 resource control channel to
 control each media processing resource under the SIP dialog. A
 unique channel identifier string identifies these resource control
 channels. The channel identifier is an unambiguous, opaque string
 followed by an "@", then by a string token specifying the type of
 resource. The server generates the channel identifier and MUST make
 sure it does not clash with the identifier of any other MRCP channel
 currently allocated by that server. MRCPv2 defines the following
 IANA-registered types of media processing resources. Additional
 resource types, their associated methods/events and state machines
 may be added as described below in Section 13.

 +---------------+----------------------+--------------+
 | Resource Type | Resource Description | Described in |
 +---------------+----------------------+--------------+
 | speechrecog | Speech Recognizer | Section 9 |
 | dtmfrecog | DTMF Recognizer | Section 9 |
 | speechsynth | Speech Synthesizer | Section 8 |
 | basicsynth | Basic Synthesizer | Section 8 |
 | speakverify | Speaker Verification | Section 11 |
 | recorder | Speech Recorder | Section 10 |
 +---------------+----------------------+--------------+

Burnett & Shanmugham Expires January 12, 2012 [Page 15]

Internet-Draft MRCPv2 July 2011

 Resource Types

 The SIP INVITE or re-INVITE transaction and the SDP offer/answer
 exchange it carries contain m-lines describing the resource control
 channel to be allocated. There MUST be one SDP m-line for each
 MRCPv2 resource to be used in the session. This m-line MUST have a
 media type field of "application" and a transport type field of
 either "TCP/MRCPv2" or "TCP/TLS/MRCPv2". (The usage of SCTP with
 MRCPv2 may be addressed in a future specification). The port number
 field of the m-line MUST contain the "discard" port of the transport
 protocol (port 9 for TCP) in the SDP offer from the client and MUST
 contain the TCP listen port on the server in the SDP answer. The
 client may then either set up a TCP or TLS connection to that server
 port or share an already established connection to that port. Since
 MRCPv2 allows multiple sessions to share the same TCP connection,
 multiple m-lines in a single SDP document may share the same port
 field value; MRCPv2 servers MUST NOT assume any relationship between
 resources using the same port other than the sharing of the
 communication channel.

 MRCPv2 resources do not use the port or format field of the m-line to
 distinguish themselves from other resources using the same channel.
 The client MUST specify the resource type identifier in the resource
 attribute associated with the control m-line of the SDP offer. The
 server MUST respond with the full Channel-Identifier (which includes
 the resource type identifier and an unambiguous string) in the
 "channel" attribute associated with the control m-line of the SDP
 answer. To remain backwards compatible with conventional SDP usage,
 the format field of the m-line MUST have the arbitrarily-selected
 value of "1".

 When the client wants to add a media processing resource to the
 session, it issues a new SDP offer, according to the procedures of
 RFC 3264 [RFC3264], in a SIP re-INVITE request. The SDP offer/answer
 exchange carried by this SIP transaction contains one or more
 additional control m-lines for the new resources to be allocated to
 the session. The server, on seeing the new m-line, allocates the
 resources (if they are available) and responds with a corresponding
 control m-line in the SDP answer carried in the SIP response. If the
 new resources are not available, the re-INVITE receives an error
 message, and existing media processing going on before the re-INVITE
 will continue as it was before.

 MRCPv2 clients and servers using TCP as a transport protocol MUST use
 the procedures specified in RFC 4145 [RFC4145] for setting up the TCP
 connection, with the considerations described hereby. Similarly,
 MRCPv2 clients and servers using TCP/TLS as a transport protocol MUST
 use the procedures specified in RFC 4572 [RFC4572] for setting up the

Burnett & Shanmugham Expires January 12, 2012 [Page 16]

Internet-Draft MRCPv2 July 2011

 TLS connection, with the considerations described hereby. The
 a=setup attribute, as described in RFC 4145 [RFC4145], MUST be
 "active" for the offer from the client and MUST be "passive" for the
 answer from the MRCPv2 server. The a=connection attribute MUST have
 a value of "new" on the very first control m-line offer from the
 client to an MRCPv2 server. Subsequent control m-line offers from
 the client to the MRCP server MAY contain "new" or "existing",
 depending on whether the client wants to set up a new connection or
 share an existing connection, respectively. If the client specifies
 a value of "new", the server MUST respond with a value of "new". If
 the client specifies a value of "existing", the server MAY respond
 with a value of "existing" if it prefers to share an existing
 connection or can answer with a value of "new", in which case the
 client MUST initiate a new transport connection.

 When the client wants to de-allocate the resource from this session,
 it issues a new SDP offer, according to RFC 3264 [RFC3264], where the
 control m-line port MUST be set to 0. This SDP offer is sent in a
 SIP re-INVITE request. This de-allocates the associated MRCPv2
 identifier and resource. The server MUST NOT close the TCP, SCTP or
 TLS connection if it is currently being shared among multiple MRCP
 channels. When all MRCP channels that may be sharing the connection
 are released and/or the associated SIP dialog is terminated, the
 client or server terminates the connection.

 When the client wants to tear down the whole session and all its
 resources, it MUST issue a SIP BYE request to close the SIP session.
 This will de-allocate all the control channels and resources
 allocated under the session.

 All servers MUST support TLS. Servers MAY support TCP without TLS in
 physically secure environments. It is up to the client, through the
 SDP offer, to choose which transport it wants to use for an MRCPv2
 session. Aside from the exceptions given above, when using TCP the
 m-lines MUST conform to RFC4145 [RFC4145], which describes the usage
 of SDP for connection-oriented transport. When using TLS the SDP
 m-line for the control stream MUST conform to comedia over TLS
 [RFC4572], which specifies the usage of SDP for establishing a secure
 connection-oriented transport over TLS.

4.3. SIP session example

 This first example shows the power of using SIP to route to the
 appropriate resource. In the example, note the use of a request to a
 domain’s speech server service in the INVITE to
 mresources@example.com. The SIP routing machinery in the domain
 locates the actual server, mresources@server.example.com, which gets
 returned in the 200 OK. Note that "cmid" is defined in Section 4.4.

Burnett & Shanmugham Expires January 12, 2012 [Page 17]

Internet-Draft MRCPv2 July 2011

 This example exchange adds a resource control channel for a
 synthesizer. Since a synthesizer also generates an audio stream,
 this interaction also creates a receive-only Real-Time Protocol (RTP)
 [RFC3550] media session for the server to send audio to. The SIP
 dialog with the media source/sink is independent of MRCP and is not
 shown.

 C->S: INVITE sip:mresources@example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf1
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314161 INVITE
 Contact:<sip:sarvi@client.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=sarvi 2890844526 2890844526 IN IP4 192.0.2.12
 s=-
 c=IN IP4 192.0.2.12
 t=0 0
 m=application 9 TCP/MRCPv2 1
 a=setup:active
 a=connection:new
 a=resource:speechsynth
 a=cmid:1
 m=audio 49170 RTP/AVP 0
 a=rtpmap:0 pcmu/8000
 a=recvonly
 a=mid:1

 S->C: SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf1;received=192.0.32.10
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314161 INVITE
 Contact:<sip:mresources@server.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=- 2890842808 2890842808 IN IP4 192.0.2.11

Burnett & Shanmugham Expires January 12, 2012 [Page 18]

Internet-Draft MRCPv2 July 2011

 s=-
 c=IN IP4 192.0.2.11
 t=0 0
 m=application 32416 TCP/MRCPv2 1
 a=setup:passive
 a=connection:new
 a=channel:32AECB234338@speechsynth
 a=cmid:1
 m=audio 48260 RTP/AVP 0
 a=rtpmap:0 pcmu/8000
 a=sendonly
 a=mid:1

 C->S: ACK sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf2
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314161 ACK
 Content-Length:0

 Example: Add Synthesizer Control Channel

 This example exchange continues from the previous figure and
 allocates an additional resource control channel for a recognizer.
 Since a recognizer would need to receive an audio stream for
 recognition, this interaction also updates the audio stream to
 sendrecv, making it a 2-way RTP media session.

 C->S: INVITE sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf3
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314162 INVITE
 Contact:<sip:sarvi@client.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=sarvi 2890844526 2890844527 IN IP4 192.0.2.12
 s=-
 c=IN IP4 192.0.2.12

Burnett & Shanmugham Expires January 12, 2012 [Page 19]

Internet-Draft MRCPv2 July 2011

 t=0 0
 m=application 9 TCP/MRCPv2 1
 a=setup:active
 a=connection:existing
 a=resource:speechsynth
 a=cmid:1
 m=audio 49170 RTP/AVP 0 96
 a=rtpmap:0 pcmu/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15
 a=sendrecv
 a=mid:1
 m=application 9 TCP/MRCPv2 1
 a=setup:active
 a=connection:existing
 a=resource:speechrecog
 a=cmid:1

 S->C: SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf3;received=192.0.32.10
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314162 INVITE
 Contact:<sip:mresources@server.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=- 2890842808 2890842809 IN IP4 192.0.2.11
 s=-
 c=IN IP4 192.0.2.11
 t=0 0
 m=application 32416 TCP/MRCPv2 1
 a=setup:passive
 a=connection:existing
 a=channel:32AECB234338@speechsynth
 a=cmid:1
 m=audio 48260 RTP/AVP 0 96
 a=rtpmap:0 pcmu/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15
 a=sendrecv
 a=mid:1
 m=application 32416 TCP/MRCPv2 1
 a=setup:passive

Burnett & Shanmugham Expires January 12, 2012 [Page 20]

Internet-Draft MRCPv2 July 2011

 a=connection:existing
 a=channel:32AECB234338@speechrecog
 a=cmid:1

 C->S: ACK sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf4
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314162 ACK
 Content-Length:0

 Add Recognizer example

 This example exchange continues from the previous figure and de-
 allocates the recognizer channel. Since a recognizer no longer needs
 to receive an audio stream, this interaction also updates the RTP
 media session to recvonly.

 C->S: INVITE sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf5
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314163 INVITE
 Contact:<sip:sarvi@client.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=sarvi 2890844526 2890844528 IN IP4 192.0.2.12
 s=-
 c=IN IP4 192.0.2.12
 t=0 0
 m=application 9 TCP/MRCPv2 1
 a=resource:speechsynth
 a=cmid:1
 m=audio 49170 RTP/AVP 0
 a=rtpmap:0 pcmu/8000
 a=recvonly
 a=mid:1
 m=application 0 TCP/MRCPv2 1
 a=resource:speechrecog

Burnett & Shanmugham Expires January 12, 2012 [Page 21]

Internet-Draft MRCPv2 July 2011

 a=cmid:1

 S->C: SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf5;received=192.0.32.10
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314163 INVITE
 Contact:<sip:mresources@server.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=- 2890842808 2890842810 IN IP4 192.0.2.11
 s=-
 c=IN IP4 192.0.2.11
 t=0 0
 m=application 32416 TCP/MRCPv2 1
 a=channel:32AECB234338@speechsynth
 a=cmid:1
 m=audio 48260 RTP/AVP 0
 a=rtpmap:0 pcmu/8000
 a=sendonly
 a=mid:1
 m=application 0 TCP/MRCPv2 1
 a=channel:32AECB234338@speechrecog
 a=cmid:1

 C->S: ACK sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf6
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:314163 ACK
 Content-Length:0

 Deallocate Recognizer example

4.4. Media Streams and RTP Ports

 Since MRCPv2 resources either generate or consume media streams, the
 client or the server needs to associate media sessions with their
 corresponding resource or resources. More than one resource could be

Burnett & Shanmugham Expires January 12, 2012 [Page 22]

Internet-Draft MRCPv2 July 2011

 associated with a single media session or each resource could be
 assigned a separate media session. Also note that more than one
 media session can be associated with a single resource if need be,
 but this scenario is not useful for the current set of resources.
 For example, a synthesizer and a recognizer could be associated to
 the same media session (m=audio line), if it is opened in "sendrecv"
 mode. Alternatively, the recognizer could have its own "sendonly"
 audio session and the synthesizer could have its own "recvonly" audio
 session.

 The association between control channels and their corresponding
 media sessions is established using a new "resource channel media
 identifier" media-level attribute ("cmid"). Valid values of this
 attribute are the values of the "mid" attribute defined in RFC 5888
 [RFC5888]. If there is more than 1 audio m-line, then each audio
 m-line MUST have a "mid" attribute. Each control m-line MAY have one
 or more "cmid" attributes that match the resource control channel to
 the "mid" attributes of the audio m-lines it is associated with.
 Note that if a control m-line does not have a "cmid" attribute it
 will not be associated with any media. The operations on such a
 resource will hence be limited. For example, if it was a recognizer
 resource, the RECOGNIZE method requires an associated media to
 process while the INTERPRET method does not. The formatting of the
 "cmid" attribute is described by the following ABNF:

 cmid-attribute = "a=cmid:" identification-tag
 identification-tag = token

 To allow this flexible mapping of media sessions to MRCPv2 control
 channels, a single audio m-line can be associated with multiple
 resources or each resource can have its own audio m-line. For
 example, if the client wants to allocate a recognizer and a
 synthesizer and associate them with a single 2-way audio stream, the
 SDP offer would contain two control m-lines and a single audio m-line
 with an attribute of "sendrecv". Each of the control m-lines would
 have a "cmid" attribute whose value matches the "mid" of the audio
 m-line. If, on the other hand, the client wants to allocate a
 recognizer and a synthesizer each with its own separate audio stream,
 the SDP offer would carry two control m-lines (one for the recognizer
 and another for the synthesizer) and two audio m-lines (one with the
 attribute "sendonly" and another with attribute "recvonly"). The
 "cmid" attribute of the recognizer control m-line would match the
 "mid" value of the "sendonly" audio m-line and the "cmid" attribute
 of the synthesizer control m-line would match the "mid" attribute of
 the "recvonly" m-line.

 When a server receives media (e.g. audio) on a media session that is
 associated with more than one media processing resource, it is the

Burnett & Shanmugham Expires January 12, 2012 [Page 23]

Internet-Draft MRCPv2 July 2011

 responsibility of the server to receive and fork the media to the
 resources that need to consume it. If multiple resources in an
 MRCPv2 session are generating audio (or other media) to be sent on a
 single associated media session, it is the responsibility of the
 server to either multiplex the multiple streams onto the single RTP
 session or contain an embedded RTP mixer (see RFC 3550 [RFC3550]) to
 combine the multiple streams into one. In the former case, the media
 stream will contain RTP packets generated by different sources, and
 hence the packets will have different Synchronization Source
 identifiers (SSRCs). In the latter case, the RTP packets will
 contain multiple Contributing Source Identifiers (CSRCs)
 corresponding to the original streams before being combined by the
 mixer. An MRCPv2 implementation MUST either multiplex or mix unless
 it cannot correctly do either, in which case the server MUST disallow
 the client from associating multiple such resources to a single audio
 stream by rejecting the SDP offer with a SIP 488 "Not Acceptable"
 error. Note that there is a large installed base that will return a
 SIP 501 "Not Implemented" error in this case. To facilitate
 interoperability with this installed base, new implementations should
 consider adding configuration to treat a 501 in this context as a 488
 when it is received from an element known to be a legacy
 implementation.

4.5. MRCPv2 Message Transport

 The MRCPv2 messages defined in this document are transported over a
 TCP, TLS or SCTP (in the future) connection between the client and
 the server. The method for setting up this transport connection and
 the resource control channel is discussed in Section 4.1 and
 Section 4.2. Multiple resource control channels between a client and
 a server that belong to different SIP dialogs can share one or more
 TLS, TCP or SCTP connections between them; the server and client MUST
 support this mode of operation. The individual MRCPv2 messages carry
 the MRCPv2 channel identifier in their Channel-Identifier header
 field, which MUST be used to differentiate MRCPv2 messages from
 different resource channels (see Section 6.2.1 for details). All
 MRCPv2 servers MUST support TLS. Servers MAY support TCP without TLS
 in physically secure environments. It is up to the client to choose
 which mode of transport it wants to use for an MRCPv2 session.

 Most examples from here on show only the MRCPv2 messages and do not
 show the SIP messages that may have been used to establish the MRCPv2
 control channel.

4.6. MRCPv2 Session Termination

 If an MRCP client notices that the underlying connection has been
 closed for one of its MRCP channels, and it has not previously

Burnett & Shanmugham Expires January 12, 2012 [Page 24]

Internet-Draft MRCPv2 July 2011

 initiated a re-INVITE to close that channel, it MUST send a BYE to
 close down the SIP dialog and all other MRCP channels. If an MRCP
 server notices that the underlying connection has been closed for one
 of its MRCP channels, and it has not previously received and accepted
 a re-INVITE closing that channel, then it MUST send a BYE to close
 down the SIP dialog and all other MRCP channels.

5. MRCPv2 Specification

 MRCPv2 messages are textual using the ISO 10646 character set in the
 UTF-8 encoding (RFC3629 [RFC3629]) to allow many different languages
 to be represented. However, to assist in compact representations,
 MRCPv2 also allows message bodies to be represented in other
 character sets such as ISO 8859-1 [ISO.8859-1.1987]. This may be
 useful for languages such as Chinese where the default character set
 for most documents is not UTF-8. The MRCPv2 protocol headers (the
 first line of an MRCP message) and header field names use only the
 US-ASCII subset of UTF-8. Internationalization only applies to
 certain fields like grammar, results, speech markup etc, and not to
 MRCPv2 as a whole.

 Lines are terminated by CRLF. Also, some parameters in the message
 may contain binary data or a record spanning multiple lines. Such
 fields have a length value associated with the parameter, which
 indicates the number of octets immediately following the parameter.

5.1. Common Protocol Elements

 The MRCPv2 message set consists of requests from the client to the
 server, responses from the server to the client and asynchronous
 events from the server to the client. All these messages consist of
 a start-line, one or more header fields, an empty line (i.e. a line
 with nothing preceding the CRLF) indicating the end of the header
 fields, and an optional message body.

Burnett & Shanmugham Expires January 12, 2012 [Page 25]

Internet-Draft MRCPv2 July 2011

generic-message = start-line
 message-header
 CRLF
 [message-body]

message-body = *OCTET

start-line = request-line / response-line / event-line

message-header = 1*(generic-header / resource-header / generic-field)

resource-header = synthesizer-header
 / recognizer-header
 / recorder-header
 / verifier-header

 The message-body contains resource-specific and message-specific
 data. The actual Media Types used to carry the data are specified
 later in the sections defining the individual messages. Generic
 header fields are described in Section 6.2.

 If a message contains a message body, the message MUST contain
 content-headers indicating the Media Type and encoding of the data in
 the message body.

 Request, response and event messages (described in following
 sections) include the version of MRCP that the message conforms to.
 Version compatibility rules follow [H3.1] regarding version ordering,
 compliance requirements, and upgrading of version numbers. The
 version information is indicated by "MRCP" (as opposed to "HTTP" in
 [H3.1]) or "MRCP/2.0" (as opposed to "HTTP/1.1" in [H3.1]). To be
 compliant with this specification, clients and servers sending MRCPv2
 messages MUST indicate an mrcp-version of "MRCP/2.0". ABNF
 productions using mrcp-version can be found in Section 5.2,
 Section 5.3, and Section 5.5.

 mrcp-version = "MRCP" "/" 1*2DIGIT "." 1*2DIGIT

 The message-length field specifies the length of the message in
 octets, including the start-line, and MUST be the 2nd token from the
 beginning of the message. This is to make the framing and parsing of
 the message simpler to do. This field specifies the length of the
 message including data that may be encoded into the body of the
 message. Note that this value MAY be printed as a fixed-length
 integer that is zero-padded in front in order to eliminate or reduce
 inefficiency in cases where the message-length value would change as
 a result of the length of the message-length token itself. This

Burnett & Shanmugham Expires January 12, 2012 [Page 26]

Internet-Draft MRCPv2 July 2011

 value, as with all lengths in MRCP, is to be interpreted as a base-10
 number. In particular, leading zeros do not indicate that the value
 is to be interpreted as a base-8 number.

 message-length = 1*19DIGIT

 The following sample MRCP exchange demonstrates proper message-length
 values. The values for message-length have been removed from all
 other examples in the specification and replaced by ’...’ to reduce
 confusion in the case of minor message-length computation errors in
 those examples.

 C->S: MRCP/2.0 877 INTERPRET 543266
 Channel-Identifier:32AECB23433801@speechrecog
 Interpret-Text:may I speak to Andre Roy
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:661

 <?xml version="1.0"?>
 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">
 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>
 </grammar>

 S->C: MRCP/2.0 82 543266 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 634 INTERPRETATION-COMPLETE 543266 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml

Burnett & Shanmugham Expires January 12, 2012 [Page 27]

Internet-Draft MRCPv2 July 2011

 Content-Length:441

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

 All MRCPv2 messages, responses and events MUST carry the Channel-
 Identifier header field so the server or client can differentiate
 messages from different control channels that may share the same
 transport connection.

 In the resource-specific header field descriptions in sections 8-11,
 a header field is disallowed on a method (request, response, or
 event) for that resource unless specifically listed as being allowed.
 Also, the phrasing "This header field MAY occur on method X"
 indicates that the header field is allowed on that method but is not
 required to be used in every instance of that method.

5.2. Request

 An MRCPv2 request consists of a Request line followed by the message
 header section and an optional message body containing data specific
 to the request message.

 The Request message from a client to the server includes within the
 first line the method to be applied, a method tag for that request
 and the version of the protocol in use.

 request-line = mrcp-version SP message-length SP method-name
 SP request-id CRLF

 The mrcp-version field is the MRCP protocol version that is being
 used by the client.

 The message-length field specifies the length of the message,
 including the start-line.

 Details about the mrcp-version and message-length fields are given in

Burnett & Shanmugham Expires January 12, 2012 [Page 28]

Internet-Draft MRCPv2 July 2011

 Section 5.1.

 The method-name field identifies the specific request that the client
 is making to the server. Each resource supports a subset of the
 MRCPv2 methods. The subset for each resource is defined in the
 section of the specification for the corresponding resource.

 method-name = generic-method
 / synthesizer-method
 / recognizer-method
 / recorder-method
 / verifier-method

 The request-id field is a unique identifier representable as an
 unsigned 32 bit integer created by the client and sent to the server.
 Consecutive requests within an MRCP session MUST utilize
 monotonically increasing request-id’s. The request-id space is
 linear, (i.e. not mod(32)) so the space does not wrap and validity
 can be checked with a simple unsigned comparison operation. The
 client may choose any initial value for its first request, but a
 small integer is RECOMMENDED to avoid exhausting the space in long
 sessions. If the server receives duplicate or out-of-order requests
 the server MUST reject the request with a response code of 410.
 Since request-id’s are scoped to the MRCP session, they are unique
 across all TCP connections and all resource channels in the session.

 The server resource MUST use the client-assigned identifier in its
 response to the request. If the request does not complete
 synchronously, future asynchronous events associated with this
 request MUST carry the client-assigned request-id.

 request-id = 1*10DIGIT

5.3. Response

 After receiving and interpreting the request message for a method,
 the server resource responds with an MRCPv2 response message. The
 response consists of a response line followed by the message header
 section and an optional message body containing data specific to the
 method.

 response-line = mrcp-version SP message-length SP request-id
 SP status-code SP request-state CRLF

 The mrcp-version field MUST contain the version of the request if
 supported; otherwise, it must contain the highest version of the
 MRCPv2 protocol supported by the server.

Burnett & Shanmugham Expires January 12, 2012 [Page 29]

Internet-Draft MRCPv2 July 2011

 The message-length field specifies the length of the message,
 including the start-line.

 Details about the mrcp-version and message-length fields are given in
 Section 5.1.

 The request-id used in the response MUST match the one sent in the
 corresponding request message.

 The status-code field is a 3-digit code representing the success or
 failure or other status of the request.

 status-code = 3DIGIT

 The request-state field indicates if the action initiated by the
 Request is PENDING, IN-PROGRESS or COMPLETE. The COMPLETE status
 means that the Request was processed to completion and that there
 will be no more events or other messages from that resource to the
 client with that request-id. The PENDING status means that the
 request has been placed on a queue and will be processed in first-in-
 first-out order. The IN-PROGRESS status means that the request is
 being processed and is not yet complete. A PENDING or IN-PROGRESS
 status indicates that further Event messages may be delivered with
 that request-id.

 request-state = "COMPLETE"
 / "IN-PROGRESS"
 / "PENDING"

5.4. Status Codes

 The status codes are classified under the Success (2XX) codes, Client
 Failure (4XX) codes, and Server Failure (5XX).

 Success Codes

 +------------+--+
 | Code | Meaning |
 +------------+--+
 | 200 | Success |
 | 201 | Success with some optional header fields ignored |
 +------------+--+

 Success 2xx

Burnett & Shanmugham Expires January 12, 2012 [Page 30]

Internet-Draft MRCPv2 July 2011

 Client Failure 4xx Codes

 +------------+--+
 | Code | Meaning |
 +------------+--+
401	Method not allowed
402	Method not valid in this state
403	Unsupported header field
404	Illegal value for header field. This is the error
	for a syntax violation.
405	Resource not allocated for this session or does not
	exist
406	Mandatory Header Field Missing
407	Method or Operation Failed (e.g., Grammar
	compilation failed in the recognizer. Detailed
	cause codes might be available through a resource
	specific header.)
408	Unrecognized or unsupported message entity
409	Unsupported Header Field Value. This is a value
	that is syntactically legal but exceeds the
	implementation’s capabilities or expectations.
410	Non-Monotonic or Out of order sequence number in
	request.
411-420	Reserved for future assignment
 +------------+--+

 Client Failure 4xx

 Server Failure 5xx Codes

 +------------+--------------------------------+
 | Code | Meaning |
 +------------+--------------------------------+
 | 501 | Server Internal Error |
 | 502 | Protocol Version not supported |
 | 503 | Reserved for future assignment |
 | 504 | Message too large |
 +------------+--------------------------------+

 Server Failure 4xx

5.5. Events

 The server resource may need to communicate a change in state or the
 occurrence of a certain event to the client. These messages are used
 when a request does not complete immediately and the response returns
 a status of PENDING or IN-PROGRESS. The intermediate results and
 events of the request are indicated to the client through the event

Burnett & Shanmugham Expires January 12, 2012 [Page 31]

Internet-Draft MRCPv2 July 2011

 message from the server. The event message consists of an event
 header line followed by the message header section and an optional
 message body containing data specific to the event message. The
 header line has the request-id of the corresponding request and
 status value. The request-state value is COMPLETE if the request is
 done and this was the last event, else it is IN-PROGRESS.

 event-line = mrcp-version SP message-length SP event-name
 SP request-id SP request-state CRLF

 The mrcp-version used here is identical to the one used in the
 Request/Response Line and indicates the version of the MRCPv2
 protocol running on the server.

 The message-length field specifies the length of the message,
 including the start-line.

 Details about the mrcp-version and message-length fields are given in
 Section 5.1.

 The event-name identifies the nature of the event generated by the
 media resource. The set of valid event names depends on the resource
 generating it. See the corresponding resource-specific section of
 the document.

 event-name = synthesizer-event
 / recognizer-event
 / recorder-event
 / verifier-event

 The request-id used in the event MUST match the one sent in the
 request that caused this event.

 The request-state indicates whether the Request/Command causing this
 event is complete or still in progress, and is the same as the one
 mentioned in Section 5.3. The final event for a request has a
 COMPLETE status indicating the completion of the request.

6. MRCPv2 Generic Methods, Headers, and Result Structure

 MRCPv2 supports a set of methods and header fields that are common to
 all resources. These are discussed here; resource-specific methods
 and header fields are discussed in the corresponding resource-
 specific section of the document.

Burnett & Shanmugham Expires January 12, 2012 [Page 32]

Internet-Draft MRCPv2 July 2011

6.1. Generic Methods

 MRCPv2 supports two generic methods for reading and writing the state
 associated with a resource.

 generic-method = "SET-PARAMS"
 / "GET-PARAMS"

 These are described in the following sub-sections.

6.1.1. SET-PARAMS

 The "SET-PARAMS" method, from the client to the server, tells the
 MRCPv2 resource to define parameters for the session, such as voice
 characteristics and prosody on synthesizers, recognition timers on
 recognizers, etc. If the server accepts and sets all parameters it
 MUST return a response status-code of 200. If it chooses to ignore
 some optional header fields that can be safely ignored without
 affecting operation of the server it MUST return 201.

 If one or more of the header fields being sent is incorrect, error
 403, 404, or 409 MUST be returned as follows:
 o If one or more of the header fields being set has an illegal
 value, the server MUST reject the request with a 404 Illegal Value
 for Header Field.
 o If one or more of the header fields being set is unsupported for
 the resource, the server MUST reject the request with a 403
 Unsupported Header Field, except as described in the next
 paragraph.
 o If one or more of the header fields being set has an unsupported
 value, the server MUST reject the request with a 409 Unsupported
 Header Field Value, except as described in the next paragraph.

 If both error 404 and another error have occurred, only error 404
 MUST be returned. If both errors 403 and 409 have occurred, but not
 error 404, only error 403 MUST be returned.

 If error 403, 404, or 409 is returned, the response MUST include the
 bad or unsupported header fields and their values exactly as they
 were sent from the client. Session parameters modified using
 "SET-PARAMS" do not override parameters explicitly specified on
 individual requests or requests that are in-PROGRESS.

Burnett & Shanmugham Expires January 12, 2012 [Page 33]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SET-PARAMS 543256
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:female
 Voice-variant:3

 S->C: MRCP/2.0 ... 543256 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth

6.1.2. GET-PARAMS

 The "GET-PARAMS" method, from the client to the server, asks the
 MRCPv2 resource for its current session parameters, such as voice
 characteristics and prosody on synthesizers, recognition-timer on
 recognizers, etc. For every header field the client sends in the
 request without a value, the server MUST include the corresponding
 header fields and their values in the response. If no parameter
 header fields are specified by the client then the server MUST return
 all the settable parameters and their values in the corresponding
 header section of the response, including vendor-specific parameters.
 Such wild-card parameter requests can be very processing-intensive,
 since the number of settable parameters can be large depending on the
 implementation. Hence, it is RECOMMENDED that the client not use the
 wildcard "GET-PARAMS" operation very often. Note that "GET-PARAMS"
 returns header field values that apply to the whole session and not
 values that have a request level scope. For example, Input-Waveform-
 URI is a request-level header field and thus would not be returned by
 GET-PARAMS.

 If all of the header fields requested are supported, the server MUST
 return a response status-code of 200. If some of the header fields
 being retrieved are unsupported for the resource, the server MUST
 reject the request with a 403 Unsupported Header Field. Such a
 response MUST include the unsupported header fields exactly as they
 were sent from the client, without values.

 C->S: MRCP/2.0 ... GET-PARAMS 543256
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:
 Voice-variant:
 Vendor-Specific-Parameters:com.example.param1;
 com.example.param2

 S->C: MRCP/2.0 ... 543256 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:female
 Voice-variant:3
 Vendor-Specific-Parameters:com.example.param1="Company Name";
 com.example.param2="124324234@example.com"

Burnett & Shanmugham Expires January 12, 2012 [Page 34]

Internet-Draft MRCPv2 July 2011

6.2. Generic Message Headers

 All MRCPv2 header fields, which include both the generic-headers
 defined in the following sub-sections and the resource-specific
 header fields defined later, follow the same generic format as that
 given in Section 3.1 of RFC5322 [RFC5322]. Each header field
 consists of a name followed by a colon (":") and the value. Header
 field names are case-insensitive. The value MAY be preceded by any
 amount of LWS (linear white space), though a single SP (space) is
 preferred. Header fields may extend over multiple lines by preceding
 each extra line with at least one SP or HT (horizontal tab).

 generic-field = field-name ":" [field-value]
 field-name = token
 field-value = *LWS field-content *(CRLF 1*LWS field-content)
 field-content = <the OCTETs making up the field-value
 and consisting of either *TEXT or combinations
 of token, separators, and quoted-string>

 The field-content does not include any leading or trailing LWS (i.e.
 linear white space occurring before the first non-whitespace
 character of the field-value or after the last non-whitespace
 character of the field-value). Such leading or trailing LWS MAY be
 removed without changing the semantics of the field value. Any LWS
 that occurs between field-content MAY be replaced with a single SP
 before interpreting the field value or forwarding the message
 downstream.

 MRCPv2 servers and clients MUST NOT depend on header field order. It
 is "good practice" to send general-header fields first, followed by
 request-header or response-header fields, and ending with the entity-
 header fields. However, MRCPv2 servers and clients MUST be prepared
 to process the header fields in any order. The only exception to
 this rule is when there are multiple header fields with the same name
 in a message.

 Multiple header fields with the same name MAY be present in a message
 if and only if the entire value for that header field is defined as a
 comma-separated list [i.e., #(values)].

 Since vendor-specific parameters may be order-dependent, it MUST be
 possible to combine multiple header fields of the same name into one
 "name:value" pair without changing the semantics of the message, by
 appending each subsequent value to the first, each separated by a
 comma. The order in which header fields with the same name are
 received is therefore significant to the interpretation of the
 combined header field value, and thus an intermediary MUST NOT change
 the order of these values when a message is forwarded.

Burnett & Shanmugham Expires January 12, 2012 [Page 35]

Internet-Draft MRCPv2 July 2011

 generic-header = channel-identifier
 / accept
 / active-request-id-list
 / proxy-sync-id
 / accept-charset
 / content-type
 / content-id
 / content-base
 / content-encoding
 / content-location
 / content-length
 / fetch-timeout
 / cache-control
 / logging-tag
 / set-cookie
 / set-cookie2
 / vendor-specific

6.2.1. Channel-Identifier

 All MRCPv2 requests, responses and events MUST contain the Channel-
 Identifier header field. The value is allocated by the server when a
 control channel is added to the session and communicated to the
 client by the "a=channel" attribute in the SDP answer from the
 server. The header field value consists of 2 parts separated by the
 ’@’ symbol. The first part is an unambiguous string identifying the
 MRCPv2 session. The second part is a string token which specifies
 one of the media processing resource types listed in Section 3.1.
 The unambiguous string (first part) MUST be unique among the resource
 instances managed by the server and is common to all resource
 channels with that server established through a single SIP dialog.

 channel-identifier = "Channel-Identifier" ":" channel-id CRLF
 channel-id = 1*alphanum "@" 1*alphanum

6.2.2. Accept

 The Accept header field follows the syntax defined in [H14.1]. The
 semantics are also identical, with the exception that if no Accept
 header field is present, the server MUST assume a default value that
 is specific to the resource type that is being controlled. This
 default value can be changed for a resource on a session by sending
 this header field in a SET-PARAMS method. The current default value
 of this header field for a resource in a session can be found through
 a GET-PARAMS method. This header field MAY occur on any request.

Burnett & Shanmugham Expires January 12, 2012 [Page 36]

Internet-Draft MRCPv2 July 2011

6.2.3. Active-Request-Id-List

 In a request, this header field indicates the list of request-ids to
 which the request applies. This is useful when there are multiple
 requests that are PENDING or IN-PROGRESS and the client wants this
 request to apply to one or more of these specifically.

 In a response, this header field returns the list of request-ids that
 the method modified or affected. There could be one or more requests
 in a request-state of PENDING or IN-PROGRESS. When a method
 affecting one or more PENDING or IN-PROGRESS requests is sent from
 the client to the server, the response MUST contain the list of
 request-ids that were affected or modified by this command in its
 header section.

 The Active-Request-Id-List is only used in requests and responses,
 not in events.

 For example, if a "STOP" request with no Active-Request-Id-List is
 sent to a synthesizer resource which has one or more "SPEAK" requests
 in the PENDING or IN-PROGRESS state, all "SPEAK" requests MUST be
 cancelled, including the one IN-PROGRESS. The response to the "STOP"
 request contains in the Active-Request-Id-List value the request-ids
 of all the "SPEAK" requests that were terminated. After sending the
 STOP response, the server MUST NOT send any SPEAK-COMPLETE or
 RECOGNITION-COMPLETE events for the terminated requests.

 active-request-id-list = "Active-Request-Id-List" ":"
 request-id *("," request-id) CRLF

6.2.4. Proxy-Sync-Id

 When any server resource generates a barge-in-able event, it also
 generates a unique tag. The tag is sent as this header field’s value
 in an event to the client. The client then acts as a intermediary
 among the server resources and sends a BARGE-IN-OCCURRED method to
 the synthesizer server resource with the Proxy-Sync-Id it received
 from the server resource. When the recognizer and synthesizer
 resources are part of the same session, they may choose to work
 together to achieve quicker interaction and response. Here the
 Proxy-Sync-Id helps the resource receiving the event, intermediated
 by the client, to decide if this event has been processed through a
 direct interaction of the resources. This header field MAY occur
 only on events and the BARGE-IN-OCCURRED method. The name of this
 header field contains the word ’proxy’ only for historical reasons
 and does not imply that a proxy server is involved.

 proxy-sync-id = "Proxy-Sync-Id" ":" 1*VCHAR CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 37]

Internet-Draft MRCPv2 July 2011

6.2.5. Accept-Charset

 See [H14.2]. This specifies the acceptable character sets for
 entities returned in the response or events associated with this
 request. This is useful in specifying the character set to use in
 the Natural Language Semantic Markup Language (NLSML) results of a
 "RECOGNITION-COMPLETE" event. This header field is only used on
 requests.

6.2.6. Content-Type

 See [H14.17]. MRCPv2 supports a restricted set of registered Media
 Types for content, including speech markup, grammar, and recognition
 results. The content types applicable to each MRCPv2 resource-type
 are specified in the corresponding section of the document and are
 registered in the MIME Media Types registry maintained by IANA. The
 multi-part content type "multi-part/mixed" is supported to
 communicate multiple of the above mentioned contents, in which case
 the body parts MUST NOT contain any MRCPv2 specific header fields.
 This header field MAY occur on all messages.

 content-type = "Content-Type" ":" media-type-value CRLF

 media-type-value = type "/" subtype *(";" parameter)

 type = token

 subtype = token

 parameter = attribute "=" value

 attribute = token

 value = token / quoted-string

6.2.7. Content-ID

 This header field contains an ID or name for the content by which it
 can be referenced. This header field operates according to the
 specification in RFC 2392 [RFC2392] and is required for content
 disambiguation in multi-part messages. In MRCPv2 whenever the
 associated content is stored, by either the client or the server, it
 MUST be retrievable using this ID. Such content can be referenced
 later in a session by addressing it with the "session" URI scheme
 described in Section 13.6. This header field MAY occur on all
 messages.

Burnett & Shanmugham Expires January 12, 2012 [Page 38]

Internet-Draft MRCPv2 July 2011

6.2.8. Content-Base

 The content-base entity-header may be used to specify the base URI
 for resolving relative URIs within the entity.

 content-base = "Content-Base" ":" absoluteURI CRLF

 Note, however, that the base URI of the contents within the entity-
 body may be redefined within that entity-body. An example of this
 would be multi-part media, which in turn can have multiple entities
 within it. This header field MAY occur on all messages.

6.2.9. Content-Encoding

 The Content-Encoding entity-header is used as a modifier to the
 Content-Type. When present, its value indicates what additional
 content encoding has been applied to the entity-body, and thus what
 decoding mechanisms must be applied in order to obtain the Media Type
 referenced by the Content-Type header field. Content-Encoding is
 primarily used to allow a document to be compressed without losing
 the identity of its underlying media type. Note that the SDP session
 can be used to determine accepted encodings (see Section 7). This
 header field MAY occur on all messages.

 content-encoding = "Content-Encoding" ":"
 *WSP content-coding
 *(*WSP "," *WSP content-coding *WSP)
 CRLF

 Content-Encoding is defined in [H3.5]. An example of its use is
 Content-Encoding:gzip

 If multiple encodings have been applied to an entity, the content
 encodings MUST be listed in the order in which they were applied.

6.2.10. Content-Location

 The Content-Location entity-header MAY be used to supply the resource
 location for the entity enclosed in the message when that entity is
 accessible from a location separate from the requested resource’s
 URI. Refer to [H14.14].

 content-location = "Content-Location" ":"
 (absoluteURI / relativeURI) CRLF

 The Content-Location value is a statement of the location of the

Burnett & Shanmugham Expires January 12, 2012 [Page 39]

Internet-Draft MRCPv2 July 2011

 resource corresponding to this particular entity at the time of the
 request. This header field is provided for optimization purposes
 only. The receiver of this header field MAY assume that the entity
 being sent is identical to what would have been retrieved or might
 already have been retrieved from the Content-Location URI.

 For example, if the client provided a grammar markup inline, and it
 had previously retrieved it from a certain URI, that URI can be
 provided as part of the entity, using the content-location header
 field. This allows a resource like the recognizer to look into its
 cache to see if this grammar was previously retrieved, compiled and
 cached. In this case, it might optimize by using the previously
 compiled grammar object.

 If the content-location is a relative URI, the relative URI is
 interpreted relative to the content-base URI. This header field MAY
 occur on all messages.

6.2.11. Content-Length

 This header field contains the length of the content of the message
 body (i.e. after the double CRLF (carriage return, then line feed)
 following the last header field). Unlike in HTTP, it MUST be
 included in all messages that carry content beyond the header
 section. If it is missing, a default value of zero is assumed.
 Otherwise, it is interpreted according to [H14.13]. When a message
 having no use for a message body contains one, i.e. the Content-
 Length is non-zero, the receiver MUST ignore the content of the
 message body. This header field MAY occur on all messages.

 content-length = "Content-Length" ":" 1*19DIGIT CRLF

6.2.12. Fetch Timeout

 When the recognizer or synthesizer needs to fetch documents or other
 resources this header field controls the corresponding URI access
 properties. This defines the timeout for content that the server may
 need to fetch over the network. The value is interpreted to be in
 milliseconds and ranges from 0 to an implementation-specific maximum
 value. The default value for this header field is implementation-
 specific. This header field MAY occur in "DEFINE-GRAMMAR",
 "RECOGNIZE", "SPEAK", "SET-PARAMS" or "GET-PARAMS".

 fetch-timeout = "Fetch-Timeout" ":" 1*19DIGIT CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 40]

Internet-Draft MRCPv2 July 2011

6.2.13. Cache-Control

 If the server implements content caching, it MUST adhere to the cache
 correctness rules of HTTP 1.1 [RFC2616] when accessing and caching
 stored content. In particular, the "expires" and "cache-control"
 header fields of the cached URI or document MUST be honored and take
 precedence over the Cache-Control defaults set by this header field.
 The Cache-Control directives are used to define the default caching
 algorithms on the server for the session or request. The scope of
 the directive is based on the method it is sent on. If the directive
 is sent on a "SET-PARAMS" method, it applies for all requests for
 external documents the server makes during that session, unless
 overridden by a Cache-Control header field on an individual request.
 If the directives are sent on any other requests they apply only to
 external document requests the server makes for that request. An
 empty Cache-Control header field on the "GET-PARAMS" method is a
 request for the server to return the current Cache-Control directives
 setting on the server. This header field MAY occur only on requests.

 cache-control = "Cache-Control" ":"
 [*WSP cache-directive
 *(*WSP "," *WSP cache-directive *WSP)]
 CRLF

 cache-directive = "max-age" "=" delta-seconds
 / "max-stale" ["=" delta-seconds]
 / "min-fresh" "=" delta-seconds

 delta-seconds = 1*19DIGIT

 Here delta-seconds is a decimal time value specifying the number of
 seconds since the instant the message response or data was received
 by the server.

 The different cache-directive options allow the client to ask the
 server to override the default cache expiration mechanisms:
 max-age Indicates that the client can tolerate the server
 using content whose age is no greater than the
 specified time in seconds. Unless a "max-stale"
 directive is also included, the client is not willing
 to accept a response based on stale data.
 min-fresh Indicates that the client is willing to accept a
 server response with cached data whose expiration is
 no less than its current age plus the specified time
 in seconds. If the server’s cache time to live
 exceeds the client-supplied min-fresh value, the
 server MUST NOT utilize cached content.

Burnett & Shanmugham Expires January 12, 2012 [Page 41]

Internet-Draft MRCPv2 July 2011

 max-stale Indicates that the client is willing to allow a server
 to utilize cached data that has exceeded its
 expiration time. If "max-stale" is assigned a value,
 then the client is willing to allow the server to use
 cached data that has exceeded its expiration time by
 no more than the specified number of seconds. If no
 value is assigned to "max-stale", then the client is
 willing to allow the server to use stale data of any
 age.

 The server cache MAY be requested to use stale response/data without
 validation, but only if this does not conflict with any "MUST"-level
 requirements concerning cache validation (e.g., a "must-revalidate"
 Cache-Control directive in the HTTP 1.1 specification pertaining to
 the corresponding URI).

 If both the MRCPv2 Cache-Control directive and the cached entry on
 the server include "max-age" directives, then the lesser of the two
 values is used for determining the freshness of the cached entry for
 that request.

6.2.14. Logging-Tag

 This header field MAY be sent as part of a "SET-PARAMS"/"GET-PARAMS"
 method to set or retrieve the logging tag for logs generated by the
 server. Once set, the value persists until a new value is set or the
 session ends. The MRCPv2 server MAY provide a mechanism to subset
 its output logs so that system administrators can examine or extract
 only the log file portion during which the logging tag was set to a
 certain value.

 It is RECOMMENDED that clients have some identifying information in
 the logging tag, so that one can determine which client request
 generated a given log message at the server.

 logging-tag = "Logging-Tag" ":" 1*UTFCHAR CRLF

6.2.15. Set-Cookie and Set-Cookie2

 Since the associated HTTP client on an MRCPv2 server fetches
 documents for processing on behalf of the MRCPv2 client, the cookie
 store in the HTTP client of the MRCPv2 server is treated as an
 extension of the cookie store in the HTTP client of the MRCPv2
 client. This requires that the MRCPv2 client and server be able to
 synchronize their common cookie store as needed. To enable the
 MRCPv2 client to push its stored cookies to the MRCPv2 server and get
 new cookies from the MRCPv2 server stored back to the MRCPv2 client,
 the Set-Cookie and Set-Cookie2 entity-header fields MAY be included

Burnett & Shanmugham Expires January 12, 2012 [Page 42]

Internet-Draft MRCPv2 July 2011

 in MRCPv2 requests to update the cookie store on a server and be
 returned in final MRCPv2 responses or events to subsequently update
 the client’s own cookie store. The stored cookies on the server
 persist for the duration of the MRCPv2 session and MUST be destroyed
 at the end of the session. To ensure support for the type of cookie
 header field dictated by the HTTP origin server, MRCPv2 clients and
 servers MUST support both the Set-Cookie and Set-Cookie2 entity
 header fields.

 set-cookie = "Set-Cookie:" cookies CRLF
 cookies = cookie *("," *LWS cookie)
 cookie = attribute "=" value *(";" cookie-av)
 cookie-av = "Comment" "=" value
 / "Domain" "=" value
 / "Max-Age" "=" value
 / "Path" "=" value
 / "Secure"
 / "Version" "=" 1*19DIGIT
 / "Age" "=" delta-seconds

 set-cookie2 = "Set-Cookie2:" cookies2 CRLF
 cookies2 = cookie2 *("," *LWS cookie2)
 cookie2 = attribute "=" value *(";" cookie-av2)
 cookie-av2 = "Comment" "=" value
 / "CommentURL" "=" DQUOTE uri DQUOTE
 / "Discard"
 / "Domain" "=" value
 / "Max-Age" "=" value
 / "Path" "=" value
 / "Port" ["=" DQUOTE portlist DQUOTE]
 / "Secure"
 / "Version" "=" 1*19DIGIT
 / "Age" "=" delta-seconds
 portlist = portnum *("," *LWS portnum)
 portnum = 1*19DIGIT

 The Set-Cookie and Set-Cookie2 header fields are specified in RFC
 2109 [RFC2109] and RFC 2965 [RFC2965], respectively. The "Age"
 attribute is introduced in this specification to indicate the age of
 the cookie and is optional. An MRCPv2 client or server MUST
 calculate the age of the cookie according to the age calculation
 rules in the HTTP/1.1 specification [RFC2616] and append the "Age"
 attribute accordingly.

 The MRCPv2 client or server MUST supply defaults for the "Domain" and
 "Path" attributes if omitted by the HTTP origin server as specified
 in RFC 2109 (set-cookie) and RFC 2965 (set-cookie2). Note that there
 is no leading dot present in the "Domain" attribute value in this

Burnett & Shanmugham Expires January 12, 2012 [Page 43]

Internet-Draft MRCPv2 July 2011

 case. Although an explicitly specified "Domain" value received via
 the HTTP protocol may be modified to include a leading dot, an MRCPv2
 client or server MUST NOT modify the "Domain" value when received via
 the MRCPv2 protocol.

 An MRCPv2 client or server MAY combine multiple cookie header fields
 of the same type into a single "field-name:field-value" pair as
 described in Section 6.2.

 The Set-Cookie and Set-Cookie2 header fields MAY be specified in any
 request that subsequently results in the server performing an HTTP
 access. When a server receives new cookie information from an HTTP
 origin server, and assuming the cookie store is modified according
 RFC 2109 or RFC 2965, the server MUST return the new cookie
 information in the MRCPv2 COMPLETE response or event as appropriate
 to allow the client to update its own cookie store.

 The "SET-PARAMS" request MAY specify the Set-Cookie and Set-Cookie2
 header fields to update the cookie store on a server. The GET-PARAMS
 request MAY be used to return the entire cookie store of "Set-Cookie"
 or "Set-Cookie2" type cookies to the client.

6.2.16. Vendor Specific Parameters

 This set of header fields allows for the client to set or retrieve
 Vendor Specific parameters.

 vendor-specific = "Vendor-Specific-Parameters" ":"
 [vendor-specific-av-pair
 *(";" vendor-specific-av-pair)] CRLF

 vendor-specific-av-pair = vendor-av-pair-name "="
 value

 vendor-av-pair-name = 1*UTFCHAR

 Header fields of this form MAY be sent in any method (request) and
 are used to manage implementation-specific parameters on the server
 side. The vendor-av-pair-name follows the reverse Internet Domain
 Name convention (see Section 13.1.6 for syntax and registration
 information). The value of the vendor attribute is specified after
 the "=" symbol and MAY be quoted. For example:

 com.example.companyA.paramxyz=256
 com.example.companyA.paramabc=High
 com.example.companyB.paramxyz=Low

Burnett & Shanmugham Expires January 12, 2012 [Page 44]

Internet-Draft MRCPv2 July 2011

 When used in GET-PARAMS to get the current value of these parameters
 from the server, this header field value may contain a semicolon-
 separated list of implementation-specific attribute names.

6.3. Generic Result Structure

 Result data from the server for the Recognizer and Verifier resources
 is carried as a typed media entity in the MRCPv2 message body of
 various events. The Natural Language Semantics Markup Language
 (NLSML), an XML markup based on an early draft from the W3C, is the
 default standard for returning results back to the client. Hence,
 all servers implementing these resource types MUST support the Media
 Type application/nlsml+xml. The Extensible MultiModal Annotation
 (EMMA) [W3C.REC-emma-20090210] format can be used to return results
 as well. This can be done by negotiating the format at session
 establishment time with SDP (a=resultformat:application/emma+xml) or
 with SIP (Allow/Accept). With SIP, for example, if a client wants
 results in EMMA, an MRCPv2 server can route the request to another
 server that supports EMMA by inspecting the SIP header fields, rather
 than having to introspect into the SDP.

 MRCPv2 uses this representation to convey content among the clients
 and servers that generate and make use of the markup. MRCPv2 uses
 NSLML specifically to convey recognition, enrollment, and
 verification results between the corresponding resource on the MRCPv2
 server and the MRCPv2 client. Details of this result format are
 fully described in Section 6.3.1.

 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="http://theYesNoGrammar">
 <interpretation>
 <instance>
 <ex:response>yes</ex:response>
 </instance>
 <input>ok</input>
 </interpretation>
 </result>

 Result Example

Burnett & Shanmugham Expires January 12, 2012 [Page 45]

Internet-Draft MRCPv2 July 2011

6.3.1. Natural Language Semantics Markup Language

 The Natural Language Semantics Markup Language (NLSML) is an XML data
 structure with elements and attributes designed to carry result
 information from recognizer (including enrollment) and verifier
 resources. The normative definition of NLSML is the RelaxNG schema
 in Section 16.1. Note that the elements and attributes of this
 format are defined in the MRCPv2 namespace. In the result structure,
 they must either be prefixed by a namespace prefix declared within
 the result or must be children of an element identified as belonging
 to the respective namespace. For details on how to use XML
 Namespaces, see [W3C.REC-xml-names11-20040204]. Section 2 of
 [W3C.REC-xml-names11-20040204] provides details on how to declare
 namespaces and namespace prefixes.

 The root element of NLSML is <result>. Optional child elements are
 <interpretation>, <enrollment-result>, and <verification-result>, at
 least one of which must be present. A single <result> may contain
 all of the optional child elements. Details of the <result> and
 <interpretation> elements and their subelements and attributes can be
 found in Section 9.6. Details of the <enrollment-result> element and
 its subelements can be found in Section 9.7. Details of the
 <verification-result> element and its subelements can be found in
 Section 11.5.2.

7. Resource Discovery

 Server resources may be discovered and their capabilities learned by
 clients through standard SIP machinery. The client MAY issue a SIP
 OPTIONS transaction to a server, which has the effect of requesting
 the capabilities of the server. The server MUST respond to such a
 request with an SDP-encoded description of its capabilities according
 to RFC3264 [RFC3264]. The MRCPv2 capabilities are described by a
 single m-line containing the media type "application" and transport
 type "TCP/TLS/MRCPv2" or "TCP/MRCPv2". There MUST be one "resource"
 attribute for each media resource that the server supports with the
 resource type identifier as its value.

 The SDP description MUST also contain m-lines describing the audio
 capabilities and the coders the server supports.

Burnett & Shanmugham Expires January 12, 2012 [Page 46]

Internet-Draft MRCPv2 July 2011

 In this example, the client uses the SIP OPTIONS method to query the
 capabilities of the MRCPv2 server.

 C->S:
 OPTIONS sip:mrcp@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf7
 Max-Forwards:6
 To:<sip:mrcp@example.com>
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:63104 OPTIONS
 Contact:<sip:sarvi@client.example.com>
 Accept:application/sdp
 Content-Length:0

 S->C:
 SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bf7;received=192.0.32.10
 To:<sip:mrcp@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:63104 OPTIONS
 Contact:<sip:mrcp@server.example.com>
 Allow:INVITE, ACK, CANCEL, OPTIONS, BYE
 Accept:application/sdp
 Accept-Encoding:gzip
 Accept-Language:en
 Supported:foo
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=sarvi 2890844536 2890842811 IN IP4 192.0.2.12
 s=-
 i=MRCPv2 server capabilities
 c=IN IP4 192.0.2.12/127
 t=0 0
 m=application 0 TCP/TLS/MRCPv2 1
 a=resource:speechsynth
 a=resource:speechrecog
 a=resource:speakverify
 m=audio 0 RTP/AVP 0 3
 a=rtpmap:0 PCMU/8000
 a=rtpmap:3 GSM/8000

Burnett & Shanmugham Expires January 12, 2012 [Page 47]

Internet-Draft MRCPv2 July 2011

 Using SIP OPTIONS for MRCPv2 Server Capability Discovery

8. Speech Synthesizer Resource

 This resource processes text markup provided by the client and
 generates a stream of synthesized speech in real-time. Depending
 upon the server implementation and capability of this resource, the
 client can also dictate parameters of the synthesized speech such as
 voice characteristics, speaker speed, etc.

 The synthesizer resource is controlled by MRCPv2 requests from the
 client. Similarly, the resource can respond to these requests or
 generate asynchronous events to the client to indicate conditions of
 interest to the client during the generation of the synthesized
 speech stream.

 This section applies for the following resource types:
 o speechsynth
 o basicsynth

 The capabilities of these resources are defined in Section 3.1.

8.1. Synthesizer State Machine

 The synthesizer maintains a state machine to process MRCPv2 requests
 from the client. The state transitions shown below describe the
 states of the synthesizer and reflect the state of the request at the
 head of the synthesizer resource queue. A "SPEAK" request in the
 PENDING state can be deleted or stopped by a "STOP" request without
 affecting the state of the resource.

Burnett & Shanmugham Expires January 12, 2012 [Page 48]

Internet-Draft MRCPv2 July 2011

 Idle Speaking Paused
 State State State
 | | | | |
 |----------SPEAK-------->| |--------|
 |<------STOP-------------| CONTROL |
 |<----SPEAK-COMPLETE-----| |------->|
 |<----BARGE-IN-OCCURRED--| |
 | |---------| |
 | CONTROL |-----------PAUSE--------->|
 | |-------->|<----------RESUME---------|
 | | |----------|
 |----------| | PAUSE |
 | BARGE-IN-OCCURRED | |--------->|
 |<---------| |----------| |
 | | SPEECH-MARKER |
 | |<---------| |
 |----------| |----------| |
 | STOP | RESUME |
 | | |<---------| |
 |<---------| | |
 |<---------------------STOP-------------------------|
 |----------| | |
 | DEFINE-LEXICON | |
 | | | |
 |<---------| | |
 |<---------------BARGE-IN-OCCURRED------------------|

 Synthesizer State Machine

8.2. Synthesizer Methods

 The synthesizer supports the following methods.

 synthesizer-method = "SPEAK"
 / "STOP"
 / "PAUSE"
 / "RESUME"
 / "BARGE-IN-OCCURRED"
 / "CONTROL"
 / "DEFINE-LEXICON"

8.3. Synthesizer Events

 The synthesizer may generate the following events.

 synthesizer-event = "SPEECH-MARKER"
 / "SPEAK-COMPLETE"

Burnett & Shanmugham Expires January 12, 2012 [Page 49]

Internet-Draft MRCPv2 July 2011

8.4. Synthesizer Header Fields

 A synthesizer method may contain header fields containing request
 options and information to augment the Request, Response or Event it
 is associated with.

 synthesizer-header = jump-size
 / kill-on-barge-in
 / speaker-profile
 / completion-cause
 / completion-reason
 / voice-parameter
 / prosody-parameter
 / speech-marker
 / speech-language
 / fetch-hint
 / audio-fetch-hint
 / failed-uri
 / failed-uri-cause
 / speak-restart
 / speak-length
 / load-lexicon
 / lexicon-search-order

8.4.1. Jump-Size

 This header field MAY be specified in a CONTROL method and controls
 the amount to jump forward or backward in an active "SPEAK" request.
 A + or - indicates a relative value to what is being currently
 played. This header field MAY also be specified in a "SPEAK" request
 as a desired offset into the synthesized speech. In this case, the
 synthesizer MUST begin speaking from this amount of time into the
 speech markup. Note that an offset that extends beyond the end of
 the produced speech will result in audio of length zero. The
 different speech length units supported are dependent on the
 synthesizer implementation. If the synthesizer resource does not
 support a unit or the operation, the resource MUST respond with a
 status-code of 409 "Unsupported Header Field Value".

Burnett & Shanmugham Expires January 12, 2012 [Page 50]

Internet-Draft MRCPv2 July 2011

 jump-size = "Jump-Size" ":" speech-length-value CRLF

 speech-length-value = numeric-speech-length
 / text-speech-length

 text-speech-length = 1*UTFCHAR SP "Tag"

 numeric-speech-length = ("+" / "-") positive-speech-length

 positive-speech-length = 1*19DIGIT SP numeric-speech-unit

 numeric-speech-unit = "Second"
 / "Word"
 / "Sentence"
 / "Paragraph"

8.4.2. Kill-On-Barge-In

 This header field MAY be sent as part of the "SPEAK" method to enable
 kill-on-barge-in support. If enabled, the "SPEAK" method is
 interrupted by DTMF input detected by a signal detector resource or
 by the start of speech sensed or recognized by the speech recognizer
 resource.

 kill-on-barge-in = "Kill-On-Barge-In" ":" BOOLEAN CRLF

 The client MUST send a BARGE-IN-OCCURRED method to the synthesizer
 resource when it receives a barge-in-able event from any source.
 This source could be a synthesizer resource or signal detector
 resource and MAY be either local or distributed. If this header
 field is not specified in a "SPEAK" request or explicitly set by a
 "SET-PARAMS", the default value for this header field is "true".

 If the recognizer or signal detector resource is on the same server
 as the synthesizer and both are part of the same session, the server
 MAY work with both to provide internal notification to the
 synthesizer so that audio may be stopped without having to wait for
 the client’s BARGE-IN-OCCURRED event.

 It is generally RECOMMENDED when playing a prompt to the user with
 Kill-On-Barge-In and asking for input, that the client issue the
 RECOGNIZE request ahead of the "SPEAK" request for optimum
 performance and user experience. This way, it is guaranteed that the
 recognizer is online before the prompt starts playing and the user’s
 speech will not be truncated at the beginning (especially for power
 users).

Burnett & Shanmugham Expires January 12, 2012 [Page 51]

Internet-Draft MRCPv2 July 2011

8.4.3. Speaker Profile

 This header field MAY be part of the "SET-PARAMS"/"GET-PARAMS" or
 "SPEAK" request from the client to the server and specifies a URI
 which references the profile of the speaker. Speaker profiles are
 collections of voice parameters like gender, accent etc.

 speaker-profile = "Speaker-Profile" ":" uri CRLF

8.4.4. Completion Cause

 This header field MUST be specified in a "SPEAK-COMPLETE" event
 coming from the synthesizer resource to the client. This indicates
 the reason the "SPEAK" request completed.

 completion-cause = "Completion-Cause" ":" 3DIGIT SP
 1*VCHAR CRLF

 +------------+-----------------------+------------------------------+
 | Cause-Code | Cause-Name | Description |
 +------------+-----------------------+------------------------------+
000	normal	SPEAK completed normally.
001	barge-in	SPEAK request was terminated
		because of barge-in.
002	parse-failure	SPEAK request terminated
		because of a failure to
		parse the speech markup
		text.
003	uri-failure	SPEAK request terminated
		because access to one of the
		URIs failed.
004	error	SPEAK request terminated
		prematurely due to
		synthesizer error.
005	language-unsupported	Language not supported.
006	lexicon-load-failure	Lexicon loading failed.
007	cancelled	A prior SPEAK request failed
		while this one was still in
		the queue.
 +------------+-----------------------+------------------------------+

 Synthesizer Resource Compleion Cause Codes

Burnett & Shanmugham Expires January 12, 2012 [Page 52]

Internet-Draft MRCPv2 July 2011

8.4.5. Completion Reason

 This header field MAY be specified in a "SPEAK-COMPLETE" event coming
 from the synthesizer resource to the client. This contains the
 reason text behind the "SPEAK" request completion. This header field
 communicates text describing the reason for the failure, such as an
 error in parsing the speech markup text.

 completion-reason = "Completion-Reason" ":"
 quoted-string CRLF

 The completion reason text is provided for client use in logs and for
 debugging and instrumentation purposes. Clients MUST NOT interpret
 the completion reason text.

8.4.6. Voice-Parameter

 This set of header fields defines the voice of the speaker.

 voice-parameter = voice-gender
 / voice-age
 / voice-variant
 / voice-name

 voice-gender = "Voice-Gender:" voice-gender-value CRLF
 voice-gender-value = "male"
 / "female"
 / "neutral"
 voice-age = "Voice-Age:" 1*3DIGIT CRLF
 voice-variant = "Voice-Variant:" 1*19DIGIT CRLF
 voice-name = "Voice-Name:"
 1*UTFCHAR *(1*WSP 1*UTFCHAR) CRLF

 The Voice- parameters are derived from the similarly-named attributes
 of the voice element specified in W3C’s Speech Synthesis Markup
 Language Specification (SSML) [W3C.REC-speech-synthesis-20040907].
 Legal values for these parameters are as defined in that
 specification.

 These header fields MAY be sent in "SET-PARAMS"/"GET-PARAMS" request
 to define/get default values for the entire session or MAY be sent in
 the "SPEAK" request to define default values for that speak request.
 Note that SSML content can itself set these values internal to the
 SSML document, of course.

 Voice parameter header fields MAY also be sent in a CONTROL method to

Burnett & Shanmugham Expires January 12, 2012 [Page 53]

Internet-Draft MRCPv2 July 2011

 affect a "SPEAK" request in progress and change its behavior on the
 fly. If the synthesizer resource does not support this operation, it
 MUST reject the request with a status-code of 403 "Unsupported Header
 Field".

8.4.7. Prosody-Parameters

 This set of header fields defines the prosody of the speech.

 prosody-parameter = "Prosody-" prosody-param-name ":"
 prosody-param-value CRLF

 prosody-param-name = 1*VCHAR

 prosody-param-value = 1*VCHAR

 prosody-param-name is any one of the attribute names under the
 prosody element specified in W3C’s Speech Synthesis Markup Language
 Specification [W3C.REC-speech-synthesis-20040907]. The prosody-
 param-value is any one of the value choices of the corresponding
 prosody element attribute specified in the above section.

 These header fields MAY be sent in "SET-PARAMS"/"GET-PARAMS" request
 to define/get default values for the entire session or MAY be sent in
 the "SPEAK" request to define default values for that speak request.
 Furthermore, these attributes can be part of the speech text marked
 up in SSML.

 The prosody parameter header fields in the "SET-PARAMS" or "SPEAK"
 request only apply if the speech data is of type text/plain and does
 not use a speech markup format.

 These prosody parameter header fields MAY also be sent in a CONTROL
 method to affect a "SPEAK" request in progress and change its
 behavior on the fly. If the synthesizer resource does not support
 this operation, it MUST respond back to the client with a status-code
 of 403 "Unsupported Header Field".

8.4.8. Speech Marker

 This header field contains timestamp information in a "timestamp"
 field. This is a Network Time Protocol (NTP) [RFC5905] timestamp, a
 64 bit number in decimal form. It MUST be synced with the Real-Time
 Protocol (RTP) [RFC3550] timestamp of the media stream through the
 Real-Time Control Protocol (RTCP) [RFC3550].

 Markers are bookmarks that are defined within the markup. Most

Burnett & Shanmugham Expires January 12, 2012 [Page 54]

Internet-Draft MRCPv2 July 2011

 speech markup formats provide mechanisms to embed marker fields
 within speech texts. The synthesizer generates SPEECH-MARKER events
 when it reaches these marker fields. This header field MUST be part
 of the SPEECH-MARKER event and contain the marker tag value after the
 timestamp, separated by a semicolon. In these events the timestamp
 marks the time the text corresponding to the marker was emitted as
 speech by the synthesizer.

 This header field MUST also be returned in responses to STOP,
 CONTROL, and BARGE-IN-OCCURRED methods, in the "SPEAK-COMPLETE"
 event, and in an IN-PROGRESS SPEAK response. In these messages, if
 any markers have been encountered for the current SPEAK, the marker
 tag value MUST be the last embedded marker encountered. If no
 markers have yet been encountered for the current SPEAK, only the
 timestamp is REQUIRED. Note than in these events the purpose of this
 header field is to provide timestamp information associated with
 important events within the lifecycle of a request (start of SPEAK
 processing, end of SPEAK processing, receipt of CONTROL/STOP/
 BARGE-IN-OCCURRED).

 timestamp = "timestamp" "=" time-stamp-value

 time-stamp-value = 1*20DIGIT

 speech-marker = "Speech-Marker" ":"
 timestamp
 [";" 1*(UTFCHAR / %x20)] CRLF

8.4.9. Speech Language

 This header field specifies the default language of the speech data
 if the language is not specified in the markup. The value of this
 header field MUST follow RFC 5646 [RFC5646] for its values. The
 header field MAY occur in "SPEAK", "SET-PARAMS" or "GET-PARAMS"
 requests.

 speech-language = "Speech-Language" ":" 1*VCHAR CRLF

8.4.10. Fetch Hint

 When the synthesizer needs to fetch documents or other resources like
 speech markup or audio files, this header field controls the
 corresponding URI access properties. This provides client policy on
 when the synthesizer should retrieve content from the server. A
 value of "prefetch" indicates the content MAY be downloaded when the
 request is received, whereas "safe" indicates that content MUST NOT
 be downloaded until actually referenced. The default value is
 "prefetch". This header field MAY occur in "SPEAK", "SET-PARAMS" or

Burnett & Shanmugham Expires January 12, 2012 [Page 55]

Internet-Draft MRCPv2 July 2011

 "GET-PARAMS" requests.

 fetch-hint = "Fetch-Hint" ":" ("prefetch" / "safe") CRLF

8.4.11. Audio Fetch Hint

 When the synthesizer needs to fetch documents or other resources like
 speech audio files, this header field controls the corresponding URI
 access properties. This provides client policy whether or not the
 synthesizer may attempt to optimize speech by pre-fetching audio.
 The value is either "safe" to say that audio is only fetched when it
 is referenced, never before; "prefetch" to permit, but not require
 the implementation to pre-fetch the audio; or "stream" to allow it to
 stream the audio fetches. The default value is "prefetch". This
 header field MAY occur in "SPEAK", "SET-PARAMS" or "GET-PARAMS"
 requests.

 audio-fetch-hint = "Audio-Fetch-Hint" ":"
 ("prefetch" / "safe" / "stream") CRLF

8.4.12. Failed URI

 When a synthesizer method needs a synthesizer to fetch or access a
 URI and the access fails, the server SHOULD provide the failed URI in
 this header field in the method response, unless there are multiple
 URI failures, in which case one of the failed URIs MUST be provided
 in this header field in the method response.

 failed-uri = "Failed-URI" ":" absoluteURI CRLF

8.4.13. Failed URI Cause

 When a synthesizer method needs a synthesizer to fetch or access a
 URI and the access fails the server MUST provide the URI-specific or
 protocol-specific response code for the URI in the Failed-URI header
 field in the method response through this header field. The value
 encoding is UTF-8 (RFC3629 [RFC3629]) to accommodate any access
 protocol, some of which might have a response string instead of a
 numeric response code.
 failed-uri-cause = "Failed-URI-Cause" ":" 1*UTFCHAR CRLF

8.4.14. Speak Restart

 When a CONTROL request to jump backward is issued to a currently
 speaking synthesizer resource, and the target jump point is before
 the start of the current "SPEAK" request, the current "SPEAK" request
 MUST restart from the beginning of its speech data and the response
 to the CONTROL request MUST contain this header field with a value of

Burnett & Shanmugham Expires January 12, 2012 [Page 56]

Internet-Draft MRCPv2 July 2011

 "true" indicating a restart.

 speak-restart = "Speak-Restart" ":" BOOLEAN CRLF

8.4.15. Speak Length

 This header field MAY be specified in a CONTROL method to control the
 length of speech to speak, relative to the current speaking point in
 the currently active "SPEAK" request. If numeric, the value MUST be
 a positive integer. If a header field with a Tag unit is specified,
 then the speech output continues until the tag is reached or the
 "SPEAK" request complete, whichever comes first. This header field
 MAY be specified in a "SPEAK" request to indicate the length to speak
 from the speech data and is relative to the point in speech that the
 "SPEAK" request starts. The different speech length units supported
 are synthesizer implementation dependent. If a server does not
 support the specified unit, the resource MUST respond with a status-
 code of 409 "Unsupported Header Field Value".

 speak-length = "Speak-Length" ":" positive-length-value
 CRLF

 positive-length-value = positive-speech-length
 / text-speech-length

 text-speech-length = 1*UTFCHAR SP "Tag"

 positive-speech-length = 1*19DIGIT SP numeric-speech-unit

 numeric-speech-unit = "Second"
 / "Word"
 / "Sentence"
 / "Paragraph"

8.4.16. Load-Lexicon

 This header field is used to indicate whether a lexicon has to be
 loaded or unloaded. The default value for this header field is
 "true". This header field MAY be specified in a DEFINE-LEXICON
 method.

 load-lexicon = "Load-Lexicon" ":" BOOLEAN CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 57]

Internet-Draft MRCPv2 July 2011

8.4.17. Lexicon-Search-Order

 This header field is used to specify a list of active pronunciation
 lexicon URIs and the search order among the active lexicons.
 Lexicons specified within the SSML document take precedence over the
 lexicons specified in this header field. This header field MAY be
 specified in the SPEAK, SET-PARAMS, and GET-PARAMS methods.

 lexicon-search-order = "Lexicon-Search-Order" ":"
 "<" absoluteURI ">" *(" " "<" absoluteURI ">") CRLF

8.5. Synthesizer Message Body

 A synthesizer message may contain additional information associated
 with the Request, Response or Event in its message body.

8.5.1. Synthesizer Speech Data

 Marked-up text for the synthesizer to speak is specified as a typed
 media entity in the message body. The speech data to be spoken by
 the synthesizer can be specified inline by embedding the data in the
 message body or by reference by providing a URI for accessing the
 data. In either case the data and the format used to markup the
 speech needs to be of a content type supported by the server.

 All MRCPv2 servers containing synthesizer resources MUST support both
 plain text speech data and W3C’s Speech Synthesis Markup Language
 [W3C.REC-speech-synthesis-20040907] and hence MUST support the Media
 Types text/plain and application/ssml+xml. Other formats MAY be
 supported.

 If the speech data is to be fetched by URI reference, the Media Type
 text/uri-list (see RFC2483 [RFC2483]) is used to indicate one or
 more URIs that, when dereferenced, will contain the content to be
 spoken. If a list of speech URIs is specified, speech data provided
 by each URI MUST be spoken in the order in which the URIs are
 specified in the content.

 A mix of URI and inline speech data MAY be indicated through the
 multipart/mixed Media Type, and MRCPv2 clients and servers MUST
 support the multipart/mixed Media Type. Embedded within the
 multipart there MAY be content for the text/uri-list, application/
 ssml+xml and/or text/plain media types. The character set and
 encoding used in the speech data is specified according to standard
 Media Type definitions. The multi-part content MAY also contain
 actual audio data. Clients may have recorded audio clips stored in
 memory or on a local device and wish to play it as part of the
 "SPEAK" request. The audio portions MAY be sent by the client as

Burnett & Shanmugham Expires January 12, 2012 [Page 58]

Internet-Draft MRCPv2 July 2011

 part of the multi-part content block. This audio is referenced in
 the speech markup data that is another part in the multi-part content
 block according to the multipart/mixed Media Type specification.

 Content-Type:text/uri-list
 Content-Length:...

 http://www.example.com/ASR-Introduction.ssml
 http://www.example.com/ASR-Document-Part1.ssml
 http://www.example.com/ASR-Document-Part2.ssml
 http://www.example.com/ASR-Conclusion.ssml

 URI List Example

 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Aldine Turnbet
 and arrived at <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>

 <s>The subject is <prosody
 rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 SSML Example

Burnett & Shanmugham Expires January 12, 2012 [Page 59]

Internet-Draft MRCPv2 July 2011

 Content-Type:multipart/mixed; boundary="break"

 --break
 Content-Type:text/uri-list
 Content-Length:...

 http://www.example.com/ASR-Introduction.ssml
 http://www.example.com/ASR-Document-Part1.ssml
 http://www.example.com/ASR-Document-Part2.ssml
 http://www.example.com/ASR-Conclusion.ssml

 --break
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams
 and arrived at <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>

 <s>The subject is <prosody
 rate="-20%">ski trip</prosody></s>
 </p>
 </speak>
 --break--

 Multipart Example

8.5.2. Lexicon Data

 Synthesizer lexicon data from the client to the server can be
 provided inline or by reference. Either way they are carried as
 typed media in the message body of the MRCPv2 request message (see
 Section 8.14).

 When a lexicon is specified in-line in the message, the client MUST
 provide a Content-ID for that lexicon as part of the content header
 fields. The server MUST store the lexicon associated with that
 Content-ID for the duration of the session. A stored lexicon can be
 overwritten by defining a new lexicon with the same Content-ID.

Burnett & Shanmugham Expires January 12, 2012 [Page 60]

Internet-Draft MRCPv2 July 2011

 Lexicons that have been associated with a Content-ID can be
 referenced through the "session" URI scheme (see Section 13.6).

 If lexicon data is specified by external URI reference, the Media
 Type text/uri-list (see RFC2483 [RFC2483]) is used to list the one
 or more URIs that may be dereferenced to obtain the lexicon data.
 All MRCPv2 servers MUST support the HTTP and HTTPS uri access
 mechanisms, and MAY support other mechanisms.

 If the data in the message body consists of a mix of URI and inline
 lexicon data the multipart/mixed Media Type is used. The character
 set and encoding used in the lexicon data may be specified according
 to standard Media Type definitions.

8.6. SPEAK Method

 The "SPEAK" Request provides the synthesizer resource with the speech
 text and initiates speech synthesis and streaming. The "SPEAK"
 method MAY carry voice and prosody header fields that alter the
 behavior of the voice being synthesized, as well as a typed media
 message body containing the actual marked-up text to be spoken.

 The SPEAK method implementation MUST do a fetch of all external URIs
 that are part of that operation. If caching is implemented, this URI
 fetching MUST conform to the cache control hints and parameter header
 fields associated with the method in deciding whether it is to be
 fetched from cache or from the external server. If these hints/
 parameters are not specified in the method, the values set for the
 session using SET-PARAMS/GET-PARAMS apply. If it was not set for the
 session their default values apply.

 When applying voice parameters there are 3 levels of precedence. The
 highest precedence are those specified within the speech markup text,
 followed by those specified in the header fields of the "SPEAK"
 request and hence apply for that "SPEAK" request only, followed by
 the session default values which can be set using the "SET-PARAMS"
 request and apply for subsequent methods invoked during the session.

 If the resource was idle at the time the "SPEAK" request arrived at
 the server and the "SPEAK" method is being actively processed, the
 resource responds immediately with a success status code and a
 request-state of IN-PROGRESS.

 If the resource is in the speaking or paused state when the "SPEAK"
 method arrives at the server, i.e. it is in the middle of processing
 a previous "SPEAK" request, the status returns success with a
 request-state of PENDING. The server places the "SPEAK" request in
 the synthesizer resource request queue. The request queue operates

Burnett & Shanmugham Expires January 12, 2012 [Page 61]

Internet-Draft MRCPv2 July 2011

 strictly FIFO: requests are processed serially in order of receipt.
 If the current SPEAK fails, all SPEAK methods in the pending queue
 are cancelled and each generates a SPEAK-COMPLETE event with a
 Completion-Cause of "cancelled".

 For the synthesizer resource, "SPEAK" is the only method that can
 return a request-state of IN-PROGRESS or PENDING. When the text has
 been synthesized and played into the media stream, the resource
 issues a "SPEAK-COMPLETE" event with the request-id of the "SPEAK"
 request and a request-state of COMPLETE.

 C->S: MRCP/2.0 ... SPEAK 543257
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-Age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams and arrived at
 <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.
 </s>
 <s>The subject is
 <prosody rate="-20%">ski trip</prosody>
 </s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206027059

 S->C: MRCP/2.0 ... SPEAK-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Completion-Cause:000 normal
 Speech-Marker:timestamp=857206027059

Burnett & Shanmugham Expires January 12, 2012 [Page 62]

Internet-Draft MRCPv2 July 2011

 SPEAK Example

8.7. STOP

 The "STOP" method from the client to the server tells the synthesizer
 resource to stop speaking if it is speaking something.

 The "STOP" request can be sent with an Active-Request-Id-List header
 field to stop the zero or more specific "SPEAK" requests that may be
 in queue and return a response status-code of 200 (Success). If no
 Active-Request-Id-List header field is sent in the "STOP" request the
 server terminates all outstanding "SPEAK" requests.

 If a "STOP" request successfully terminated one or more PENDING or
 IN-PROGRESS "SPEAK" requests, then the response MUST contain an
 Active-Request-Id-List header field enumerating the "SPEAK" request-
 ids that were terminated. Otherwise there is no Active-Request-Id-
 List header field in the response. No "SPEAK-COMPLETE" events are
 sent for such terminated requests.

 If a "SPEAK" request that was IN-PROGRESS and speaking was stopped,
 the next pending "SPEAK" request, if any, becomes IN-PROGRESS at the
 resource and enters the speaking state.

 If a "SPEAK" request that was IN-PROGRESS and paused was stopped, the
 next pending "SPEAK" request, if any, becomes IN-PROGRESS and enters
 the paused state.

Burnett & Shanmugham Expires January 12, 2012 [Page 63]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SPEAK 543258
 Channel-Identifier:32AECB23433802@speechsynth
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams and arrived at
 <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>
 <s>The subject is
 <prosody rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206027059

 C->S: MRCP/2.0 ... STOP 543259
 Channel-Identifier:32AECB23433802@speechsynth

 S->C: MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258
 Speech-Marker:timestamp=857206039059

 STOP Example

8.8. BARGE-IN-OCCURRED

 The BARGE-IN-OCCURRED method, when used with the synthesizer
 resource, provides a client which has detected a barge-in-able event
 a means to communicate the occurrence of the event to the synthesizer
 resource.

 This method is useful in two scenarios,
 1. The client has detected DTMF digits in the input media or some
 other barge-in-able event and wants to communicate that to the
 synthesizer resource.

Burnett & Shanmugham Expires January 12, 2012 [Page 64]

Internet-Draft MRCPv2 July 2011

 2. The recognizer resource and the synthesizer resource are in
 different servers. In this case the client acts as an
 intermediary for the two servers. It receives an event from the
 recognition resource and sends a BARGE-IN-OCCURRED request to the
 synthesizer. In such cases, the BARGE-IN-OCCURRED method would
 also have a Proxy-Sync-Id header field received from the resource
 generating the original event.

 If a "SPEAK" request is active with kill-on-barge-in enabled (see
 Section 8.4.2), and the BARGE-IN-OCCURRED event is received, the
 synthesizer MUST immediately stop streaming out audio. It MUST also
 terminate any speech requests queued behind the current active one,
 irrespective of whether they have barge-in enabled or not. If a
 barge-in-able "SPEAK" request was playing and it was terminated, the
 response MUST contain the an Active-Request-Id-List header field
 listing the request-ids of all "SPEAK" requests that were terminated.
 The server generates no "SPEAK-COMPLETE" events for these requests.

 If there were no "SPEAK" requests terminated by the synthesizer
 resource as a result of the BARGE-IN-OCCURRED method, the server
 responds to the BARGE-IN-OCCURRED with a status-code of 200 success,
 and the response MUST NOT contain an Active-Request-Id-List header
 field.

 If the synthesizer and recognizer resources are part of the same
 MRCPv2 session, they can be optimized for a quicker kill-on-barge-in
 response if the recognizer and synthesizer interact directly. In
 these cases, the client MUST still react to a START-OF-INPUT event
 from the recognizer by invoking the BARGE-IN-OCCURRED method to the
 synthesizer. The client MUST invoke the BARGE-IN-OCCURRED if it has
 any outstanding requests to the synthesizer resource in either the
 PENDING or IN-PROGRESS state.

Burnett & Shanmugham Expires January 12, 2012 [Page 65]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SPEAK 543258
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-Age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams and arrived at
 <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>
 <s>The subject is
 <prosody rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206027059

 C->S: MRCP/2.0 ... BARGE-IN-OCCURRED 543259
 Channel-Identifier:32AECB23433802@speechsynth
 Proxy-Sync-Id:987654321

 S->C:MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258
 Speech-Marker:timestamp=857206039059

 BARGE-IN-OCCURED Example

8.9. PAUSE

 The PAUSE method from the client to the server tells the synthesizer
 resource to pause speech output if it is speaking something. If a
 PAUSE method is issued on a session when a "SPEAK" is not active the
 server MUST respond with a status-code of 402 "Method not valid in
 this state". If a PAUSE method is issued on a session when a "SPEAK"
 is active and paused the server MUST respond with a status-code of

Burnett & Shanmugham Expires January 12, 2012 [Page 66]

Internet-Draft MRCPv2 July 2011

 200 "Success". If a "SPEAK" request was active the server MUST
 return an Active-Request-Id-List header field whose value contains
 the request-id of the "SPEAK" request that was paused.

 C->S: MRCP/2.0 ... SPEAK 543258
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-Age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams and arrived at
 <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>

 <s>The subject is
 <prosody rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206027059

 C->S: MRCP/2.0 ... PAUSE 543259
 Channel-Identifier:32AECB23433802@speechsynth

 S->C: MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258

 PAUSE Example

8.10. RESUME

 The RESUME method from the client to the server tells a paused
 synthesizer resource to resume speaking. If a RESUME request is
 issued on a session with no active "SPEAK" request, the server MUST

Burnett & Shanmugham Expires January 12, 2012 [Page 67]

Internet-Draft MRCPv2 July 2011

 respond with a status-code of 402 "Method not valid in this state".
 If a RESUME request is issued on a session with an active "SPEAK"
 request that is speaking (i.e., not paused) the server MUST respond
 with a status-code of 200 "Success". If a "SPEAK" request was paused
 the server MUST return an Active-Request-Id-List header field whose
 value contains the request-id of the "SPEAK" request that was
 resumed.

Burnett & Shanmugham Expires January 12, 2012 [Page 68]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SPEAK 543258
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams and arrived at
 <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>
 <s>The subject is
 <prosody rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS@speechsynth
 Channel-Identifier:32AECB23433802
 Speech-Marker:timestamp=857206027059

 C->S: MRCP/2.0 ... PAUSE 543259
 Channel-Identifier:32AECB23433802@speechsynth

 S->C: MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258

 C->S: MRCP/2.0 ... RESUME 543260
 Channel-Identifier:32AECB23433802@speechsynth

 S->C: MRCP/2.0 ... 543260 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258

 RESUME Example

Burnett & Shanmugham Expires January 12, 2012 [Page 69]

Internet-Draft MRCPv2 July 2011

8.11. CONTROL

 The CONTROL method from the client to the server tells a synthesizer
 that is speaking to modify what it is speaking on the fly. This
 method is used to request the synthesizer to jump forward or backward
 in what it is speaking, change speaker rate, speaker parameters, etc.
 It affects only the currently IN-PROGRESS "SPEAK" request. Depending
 on the implementation and capability of the synthesizer resource it
 may or may not support the various modifications indicated by header
 fields in the CONTROL request.

 When a client invokes a CONTROL method to jump forward and the
 operation goes beyond the end of the active "SPEAK" method’s text,
 the CONTROL request still succeeds. The active "SPEAK" request
 completes and returns a "SPEAK-COMPLETE" event following the response
 to the CONTROL method. If there are more "SPEAK" requests in the
 queue, the synthesizer resource starts at the beginning of the next
 "SPEAK" request in the queue.

 When a client invokes a CONTROL method to jump backward and the
 operation jumps to the beginning or beyond the beginning of the
 speech data of the active "SPEAK" method, the CONTROL request still
 succeeds. The response to the CONTROL request contains the speak-
 restart header field, and the active "SPEAK" request restarts from
 the beginning of its speech data.

 These two behaviors can be used to rewind or fast-forward across
 multiple speech requests, if the client wants to break up a speech
 markup text to multiple "SPEAK" requests.

 If a "SPEAK" request was active when the CONTROL method was received
 the server MUST return an active-request-id-list header field with
 the Request-id of the "SPEAK" request that was active.

Burnett & Shanmugham Expires January 12, 2012 [Page 70]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SPEAK 543258
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams
 and arrived at <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>

 <s>The subject is <prosody
 rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857205016059

 C->S: MRCP/2.0 ... CONTROL 543259
 Channel-Identifier:32AECB23433802@speechsynth
 Prosody-rate:fast

 S->C: MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258
 Speech-Marker:timestamp=857206027059

 C->S: MRCP/2.0 ... CONTROL 543260
 Channel-Identifier:32AECB23433802@speechsynth
 Jump-Size:-15 Words

 S->C: MRCP/2.0 ... 543260 200 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Active-Request-Id-List:543258
 Speech-Marker:timestamp=857206039059

Burnett & Shanmugham Expires January 12, 2012 [Page 71]

Internet-Draft MRCPv2 July 2011

 CONTROL Example

8.12. SPEAK-COMPLETE

 This is an Event message from the synthesizer resource to the client
 indicating that the corresponding "SPEAK" request was completed. The
 request-id header field matches the request-id of the "SPEAK" request
 that initiated the speech that just completed. The request-state
 field is set to COMPLETE by the server, indicating that this is the
 last event with the corresponding request-id. The Completion-Cause
 header field specifies the cause code pertaining to the status and
 reason of request completion such as the "SPEAK" completed normally
 or because of an error, kill-on-barge-in etc.

 C->S: MRCP/2.0 ... SPEAK 543260
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams
 and arrived at <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>
 <s>The subject is
 <prosody rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543260 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206027059

 S->C: MRCP/2.0 ... SPEAK-COMPLETE 543260 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Completion-Cause:000 normal
 Speech-Marker:timestamp=857206039059

Burnett & Shanmugham Expires January 12, 2012 [Page 72]

Internet-Draft MRCPv2 July 2011

 SPEAK-COMPLETE Example

8.13. SPEECH-MARKER

 This is an event generated by the synthesizer resource to the client
 when the synthesizer encounters a marker tag in the speech markup it
 is currently processing. The request-id field in the header field
 matches the corresponding "SPEAK" request. The request-state field
 indicates IN-PROGRESS as the speech is still not complete. The value
 of the speech marker tag hit, describing where the synthesizer is in
 the speech markup, is returned in the speech-marker header field,
 along with an NTP timestamp indicating the instant in the output
 speech stream that the marker was encountered. The SPEECH-MARKER
 event MUST also be generated with a null marker value and output NTP
 timestamp when a SPEAK request in Pending-State (i.e. in the queue)
 changes state to IN-PROGRESS and starts speaking. The NTP timestamp
 MUST be synchronized with the RTP timestamp used to generate the
 speech stream through standard RTCP machinery.

Burnett & Shanmugham Expires January 12, 2012 [Page 73]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SPEAK 543261
 Channel-Identifier:32AECB23433802@speechsynth
 Voice-gender:neutral
 Voice-age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams
 and arrived at <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>
 <mark name="here"/>
 <s>The subject is
 <prosody rate="-20%">ski trip</prosody>
 </s>
 <mark name="ANSWER"/>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543261 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857205015059

 S->C: MRCP/2.0 ... SPEECH-MARKER 543261 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206027059;here

 S->C: MRCP/2.0 ... SPEECH-MARKER 543261 IN-PROGRESS
 Channel-Identifier:32AECB23433802@speechsynth
 Speech-Marker:timestamp=857206039059;ANSWER

 S->C: MRCP/2.0 ... SPEAK-COMPLETE 543261 COMPLETE
 Channel-Identifier:32AECB23433802@speechsynth
 Completion-Cause:000 normal
 Speech-Marker:timestamp=857207689259;ANSWER

 SPEECH-MARKER Example

Burnett & Shanmugham Expires January 12, 2012 [Page 74]

Internet-Draft MRCPv2 July 2011

8.14. DEFINE-LEXICON

 The DEFINE-LEXICON method, from the client to the server, provides a
 lexicon and tells the server to load or unload the lexicon (see
 Section 8.4.16). The media type of the lexicon is provided in the
 Content-Type header (see Section 8.5.2). One such media type is PLS
 [W3C.REC-pronunciation-lexicon-20081014].

 If the server resource is in the speaking or paused state, the server
 MUST respond with a failure status-code of 402 "Method not valid in
 this state".

 If the resource is in the idle state and is able to successfully
 load/unload the lexicon the status MUST return a 200 "Success"
 status-code and the request-state MUST be COMPLETE.

 If the synthesizer could not define the lexicon for some reason, for
 example because the download failed or the lexicon was in an
 unsupported form, the server MUST respond with a failure status-code
 of 407, and a Completion-Cause header field describing the failure
 reason.

9. Speech Recognizer Resource

 The speech recognizer resource receives an incoming voice stream and
 provides the client with an interpretation of what was spoken in
 textual form.

 The recognizer resource is controlled by MRCPv2 requests from the
 client. The recognizer resource can both respond to these requests
 and generate asynchronous events to the client to indicate conditions
 of interest during the processing of the method.

 This section applies to the following resource types.
 1. speechrecog
 2. dtmfrecog

 The difference between the above two resources is in their level of
 support for recognition grammars. The "dtmfrecog" resource type is
 capable of recognizing only DTMF digits and hence accepts only DTMF
 grammars. It only generates barge-in for DTMF inputs and ignores
 speech. The "speechrecog" resource type can recognize regular speech
 as well as DTMF digits and hence MUST support grammars describing
 either speech or DTMF. This resource generates barge-in events for
 speech and/or DTMF. By analyzing the grammars that are activated by
 the RECOGNIZE method, it determines if a barge-in should occur for
 speech and/or DTMF. When the recognizer decides it needs to generate

Burnett & Shanmugham Expires January 12, 2012 [Page 75]

Internet-Draft MRCPv2 July 2011

 barge-in it also generates a START-OF-INPUT event to the client. The
 recognition resource may support recognition in the normal or hotword
 modes or both (although note that a single speechrecog resource does
 not perform normal and hotword mode recognition simultaneously). For
 implementations where a single recognition resource does not support
 both modes, or simultaneous normal and hotword recognition is
 desired, the two modes can be invoked through separate resources
 allocated to the same SIP dialog (with different MRCP session
 identifiers) and share the RTP audio feed.

 The capabilities of the recognition resource are enumerated below:

 Normal Mode Recognition Normal mode recognition tries to match all
 of the speech or DTMF against the grammar and returns a no-match
 status if the input fails to match or the method times out.
 Hotword Mode Recognition Hotword mode is where the recognizer looks
 for a match against specific speech grammar or DTMF sequence and
 ignores speech or DTMF that does not match. The recognition
 completes only for a successful match of grammar or if the client
 cancels the request or if there is a a non-input or recognition
 timeout.
 Voice Enrolled Grammars A recognition resource may optionally
 support Voice Enrolled Grammars. With this functionality,
 enrollment is performed using a person’s voice. For example, a
 list of contacts can be created and maintained by recording the
 person’s names using the caller’s voice. This technique is
 sometimes also called speaker-dependent recognition.
 Interpretation A recognition resource may be employed strictly for
 its natural language interpretation capabilities by supplying it
 with a text string as input instead of speech. In this mode the
 resource takes text as input and produces an "interpretation" of
 the input according to the supplied grammar.

 Voice Enrollment has the concept of an enrollment session. A session
 to add a new phrase to a personal grammar involves the initial
 enrollment followed by a repeat of enough utterances before
 committing the new phrase to the personal grammar. Each time an
 utterance is recorded, it is compared for similarity with the other
 samples and a clash test is performed against other entries in the
 personal grammar to ensure there are no similar and confusable
 entries.

 Enrollment is done using a recognizer resource. Controlling which
 utterances are to be considered for enrollment of a new phrase is
 done by setting a header field (see Section 9.4.39) in the Recognize
 request.

 Interpretation is accomplished through the INTERPRET method

Burnett & Shanmugham Expires January 12, 2012 [Page 76]

Internet-Draft MRCPv2 July 2011

 (Section 9.20) and the interpret-text header field (Section 9.4.30).

9.1. Recognizer State Machine

 The recognizer resource maintains a state machine to process MRCPv2
 requests from the client.

 Idle Recognizing Recognized
 State State State
 | | | | |
 |---------RECOGNIZE---->|---RECOGNITION-COMPLETE-->|
 |<------STOP------------|<-----RECOGNIZE-----------|
 | | |
 | |--------| |-----------|
 | START-OF-INPUT | GET-RESULT |
 | |------->| |---------->|
 |------------| | |
 | DEFINE-GRAMMAR |----------| |
 |<-----------| | START-INPUT-TIMERS |
 | |<---------| |
 |------| | |
 | INTERPRET | |
 |<-----| |------| |
 | | RECOGNIZE |
 |-------| |<-----| |
 | STOP |
 |<------| |
 |<-------------------STOP--------------------------|
 |<-------------------DEFINE-GRAMMAR----------------|

 Recognizer State Machine

 If a recognition resource supports voice enrolled grammars, starting
 an enrollment session does not change the state of the recognizer
 resource. Once an enrollment session is started, then utterances are
 enrolled by calling the RECOGNIZE method repeatedly. The state of
 the speech recognizer resource goes from IDLE to RECOGNIZING state
 each time RECOGNIZE is called.

9.2. Recognizer Methods

 The recognizer supports the following methods.

Burnett & Shanmugham Expires January 12, 2012 [Page 77]

Internet-Draft MRCPv2 July 2011

 recognizer-method = recog-only-method
 / enrollment-method

 recog-only-method = "DEFINE-GRAMMAR"
 / "RECOGNIZE"
 / "INTERPRET"
 / "GET-RESULT"
 / "START-INPUT-TIMERS"
 / "STOP"

 It is OPTIONAL for a recognizer resource to support voice enrolled
 grammars. If the recognizer resource does support voice enrolled
 grammars it MUST support the following methods.

 enrollment-method = "START-PHRASE-ENROLLMENT"
 / "ENROLLMENT-ROLLBACK"
 / "END-PHRASE-ENROLLMENT"
 / "MODIFY-PHRASE"
 / "DELETE-PHRASE"

9.3. Recognizer Events

 The recognizer may generate the following events.

 recognizer-event = "START-OF-INPUT"
 / "RECOGNITION-COMPLETE"
 / "INTERPRETATION-COMPLETE"

9.4. Recognizer Header Fields

 A recognizer message may contain header fields containing request
 options and information to augment the Method, Response or Event
 message it is associated with.

Burnett & Shanmugham Expires January 12, 2012 [Page 78]

Internet-Draft MRCPv2 July 2011

 recognizer-header = recog-only-header
 / enrollment-header

 recog-only-header = confidence-threshold
 / sensitivity-level
 / speed-vs-accuracy
 / n-best-list-length
 / no-input-timeout
 / input-type
 / recognition-timeout
 / waveform-uri
 / input-waveform-uri
 / completion-cause
 / completion-reason
 / recognizer-context-block
 / start-input-timers
 / speech-complete-timeout
 / speech-incomplete-timeout
 / dtmf-interdigit-timeout
 / dtmf-term-timeout
 / dtmf-term-char
 / failed-uri
 / failed-uri-cause
 / save-waveform
 / media-type
 / new-audio-channel
 / speech-language
 / ver-buffer-utterance
 / recognition-mode
 / cancel-if-queue
 / hotword-max-duration
 / hotword-min-duration
 / interpret-text
 / dtmf-buffer-time
 / clear-dtmf-buffer
 / early-no-match

 If a recognition resource supports voice enrolled grammars, the
 following header fields are also used.

Burnett & Shanmugham Expires January 12, 2012 [Page 79]

Internet-Draft MRCPv2 July 2011

 enrollment-header = num-min-consistent-pronunciations
 / consistency-threshold
 / clash-threshold
 / personal-grammar-uri
 / enroll-utterance
 / phrase-id
 / phrase-nl
 / weight
 / save-best-waveform
 / new-phrase-id
 / confusable-phrases-uri
 / abort-phrase-enrollment

 For enrollment-specific header fields that can appear as part of
 "SET-PARAMS" or "GET-PARAMS" methods, the following general rule
 applies: the START-PHRASE-ENROLLMENT method must be invoked before
 these header fields may be set through the "SET-PARAMS" method or
 retrieved through the "GET-PARAMS" method.

 Note that the Waveform-URI header field of the Recognizer resource
 can also appear in the response to the END-PHRASE-ENROLLMENT method.

9.4.1. Confidence Threshold

 When a recognition resource recognizes or matches a spoken phrase
 with some portion of the grammar, it associates a confidence level
 with that match. The confidence-threshold header field tells the
 recognizer resource what confidence level the client considers a
 successful match. This is a float value between 0.0-1.0 indicating
 the recognizer’s confidence in the recognition. If the recognizer
 determines that there is no candidate match with a confidence that is
 greater than the confidence threshold, then it MUST return no-match
 as the recognition result. This header field MAY occur in RECOGNIZE,
 "SET-PARAMS" or "GET-PARAMS". The default value for this header
 field is implementation specific, as is the interpretation of any
 specific value for this header field. Although values for servers
 from different vendors are not comparable, it is expected that
 clients will tune this value over time for a given server.

 confidence-threshold = "Confidence-Threshold" ":" FLOAT CRLF

9.4.2. Sensitivity Level

 To filter out background noise and not mistake it for speech, the
 recognizer may support a variable level of sound sensitivity. The
 sensitivity-level header field is a float value between 0.0 and 1.0
 and allows the client to set the sensitivity level for the
 recognizer. This header field MAY occur in RECOGNIZE, "SET-PARAMS"

Burnett & Shanmugham Expires January 12, 2012 [Page 80]

Internet-Draft MRCPv2 July 2011

 or "GET-PARAMS". A higher value for this header field means higher
 sensitivity. The default value for this header field is
 implementation specific, as is the interpretation of any specific
 value for this header field. Although values for servers from
 different vendors are not comparable, it is expected that clients
 will tune this value over time for a given server.

 sensitivity-level = "Sensitivity-Level" ":" FLOAT CRLF

9.4.3. Speed Vs Accuracy

 Depending on the implementation and capability of the recognizer
 resource it may be tunable towards Performance or Accuracy. Higher
 accuracy may mean more processing and higher CPU utilization, meaning
 fewer active sessions per server and vice versa. The value is a
 float between 0.0 and 1.0. A value of 0.0 means fastest recognition.
 A value of 1.0 means best accuracy. This header field MAY occur in
 RECOGNIZE, "SET-PARAMS" or "GET-PARAMS". The default value for this
 header field is implementation specific. Although values for servers
 from different vendors are not comparable, it is expected that
 clients will tune this value over time for a given server.

 speed-vs-accuracy = "Speed-Vs-Accuracy" ":" FLOAT CRLF

9.4.4. N Best List Length

 When the recognizer matches an incoming stream with the grammar, it
 may come up with more than one alternative match because of
 confidence levels in certain words or conversation paths. If this
 header field is not specified, by default, the recognition resource
 returns only the best match above the confidence threshold. The
 client, by setting this header field, can ask the recognition
 resource to send it more than 1 alternative. All alternatives must
 still be above the confidence-threshold. A value greater than one
 does not guarantee that the recognizer will provide the requested
 number of alternatives. This header field MAY occur in RECOGNIZE,
 "SET-PARAMS" or "GET-PARAMS". The minimum value for this header
 field is 1. The default value for this header field is 1.

 n-best-list-length = "N-Best-List-Length" ":" 1*19DIGIT CRLF

9.4.5. Input Type

 When the recognizer detects barge-in-able input and generates a
 START-OF-INPUT event, that event MUST carry this header field to
 specify whether the input that caused the barge-in was DTMF or
 speech.

Burnett & Shanmugham Expires January 12, 2012 [Page 81]

Internet-Draft MRCPv2 July 2011

 input-type = "Input-Type" ":" inputs CRLF
 inputs = "speech" / "dtmf"

9.4.6. No Input Timeout

 When recognition is started and there is no speech detected for a
 certain period of time, the recognizer can send a RECOGNITION-
 COMPLETE event to the client with a Completion-Cause of "no-input-
 timeout" and terminate the recognition operation. The client can use
 the no-input-timeout header field to set this timeout. The value is
 in milliseconds and may range from 0 to an implementation specific
 maximum value. This header field MAY occur in RECOGNIZE,
 "SET-PARAMS" or "GET-PARAMS". The default value is implementation
 specific.

 no-input-timeout = "No-Input-Timeout" ":" 1*19DIGIT CRLF

9.4.7. Recognition Timeout

 When recognition is started and there is no match for a certain
 period of time, the recognizer can send a RECOGNITION-COMPLETE event
 to the client and terminate the recognition operation. The
 Recognition-Timeout header field allows the client to set this
 timeout value. The value is in milliseconds. The value for this
 header field ranges from 0 to an implementation specific maximum
 value. The default value is 10 seconds. This header field MAY occur
 in RECOGNIZE, SET-PARAMS or GET-PARAMS.

 recognition-timeout = "Recognition-Timeout" ":" 1*19DIGIT CRLF

9.4.8. Waveform URI

 If the Save-Waveform header field is set to true, the recognizer MUST
 record the incoming audio stream of the recognition into a stored
 form and provide a URI for the client to access it. This header
 field MUST be present in the RECOGNITION-COMPLETE event if the Save-
 Waveform header field was set to true. The value of the header field
 MUST be empty if there was some error condition preventing the server
 from recording. Otherwise, the URI generated by the server MUST be
 unambiguous across the server and all its recognition sessions. The
 content associated with the URI MUST be available to the client until
 the MRCPv2 session terminates.

 Similarly, if the Save-Best-Waveform header field is set to true, the
 recognizer MUST save the audio stream for the best repetition of the
 phrase that was used during the enrollment session. The recognizer
 MUST then record the recognized audio and make it available to the
 client by returning a URI in the Waveform-URI header field in the

Burnett & Shanmugham Expires January 12, 2012 [Page 82]

Internet-Draft MRCPv2 July 2011

 response to the END-PHRASE-ENROLLMENT method. The value of the
 header field MUST be empty if there was some error condition
 preventing the server from recording. Otherwise, the URI generated
 by the server MUST be unambiguous across the server and all its
 recognition sessions. The content associated with the URI MUST be
 available to the client until the MRCPv2 session terminates. See the
 discussion on the sensitivity of saved waveforms in Section 12.

 The server MUST also return the size in octets and the duration in
 milliseconds of the recorded audio wave-form as parameters associated
 with the header field.

 waveform-uri = "Waveform-URI" ":" ["<" uri ">"
 ";" "size" "=" 1*19DIGIT
 ";" "duration" "=" 1*19DIGIT] CRLF

9.4.9. Media Type

 This header field MAY be specified in the SET-PARAMS, GET-PARAMS or
 the RECOGNIZE methods and tells the server resource the Media Type in
 which to store captured audio or video such as the one captured and
 returned by the Waveform-URI header field.

 media-type = "Media-Type" ":" media-type-value
 CRLF

9.4.10. Input-Waveform-URI

 This optional header field specifies a URI pointing to audio content
 to be processed by the RECOGNIZE operation. This enables the client
 to request recognition from a specified buffer or audio file.

 input-waveform-uri = "Input-Waveform-URI" ":" uri CRLF

9.4.11. Completion Cause

 This header field MUST be part of a RECOGNITION-COMPLETE, event
 coming from the recognizer resource to the client. It indicates the
 reason behind the RECOGNIZE method completion. This header field
 MUST be sent in the DEFINE-GRAMMAR and RECOGNIZE responses, if they
 return with a failure status and a COMPLETE state. In the ABNF
 below, the ’cause-code’ contains a numerical value selected from the
 Cause-Code column of the following table. The ’cause-name’ contains
 the corresponding token selected from the Cause-Name column.

 completion-cause = "Completion-Cause" ":" cause-code SP
 cause-name CRLF
 cause-code = 3DIGIT

Burnett & Shanmugham Expires January 12, 2012 [Page 83]

Internet-Draft MRCPv2 July 2011

 cause-name = *VCHAR

 +---------+--------------------------+------------------------------+
 | Cause-C | Cause-Name | Description |
 | ode | | |
 +---------+--------------------------+------------------------------+
000	success	RECOGNIZE completed with a
		match or DEFINE-GRAMMAR
		succeeded in downloading and
		compiling the grammar
001	no-match	RECOGNIZE completed, but no
		match was found
002	no-input-timeout	RECOGNIZE completed without
		a match due to a
		no-input-timeout
003	hotword-maxtime	RECOGNIZE in hotword mode
		completed without a match
		due to a recognition-timeout
004	grammar-load-failure	RECOGNIZE failed due grammar
		load failure.
005	grammar-compilation-fail	RECOGNIZE failed due to
	ure	grammar compilation failure.
006	recognizer-error	RECOGNIZE request terminated
		prematurely due to a
		recognizer error.
007	speech-too-early	RECOGNIZE request terminated
		because speech was too
		early. This happens when
		the audio stream is already
		"in-speech" when the
		RECOGNIZE request was
		received.
008	success-maxtime	RECOGNIZE request terminated
		because speech was too long
		but whatever was spoken till
		that point was a full match.
009	uri-failure	Failure accessing a URI.
010	language-unsupported	Language not supported.
011	cancelled	A new RECOGNIZE cancelled
		this one, or a prior
		RECOGNIZE failed while this
		one was still in the queue.

Burnett & Shanmugham Expires January 12, 2012 [Page 84]

Internet-Draft MRCPv2 July 2011

012	semantics-failure	Recognition succeeded but
		semantic interpretation of
		the recognized input failed.
		The RECOGNITION-COMPLETE
		event MUST contain the
		Recognition result with only
		input text and no
		interpretation.
013	partial-match	Speech Incomplete timeout
		expired before there was a
		full match. But whatever
		that was spoken till that
		point was a partial match to
		one or more grammars.
014	partial-match-maxtime	The Recognition-Timer
		expired before full match
		was achieved. But whatever
		was spoken till that point
		was a partial match to one
		or more grammars.
015	no-match-maxtime	The Recognition-Timer
		expired. Whatever was
		spoken till that point
		either did not match any of
		the grammars. This cause
		could also be returned if
		the recognizer does not
		support detecting partial
		grammar matches.
016	grammar-definition-failu	any DEFINE-GRAMMAR error
	re	other than
		grammar-load-failure and
		grammar-compilation-failure.
 +---------+--------------------------+------------------------------+

9.4.12. Completion Reason

 This header field MAY be specified in a RECOGNITION-COMPLETE event
 coming from the recognizer resource to the client. This contains the
 reason text behind the RECOGNIZE request completion. The server uses
 this header field to communicate text describing the reason for the
 failure, such as the specific error encountered in parsing a grammar
 markup.

 The completion reason text is provided for client use in logs and for
 debugging and instrumentation purposes. Clients MUST NOT interpret
 the completion reason text.

Burnett & Shanmugham Expires January 12, 2012 [Page 85]

Internet-Draft MRCPv2 July 2011

 completion-reason = "Completion-Reason" ":"
 quoted-string CRLF

9.4.13. Recognizer Context Block

 This header field MAY be sent as part of the "SET-PARAMS" or
 "GET-PARAMS" request. If the "GET-PARAMS" method contains this
 header field with no value, then it is a request to the recognizer to
 return the recognizer context block. The response to such a message
 MAY contain a recognizer context block as a typed media message body.
 If the server returns a recognizer context block, the response MUST
 contain this header field and its value MUST match the Content-ID of
 the corresponding media block.

 If the "SET-PARAMS" method contains this header field, it MUST also
 contain a message body containing the recognizer context data, and a
 Content-ID matching this header field value. This Content-ID MUST
 match the Content-ID that came with the context data during the
 "GET-PARAMS" operation.

 An implementation choosing to use this mechanism to hand off
 recognizer context data between servers MUST distinguish its
 implementation-specific block of data by using an IANA-registered
 content type in the IANA Media Type vendor tree.

 recognizer-context-block = "Recognizer-Context-Block" ":"
 [1*VCHAR] CRLF

9.4.14. Start Input Timers

 This header field MAY be sent as part of the RECOGNIZE request. A
 value of false tells the recognizer to start recognition, but not to
 start the no-input timer yet. The recognizer MUST NOT start the
 timers until the client sends a START-INPUT-TIMERS request to the
 recognizer. This is useful in the scenario when the recognizer and
 synthesizer engines are not part of the same session. In such
 configurations, when a kill-on-barge-in prompt is being played (see
 Section 8.4.2), the client wants the RECOGNIZE request to be
 simultaneously active so that it can detect and implement kill-on-
 barge-in. However, the recognizer SHOULD NOT start the no-input
 timers until the prompt is finished. The default value is "true".

 start-input-timers = "Start-Input-Timers" ":" BOOLEAN CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 86]

Internet-Draft MRCPv2 July 2011

9.4.15. Speech Complete Timeout

 This header field specifies the length of silence required following
 user speech before the speech recognizer finalizes a result (either
 accepting it or generating a nomatch event). The speech-complete-
 timeout value applies when the recognizer currently has a complete
 match against an active grammar, and specifies how long the
 recognizer MUST wait for more input before declaring a match. By
 contrast, the incomplete timeout is used when the speech is an
 incomplete match to an active grammar. The value is in milliseconds.

 speech-complete-timeout = "Speech-Complete-Timeout" ":" 1*19DIGIT CRLF

 A long speech-complete-timeout value delays the result to the client
 and therefore makes the application’s response to a user slow. A
 short speech-complete-timeout may lead to an utterance being broken
 up inappropriately. Reasonable speech complete timeout values are
 typically in the range of 0.3 seconds to 1.0 seconds. The value for
 this header field ranges from 0 to an implementation specific maximum
 value. The default value for this header field is implementation
 specific. This header field MAY occur in RECOGNIZE, "SET-PARAMS" or
 "GET-PARAMS".

9.4.16. Speech Incomplete Timeout

 This header field specifies the required length of silence following
 user speech after which a recognizer finalizes a result. The
 incomplete timeout applies when the speech prior to the silence is an
 incomplete match of all active grammars. In this case, once the
 timeout is triggered, the partial result is rejected (with a
 Completion-Cause of "partial-match"). The value is in milliseconds.
 The value for this header field ranges from 0 to an implementation
 specific maximum value. The default value for this header field is
 implementation specific.

 speech-incomplete-timeout = "Speech-Incomplete-Timeout" ":" 1*19DIGIT
 CRLF

 The speech-incomplete-timeout also applies when the speech prior to
 the silence is a complete match of an active grammar, but where it is
 possible to speak further and still match the grammar. By contrast,
 the complete timeout is used when the speech is a complete match to
 an active grammar and no further spoken words can continue to
 represent a match.

 A long speech-incomplete-timeout value delays the result to the
 client and therefore makes the application’s response to a user slow.
 A short speech-incomplete-timeout may lead to an utterance being

Burnett & Shanmugham Expires January 12, 2012 [Page 87]

Internet-Draft MRCPv2 July 2011

 broken up inappropriately.

 The speech-incomplete-timeout is usually longer than the speech-
 complete-timeout to allow users to pause mid-utterance (for example,
 to breathe). This header field MAY occur in RECOGNIZE, "SET-PARAMS"
 or "GET-PARAMS".

9.4.17. DTMF Interdigit Timeout

 This header field specifies the inter-digit timeout value to use when
 recognizing DTMF input. The value is in milliseconds. The value for
 this header field ranges from 0 to an implementation specific maximum
 value. The default value is 5 seconds. This header field MAY occur
 in RECOGNIZE, "SET-PARAMS" or "GET-PARAMS".

 dtmf-interdigit-timeout = "DTMF-Interdigit-Timeout" ":" 1*19DIGIT CRLF

9.4.18. DTMF Term Timeout

 This header field specifies the terminating timeout to use when
 recognizing DTMF input. The DTMF-Term-Timeout applies only when no
 additional input is allowed by the grammar; otherwise, the DTMF-
 Interdigit-Timeout applies. The value is in milliseconds. The value
 for this header field ranges from 0 to an implementation specific
 maximum value. The default value is 10 seconds. This header field
 MAY occur in RECOGNIZE, "SET-PARAMS" or "GET-PARAMS".

 dtmf-term-timeout = "DTMF-Term-Timeout" ":" 1*19DIGIT CRLF

9.4.19. DTMF-Term-Char

 This header field specifies the terminating DTMF character for DTMF
 input recognition. The default value is NULL which is indicated by
 an empty header field value. This header field MAY occur in
 RECOGNIZE, "SET-PARAMS" or "GET-PARAMS".

 dtmf-term-char = "DTMF-Term-Char" ":" VCHAR CRLF

9.4.20. Failed URI

 When a recognizer needs to fetch or access a URI and the access fails
 the server SHOULD provide the failed URI in this header field in the
 method response, unless there are multiple URI failures, in which
 case one of the failed URIs MUST be provided in this header field in
 the method response.

 failed-uri = "Failed-URI" ":" absoluteURI CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 88]

Internet-Draft MRCPv2 July 2011

9.4.21. Failed URI Cause

 When a recognizer method needs a recognizer to fetch or access a URI
 and the access fails the server MUST provide the URI specific or
 protocol specific response code for the URI in the Failed-URI header
 field through this header field in the method response. The value
 encoding is UTF-8 (RFC3629 [RFC3629]) to accommodate any access
 protocol, some of which might have a response string instead of a
 numeric response code.

 failed-uri-cause = "Failed-URI-Cause" ":" 1*UTFCHAR CRLF

9.4.22. Save Waveform

 This header field allows the client to request the recognizer
 resource to save the audio input to the recognizer. The recognizer
 resource MUST then attempt to record the recognized audio, without
 endpointing, and make it available to the client in the form of a URI
 returned in the Waveform-URI header field in the RECOGNITION-COMPLETE
 event. If there was an error in recording the stream or the audio
 content is otherwise not available, the recognizer MUST return an
 empty Waveform-URI header field. The default value for this field is
 "false". This header field MAY occur in RECOGNIZE, "SET-PARAMS" or
 "GET-PARAMS". See the discussion on the sensitivity of saved
 waveforms in Section 12.

 save-waveform = "Save-Waveform" ":" BOOLEAN CRLF

9.4.23. New Audio Channel

 This header field MAY be specified in a RECOGNIZE request and allows
 the client to tell the server that, from this point on, further input
 audio comes from a different audio source, channel or speaker. If
 the recognition resource had collected any input statistics or
 adaptation state, the recognition resource MUST do what is
 appropriate for the specific recognition technology, which includes
 but is not limited to discarding any collected input statistics or
 adaptation state before starting the RECOGNIZE request. Note that if
 there are multiple resources that are sharing a media stream and are
 collecting or using this data, and the client issues this header
 field to one of the resources, the reset operation applies to all
 resources that use the shared media stream. This helps in a number
 of use cases, including where the client wishes to reuse an open
 recognition session with an existing media session for multiple
 telephone calls.

 new-audio-channel = "New-Audio-Channel" ":" BOOLEAN
 CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 89]

Internet-Draft MRCPv2 July 2011

9.4.24. Speech-Language

 This header field specifies the language of recognition grammar data
 within a session or request, if it is not specified within the data.
 The value of this header field MUST follow RFC 5646 [RFC5646] for its
 values. This MAY occur in DEFINE-GRAMMAR, RECOGNIZE, "SET-PARAMS" or
 "GET-PARAMS" request.

 speech-language = "Speech-Language" ":" 1*VCHAR CRLF

9.4.25. Ver-Buffer-Utterance

 This header field lets the client request the server to buffer the
 utterance associated with this recognition request into a buffer
 available to a co-resident verifier resource. The buffer is shared
 across resources within a session and is allocated when a verifier
 resource is added to this session. The client MUST NOT send this
 header field unless a verifier resource is instantiated for the
 session. The buffer is released when the verifier resource is
 released from the session.

9.4.26. Recognition-Mode

 This header field specifies what mode the RECOGNIZE method will
 operate in. The value choices are "normal" or "hotword". If the
 value is "normal", the RECOGNIZE starts matching speech and DTMF to
 the grammars specified in the RECOGNIZE request. If any portion of
 the speech does not match the grammar, the RECOGNIZE command
 completes with a no-match status. Timers may be active to detect
 speech in the audio (see Section 9.4.14), so the RECOGNIZE method may
 complete because of a timeout waiting for speech. If the value of
 this header field is "hotword", the RECOGNIZE method operates in
 hotword mode, where it only looks for the particular keywords or DTMF
 sequences specified in the grammar and ignores silence or other
 speech in the audio stream. The default value for this header field
 is "normal". This header field MAY occur on the RECOGNIZE method.

 recognition-mode = "Recognition-Mode" ":"
 normal-value / hotword-value CRLF
 normal-value = "normal"
 hotword-value = "hotword"

9.4.27. Cancel-If-Queue

 This header field specifies what will happen if the client attempts
 to invoke another RECOGNIZE method when this RECOGNIZE request is
 already in progress for the resource. The value for this header

Burnett & Shanmugham Expires January 12, 2012 [Page 90]

Internet-Draft MRCPv2 July 2011

 field is Boolean. A value of "true" means the server MUST terminate
 this RECOGNIZE request, with a Completion-Cause of "cancelled", if
 the client issues another RECOGNIZE request for the same resource. A
 value of "false" for this header field indicates to the server that
 this RECOGNIZE request will continue to completion and if the client
 issues more RECOGNIZE requests to the same resource, they are queued.
 When the currently active RECOGNIZE request is stopped or completes
 with a successful match, the first RECOGNIZE method in the queue
 becomes active. If the current RECOGNIZE fails, all RECOGNIZE
 methods in the pending queue are cancelled and each generates a
 RECOGNITION-COMPLETE event with a Completion-Cause of "cancelled".
 This header field MUST be present in every RECOGNIZE request. There
 is no default value.

 cancel-if-queue = "Cancel-If-Queue" ":" BOOLEAN CRLF

9.4.28. Hotword-Max-Duration

 This header field MAY be sent in a hotword mode RECOGNIZE request.
 It specifies the maximum length of an utterance (in seconds) that
 will be considered for Hotword recognition. This header field, along
 with Hotword-Min-Duration, can be used to tune performance by
 preventing the recognizer from evaluating utterances that are too
 short or too long to be one of the hotwords in the grammar(s). The
 value is in milliseconds. The default is implementation dependent.
 If present in a RECOGNIZE request specifying a mode other than
 "hotword", the header field is ignored.

 hotword-max-duration = "Hotword-Max-Duration" ":" 1*19DIGIT
 CRLF

9.4.29. Hotword-Min-Duration

 This header field MAY be sent in a hotword mode RECOGNIZE request.
 It specifies the minimum length of an utterance (in seconds) that
 will be considered for Hotword recognition. This header field, along
 with Hotword-Max-Duration, can be used to tune performance by
 preventing the recognizer from evaluating utterances that are too
 short or too long to be one of the hotwords in the grammar(s). The
 value is in milliseconds. The default value is implementation
 dependent. If present in a RECOGNIZE request specifying a mode other
 than "hotword", the header field is ignored.

 hotword-min-duration = "Hotword-Min-Duration" ":" 1*19DIGIT CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 91]

Internet-Draft MRCPv2 July 2011

9.4.30. Interpret-Text

 The value of this header field is used to provide a pointer to the
 text for which a natural language interpretation is desired. The
 value is either a URI or text. If the value is a URI, it MUST be a
 Content-ID that refers to an entity of type text/plain in the body of
 the message. Otherwise, the server MUST treat the value as the text
 to be interpreted. This header field MUST be used when invoking the
 INTERPRET method.

 interpret-text = "Interpret-Text" ":" 1*VCHAR CRLF

9.4.31. DTMF-Buffer-Time

 This header field MAY be specified in a GET-PARAMS or SET-PARAMS
 method and is used to specify the size in time, in milliseconds, of
 the typeahead buffer for the recognizer. This is the buffer that
 collects DTMF digits as they are pressed even when there is no
 RECOGNIZE command active. When a subsequent RECOGNIZE method is
 received it MAY look to this buffer to match the RECOGNIZE request.
 If the digits in the buffer is not sufficient then it can continue to
 listen to more digits to match the grammar. The default size of this
 DTMF buffer is platform specific.

 dtmf-buffer-time = "DTMF-Buffer-Time" ":" 1*19DIGIT CRLF

9.4.32. Clear-DTMF-Buffer

 This header field MAY be specified in a RECOGNIZE method and is used
 to tell the recognizer to clear the DTMF type-ahead buffer before
 starting the recognize. The default value of this header field is
 FALSE, which does not clear the typeahead buffer before starting the
 RECOGNIZE method. If this header field is specified to be TRUE, then
 the recognize will clear the DTMF buffer before starting recognition.
 This means digits pressed by the caller before the RECOGNIZE command
 was issued are discarded.

 clear-dtmf-buffer = "Clear-DTMF-Buffer" ":" BOOLEAN CRLF

9.4.33. Early-No-Match

 This header field MAY be specified in a RECOGNIZE method and is used
 to tell the recognizer that it MUST NOT wait for the end of speech
 before processing the collected speech to match active grammars. A
 value of TRUE indicates the recognizer MUST do early matching. The
 default value for this header field if not specified is FALSE. If
 the recognizer does not support the processing of the collected audio
 before the end of speech this header field can be safely ignored.

Burnett & Shanmugham Expires January 12, 2012 [Page 92]

Internet-Draft MRCPv2 July 2011

 early-no-match = "Early-No-Match" ":" BOOLEAN CRLF

9.4.34. Num-Min-Consistent-Pronunciations

 This header field MAY be specified in a START-PHRASE-ENROLLMENT,
 "SET-PARAMS", or "GET-PARAMS" method and is used to specify the
 minimum number of consistent pronunciations that must be obtained to
 voice enroll a new phrase. The minimum value is 1. The default
 value is implementation specific and MAY be greater than 1.

 num-min-consistent-pronunciations =
 "Num-Min-Consistent-Pronunciations" ":" 1*19DIGIT CRLF

9.4.35. Consistency-Threshold

 This header field MAY be sent as part of the START-PHRASE-ENROLLMENT,
 "SET-PARAMS", or "GET-PARAMS" method. Used during voice-enrollment,
 this header field specifies how similar to a previously enrolled
 pronunciation of the same phrase an utterance needs to be in order to
 be considered "consistent." The higher the threshold, the closer the
 match between an utterance and previous pronunciations must be for
 the pronunciation to be considered consistent. The range for this
 threshold is a float value between is 0.0 to 1.0. The default value
 for this header field is implementation specific.

 consistency-threshold = "Consistency-Threshold" ":" FLOAT CRLF

9.4.36. Clash-Threshold

 This header field MAY be sent as part of the START-PHRASE-ENROLLMENT,
 SET-PARAMS, or "GET-PARAMS" method. Used during voice-enrollment,
 this header field specifies how similar the pronunciations of two
 different phrases can be before they are considered to be clashing.
 For example, pronunciations of phrases such as "John Smith" and "Jon
 Smits" may be so similar that they are difficult to distinguish
 correctly. A smaller threshold reduces the number of clashes
 detected. The range for this threshold is float value between 0.0
 and 1.0. The default value for this header field is implementation
 specific. Clash testing can be turned off completely by setting the
 Clash-Threshold header field value to 0.

 clash-threshold = "Clash-Threshold" ":" FLOAT CRLF

9.4.37. Personal-Grammar-URI

 This header field specifies the speaker-trained grammar to be used or
 referenced during enrollment operations. Phrases are added to this
 grammar during enrollment. For example, a contact list for user

Burnett & Shanmugham Expires January 12, 2012 [Page 93]

Internet-Draft MRCPv2 July 2011

 "Jeff" could be stored at the Personal-Grammar-URI
 "http://myserver.example.com/myenrollmentdb/jeff-list". The
 generated grammar syntax MAY be implementation specific. There is no
 default value for this header field. This header field MAY be sent
 as part of the START-PHRASE-ENROLLMENT, SET-PARAMS, or "GET-PARAMS"
 method.

 personal-grammar-uri = "Personal-Grammar-URI" ":" uri CRLF

9.4.38. Enroll-Utterance

 This header field MAY be specified in the RECOGNIZE method. If this
 header field is set to "true" and an Enrollment is active, the
 RECOGNIZE command MUST add the collected utterance to the personal
 grammar that is being enrolled. The way in which this occurs is
 engine-specific and may be an area of future standardization. The
 default value for this header field is "false".

 enroll-utterance = "Enroll-Utterance" ":" BOOLEAN CRLF

9.4.39. Phrase-Id

 This header field in a request identifies a phrase in an existing
 personal grammar for which enrollment is desired. It is also
 returned to the client in the RECOGNIZE complete event. This header
 field MAY occur in START-PHRASE-ENROLLMENT, MODIFY-PHRASE or DELETE-
 PHRASE requests. There is no default value for this header field.

 phrase-id = "Phrase-ID" ":" 1*VCHAR CRLF

9.4.40. Phrase-NL

 This string specifies the interpreted text to be returned when the
 phrase is recognized. This header field MAY occur in START-PHRASE-
 ENROLLMENT and MODIFY-PHRASE requests. There is no default value for
 this header field.

 phrase-nl = "Phrase-NL" ":" 1*UTFCHAR CRLF

9.4.41. Weight

 The value of this header field represents the occurrence likelihood
 of a phrase in an enrolled grammar. When using grammar enrollment,
 the system is essentially constructing a grammar segment consisting
 of a list of possible match phrases. This can be thought of to be
 similar to the dynamic construction of a <one-of> tag in the W3C
 grammar specification. Each enrolled-phrase becomes an item in the
 list that can be matched against spoken input similar to the <item>

Burnett & Shanmugham Expires January 12, 2012 [Page 94]

Internet-Draft MRCPv2 July 2011

 within a <one-of> list. This header field allows you to assign a
 weight to the phrase (i.e., <item> entry) in the <one-of> list that
 is enrolled. Grammar weights are normalized to a sum of one at
 grammar compilation time, so a weight value of 1 for each phrase in
 an enrolled grammar list indicates all items in that list have the
 same weight. This header field MAY occur in START-PHRASE-ENROLLMENT
 and MODIFY-PHRASE requests. The default value for this header field
 is implementation specific.

 weight = "Weight" ":" weight-value CRLF
 weight-value = FLOAT

9.4.42. Save-Best-Waveform

 This header field allows the client to request the recognizer
 resource to save the audio stream for the best repetition of the
 phrase that was used during the enrollment session. The recognizer
 MUST attempt to record the recognized audio and make it available to
 the client in the form of a URI returned in the Waveform-URI header
 field in the response to the END-PHRASE-ENROLLMENT method. If there
 was an error in recording the stream or the audio data is otherwise
 not available, the recognizer MUST return an empty Waveform-URI
 header field. This header field MAY occur in the START-PHRASE-
 ENROLLMENT, SET-PARAMS, and GET-PARAMS methods.

 save-best-waveform = "Save-Best-Waveform" ":" BOOLEAN CRLF

9.4.43. New-Phrase-Id

 This header field replaces the id used to identify the phrase in a
 personal grammar. The recognizer returns the new id when using an
 enrollment grammar. This header field MAY occur in MODIFY-PHRASE
 requests.

 new-phrase-id = "New-Phrase-ID" ":" 1*VCHAR CRLF

9.4.44. Confusable-Phrases-URI

 This header field specifies a grammar that defines invalid phrases
 for enrollment. For example, typical applications do not allow an
 enrolled phrase that is also a command word. This header field MAY
 occur in RECOGNIZE requests that are part of an enrollment session.

 confusable-phrases-uri = "Confusable-Phrases-URI" ":" uri CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 95]

Internet-Draft MRCPv2 July 2011

9.4.45. Abort-Phrase-Enrollment

 This header field can optionally be specified in the END-PHRASE-
 ENROLLMENT method to abort the phrase enrollment, rather than
 committing the phrase to the personal grammar.

 abort-phrase-enrollment = "Abort-Phrase-Enrollment" ":"
 BOOLEAN CRLF

9.5. Recognizer Message Body

 A recognizer message may carry additional data associated with the
 request, response or event. The client may provide the grammar to be
 recognized in DEFINE-GRAMMAR or RECOGNIZE requests. When one or more
 grammars are specified using the DEFINE-GRAMMAR method, the server
 MUST attempt to fetch, compile and optimize the grammar before
 returning a response to the DEFINE-GRAMMAR method. A RECOGNIZE
 request MUST completely specify the grammars to be active during the
 recognition operation, except when the RECOGNIZE method is being used
 to enroll a grammar. During grammar enrollment, such grammars are
 optional. The server resource may send the recognition results in
 the RECOGNITION-COMPLETE event or the GET-RESULT response. Grammars
 and recognition results are carried in the message body of the
 corresponding MRCPv2 messages.

9.5.1. Recognizer Grammar Data

 Recognizer grammar data from the client to the server can be provided
 inline or by reference. Either way, grammar data is carried as typed
 media entities in the message body of the RECOGNIZE or DEFINE-GRAMMAR
 request. All MRCPv2 servers MUST accept grammars in the XML form
 (Media Type application/srgs+xml) of the W3C’s XML-based Speech
 Grammar Markup Format (SRGS) [W3C.REC-speech-grammar-20040316] and
 MAY accept grammars in other formats. Examples include but are not
 limited to:
 o the ABNF form (Media Type application/srgs) of SRGS
 o Sun’s Java Speech Grammar Format (JSGF)
 [refs.javaSpeechGrammarFormat]
 Additionally, MRCPv2 servers MAY support the Semantic Interpretation
 for Speech Recognition (SISR)
 [W3C.REC-semantic-interpretation-20070405] specification.

 When a grammar is specified inline in the request, the client MUST
 provide a Content-ID for that grammar as part of the content header
 fields. If there is no space on the server to store the inline
 grammar, the request MUST return with a Completion-Cause code of 016
 "grammar-definition-failure". Otherwise, the server MUST associate
 the inline grammar block with that Content-ID and MUST store it on

Burnett & Shanmugham Expires January 12, 2012 [Page 96]

Internet-Draft MRCPv2 July 2011

 the server for the duration of the session. However, if the
 Content-ID is redefined later in the session through a subsequent
 DEFINE-GRAMMAR, the inline grammar previously associated with the
 Content-ID MUST be freed. If the Content-ID is redefined through a
 subsequent DEFINE-GRAMMAR with an empty message body (i.e. no grammar
 definition), then in addition to freeing any grammar previously
 associated with the Content-ID the server MUST clear all bindings and
 associations to the Content-ID. Unless and until subsequently
 redefined, this URI MUST be interpreted by the server as one that has
 never been set.

 Grammars that have been associated with a Content-ID can be
 referenced through the "session" URI scheme (see Section 13.6). For
 example:
 session:help@root-level.store

 Grammar data MAY be specified using external URI references. To do
 so, the client uses a body of Media Type text/uri-list (see RFC 2483
 [RFC2483]) to list the one or more URIs that point to the grammar
 data. The client can use a body of Media Type text/grammar-ref-list
 (see Section 13.5.1) if it wants to assign weights to the list of
 grammar URI. All MRCPv2 servers MUST support grammar access using
 the HTTP and HTTPS URI schemes.

 If the grammar data the client wishes to be used on a request
 consists of a mix of URI and inline grammar data the client uses the
 multipart/mixed Media Type to enclose the text/uri-list, application/
 srgs or application/srgs+xml content entities. The character set and
 encoding used in the grammar data are specified using to standard
 Media Type definitions.

 When more than one grammar URI or inline grammar block is specified
 in a message body of the RECOGNIZE request, the server interprets
 this as a list of grammar alternatives to match against.

Burnett & Shanmugham Expires January 12, 2012 [Page 97]

Internet-Draft MRCPv2 July 2011

 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">

 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>

 <!-- multiple language attachment to a token -->
 <rule id="people1">
 <token lexicon="en-US,fr-CA"> Robert </token>
 </rule>

 <!-- the equivalent single-language attachment expansion -->
 <rule id="people2">
 <one-of>
 <item xml:lang="en-US">Robert</item>
 <item xml:lang="fr-CA">Robert</item>
 </one-of>
 </rule>

 </grammar>

 SRGS Grammar Example

Burnett & Shanmugham Expires January 12, 2012 [Page 98]

Internet-Draft MRCPv2 July 2011

 Content-Type:text/uri-list
 Content-Length:...

 session:help@root-level.store
 http://www.example.com/Directory-Name-List.grxml
 http://www.example.com/Department-List.grxml
 http://www.example.com/TAC-Contact-List.grxml
 session:menu1@menu-level.store

 Grammar Reference Example

 Content-Type:multipart/mixed; boundary="break"

 --break
 Content-Type:text/uri-list
 Content-Length:...

 http://www.example.com/Directory-Name-List.grxml
 http://www.example.com/Department-List.grxml
 http://www.example.com/TAC-Contact-List.grxml

 --break
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0">

 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>

Burnett & Shanmugham Expires January 12, 2012 [Page 99]

Internet-Draft MRCPv2 July 2011

 </rule>

 <!-- multiple language attachment to a token -->
 <rule id="people1">
 <token lexicon="en-US,fr-CA"> Robert </token>
 </rule>

 <!-- the equivalent single-language attachment expansion -->
 <rule id="people2">
 <one-of>
 <item xml:lang="en-US">Robert</item>
 <item xml:lang="fr-CA">Robert</item>
 </one-of>
 </rule>

 </grammar>
 --break--

 Mixed Grammar Reference Example

9.5.2. Recognizer Result Data

 Recognition results are returned to the client in the message body of
 the RECOGNITION-COMPLETE event or the GET-RESULT response message as
 described in Section 6.3). Element and attribute descriptions for
 the recognition portion of the NLSML format are provided in
 Section 9.6 with a normative definition of the schema in
 Section 16.1.

 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="http://www.example.com/theYesNoGrammar">
 <interpretation>
 <instance>
 <ex:response>yes</ex:response>
 </instance>
 <input>ok</input>
 </interpretation>
 </result>

 Result Example

Burnett & Shanmugham Expires January 12, 2012 [Page 100]

Internet-Draft MRCPv2 July 2011

9.5.3. Enrollment Result Data

 Enrollment results are returned to the client in the message body of
 the RECOGNITION-COMPLETE event as described in Section 6.3). Element
 and attribute descriptions for the enrollment portion of the NLSML
 format are provided in Section 9.7 with a normative definition of the
 schema in Section 16.2.

9.5.4. Recognizer Context Block

 When a client changes servers while operating on the behalf of the
 same incoming communication session, this header field allows the
 client to collect a block of opaque data from one server and provide
 it to another server. This capability is desirable if the client
 needs different language support or because the server issued a
 redirect. Here the first recognizer resource may have collected
 acoustic and other data during its execution of recognition methods.
 After a server switch, communicating this data may allow the
 recognition resource on the new server to provide better recognition.
 This block of data is implementation-specific and MUST be carried as
 Media Type application/octets in the body of the message.

 This block of data is communicated in the "SET-PARAMS" and
 "GET-PARAMS" method/response messages. In the "GET-PARAMS" method,
 if an empty recognizer-context-block header field is present, then
 the recognizer SHOULD return its vendor-specific context block, if
 any, in the message body as an entity of Media Type application/
 octets with a specific Content-ID. The Content-ID value MUST also be
 specified in the recognizer-context-block header field in the
 "GET-PARAMS" response. The "SET-PARAMS" request wishing to provide
 this vendor-specific data MUST send it in the message body as a typed
 entity with the same Content-ID that it received from the
 "GET-PARAMS". The Content-ID MUST also be sent in the recognizer-
 context-block header field of the "SET-PARAMS" message.

 Each speech recognition implementation choosing to use this mechanism
 to hand off recognizer context data among servers MUST distinguish
 its implementation-specific block of data from other implementations
 by choosing a Content-ID that is recognizable among the participating
 servers and unlikely to collide with values chosen by another
 implementation.

9.6. Recognizer Results

 The recognizer portion of NLSML (see Section 6.3.1) represents
 information automatically extracted from a user’s utterances by a
 semantic interpretation component, where "utterance" is to be taken
 in the general sense of a meaningful user input in any modality

Burnett & Shanmugham Expires January 12, 2012 [Page 101]

Internet-Draft MRCPv2 July 2011

 supported by the MRCPv2 implementation.

9.6.1. Markup Functions

 MRCPv2 recognition resources employ the Natural Language Semantics
 Markup Language (NLSML) to interpret natural language speech input
 and to format the interpretation for consumption by an MRCPv2 client.

 The elements of the markup fall into the following general functional
 categories: Interpretation, Side Information, and Multi-Modal
 Integration.

9.6.1.1. Interpretation

 Elements and attributes represent the semantics of a user’s
 utterance, including the <result>, <interpretation>, and <instance>
 elements. The <result> element contains the full result of
 processing one utterance. It may contain multiple <interpretation>
 elements if the interpretation of the utterance results in multiple
 alternative meanings due to uncertainty in speech recognition or
 natural language understanding. There are at least two reasons for
 providing multiple interpretations:
 1. the client application might have additional information, for
 example, information from a database, that would allow it to
 select a preferred interpretation from among the possible
 interpretations returned from the semantic interpreter.
 2. a client-based dialog manager (e.g. VoiceXML
 [W3C.REC-voicexml20-20040316]) that was unable to select between
 several competing interpretations could use this information to
 go back to the user and find out what was intended. For example,
 it could issue a "SPEAK" request to a synthesizer resource to
 emit "Did you say ’Boston’ or ’Austin’?"

9.6.1.2. Side Information

 These are elements and attributes representing additional information
 about the interpretation, over and above the interpretation itself.
 Side information includes:
 1. Whether an interpretation was achieved (the <nomatch> element)
 and the system’s confidence in an interpretation (the
 "confidence" attribute of <interpretation>).
 2. Alternative interpretations (<interpretation>)
 3. Input formats and Automatic Speech Recognition (ASR) information:
 the <input> element, representing the input to the semantic
 interpreter.

Burnett & Shanmugham Expires January 12, 2012 [Page 102]

Internet-Draft MRCPv2 July 2011

9.6.1.3. Multi-Modal Integration

 When more than one modality is available for input, the
 interpretation of the inputs need to be coordinated. The "mode"
 attribute of <input> supports this by indicating whether the
 utterance was input by speech, dtmf, pointing, etc. The
 "timestamp_start" and "timestamp_end" attributes of <interpretation>
 also provide for temporal coordination by indicating when inputs
 occurred.

9.6.2. Overview of Recognizer Result Elements and their Relationships

 The recognizer elements in NLSML fall into two categories:
 1. description of the input that was processed.
 2. description of the meaning which was extracted from the input.
 Next to each element are its attributes. In addition, some elements
 can contain multiple instances of other elements. For example, a
 <result> can contain multiple <interpretations>, each of which is
 taken to be an alternative. Similarly, <input> can contain multiple
 child <input> elements which are taken to be cumulative. To
 illustrate the basic usage of these elements, as a simple example,
 consider the utterance "ok" (interpreted as "yes"). The example
 illustrates how that utterance and its interpretation would be
 represented in the NLSML markup.

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="http://www.example.com/theYesNoGrammar">
 <interpretation>
 <instance>
 <ex:response>yes</ex:response>
 </instance>
 <input>ok</input>
 </interpretation>
 </result>

 This example includes only the minimum required information. There
 is an overall <result> element which includes one interpretation and
 an input element. The interpretation contains the application-
 specific element "<response>" which is the semantically interpreted
 result.

9.6.3. Elements and Attributes

Burnett & Shanmugham Expires January 12, 2012 [Page 103]

Internet-Draft MRCPv2 July 2011

9.6.3.1. RESULT Root Element

 The root element of the markup is <result>. The <result> element
 includes one or more <interpretation> elements. Multiple
 interpretations can result from ambiguities in the input or in the
 semantic interpretation. If the "grammar" attribute does not apply
 to all of the interpretations in the result it can be overridden for
 individual interpretations at the <interpretation> level.

 Attributes:
 1. grammar: The grammar or recognition rule matched by this result.
 The format of the grammar attribute will match the rule reference
 semantics defined in the grammar specification. Specifically,
 the rule reference is in the external XML form for grammar rule
 references. The markup interpreter needs to know the grammar
 rule that is matched by the utterance because multiple rules may
 be simultaneously active. The value is the grammar URI used by
 the markup interpreter to specify the grammar. The grammar can
 be overridden by a grammar attribute in the <interpretation>
 element if the input was ambiguous as to which grammar it
 matched. If all interpretation elements within the result
 element contain carry their own grammar attributes, the attribute
 can be dropped from the result element.

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="http://www.example.com/grammar">
 <interpretation>

 </interpretation>
 </result>

9.6.3.2. INTERPRETATION Element

 An <interpretation> element contains a single semantic
 interpretation.

 Attributes:
 1. confidence: A float value from 0.0-1.0 indicating the semantic
 analyzer’s confidence in this interpretation. A value of 1.0
 indicates maximum confidence. The values are implementation-
 dependent, but are intended to align with the value
 interpretation for the confidence MRCPv2 header field defined in
 Section 9.4.1. This attribute is optional.
 2. grammar: The grammar or recognition rule matched by this
 interpretation (if needed to override the grammar specification
 at the <interpretation> level.) This attribute is only needed
 under <interpretation> if it is necessary to override a grammar

Burnett & Shanmugham Expires January 12, 2012 [Page 104]

Internet-Draft MRCPv2 July 2011

 that was defined at the <result> level.) Note that the grammar
 attribute for the interpretation element is OPTIONAL if and only
 if the grammar attribute is specified in the result element.

 Interpretations MUST be sorted best-first by some measure of
 "goodness". The goodness measure is "confidence" if present,
 otherwise, it is some implementation-specific indication of quality.

 The grammar is expected to be specified most frequently at the
 <result> level. However, it can be overridden at the
 <interpretation> level because it is possible that different
 interpretations may match different grammar rules.

 The <interpretation> element includes an optional <input> element
 which contains the input being analyzed, and an <instance> element
 containing the interpretation of the utterance.

 <interpretation confidence="0.75"
 grammar="http://www.example.com/grammar">
 ...
 </interpretation>

9.6.3.3. INSTANCE Element

 The <instance> element contains the interpretation of the utterance.
 When the Semantic Interpretation for Speech Recognition format is
 used, the <instance> element contains the XML serialization of the
 result using the approach defined in that specification. When there
 is semantic markup in the grammar that does not create semantic
 objects, but instead only does a semantic translation of a portion of
 the input, such as translating "coke" to "coca-cola", the instance
 contains the whole input but with the translation applied. The NLSML
 looks like the markup in Figure 2 below. If there are no semantic
 objects created, nor any semantic translation the instance value is
 the same as the input value.

 Attributes:
 1. confidence: Each element of the instance may have a confidence
 attribute, defined in the NLSML namespace. The confidence
 attribute contains a float value in the range from 0.0-1.0
 reflecting the system’s confidence in the analysis of that slot.
 A value of 1.0 indicates maximum confidence. The values are
 implementation-dependent, but are intended to align with the
 value interpretation for the confidence MRCPv2 header field
 defined in Section 9.4.1. This attribute is optional.

Burnett & Shanmugham Expires January 12, 2012 [Page 105]

Internet-Draft MRCPv2 July 2011

 <instance>
 <nameAddress>
 <street confidence="0.75">123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </nameAddress>
 </instance>
 <input>
 My address is 123 Maple Street,
 Mill Valley, California, 90952
 </input>

 <instance>
 I would like to buy a coca-cola
 </instance>
 <input>
 I would like to buy a coke
 </input>

 Figure 2: NSLML Example

9.6.3.4. INPUT Element

 The <input> element is the text representation of a user’s input. It
 includes an optional "confidence" attribute which indicates the
 recognizer’s confidence in the recognition result (as opposed to the
 confidence in the interpretation, which is indicated by the
 "confidence" attribute of <interpretation>). Optional "timestamp-
 start" and "timestamp-end" attributes indicate the start and end
 times of a spoken utterance, in ISO 8601 format [ISO.8601.1988].

 Attributes:
 1. timestamp-start: The time at which the input began. (optional)
 2. timestamp-end: The time at which the input ended. (optional)
 3. mode: The modality of the input, for example, speech, dtmf, etc.
 (optional)
 4. confidence: the confidence of the recognizer in the correctness
 of the input in the range 0.0 to 1.0 (optional)
 Note that it may not make sense for temporally overlapping inputs to
 have the same mode; however, this constraint is not expected to be
 enforced by implementations.

 When there is no time zone designator, ISO 8601 time representations
 default to local time.

 There are three possible formats for the <input> element.

Burnett & Shanmugham Expires January 12, 2012 [Page 106]

Internet-Draft MRCPv2 July 2011

 1. The <input> element can contain simple text:
 <input>onions</input>
 A future possibility is for <input> to contain not only text but
 additional markup that represents prosodic information that was
 contained in the original utterance and extracted by the speech
 recognizer. This depends on the availability of ASR’s that are
 capable of producing prosodic information. MRCPv2 clients MUST
 be prepared to receive such markup and MAY make use of it.
 2. An <input> tag can also contain additional <input> tags. Having
 additional input elements allows the representation to support
 future multi-modal inputs as well as finer-grained speech
 information, such as timestamps for individual words and word-
 level confidences.
 <input>
 <input mode="speech" confidence="0.5"
 timestamp-start="2000-04-03T0:00:00"
 timestamp-end="2000-04-03T0:00:00.2">fried</input>
 <input mode="speech" confidence="1.0"
 timestamp-start="2000-04-03T0:00:00.25"
 timestamp-end="2000-04-03T0:00:00.6">onions</input>
 </input>
 3. Finally, the <input> element can contain <nomatch> and <noinput>
 elements, which describe situations in which the speech
 recognizer received input that it was unable to process, or did
 not receive any input at all, respectively.

9.6.3.5. NOMATCH Element

 The <nomatch> element under <input> is used to indicate that the
 semantic interpreter was unable to successfully match any input with
 confidence above the threshold. It can optionally contain the text
 of the best of the (rejected) matches.

 <interpretation>
 <instance/>
 <input confidence="0.1">
 <nomatch/>
 </input>
 </interpretation>
 <interpretation>
 <instance/>
 <input mode="speech" confidence="0.1">
 <nomatch>I want to go to New York</nomatch>
 </input>
 </interpretation>

Burnett & Shanmugham Expires January 12, 2012 [Page 107]

Internet-Draft MRCPv2 July 2011

9.6.3.6. NOINPUT Element

 <noinput> indicates that there was no input - a timeout occurred in
 the speech recognizer due to silence.
 <interpretation>
 <instance/>
 <input>
 <noinput/>
 </input>
 </interpretation>

 If there are multiple levels of inputs, the most natural place for
 <nomatch> and <noinput> elements to appear is under the highest level
 of <input> for <noinput>, and under the appropriate level of
 <interpretation> for <nomatch>. So <noinput> means "no input at all"
 and <nomatch> means "no match in speech modality" or "no match in
 dtmf modality". For example, to represent garbled speech combined
 with dtmf "1 2 3 4", the markup would be:
 <input>
 <input mode="speech"><nomatch/></input>
 <input mode="dtmf">1 2 3 4</input>
 </input>

 Note: while <noinput> could be represented as an attribute of input,
 <nomatch> cannot, since it could potentially include PCDATA content
 with the best match. For parallelism, <noinput> is also an element.

9.7. Enrollment Results

 All enrollment elements are contained within a single <enrollment-
 result> element under <result>. The elements are described below and
 have the schema defined in Section 16.2. The following elements are
 defined:

 1. num-clashes
 2. num-good-repetitions
 3. num-repetitions-still-needed
 4. consistency-status
 5. clash-phrase-ids
 6. transcriptions
 7. confusable-phrases

9.7.1. NUM-CLASHES Element

 The <num-clashes> element contains the number of clashes that this
 pronunciation has with other pronunciations in an active enrollment
 session. The associated Clash-Threshold header field determines the
 sensitivity of the clash measurement. Note that clash testing can be

Burnett & Shanmugham Expires January 12, 2012 [Page 108]

Internet-Draft MRCPv2 July 2011

 turned off completely by setting the Clash-Threshold header field
 value to 0.

9.7.2. NUM-GOOD-REPETITIONS Element

 The <num-good-repetitions> element contains the number of consistent
 pronunciations obtained so far in an active enrollment session.

9.7.3. NUM-REPETITIONS-STILL-NEEDED Element

 The <num-repetitions-still-needed> element contains the number of
 consistent pronunciations that must still be obtained before the new
 phrase can be added to the enrollment grammar. The number of
 consistent pronunciations required is specified by the client in the
 request header field Num-Min-Consistent-Pronunciations. The returned
 value must be 0 before the client can successfully commit a phrase to
 the grammar by ending the enrollment session.

9.7.4. CONSISTENCY-STATUS Element

 The <consistency-status> element is used to indicate how consistent
 the repetitions are when learning a new phrase. It can have the
 values of consistent, inconsistent, and undecided.

9.7.5. CLASH-PHRASE-IDS Element

 The <clash-phrase-ids> element contains the phrase ids of clashing
 pronunciation(s), if any. This element is absent if there are no
 clashes.

9.7.6. TRANSCRIPTIONS Element

 The <transcriptions> element contains the transcriptions returned in
 the last repetition of the phrase being enrolled.

9.7.7. CONFUSABLE-PHRASES Element

 The <confusable-phrases> element contains a list of phrases from a
 command grammar that are confusable with the phrase being added to
 the personal grammar. This element may be absent if there are no
 confusable phrases.

9.8. DEFINE-GRAMMAR

 The DEFINE-GRAMMAR method, from the client to the server, provides
 one or more grammars and requests the server to access, fetch, and
 compile the grammars as needed. The DEFINE-GRAMMAR method
 implementation MUST do a fetch of all external URIs that are part of

Burnett & Shanmugham Expires January 12, 2012 [Page 109]

Internet-Draft MRCPv2 July 2011

 that operation. If caching is implemented, this URI fetching MUST
 conform to the cache control hints and parameter header fields
 associated with the method in deciding whether it should be fetched
 from cache or from the external server. If these hints/parameters
 are not specified in the method, the values set for the session using
 SET-PARAMS/GET-PARAMS apply. If it was not set for the session their
 default values apply.

 If the server resource is in the recognition state, the DEFINE-
 GRAMMAR request MUST respond with a failure status.

 If the resource is in the idle state and is able to successfully
 process the supplied grammars, the server MUST return a success code
 status and the request-state MUST be COMPLETE.

 If the recognizer resource could not define the grammar for some
 reason, for example if the download failed, the grammar failed to
 compile, or the grammar was in an unsupported form, the MRCPv2
 response for the DEFINE-GRAMMAR method MUST contain a failure status-
 code of 407, and contain a Completion-Cause header field describing
 the failure reason.

 C->S:MRCP/2.0 ... DEFINE-GRAMMAR 543257
 Channel-Identifier:32AECB23433801@speechrecog
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0">

 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>

Burnett & Shanmugham Expires January 12, 2012 [Page 110]

Internet-Draft MRCPv2 July 2011

 </one-of>
 </rule>

 </grammar>

 S->C:MRCP/2.0 ... 543257 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success

 C->S:MRCP/2.0 ... DEFINE-GRAMMAR 543258
 Channel-Identifier:32AECB23433801@speechrecog
 Content-Type:application/srgs+xml
 Content-ID:<helpgrammar@root-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0">

 <rule id="request">
 I need help
 </rule>

 S->C:MRCP/2.0 ... 543258 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success

 C->S:MRCP/2.0 ... DEFINE-GRAMMAR 543259
 Channel-Identifier:32AECB23433801@speechrecog
 Content-Type:application/srgs+xml
 Content-ID:<request2@field-level.store>
 Content-Length:...

 <?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE grammar PUBLIC "-//W3C//DTD GRAMMAR 1.0//EN"
 "http://www.w3.org/TR/speech-grammar/grammar.dtd">

 <grammar xmlns="http://www.w3.org/2001/06/grammar" xml:lang="en"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/06/grammar
 http://www.w3.org/TR/speech-grammar/grammar.xsd"
 version="1.0" mode="voice" root="basicCmd">

 <meta name="author" content="Stephanie Williams"/>

Burnett & Shanmugham Expires January 12, 2012 [Page 111]

Internet-Draft MRCPv2 July 2011

 <rule id="basicCmd" scope="public">
 <example> please move the window </example>
 <example> open a file </example>

 <ruleref
 uri="http://grammar.example.com/politeness.grxml#startPolite"/>

 <ruleref uri="#command"/>
 <ruleref
 uri="http://grammar.example.com/politeness.grxml#endPolite"/>
 </rule>

 <rule id="command">
 <ruleref uri="#action"/> <ruleref uri="#object"/>
 </rule>

 <rule id="action">
 <one-of>
 <item weight="10"> open <tag>open</tag> </item>
 <item weight="2"> close <tag>close</tag> </item>
 <item weight="1"> delete <tag>delete</tag> </item>
 <item weight="1"> move <tag>move</tag> </item>
 </one-of>
 </rule>

 <rule id="object">
 <item repeat="0-1">
 <one-of>
 <item> the </item>
 <item> a </item>
 </one-of>
 </item>

 <one-of>
 <item> window </item>
 <item> file </item>
 <item> menu </item>
 </one-of>
 </rule>

 </grammar>

 S->C:MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success

 C->S:MRCP/2.0 ... RECOGNIZE 543260

Burnett & Shanmugham Expires January 12, 2012 [Page 112]

Internet-Draft MRCPv2 July 2011

 Channel-Identifier:32AECB23433801@speechrecog
 N-Best-List-Length:2
 Content-Type:text/uri-list
 Content-Length:...

 session:request1@form-level.store
 session:request2@field-level.store
 session:helpgramar@root-level.store

 S->C:MRCP/2.0 ... 543260 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C:MRCP/2.0 ... START-OF-INPUT 543260 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C:MRCP/2.0 ... RECOGNITION-COMPLETE 543260 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Waveform-URI:<http://web.media.com/session123/audio.wav>;
 size=124535;duration=2340
 Content-Type:application/x-nlsml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

 Define Grammar Example

9.9. RECOGNIZE

 The RECOGNIZE method from the client to the server requests the
 recognizer to start recognition and provides it with one or more
 grammar references for grammars to match against the input media.
 The RECOGNIZE method can carry header fields to control the
 sensitivity, confidence level and the level of detail in results
 provided by the recognizer. These header field values override the
 current values set by a previous "SET-PARAMS" method.

Burnett & Shanmugham Expires January 12, 2012 [Page 113]

Internet-Draft MRCPv2 July 2011

 The RECOGNIZE method can request the recognizer resource to operate
 in normal or hotword mode as specified by the Recognition-Mode header
 field. The default value is "normal". If the resource could not
 start a recognition, the server MUST respond with a failure status-
 code of 407 and a Completion-Cause header field in the response
 describing the cause of failure.

 The RECOGNIZE request uses the message body to specify the grammars
 applicable to the request. The active grammar(s) for the request can
 be specified in one of 3 ways. If the client needs to explicitly
 control grammar weights for the recognition operation, it MUST employ
 method 3 below. The order of these grammars specifies the precedence
 of the grammars which is used when more than one grammar in the list
 matches the speech; in this case, the grammar with the higher
 precedence is returned as a match. This precedence capability is
 useful in applications like VoiceXML browsers to order grammars
 specified at the dialog, document and root level of a VoiceXML
 application.
 1. The grammar may be placed directly in the message body as typed
 content. If more than one grammar is included in the body, the
 order of inclusion controls the corresponding precedence for the
 grammars during recognition, with earlier grammars in the body
 having a higher precedence than later ones.
 2. The body may contain a list of grammar URIs specified in content
 of Media Type text/uri-list RFC2483 [RFC2483]. The order of the
 URIs determines the corresponding precedence for the grammars
 during recognition, with highest-precedence first and decreasing
 for each URI thereafter.
 3. The body may contain a list of grammar URIs specified in content
 of Media Type text/grammar-ref-list. This type defines a list of
 grammar URIs and allows each grammar URI to be assigned a weight
 in the list. This weight has the same meaning as the weights
 described in section 2.4.1 of the Speech Grammar Markup Format
 (SRGS) [W3C.REC-speech-grammar-20040316].
 In addition to performing recognition on the input, the recognizer
 MUST also enroll the collected utterance in a personal grammar if the
 Enroll-Utterance header field is set to true and an Enrollment is
 active (via an earlier execution of the START-PHRASE-ENROLLMENT
 method). If so, and if the RECOGNIZE request contains a Content-ID
 header field, then the resulting grammar (which includes the personal
 grammar as a sub-grammar) can be referenced through the "session" URI
 scheme (see Section 13.6).

 If the resource was able to successfully start the recognition, the
 server MUST return a success status-code and a request-state of IN-
 PROGRESS. This means that the recognizer is active and that the
 client MUST be prepared to receive further events with this
 request-id.

Burnett & Shanmugham Expires January 12, 2012 [Page 114]

Internet-Draft MRCPv2 July 2011

 If the resource was able to queue the request the server MUST return
 a success code and request-state of PENDING. This means that the
 recognizer is currently active with another request and that this
 request has been queued for processing.

 If the resource could not start a recognition, the server MUST
 respond with a failure status-code of 407 and a Completion-Cause
 header field in the response describing the cause of failure.

 For the recognizer resource, RECOGNIZE and INTERPRET are the only
 requests that returns a request-state of IN-PROGRESS, meaning that
 recognition is in progress. When the recognition completes by
 matching one of the grammar alternatives or by a time-out without a
 match or for some other reason, the recognizer resource MUST send the
 client a RECOGNITION-COMPLETE event (or INTERPRETATION-COMPLETE, if
 INTERPRET was the request) with the result of the recognition and a
 request-state of COMPLETE.

 Large grammars can take a long time for the server to compile. For
 grammars which are used repeatedly, the client can improve server
 performance by issuing a DEFINE-GRAMMAR request with the grammar
 ahead of time. In such a case the client can issue the RECOGNIZE
 request and reference the grammar through the "session:" URI scheme
 (see Section 13.6). This also applies in general if the client wants
 to repeat recognition with a previous inline grammar.

 The RECOGNIZE method implementation MUST do a fetch of all external
 URIs that are part of that operation. If caching is implemented,
 this URI fetching MUST conform to the cache control hints and
 parameter header fields associated with the method in deciding
 whether it should be fetched from cache or from the external server.
 If these hints/parameters are not specified in the method, the values
 set for the session using SET-PARAMS/GET-PARAMS apply. If it was not
 set for the session their default values apply.

 Note that since the audio and the messages are carried over separate
 communication paths there may be a race condition between the start
 of the flow of audio and the receipt of the RECOGNIZE method. For
 example, if an audio flow is started by the client at the same time
 as the RECOGNIZE method is sent, either the audio or the RECOGNIZE
 can arrive at the recognizer first. As another example, the client
 may choose to continuously send audio to the Server and signal the
 Server to recognize using the RECOGNIZE method. Mechanisms to
 resolve this condition are outside the scope of this specification.
 The recognizer can expect the media to start flowing when it receives
 the recognize request, but MUST NOT buffer anything it receives
 beforehand in order to preserve the semantics that application
 authors expect with respect to the input timers.

Burnett & Shanmugham Expires January 12, 2012 [Page 115]

Internet-Draft MRCPv2 July 2011

 When a RECOGNIZE method has been received the recognition is
 initiated on the stream. The No-Input-Timer MUST be started at this
 time if the Start-Input-Timers header field is specified as "true".
 If this header field is set to "false", the No-Input-Timer MUST be
 started when it receives the START-INPUT-TIMERS method from the
 client. The Recognition-Timer MUST be started when the recognition
 resource detects speech or a DTMF digit in the media stream.

 Non-Hotword mode recognition:

 When the recognition resource detects speech or a DTMF digit in the
 media stream it MUST send the START-OF-INPUT event. When enough
 speech has been collected for the server to process, the recognizer
 can try to match the collected speech with the active grammars. If
 the speech collected at this point fully matches with any of the
 active grammars, the Speech-Complete-Timer is started. If it matches
 partially with one or more of the active grammars, with more speech
 needed before a full match is achieved, then the Speech-Incomplete-
 Timer is started.

 1. When the No-Input-Timer expires, the recognizer MUST complete
 with a Completion-Cause code of "no-input-timeout".

 2. The recognizer MUST support detecting a no-match condition upon
 detecting end of speech. The recognizer MAY support detecting a no-
 match condition before waiting for end-of-speech. If this is
 supported, this capability is enabled by setting the "Early-No-Match"
 header field to "true". Upon detecting a no-match condition the
 RECOGNIZE MUST return with "no-match".

 3. When the Speech-Incomplete-Timer expires the recognizer SHOULD
 complete with a Completion-Cause code of "partial-match", unless the
 recognizer cannot differentiate a partial-match in which case it MUST
 return a Completion-Cause code of "no-match". The recognizer MAY
 return results for the partially matched grammar.

 4. When the Speech-Complete-Timer expires the recognizer MUST
 complete with a Completion-Cause code of "success".

 5. When the Recognition-Timer expires one of the following MUST
 happen:

 5.1 If there was a partial-match the recognizer SHOULD complete with
 a Completion-Cause code of "partial-match-maxtime", unless the
 recognizer cannot differentiate a partial-match in which case it MUST
 complete with a Completion-Cause code of "no-match-maxtime". The
 recognizer MAY return results for the partially matched grammar.

Burnett & Shanmugham Expires January 12, 2012 [Page 116]

Internet-Draft MRCPv2 July 2011

 5.2 If there was a full-match the recognizer MUST complete with a
 Completion-Cause code of "success-maxtime".

 5.3 If there was a no match the recognizer MUST complete with a
 Completion-Cause code of "no-match-maxtime".

 For the Hotword mode recognition:

 Note that for Hotword mode recognition the START-OF-INPUT event is
 not generated when speech or a DTMF digit is detected.

 1. When the No-Input-Timer expires, the recognizer MUST complete
 with a Completion-Cause code of "no-input-timeout".

 2. If at any point a match occurs, the RECOGNIZE MUST complete with
 a Completion-Cause code of "success".

 3. When the Recognition-Timer expires and there is not a match, the
 RECOGNIZE MUST complete with a Completion-Cause code of "hotword-
 maxtime".

 4. When the Recognition-Timer expires and there is a match, the
 RECOGNIZE MUST complete with a Completion-Cause code of "success-
 maxtime".

 5. When the Recognition-Timer is running but the detected speech/
 DTMF has not resulted in a match, the Recognition-Timer MUST be
 stopped and reset. It MUST then be restarted when speech/DTMF is
 again detected.

 C->S:MRCP/2.0 ... RECOGNIZE 543257
 Channel-Identifier:32AECB23433801@speechrecog
 Confidence-Threshold:0.9
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">

 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>

Burnett & Shanmugham Expires January 12, 2012 [Page 117]

Internet-Draft MRCPv2 July 2011

 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>

 </grammar>

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C:MRCP/2.0 ... START-OF-INPUT 543257 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C:MRCP/2.0 ... RECOGNITION-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Waveform-URI:<http://web.media.com/session123/audio.wav>;
 size=424252;duration=2543
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

 RECOGNIZE Example

Burnett & Shanmugham Expires January 12, 2012 [Page 118]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... RECOGNIZE 543257
 Channel-Identifier:32AECB23433801@speechrecog
 Confidence-Threshold:0.9
 Fetch-Timeout:20
 Content-Type:application/srgs+xml
 Content-Length:...

 <?xml version="1.0"? Version="1.0" mode="voice"
 root="Basic md">
 <rule id="rule_list" scope="public">
 <one-of>
 <item weight=10>
 <ruleref uri=
 "http://grammar.example.com/world-cities.grxml#canada"/>
 </item>
 <item weight=1.5>
 <ruleref uri=
 "http://grammar.example.com/world-cities.grxml#america"/>
 </item>
 <item weight=0.5>
 <ruleref uri=
 "http://grammar.example.com/world-cities.grxml#india"/>
 </item>
 </one-of>
 </rule>

 Second RECOGNIZE Example

9.10. STOP

 The "STOP" method from the client to the server tells the resource to
 stop recognition if a request is active. If a RECOGNIZE request is
 active and the "STOP" request successfully terminated it, then the
 response header section contains an active-request-id-list header
 field containing the request-id of the RECOGNIZE request that was
 terminated. In this case, no RECOGNITION-COMPLETE event is sent for
 the terminated request. If there was no recognition active, then the
 response MUST NOT contain an active-request-id-list header field.
 Either way the response MUST contain a status-code of 200 (Success).

Burnett & Shanmugham Expires January 12, 2012 [Page 119]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... RECOGNIZE 543257
 Channel-Identifier:32AECB23433801@speechrecog
 Confidence-Threshold:0.9
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">

 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>
 </grammar>

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 C->S: MRCP/2.0 ... STOP 543258 200
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... 543258 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Active-Request-Id-List:543257

9.11. GET-RESULT

 The GET-RESULT method from the client to the server may be issued
 when the recognizer resource is in the recognized state. This
 request allows the client to retrieve results for a completed
 recognition. This is useful if the client decides it wants more
 alternatives or more information. When the server receives this

Burnett & Shanmugham Expires January 12, 2012 [Page 120]

Internet-Draft MRCPv2 July 2011

 request it re-computes and returns the results according to the
 recognition constraints provided in the GET-RESULT request.

 The GET-RESULT request can specify constraints such as a different
 confidence-threshold, or n-best-list-length. This capability is
 optional for MRCPv2 servers and the automatic speech recognition
 engine in the server MAY return a status of unsupported feature.

 C->S: MRCP/2.0 ... GET-RESULT 543257
 Channel-Identifier:32AECB23433801@speechrecog
 Confidence-Threshold:0.9

 S->C: MRCP/2.0 ... 543257 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

9.12. START-OF-INPUT

 This is an event from the server to the client indicating that the
 recognition resource has detected speech or a DTMF digit in the media
 stream. This event is useful in implementing kill-on-barge-in
 scenarios when a synthesizer resource is in a different session from
 the recognizer resource and hence is not aware of an incoming audio
 source (see Section 8.4.2). In these cases, it is up to the client
 to act as a intermediary and respond to this event by issuing a
 BARGE-IN-OCCURRED event to the synthesizer resource. The recognizer
 resource also MUST send a Proxy-Sync-Id header field with a unique
 value for this event.

 This event MUST be generated by the server irrespective of whether
 the synthesizer and recognizer are on the same server or not.

Burnett & Shanmugham Expires January 12, 2012 [Page 121]

Internet-Draft MRCPv2 July 2011

9.13. START-INPUT-TIMERS

 This request is sent from the client to the recognition resource when
 it knows that a kill-on-barge-in prompt has finished playing (see
 Section 8.4.2). This is useful in the scenario when the recognition
 and synthesizer engines are not in the same session. When a kill-on-
 barge-in prompt is being played, the client may want a RECOGNIZE
 request to be simultaneously active so that it can detect and
 implement kill on barge-in. But at the same time the client doesn’t
 want the recognizer to start the no-input timers until the prompt is
 finished. The Start-Input-Timers header field in the RECOGNIZE
 request allows the client to say whether the timers should be started
 immediately or not. If not, the recognizer resource MUST NOT start
 the timers until the client sends a START-INPUT-TIMERS method to the
 recognizer.

9.14. RECOGNITION-COMPLETE

 This is an Event from the recognizer resource to the client
 indicating that the recognition completed. The recognition result is
 sent in the body of the MRCPv2 message. The request-state field MUST
 be COMPLETE indicating that this is the last event with that
 request-id, and that the request with that request-id is now
 complete. The server MUST maintain the recognizer context containing
 the results and the audio waveform input of that recognition until
 the next RECOGNIZE request is issued for that resource or the session
 terminates. A URI to the audio waveform MAY be returned to the
 client in a Waveform-URI header field in the RECOGNITION-COMPLETE
 event. The client can use this URI to retrieve or playback the
 audio.

 Note if an enrollment session was active, the RECOGNITION-COMPLETE
 event can contain either recognition or enrollment results depending
 on what was spoken. The following example shows a complete exchange
 with a recognition result.

 C->S: MRCP/2.0 ... RECOGNIZE 543257
 Channel-Identifier:32AECB23433801@speechrecog
 Confidence-Threshold:0.9
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>

 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">

Burnett & Shanmugham Expires January 12, 2012 [Page 122]

Internet-Draft MRCPv2 July 2011

 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>
 </grammar>

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... START-OF-INPUT 543257 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... RECOGNITION-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Waveform-URI:<http://web.media.com/session123/audio.wav>;
 size=342456;duration=25435
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

 If the result were instead an enrollment result, the final message
 from the server above could have instead been:

Burnett & Shanmugham Expires January 12, 2012 [Page 123]

Internet-Draft MRCPv2 July 2011

 S->C: MRCP/2.0 ... RECOGNITION-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version= "1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="Personal-Grammar-URI">
 <enrollment-result>
 <num-clashes> 2 </num-clashes>
 <num-good-repetitions> 1 </num-good-repetitions>
 <num-repetitions-still-needed>
 1
 </num-repetitions-still-needed>
 <consistency-status> consistent </consistency-status>
 <clash-phrase-ids>
 <item> Jeff </item> <item> Andre </item>
 </clash-phrase-ids>
 <transcriptions>
 <item> m ay b r ow k er </item>
 <item> m ax r aa k ah </item>
 </transcriptions>
 <confusable-phrases>
 <item>
 <phrase> call </phrase>
 <confusion-level> 10 </confusion-level>
 </item>
 </confusable-phrases>
 </enrollment-result>
 </result>

9.15. START-PHRASE-ENROLLMENT

 The START-PHRASE-ENROLLMENT method from the client to the server
 starts a new phrase enrollment session during which the client may
 call RECOGNIZE multiple times to enroll a new utterance in a grammar.
 An enrollment session consists of a set of calls to RECOGNIZE in
 which the caller speaks a phrase several times so the system can
 "learn" it. The phrase is then added to a personal grammar (speaker-
 trained grammar), so that the system can recognize it later.

 Only one phrase enrollment session may be active at a time for a
 resource. The Personal-Grammar-URI identifies the grammar that is
 used during enrollment to store the personal list of phrases. Once
 RECOGNIZE is called, the result is returned in a RECOGNITION-COMPLETE
 event and may contain either an enrollment result OR a recognition
 result for a regular recognition.

Burnett & Shanmugham Expires January 12, 2012 [Page 124]

Internet-Draft MRCPv2 July 2011

 Calling END-PHRASE-ENROLLMENT ends the ongoing phrase enrollment
 session, which is typically done after a sequence of successful calls
 to RECOGNIZE. This method can be called to commit the new phrase to
 the personal grammar or to abort the phrase enrollment session.

 The grammar to contain the new enrolled phrase, specified by
 Personal-Grammar-URI, is created if it does not exist. Also, the
 personal grammar may ONLY contain phrases added via a phrase
 enrollment session.

 The Phrase-ID passed to this method is used to identify this phrase
 in the grammar and will be returned as the speech input when doing a
 RECOGNIZE on the grammar. The Phrase-NL similarly is returned in a
 RECOGNITION-COMPLETE event in the same manner as other Natural
 Language (NL) in a grammar. The tag-format of this NL is
 implementation specific.

 If the client has specified Save-Best-Waveform as true, then the
 response after ending the phrase enrollment session MUST contain the
 location/URI of a recording of the best repetition of the learned
 phrase.

 C->S: MRCP/2.0 ... START-PHRASE-ENROLLMENT 543258
 Channel-Identifier:32AECB23433801@speechrecog
 Num-Min-Consistent-Pronunciations:2
 Consistency-Threshold:30
 Clash-Threshold:12
 Personal-Grammar-URI:<personal grammar uri>
 Phrase-Id:<phrase id>
 Phrase-NL:<NL phrase>
 Weight:1
 Save-Best-Waveform:true

 S->C: MRCP/2.0 ... 543258 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog

9.16. ENROLLMENT-ROLLBACK

 The ENROLLMENT-ROLLBACK method discards the last live utterance from
 the RECOGNIZE operation. The client can invoke this method when the
 caller provides undesirable input such as non-speech noises, side-
 speech, commands, utterance from the RECOGNIZE grammar, etc. Note
 that this method does not provide a stack of rollback states.
 Executing ENROLLMENT-ROLLBACK twice in succession without an
 intervening recognition operation has no effect the second time.

Burnett & Shanmugham Expires January 12, 2012 [Page 125]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... ENROLLMENT-ROLLBACK 543261
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... 543261 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog

9.17. END-PHRASE-ENROLLMENT

 The client MAY call the END-PHRASE-ENROLLMENT method ONLY during an
 active phrase enrollment session. It MUST NOT be called during an
 ongoing RECOGNIZE operation. To commit the new phrase in the
 grammar, the client MAY call this method once successive calls to
 RECOGNIZE have succeeded and Num-Repetitions-Still-Needed has been
 returned as 0 in the RECOGNITION-COMPLETE event. Alternatively, the
 client MAY abort the phrase enrollment session by calling this method
 with the Abort-Phrase-Enrollment header field.

 If the client has specified Save-Best-Waveform as true in the START-
 PHRASE-ENROLLMENT request, then the response MUST contain a Waveform-
 URI header whose value is the location/URI of a recording of the best
 repetition of the learned phrase.

 C->S: MRCP/2.0 ... END-PHRASE-ENROLLMENT 543262
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... 543262 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Waveform-URI:<http://mediaserver.com/recordings/file1324.wav>;
 size=242453;duration=25432

9.18. MODIFY-PHRASE

 The MODIFY-PHRASE method sent from the client to the server is used
 to change the phrase ID, NL phrase and/or weight for a given phrase
 in a personal grammar.

 If no fields are supplied then calling this method has no effect.

 C->S: MRCP/2.0 ... MODIFY-PHRASE 543265
 Channel-Identifier:32AECB23433801@speechrecog
 Personal-Grammar-URI:<personal grammar uri>
 Phrase-Id:<phrase id>
 New-Phrase-Id:<new phrase id>
 Phrase-NL:<NL phrase>
 Weight:1

 S->C: MRCP/2.0 ... 543265 200 COMPLETE

Burnett & Shanmugham Expires January 12, 2012 [Page 126]

Internet-Draft MRCPv2 July 2011

 Channel-Identifier:32AECB23433801@speechrecog

9.19. DELETE-PHRASE

 The DELETE-PHRASE method sent from the client to the server is used
 to delete a phase in a personal grammar added through voice
 enrollment or text enrollment. If the specified phrase does not
 exist, this method has no effect.

 C->S: MRCP/2.0 ... DELETE-PHRASE 543266
 Channel-Identifier:32AECB23433801@speechrecog
 Personal-Grammar-URI:<personal grammar uri>
 Phrase-Id:<phrase id>

 S->C: MRCP/2.0 ... 543266 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog

9.20. INTERPRET

 The INTERPRET method from the client to the server takes as input an
 interpret-text header field containing the text for which the
 semantic interpretation is desired, and returns, via the
 INTERPRETATION-COMPLETE event, an interpretation result which is very
 similar to the one returned from a RECOGNIZE method invocation. Only
 portions of the result relevant to acoustic matching are excluded
 from the result. The interpret-text header field MUST be included in
 the INTERPRET request.

 Recognizer grammar data is treated in the same way as it is when
 issuing a RECOGNIZE method call.

 If a RECOGNIZE, RECORD or another INTERPRET operation is already in
 progress for the resource, the server MUST reject the request with a
 response having a status-code of 402 "Method not valid in this
 state", and a COMPLETE request state.

 C->S: MRCP/2.0 ... INTERPRET 543266
 Channel-Identifier:32AECB23433801@speechrecog
 Interpret-Text:may I speak to Andre Roy
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>
 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">
 <!-- single language attachment to tokens -->

Burnett & Shanmugham Expires January 12, 2012 [Page 127]

Internet-Draft MRCPv2 July 2011

 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>
 </grammar>

 S->C: MRCP/2.0 ... 543266 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... INTERPRETATION-COMPLETE 543266 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

9.21. INTERPRETATION-COMPLETE

 This event from the recognition resource to the client indicates that
 the INTERPRET operation is complete. The interpretation result is
 sent in the body of the MRCP message. The request state MUST be set
 to COMPLETE.

 The Completion-Cause header field MUST be included in this event and

Burnett & Shanmugham Expires January 12, 2012 [Page 128]

Internet-Draft MRCPv2 July 2011

 MUST be set to an appropriate value from the list of cause codes.

 C->S: MRCP/2.0 ... INTERPRET 543266
 Channel-Identifier:32AECB23433801@speechrecog
 Interpret-Text:may I speak to Andre Roy
 Content-Type:application/srgs+xml
 Content-ID:<request1@form-level.store>
 Content-Length:...

 <?xml version="1.0"?>
 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">
 <!-- single language attachment to tokens -->
 <rule id="yes">
 <one-of>
 <item xml:lang="fr-CA">oui</item>
 <item xml:lang="en-US">yes</item>
 </one-of>
 </rule>

 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 may I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>
 </grammar>

 S->C: MRCP/2.0 ... 543266 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 S->C: MRCP/2.0 ... INTERPRETATION-COMPLETE 543266 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>

Burnett & Shanmugham Expires January 12, 2012 [Page 129]

Internet-Draft MRCPv2 July 2011

 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

9.22. DTMF Detection

 Digits received as DTMF tones are delivered to the recognition
 resource in the MRCPv2 server in the RTP stream according to RFC4733
 [RFC4733]. The automatic speech recognizer (ASR) MUST support
 RFC4733 to recognize digits and it MAY support recognizing DTMF tones
 [Q.23] in the audio.

10. Recorder Resource

 This resource captures received audio and video and stores it as
 content pointed to by a URI. The main usages of recorders are
 1. to capture speech audio that may be submitted for recognition at
 a later time, and
 2. recording voice or video mails.
 Both these applications require functionality above and beyond those
 specified by protocols such as RTSP [RFC2326]. This includes Audio
 endpointing (i.e. detecting speech or silence). The support for
 video is optional and is mainly capturing video mails that may
 require the speech or audio processing mentioned above.

 A recorder MUST provide some endpointing capabilities for suppressing
 silence at the beginning and end of a recording, and MAY also
 suppress silence in the middle of a recording. If such suppression
 is done, the recorder MUST maintain timing metadata to indicate the
 actual time stamps of the recorded media.

 See the discussion on the sensitivity of saved waveforms in
 Section 12.

Burnett & Shanmugham Expires January 12, 2012 [Page 130]

Internet-Draft MRCPv2 July 2011

10.1. Recorder State Machine

 Idle Recording
 State State
 | |
 |---------RECORD------->|
 | |
 |<------STOP------------|
 | |
 |<--RECORD-COMPLETE-----|
 | |
 | |--------|
 | START-OF-INPUT |
 | |------->|
 | |
 | |--------|
 | START-INPUT-TIMERS |
 | |------->|
 | |

 Recorder State Machine

10.2. Recorder Methods

 The recorder resource supports the following methods.

 recorder-method = "RECORD"
 / "STOP"
 / "START-INPUT-TIMERS"

10.3. Recorder Events

 The recorder resource may generate the following events.

 recorder-event = "START-OF-INPUT"
 / "RECORD-COMPLETE"

10.4. Recorder Header Fields

 Method invocations for the recorder resource may contain resource-
 specific header fields containing request options and information to
 augment the Method, Response or Event message it is associated with.

Burnett & Shanmugham Expires January 12, 2012 [Page 131]

Internet-Draft MRCPv2 July 2011

 recorder-header = sensitivity-level
 / no-input-timeout
 / completion-cause
 / completion-reason
 / failed-uri
 / failed-uri-cause
 / record-uri
 / media-type
 / max-time
 / trim-length
 / final-silence
 / capture-on-speech
 / ver-buffer-utterance
 / start-input-timers
 / new-audio-channel

10.4.1. Sensitivity Level

 To filter out background noise and not mistake it for speech, the
 recorder may support a variable level of sound sensitivity. The
 sensitivity-level header field is a float value between 0.0 and 1.0
 and allows the client to set the sensitivity level for the recorder.
 This header field MAY occur in RECORD, "SET-PARAMS" or "GET-PARAMS".
 A higher value for this header field means higher sensitivity. The
 default value for this header field is implementation specific.

 sensitivity-level = "Sensitivity-Level" ":" FLOAT CRLF

10.4.2. No Input Timeout

 When recording is started and there is no speech detected for a
 certain period of time, the recorder can send a RECORD-COMPLETE event
 to the client and terminate the record operation. The no-input-
 timeout header field can set this timeout value. The value is in
 milliseconds. This header field MAY occur in RECORD, "SET-PARAMS" or
 "GET-PARAMS". The value for this header field ranges from 0 to an
 implementation specific maximum value. The default value for this
 header field is implementation specific.

 no-input-timeout = "No-Input-Timeout" ":" 1*19DIGIT CRLF

10.4.3. Completion Cause

 This header field MUST be part of a RECORD-COMPLETE event from the
 recorder resource to the client. This indicates the reason behind
 the RECORD method completion. This header field MUST be sent in the
 RECORD responses if they return with a failure status and a COMPLETE
 state. In the ABNF below, the ’cause-code’ contains a numerical

Burnett & Shanmugham Expires January 12, 2012 [Page 132]

Internet-Draft MRCPv2 July 2011

 value selected from the Cause-Code column of the following table.
 The ’cause-name’ contains the corresponding token selected from the
 Cause-Name column.

 completion-cause = "Completion-Cause" ":" cause-code SP
 cause-name CRLF
 cause-code = 3DIGIT
 cause-name = *VCHAR

 +------------+-----------------------+------------------------------+
 | Cause-Code | Cause-Name | Description |
 +------------+-----------------------+------------------------------+
000	success-silence	RECORD completed with a
		silence at the end
001	success-maxtime	RECORD completed after
		reaching maximum recording
		time specified in record
		method.
002	noinput-timeout	RECORD failed due to no
		input
003	uri-failure	Failure accessing the record
		URI.
004	error	RECORD request terminated
		prematurely due to a
		recorder error.
 +------------+-----------------------+------------------------------+

10.4.4. Completion Reason

 This header field MAY be present in a RECORD-COMPLETE event coming
 from the recorder resource to the client. It contains the reason
 text behind the RECORD request completion. This header field
 communicates text describing the reason for the failure.

 The completion reason text is provided for client use in logs and for
 debugging and instrumentation purposes. Clients MUST NOT interpret
 the completion reason text.

 completion-reason = "Completion-Reason" ":"
 quoted-string CRLF

10.4.5. Failed URI

 When a recorder method needs to post the audio to a URI and access to
 the URI fails, the server MUST provide the failed URI in this header
 field in the method response.

 failed-uri = "Failed-URI" ":" absoluteURI CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 133]

Internet-Draft MRCPv2 July 2011

10.4.6. Failed URI Cause

 When a recorder method needs to post the audio to a URI and access to
 the URI fails, the server MAY provide the URI specific or protocol
 specific response code through this header field in the method
 response. The value encoding is UTF-8 (RFC3629 [RFC3629]) to
 accommodate any access protocol, some of which might have a response
 string instead of a numeric response code.

 failed-uri-cause = "Failed-URI-Cause" ":" 1*UTFCHAR
 CRLF

10.4.7. Record URI

 When a recorder method contains this header field the server MUST
 capture the audio and store it. If the header field is present but
 specified with no value, the server MUST store the content locally
 and generate a URI that points to it. This URI is then returned in
 either the "STOP" response or the RECORD-COMPLETE event. If the
 header field in the RECORD method specifies a URI, the server MUST
 attempt to capture and store the audio at that location. If this
 header field is not specified in the RECORD request, the server MUST
 capture the audio, MUST encode it, and MUST send it in the "STOP"
 response or the RECORD-COMPLETE event as a message body. In this
 case, the response carrying the audio content MUST include a Content
 ID (cid) [RFC2392] value in this header pointing to the Content-ID in
 the message body.

 The server MUST also return the size in octets and the duration in
 milliseconds of the recorded audio wave-form as parameters associated
 with the header field.

 Implementations MUST support ’http’, ’https’ [RFC2616], ’file’
 [RFC3986], and ’cid’ [RFC2392] schemes in the URI. Note that
 implementations already exist that support other schemes.

 record-uri = "Record-URI" ":" ["<" uri ">"
 ";" "size" "=" 1*19DIGIT
 ";" "duration" "=" 1*19DIGIT] CRLF

10.4.8. Media Type

 A RECORD method MUST contain this header field, which specifies to
 the server the Media Type of the captured audio or video.

 media-type = "Media-Type" ":" media-type-value
 CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 134]

Internet-Draft MRCPv2 July 2011

10.4.9. Max Time

 When recording is started this specifies the maximum length of the
 recording in milliseconds, calculated from the time the actual
 capture and store begins and is not necessarily the time the RECORD
 method is received. It specifies the duration before silence
 suppression, if any, has been applied by the recorder resource.
 After this time, the recording stops and the server MUST return a
 RECORD-COMPLETE event to the client having a request-state of
 "COMPLETE". This header field MAY occur in RECORD, "SET-PARAMS" or
 "GET-PARAMS". The value for this header field ranges from 0 to an
 implementation specific maximum value. A value of zero means
 infinity and hence the recording continues until one or more of the
 other stop conditions are met. The default value for this header
 field is 0.

 max-time = "Max-Time" ":" 1*19DIGIT CRLF

10.4.10. Trim-Length

 This header field MAY be sent on a STOP method and specifies the
 length of audio to be trimmed from the end of the recording after the
 stop. The length is interpreted to be in milliseconds. The default
 value for this header field is 0.

 trim-length = "Trim-Length" ":" 1*19DIGIT CRLF

10.4.11. Final Silence

 When recorder is started and the actual capture begins, this header
 field specifies the length of silence in the audio that is to be
 interpreted as the end of the recording. This header field MAY occur
 in RECORD, "SET-PARAMS" or "GET-PARAMS". The value for this header
 field ranges from 0 to an implementation specific maximum value and
 is interpreted to be in milliseconds. A value of zero means infinity
 and hence the recording will continue until one of the other stop
 conditions are met. The default value for this header field is
 implementation specific.

 final-silence = "Final-Silence" ":" 1*19DIGIT CRLF

10.4.12. Capture On Speech

 If false, the recorder MUST start capturing immediately when started.
 If true, the recorder MUST wait for the endpointing functionality to
 detect speech before it starts capturing. This header field MAY
 occur in the RECORD, "SET-PARAMS" or "GET-PARAMS". The value for
 this header field is a Boolean. The default value for this header

Burnett & Shanmugham Expires January 12, 2012 [Page 135]

Internet-Draft MRCPv2 July 2011

 field is false.

 capture-on-speech = "Capture-On-Speech " ":" BOOLEAN CRLF

10.4.13. Ver-Buffer-Utterance

 This header field is the same as the one described for the verifier
 resource (see Section 11.4.14). This tells the server to buffer the
 utterance associated with this recording request into the
 verification buffer. Sending this header field is permitted only if
 the verification buffer is for the session. This buffer is shared
 across resources within a session. It gets instantiated when a
 verifier resource is added to this session and is released when the
 verifier resource is released from the session.

10.4.14. Start Input Timers

 This header field MAY be sent as part of the RECORD request. A value
 of false tells the recorder resource to start the operation, but not
 to start the no-input timer until the client sends a START-INPUT-
 TIMERS request to the recorder resource. This is useful in the
 scenario when the recorder and synthesizer resources are not part of
 the same session. When a kill-on-barge-in prompt is being played,
 the client may want the RECORD request to be simultaneously active so
 that it can detect and implement kill-on-barge-in (see
 Section 8.4.2). But at the same time the client doesn’t want the
 recorder resource to start the no-input timers until the prompt is
 finished. The default value is "true".

 start-input-timers = "Start-Input-Timers" ":"
 BOOLEAN CRLF

10.4.15. New Audio Channel

 This header field is the same as the one described for the Recognizer
 resource (see Section 9.4.23).

10.5. Recorder Message Body

 If the RECORD request did not have a Record-Uri header field, the
 "STOP" response or the RECORD-COMPLETE event MUST contain a message
 body carrying the captured audio. In this case, the message carrying
 the audio content has a Record-Uri header field with a Content ID
 value pointing to the message body entity that contains the recorded
 audio. See Section 10.4.7 for details.

Burnett & Shanmugham Expires January 12, 2012 [Page 136]

Internet-Draft MRCPv2 July 2011

10.6. RECORD

 The RECORD request places the recorder resource in the Recording
 state. Depending on the header fields specified in the RECORD
 method, the resource may start recording the audio immediately or
 wait for the end pointing functionality to detect speech in the
 audio. The audio is then made available to the client either in the
 message body or as specified by Record-URI.

 The server MUST support the HTTPS URI scheme and MAY support other
 schemes. Note that due to the sensitive nature of voice recordings,
 any protocols used for dereferencing SHOULD employ integrity and
 confidentiality, unless other means, such as physical security, are
 employed.

 If a RECORD operation is already in progress, invoking this method
 causes the server to issue a response having a status code of 402,
 "Method not valid in this state", and a COMPLETE request state.

 If the recording-uri is not valid, a status code of 404, "Illegal
 Value for Header Field", is returned in the response. If it is
 impossible for the server to create the requested stored content, a
 status code of 407, "Method or Operation Failed", is returned.

 If the type specified in the Media-Type header field is not
 supported, the server MUST respond with a status code of 409,
 "Unsupported Header Field Value", with the Media-Type header field in
 its response.

 When the recording operation is initiated, the response indicates an
 IN-PROGRESS request state. The server MAY generate a subsequent
 START-OF-INPUT event when speech is detected. Upon completion of the
 recording operation, the server generates a RECORD-COMPLETE event.

Burnett & Shanmugham Expires January 12, 2012 [Page 137]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... RECORD 543257
 Channel-Identifier:32AECB23433802@recorder
 Record-URI:<file://mediaserver/recordings/myfile.wav>
 Media-Type:audio/wav
 Capture-On-Speech:true
 Final-Silence:300
 Max-Time:6000

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@recorder

 S->C: MRCP/2.0 ... START-OF-INPUT 543257 IN-PROGRESS
 Channel-Identifier:32AECB23433802@recorder

 S->C: MRCP/2.0 ... RECORD-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433802@recorder
 Completion-Cause:000 success-silence
 Record-URI:<file://mediaserver/recordings/myfile.wav>;
 size=242552;duration=25645

 RECORD Example

10.7. STOP

 The "STOP" method moves the recorder from the recording state back to
 the idle state. If a RECORD request is active and the "STOP" request
 successfully terminated it, then the STOP response MUST contain an
 active-request-id-list header field containing the "RECORD"
 request-id that was terminated. In this case, no RECORD-COMPLETE
 event is sent for the terminated request. If there was no recording
 active, then the response MUST NOT contain an active-request-id-list
 header field. If the recording was a success the "STOP" response
 MUST contain a Record-URI header field pointing to the recorded audio
 content or to an typed entity in the body of the "STOP" response
 containing the recorded audio. The "STOP" method may have a Trim-
 Length header field, in which case the specified length of audio is
 trimmed from the end of the recording after the stop. In any case,
 the response MUST contain a status-code of 200 (Success).

Burnett & Shanmugham Expires January 12, 2012 [Page 138]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... RECORD 543257
 Channel-Identifier:32AECB23433802@recorder
 Record-URI:<file://mediaserver/recordings/myfile.wav>
 Capture-On-Speech:true
 Final-Silence:300
 Max-Time:6000

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@recorder

 S->C: MRCP/2.0 ... START-OF-INPUT 543257 IN-PROGRESS
 Channel-Identifier:32AECB23433802@recorder

 C->S: MRCP/2.0 ... STOP 543257
 Channel-Identifier:32AECB23433802@recorder
 Trim-Length:200

 S->C: MRCP/2.0 ... 543257 200 COMPLETE
 Channel-Identifier:32AECB23433802@recorder
 Record-URI:<file://mediaserver/recordings/myfile.wav>;
 size=324253;duration=24561
 Active-Request-Id-List:543257

 STOP Example

10.8. RECORD-COMPLETE

 If the recording completes due to no-input, silence after speech, or
 max-time, the server MUST generate the RECORD-COMPLETE event to the
 client with a request-state of "COMPLETE". If the recording was a
 success the RECORD-COMPLETE event contains a Record-URI header field
 pointing to the recorded audio file on the server or to a typed
 entity in the message body containing the recorded audio.

Burnett & Shanmugham Expires January 12, 2012 [Page 139]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... RECORD 543257
 Channel-Identifier:32AECB23433802@recorder
 Record-URI:<file://mediaserver/recordings/myfile.wav>
 Capture-On-Speech:true
 Final-Silence:300
 Max-Time:6000

 S->C: MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433802@recorder

 S->C: MRCP/2.0 ... START-OF-INPUT 543257 IN-PROGRESS
 Channel-Identifier:32AECB23433802@recorder

 S->C: MRCP/2.0 ... RECORD-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433802@recorder
 Completion-Cause:000 success
 Record-URI:<file://mediaserver/recordings/myfile.wav>;
 size=325325;duration=24652

 RECORD-COMPLETE Example

10.9. START-INPUT-TIMERS

 This request is sent from the client to the recorder resource when it
 discovers that a kill-on-barge-in prompt has finished playing (see
 Section 8.4.2). This is useful in the scenario when the recorder and
 synthesizer resources are not in the same MRCPv2 session. When a
 kill-on-barge-in prompt is being played, the client wants the RECORD
 request to be simultaneously active so that it can detect and
 implement kill on barge-in. But at the same time the client doesn’t
 want the recorder resource to start the no-input timers until the
 prompt is finished. The Start-Input-Timers header field in the
 RECORD request allows the client to say if the timers should be
 started or not. In the above case the recorder resource does not
 start the timers until the client sends a START-INPUT-TIMERS method
 to the recorder.

10.10. START-OF-INPUT

 The START-OF-INPUT event is returned from the server to the client
 once the server has detected speech. This event is always returned
 by the recording resource when speech has been detected. The
 recorder resource also MUST send a Proxy-Sync-Id header field with a
 unique value for this event.

 S->C: MRCP/2.0 ... START-OF-INPUT 543259 IN-PROGRESS
 Channel-Identifier:32AECB23433801@recorder
 Proxy-Sync-Id:987654321

Burnett & Shanmugham Expires January 12, 2012 [Page 140]

Internet-Draft MRCPv2 July 2011

11. Speaker Verification and Identification

 This section describes the methods, responses and events employed by
 MRCPv2 for doing Speaker Verification / Identification.

 Speaker verification is a voice authentication methodology that can
 be used to identify the speaker in order to grant the user access to
 sensitive information and transactions. Because speech is a
 biometric, a number of essential security considerations related to
 biometric authentication technologies apply to its implementation and
 usage. Implementers should carefully read Section 12 in this
 document and the corresponding section of Speechsc Requirements
 [RFC4313].

 In speaker verification, a recorded utterance is compared to a
 previously stored voiceprint which is in turn associated with a
 claimed identity for that user. Verification typically consists of
 two phases: a designation phase to establish the claimed identity of
 the caller and an execution phase in which a voiceprint is either
 created (training) or used to authenticate the claimed identity
 (verification).

 Speaker identification is the process of associating an unknown
 speaker with a member in a population. It does not employ a claim of
 identity. When an individual claims to belong to a group (e.g., one
 of the owners of a joint bank account) a group authentication is
 performed. This is generally implemented as a kind of verification
 involving comparison with more than one voice model. It is sometimes
 called ’multi-verification’. If the individual speaker can be
 identified from the group, this may be useful for applications where
 multiple users share the same access privileges to some data or
 application. Speaker identification and group authentication are
 also done in two phases, a designation phase and an execution phase.
 Note that from a functionality standpoint identification can be
 thought of as a special case of group authentication (if the
 individual is identified) where the group is the entire population,
 although the implementation of speaker identification may be
 different from the way group authentication is performed. To
 accommodate single-voiceprint verification, verification against
 multiple voiceprints, group authentication, and identification, this
 specification provides a single set of methods that can take a list
 of identifiers, called "voiceprint identifiers", and return a list of
 identifiers, with a score for each representing how well the input
 speech matched each identifier. The input and output lists of
 identifiers do not have to match, allowing a vendor-specific group
 identifier to be used as input to indicate that identification is to
 be performed. In this specification, the terms "Identification" and
 "Multi-verification" are used to indicate that the input represents a

Burnett & Shanmugham Expires January 12, 2012 [Page 141]

Internet-Draft MRCPv2 July 2011

 group (potentially the entire population) and that results for
 multiple voiceprints may be returned.

 It is possible for a verifier resource to share the same session with
 a recognizer resource or to operate independently. In order to share
 the same session, the verifier and recognizer resources MUST be
 allocated from within the same SIP dialog. Otherwise, an independent
 verifier resource, running on the same physical server or a separate
 one, will be set up. Note that in addition to allowing both
 resources to be allocated in the same INVITE, it is possible to
 allocate one initially and the other later via a re-INVITE.

 Some of the speaker verification methods, described below, apply only
 to a specific mode of operation.

 The verifier resource has a verification buffer associated with it
 (see Section 11.4.14). This allows the storage of speech utterances
 for the purposes of verification, identification or training from the
 buffered speech. This buffer is owned by the verifier resource but
 other input resources such as the recognition resource or recorder
 resource may write to it. This allows the speech received as part of
 a recognition or recording operation to be later used for
 verification, identification or training. Access to the buffer is
 limited to one operation at time. Hence when the resource is doing
 read, write or delete operation such as a RECOGNIZE with ver-buffer-
 utterance turned on, another operation involving the buffer fails
 with a status-code of 402. The verification buffer can be cleared by
 a CLEAR-BUFFER request from the client and is freed when the verifier
 resource is deallocated or the session with the server terminates.

 The verification buffer is different from collecting waveforms and
 processing them using either the real time audio stream or stored
 audio, because this buffering mechanism does not simply accumulate
 speech to a buffer. The verification buffer may contain additional
 information gathered by the recognition resource that serves to
 improve verification performance.

11.1. Speaker Verification State Machine

 Speaker verification may operate in a training or a verification
 session. Starting one of these sessions does not change the state of
 the verifier resource, i.e. it remains idle. Once a verification or
 training session is started, then utterances are trained or verified
 by calling the VERIFY or VERIFY-FROM-BUFFER method. The state of the
 verifier resources goes from IDLE to VERIFYING state each time VERIFY
 or VERIFY-FROM-BUFFER is called.

 Idle Session Opened Verifying/Training

Burnett & Shanmugham Expires January 12, 2012 [Page 142]

Internet-Draft MRCPv2 July 2011

 State State State
 | | | |
 |--START-SESSION--->| |
 | | |
 | |----------| |
 | | START-SESSION |
 | |<---------| |
 | | |
 |<--END-SESSION-----| |
 | | |
 | |---------VERIFY--------->|
 | | |
 | |---VERIFY-FROM-BUFFER--->|
 | | |
 | |----------| |
 | | VERIFY-ROLLBACK |
 | |<---------| |
 | | |
 | | |--------|
 | | GET-INTERMEDIATE-RESULT |
 | | |------->|
 | | |
 | | |--------|
 | | START-INPUT-TIMERS |
 | | |------->|
 | | |
 | | |--------|
 | | START-OF-INPUT |
 | | |------->|
 | | |
 | |<-VERIFICATION-COMPLETE--|
 | | |
 | |<--------STOP------------|
 | | |
 | |----------| |
 | | STOP |
 | |<---------| |
 | | |
 |----------| | |
 | STOP | |
 |<---------| | |
 | |----------| |
 | | CLEAR-BUFFER |
 | |<---------| |
 | | |
 |----------| | |
 | CLEAR-BUFFER | |
 |<---------| | |

Burnett & Shanmugham Expires January 12, 2012 [Page 143]

Internet-Draft MRCPv2 July 2011

 | | | |
 | |----------| |
 | | QUERY-VOICEPRINT |
 | |<---------| |
 | | |
 |----------| | |
 | QUERY-VOICEPRINT | |
 |<---------| | |
 | | |
 | |----------| |
 | | DELETE-VOICEPRINT |
 | |<---------| |
 | | |
 |----------| | |
 | DELETE-VOICEPRINT | |
 |<---------| | |

 Verifier Resource State Machine

11.2. Speaker Verification Methods

 The verifier resource supports the following methods.

 verifier-method = "START-SESSION"
 / "END-SESSION"
 / "QUERY-VOICEPRINT"
 / "DELETE-VOICEPRINT"
 / "VERIFY"
 / "VERIFY-FROM-BUFFER"
 / "VERIFY-ROLLBACK"
 / "STOP"
 / "CLEAR-BUFFER"
 / "START-INPUT-TIMERS"
 / "GET-INTERMEDIATE-RESULT"

 These methods allow the client to control the mode and target of
 verification or identification operations within the context of a
 session. All the verification input operations that occur within a
 session may be used to create, update, or validate against the
 voiceprint specified during the session. At the beginning of each
 session the verifier resource is reset to the state it had prior to
 any previous verification session.

 Verification/identification operations can be executed against live
 or buffered audio. The verifier resource provides methods for
 collecting and evaluating live audio data, and methods for
 controlling the verifier resource and adjusting its configured
 behavior.

Burnett & Shanmugham Expires January 12, 2012 [Page 144]

Internet-Draft MRCPv2 July 2011

 There are no dedicated methods for collecting buffered audio data.
 This is accomplished by calling VERIFY, RECOGNIZE or RECORD as
 appropriate for the resource, with the header field Ver-Buffer-
 Utterance. Then, when the following method is called verification is
 performed using the set of buffered audio.
 1. VERIFY-FROM-BUFFER

 The following methods are used for verification of live audio
 utterances :
 1. VERIFY
 2. START-INPUT-TIMERS

 The following methods are used for configuring the verifier resource
 and for establishing resource states :
 1. START-SESSION
 2. END-SESSION
 3. QUERY-VOICEPRINT
 4. DELETE-VOICEPRINT
 5. VERIFY-ROLLBACK
 6. "STOP"
 7. CLEAR-BUFFER

 The following method allows the polling a Verification in progress
 for intermediate results.
 1. GET-INTERMEDIATE-RESULT

11.3. Verification Events

 The verifier resource generates the following events.

 verifier-event = "VERIFICATION-COMPLETE"
 / "START-OF-INPUT"

11.4. Verification Header Fields

 A verifier resource message may contain header fields containing
 request options and information to augment the Request, Response or
 Event message it is associated with.

Burnett & Shanmugham Expires January 12, 2012 [Page 145]

Internet-Draft MRCPv2 July 2011

 verification-header = repository-uri
 / voiceprint-identifier
 / verification-mode
 / adapt-model
 / abort-model
 / min-verification-score
 / num-min-verification-phrases
 / num-max-verification-phrases
 / no-input-timeout
 / save-waveform
 / media-type
 / waveform-uri
 / voiceprint-exists
 / ver-buffer-utterance
 / input-waveform-uri
 / completion-cause
 / completion-reason
 / speech-complete-timeout
 / new-audio-channel
 / abort-verification
 / start-input-timers

11.4.1. Repository-URI

 This header field specifies the voiceprint repository to be used or
 referenced during speaker verification or identification operations.
 This header field is required in the START-SESSION, QUERY-VOICEPRINT
 and DELETE-VOICEPRINT methods.

 repository-uri = "Repository-URI" ":" uri CRLF

11.4.2. Voiceprint-Identifier

 This header field specifies the claimed identity for verification
 applications. The claimed identity MAY be used to specify an
 existing voiceprint or to establish a new voiceprint. This header
 field MUST be present in the QUERY-VOICEPRINT and DELETE-VOICEPRINT
 methods. The Voiceprint-Identifier MUST be present in the START-
 SESSION method for verification operations. For Identification or
 Multi-Verification operations this header field MAY contain a list of
 voiceprint identifiers separated by semi-colons. For identification
 operations the client MAY also specify a voiceprint group identifier
 instead of a list of voiceprint identifiers.

 voiceprint-identifier = "Voiceprint-Identifier" ":"
 vid *[";" vid] CRLF
 vid = 1*VCHAR ["." 1*VCHAR]

Burnett & Shanmugham Expires January 12, 2012 [Page 146]

Internet-Draft MRCPv2 July 2011

11.4.3. Verification-Mode

 This header field specifies the mode of the verifier resource and is
 set by the START-SESSION method. Acceptable values indicate whether
 the verification session will train a voiceprint ("train") or verify/
 identify using an existing voiceprint ("verify").

 Training and verification sessions both require the voiceprint
 Repository-URI to be specified in the START-SESSION. In many usage
 scenarios, however, the system does not know the speaker’s claimed
 identity until a recognition operation has, for example, recognized
 an account number to which the user desires access. In order to
 allow the first few utterances of a dialog to be both recognized and
 verified, the verifier resource on the MRCPv2 server retains a
 buffer. In this buffer, the MRCPv2 server accumulates recognized
 utterances. The client can later execute a verification method and
 apply the buffered utterances to the current verification session.

 Some voice user interfaces may require additional user input that
 should not be subject to verification. For example, the user’s input
 may have been recognized with low confidence and thus require a
 confirmation cycle. In such cases, the client should not execute the
 VERIFY or VERIFY-FROM-BUFFER methods to collect and analyze the
 caller’s input. A separate recognizer resource can analyze the
 caller’s response without any participation by the verifier resource.

 Once the following conditions have been met:
 1. Voiceprint identity has been successfully established through the
 voiceprint identifier header fields of the START-SESSION method,
 and
 2. the verification mode has been set to one of "train" or "verify",
 the verifier resource may begin providing verification information
 during verification operations. If the verifier resource does not
 reach one of the two major states ("train" or "verify") , it MUST
 report an error condition in the MRCPv2 status code to indicate why
 the verifier resource is not ready for the corresponding usage.

 The value of verification-mode is persistent within a verification
 session. If the client attempts to change the mode during a
 verification session, the verifier resource reports an error and the
 mode retains its current value.

 verification-mode = "Verification-Mode" ":"
 verification-mode-string

 verification-mode-string = "train"
 / "verify"

Burnett & Shanmugham Expires January 12, 2012 [Page 147]

Internet-Draft MRCPv2 July 2011

11.4.4. Adapt-Model

 This header field indicates the desired behavior of the verifier
 resource after a successful verification operation. If the value of
 this header field is "true", the sever SHOULD use audio collected
 during the verification session to update the voiceprint to account
 for ongoing changes in a speaker’s incoming speech characteristics,
 unless local policy prohibits updating the voiceprint. If the value
 is "false" (the default), the server MUST NOT update the voiceprint.
 This header field MAY occur in the START-SESSION method.

 adapt-model = "Adapt-Model" ":" BOOLEAN CRLF

11.4.5. Abort-Model

 The Abort-Model header field indicates the desired behavior of the
 verifier resource upon session termination. If the value of this
 header field is "true", the server MUST discard any pending changes
 to a voiceprint due to verification training or verification
 adaptation. If the value is "false" (the default), the server MUST
 commit any pending changes for a training session or a successful
 verification session to the voiceprint repository. A value of "true"
 for Abort-Model overrides a value of "true" for the Adapt-Model
 header field. This header field MAY occur in the END-SESSION method.

 abort-model = "Abort-Model" ":" BOOLEAN CRLF

11.4.6. Min-Verification-Score

 The Min-Verification-Score header field, when used with a verifier
 resource through a "SET-PARAMS", "GET-PARAMS" or START-SESSION
 method, determines the minimum verification score for which a
 verification decision of "accepted" may be declared by the server.
 This is a float value between -1.0 and 1.0 that determines the
 minimum verification score for which a verification decision of
 "accepted" may be declared by the server. The default value for this
 header field is implementation specific.

 min-verification-score = "Min-Verification-Score" ":"
 [%x2D] FLOAT CRLF

11.4.7. Num-Min-Verification-Phrases

 The Num-Min-Verification-Phrases header field is used to specify the
 minimum number of valid utterances before a positive decision is
 given for verification. The value for this header field is an
 integer and the default value is 1. The verifier resource MUST NOT
 declare a verification ’accepted’ unless Num-Min-Verification-Phrases

Burnett & Shanmugham Expires January 12, 2012 [Page 148]

Internet-Draft MRCPv2 July 2011

 valid utterances have been received. The minimum value is 1. This
 header field MAY occur in START-SESSION, "SET-PARAMS" or
 "GET-PARAMS".

 num-min-verification-phrases = "Num-Min-Verification-Phrases" ":"
 1*19DIGIT CRLF

11.4.8. Num-Max-Verification-Phrases

 The Num-Max-Verification-Phrases header field is used to specify the
 number of valid utterances required before a decision is forced for
 verification. The verifier resource MUST NOT return a decision of
 ’undecided’ once Num-Max-Verification-Phrases have been collected and
 used to determine a verification score. The value for this header
 field is an integer and the minimum value is 1. The default value is
 implementation-specific. This header field MAY occur in START-
 SESSION, "SET-PARAMS" or "GET-PARAMS".

 num-max-verification-phrases = "Num-Max-Verification-Phrases" ":"
 1*19DIGIT CRLF

11.4.9. No-Input-Timeout

 The No-Input-Timeout header field sets the length of time from the
 start of the verification timers (see START-INPUT-TIMERS) until the
 declaration of a no-input event in the VERIFICATION-COMPLETE server
 event message. The value is in milliseconds. This header field MAY
 occur in VERIFY, "SET-PARAMS" or "GET-PARAMS". The value for this
 header field ranges from 0 to an implementation specific maximum
 value. The default value for this header field is implementation
 specific.

 no-input-timeout = "No-Input-Timeout" ":" 1*19DIGIT CRLF

11.4.10. Save-Waveform

 This header field allows the client to request that the verifier
 resource save the audio stream that was used for verification/
 identification. The verifier resource MUST attempt to record the
 audio and make it available to the client in the form of a URI
 returned in the Waveform-URI header field in the VERIFICATION-
 COMPLETE event. If there was an error in recording the stream or the
 audio content is otherwise not available, the verifier resource MUST
 return an empty Waveform-URI header field. The default value for
 this header field is "false". This header field MAY appear in the
 VERIFY method. Note that this header field does not appear in the
 VERIFY-FROM-BUFFER method since it only controls whether or not to
 save the waveform for live verification / identification operations.

Burnett & Shanmugham Expires January 12, 2012 [Page 149]

Internet-Draft MRCPv2 July 2011

 save-waveform = "Save-Waveform" ":" BOOLEAN CRLF

11.4.11. Media Type

 This header field MAY be specified in the SET-PARAMS, GET-PARAMS or
 the VERIFY methods and tells the server resource the Media Type of
 the captured audio or video such as the one captured and returned by
 the Waveform-URI header field.

 media-type = "Media-Type" ":" media-type-value
 CRLF

11.4.12. Waveform-URI

 If the Save-Waveform header field is set to true, the verifier
 resource MUST attempt to record the incoming audio stream of the
 verification into a file and provide a URI for the client to access
 it. This header field MUST be present in the VERIFICATION-COMPLETE
 event if the Save-Waveform header field was set to true by the
 client. The value of the header field MUST be empty if there was
 some error condition preventing the server from recording.
 Otherwise, the URI generated by the server MUST be globally unique
 across the server and all its verification sessions. The content
 MUST be available via the URI until the verification session ends.
 Since the Save-Waveform header field applies only to live
 verification / identification operations, the server can return the
 Waveform-URI only in the VERIFICATION-COMPLETE event for live
 verification / identification operations.

 The server MUST also return the size in octets and the duration in
 milliseconds of the recorded audio wave-form as parameters associated
 with the header field.

 waveform-uri = "Waveform-URI" ":" ["<" uri ">"
 ";" "size" "=" 1*19DIGIT
 ";" "duration" "=" 1*19DIGIT] CRLF

11.4.13. Voiceprint-Exists

 This header field MUST be returned in QUERY-VOICEPRINT and DELETE-
 VOICEPRINT responses. This is the status of the voiceprint specified
 in the QUERY-VOICEPRINT method. For the DELETE-VOICEPRINT method
 this header field indicates the status of the voiceprint at the
 moment the method execution started.

 voiceprint-exists = "Voiceprint-Exists" ":" BOOLEAN CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 150]

Internet-Draft MRCPv2 July 2011

11.4.14. Ver-Buffer-Utterance

 This header field is used to indicate that this utterance could be
 later considered for Speaker Verification. This way, a client can
 request the server to buffer utterances while doing regular
 recognition or verification activities and speaker verification can
 later be requested on the buffered utterances. This header field is
 OPTIONAL in the RECOGNIZE, VERIFY and RECORD methods. The default
 value for this header field is "false".

 ver-buffer-utterance = "Ver-Buffer-Utterance" ":" BOOLEAN
 CRLF

11.4.15. Input-Waveform-Uri

 This header field specifies stored audio content that the client
 requests the server to fetch and process according to the current
 verification mode, either to train the voiceprint or verify a claimed
 identity. This header field enables the client to implement the
 buffering use case where the recognizer and verifier resources are in
 different sessions and the verification buffer technique cannot be
 used. It MAY be specified on the VERIFY request.

 input-waveform-uri = "Input-Waveform-URI" ":" uri CRLF

11.4.16. Completion-Cause

 This header field MUST be part of a VERIFICATION-COMPLETE event from
 the verifier resource to the client. This indicates the cause of
 VERIFY or VERIFY-FROM-BUFFER method completion. This header field
 MUST be sent in the VERIFY, VERIFY-FROM-BUFFER, and QUERY-VOICEPRINT
 responses, if they return with a failure status and a COMPLETE state.
 In the ABNF below, the ’cause-code’ contains a numerical value
 selected from the Cause-Code column of the following table. The
 ’cause-name’ contains the corresponding token selected from the
 Cause-Name column.

 completion-cause = "Completion-Cause" ":" cause-code SP
 cause-name CRLF
 cause-code = 3DIGIT
 cause-name = *VCHAR

Burnett & Shanmugham Expires January 12, 2012 [Page 151]

Internet-Draft MRCPv2 July 2011

 +------------+--------------------------+---------------------------+
 | Cause-Code | Cause-Name | Description |
 +------------+--------------------------+---------------------------+
000	success	VERIFY or
		VERIFY-FROM-BUFFER
		request completed
		successfully. The verify
		decision can be
		"accepted", "rejected",
		or "undecided".
001	error	VERIFY or
		VERIFY-FROM-BUFFER
		request terminated
		prematurely due to a
		verifier resource or
		system error.
002	no-input-timeout	VERIFY request completed
		with no result due to a
		no-input-timeout.
003	too-much-speech-timeout	VERIFY request completed
		with no result due to too
		much speech.
004	speech-too-early	VERIFY request completed
		with no result due to
		spoke too soon.
005	buffer-empty	VERIFY-FROM-BUFFER
		request completed with no
		result due to empty
		buffer.
006	out-of-sequence	Verification operation
		failed due to
		out-of-sequence method
		invocations. For example
		calling VERIFY before
		QUERY-VOICEPRINT.
007	repository-uri-failure	Failure accessing
		Repository URI.
008	repository-uri-missing	Repository-uri is not
		specified.
009	voiceprint-id-missing	Voiceprint-identification
		is not specified.
010	voiceprint-id-not-exist	Voiceprint-identification
		does not exist in the
		voiceprint repository.

Burnett & Shanmugham Expires January 12, 2012 [Page 152]

Internet-Draft MRCPv2 July 2011

011	speech-not-usable	VERIFY request completed
		with no result because
		the speech was not usable
		(too noisy, too short,
		etc.)
 +------------+--------------------------+---------------------------+

11.4.17. Completion Reason

 This header field MAY be specified in a VERIFICATION-COMPLETE event
 coming from the verifier resource to the client. It contains the
 reason text behind the VERIFY request completion. This header field
 communicates text describing the reason for the failure.

 The completion reason text is provided for client use in logs and for
 debugging and instrumentation purposes. Clients MUST NOT interpret
 the completion reason text.

 completion-reason = "Completion-Reason" ":"
 quoted-string CRLF

11.4.18. Speech Complete Timeout

 This header field is the same as the one described for the Recognizer
 resource. See Section 9.4.15. This header field MAY occur in
 VERIFY, SET-PARAMS, or GET-PARAMS.

11.4.19. New Audio Channel

 This header field is the same as the one described for the Recognizer
 resource. See Section 9.4.23. This header field MAY be specified in
 a VERIFY request.

11.4.20. Abort-Verification

 This header field MUST be sent in a "STOP" request to indicate
 whether or not to abort a VERIFY method in progress. A value of
 "true" requests the server to discard the results. A value of
 "false" requests the server to return in the "STOP" response the
 verification results obtained up to the point it received the "STOP"
 request.

 Abort-verification = "Abort-Verification " ":" BOOLEAN CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 153]

Internet-Draft MRCPv2 July 2011

11.4.21. Start Input Timers

 This header field MAY be sent as part of a VERIFY request. A value
 of false tells the verifier resource to start the VERIFY operation,
 but not to start the no-input timer yet. The verifier resource MUST
 NOT start the timers until the client sends a START-INPUT-TIMERS
 request to the resource. This is useful in the scenario when the
 verifier and synthesizer resources are not part of the same session.
 In this scenario, when a kill-on-barge-in prompt is being played, the
 client may want the VERIFY request to be simultaneously active so
 that it can detect and implement kill-on-barge-in (see
 Section 8.4.2). But at the same time the client doesn’t want the
 verifier resource to start the no-input timers until the prompt is
 finished. The default value is "true".

 start-input-timers = "Start-Input-Timers" ":"
 BOOLEAN CRLF

11.5. Verification Message Body

 A verification response or event message may carry additional data as
 described in the following subsection.

11.5.1. Verification Result Data

 Verification results are returned to the client in the message body
 of the VERIFICATION-COMPLETE event or the GET-INTERMEDIATE-RESULT
 response message as described in Section 6.3. Element and attribute
 descriptions for the verification portion of the NLSML format are
 provided in Section 11.5.2 with a normative definition of the schema
 in Section 16.3.

11.5.2. Verification Result Elements

 All verification elements are contained within a single
 <verification-result> element under <result>. The elements are
 described below and have the schema defined in Section 16.2. The
 following elements are defined:

 1. Voiceprint
 2. Incremental
 3. Cumulative
 4. Decision
 5. Utterance-Length
 6. Device
 7. Gender

Burnett & Shanmugham Expires January 12, 2012 [Page 154]

Internet-Draft MRCPv2 July 2011

 8. Adapted
 9. Verification-Score
 10. Vendor-Specific-Results

11.5.2.1. Voiceprint

 This element in the verification results provides information on how
 the speech data matched a single voiceprint. The result data
 returned may have more than one such entity in the case of
 Identification or Multi-Verification. Each "<voiceprint>" element
 and the XML data within the element describe verification result
 information for how well the speech data matched that particular
 voiceprint. The list of voiceprint element data are ordered
 according to their cumulative verification match scores, with the
 highest score first.

11.5.2.2. Cumulative

 Within each "<voiceprint>" element there MUST be a "<cumulative>"
 element with the cumulative scores of how well multiple utterances
 matched the voiceprint.

11.5.2.3. Incremental

 The first "<voiceprint>" element MAY contain an "<incremental>"
 element with the incremental scores of how well the last utterance
 matched the voiceprint.

11.5.2.4. Decision

 This element is found within the "<incremental>" or "<cumulative>"
 element within the verification results. Its value indicates the
 verification decision. It can have the values of "accepted",
 "rejected" or "undecided".

11.5.2.5. Utterance-Length

 This element MAY occur within either the "<incremental>" or
 "<cumulative>" elements within the first "<voiceprint>" element. Its
 value indicates the size in milliseconds, respectively, of the last
 utterance or the cumulated set of utterances.

11.5.2.6. Device

 This element is found within the incremental or cumulative element
 within the verification results. Its value indicates the apparent
 type of device used by the caller as determined by the verifier
 resource. It can have the values of "cellular-phone", "electret-

Burnett & Shanmugham Expires January 12, 2012 [Page 155]

Internet-Draft MRCPv2 July 2011

 phone", "carbon-button-phone", or "unknown".

11.5.2.7. Gender

 This element is found within the incremental or cumulative element
 within the verification results. Its value indicates the apparent
 gender of the speaker as determined by the verifier resource. It can
 have the values of "male", "female" or "unknown".

11.5.2.8. Adapted

 This element is found within the first "<voiceprint>" element within
 the verification results. When verification is trying to confirm the
 voiceprint, this indicates if the voiceprint has been adapted as a
 consequence of analyzing the source utterances. It is not returned
 during verification training. The value can be "true" or "false".

11.5.2.9. Verification-Score

 This element is found within the incremental or cumulative element
 within the verification results. Its value indicates the score of
 the last utterance as determined by verification.

 During verification, the higher the score the more likely it is that
 the speaker is the same one as the one who spoke the voiceprint
 utterances. During training, the higher the score the more likely
 the speaker is to have spoken all of the analyzed utterances. The
 value is a floating point between -1.0 and 1.0. If there are no such
 utterances the score is -1. Note that the verification score is not
 a probability value.

11.5.2.10. Vendor-Specific-Results

 MRCPv2 servers MAY send verification results that contain
 implementation specific data which augment the information provided
 by the MRCPv2-defined elements. Such data might be useful to clients
 who have private knowledge of how to interpret these schema
 extensions. Implementation specific additions to the verification
 results schema MUST belong to the vendor’s own namespace. In the
 result structure, either they MUST be indicated by a namespace prefix
 declared within the result, or they MUST be children of an element
 identified as belonging to the respective namespace.

 The following example shows the results of three voiceprints. Note
 that the first one has crossed the verification score threshold, and
 the speaker has been accepted. The voiceprint was also adapted with
 the most recent utterance.

Burnett & Shanmugham Expires January 12, 2012 [Page 156]

Internet-Draft MRCPv2 July 2011

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="What-Grammar-URI">
 <verification-result>
 <voiceprint id="johnsmith">
 <adapted> true </adapted>
 <incremental>
 <utterance-length> 500 </utterance-length>
 <device> cellular-phone </device>
 <gender> male </gender>
 <decision> accepted </decision>
 <verification-score> 0.98514 </verification-score>
 </incremental>
 <cumulative>
 <utterance-length> 10000 </utterance-length>
 <device> cellular-phone </device>
 <gender> male </gender>
 <decision> accepted </decision>
 <verification-score> 0.96725</verification-score>
 </cumulative>
 </voiceprint>
 <voiceprint id="marysmith">
 <cumulative>
 <verification-score> 0.93410 </verification-score>
 </cumulative>
 </voiceprint>
 <voiceprint uri="juniorsmith">
 <cumulative>
 <verification-score> 0.74209 </verification-score>
 </cumulative>
 </voiceprint>
 </verification-result>
 </result>

 Verification Results Example 1

 In this next example, the verifier has enough information to decide
 to reject the speaker.

Burnett & Shanmugham Expires January 12, 2012 [Page 157]

Internet-Draft MRCPv2 July 2011

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:xmpl="http://www.example.org/2003/12/mrcpv2"
 grammar="What-Grammar-URI">
 <verification-result>
 <voiceprint id="johnsmith">
 <incremental>
 <utterance-length> 500 </utterance-length>
 <device> cellular-phone </device>
 <gender> male </gender>
 <verification-score> 0.88514 </verification-score>
 <xmpl:raspiness> high </xmpl:raspiness>
 <xmpl:emotion> sadness </xmpl:emotion>
 </incremental>
 <cumulative>
 <utterance-length> 10000 </utterance-length>
 <device> cellular-phone </device>
 <gender> male </gender>
 <decision> rejected </decision>
 <verification-score> 0.9345 </verification-score>
 </cumulative>
 </voiceprint>
 </verification-result>
 </result>

 Verification Results Example 2

11.6. START-SESSION

 The START-SESSION method starts a Speaker Verification or
 Identification session. Execution of this method places the verifier
 resource into its initial state. If this method is called during an
 ongoing verification session, the previous session is implicitly
 aborted. If this method is invoked when VERIFY or VERIFY-FROM-BUFFER
 is active, the method fails and the server returns a status code of
 402.

 Upon completion of the START-SESSION method, the verifier resource
 MUST have terminated any ongoing verification session, and cleared
 any voiceprint designation.

 A verification session is associated with the voiceprint repository
 to be used during the session. This is specified through the
 "Repository-URI" header field (see Section 11.4.1).

 The START-SESSION method also establishes, through the Voiceprint-
 Identifier header field, which voiceprints are to be matched or
 trained during the verification session. If this is an

Burnett & Shanmugham Expires January 12, 2012 [Page 158]

Internet-Draft MRCPv2 July 2011

 Identification session or if the client wants to do Multi-
 Verification, the Voiceprint-Identifier header field contains a list
 of semi-colon separated voiceprint identifiers.

 The Adapt-Model header field may also be present in the START-SESSION
 request to indicate whether or not to adapt a voiceprint based on
 data collected during the session (if the voiceprint verification
 phase succeeds). By default, the voiceprint model MUST NOT be
 adapted with data from a verification session.

 The START-SESSION also determines whether the session is for a train
 or verify of a voiceprint. Hence the Verification-Mode header field
 MUST be sent in every START-SESSION request. The value of the
 Verification-Mode header field MUST be one of either "train" or
 "verify".

 Before a verification/identification session is started, the client
 MAY only request that VERIFY-ROLLBACK and generic "SET-PARAMS" and
 "GET-PARAMS" operations be performed on the verifier resource. The
 server MUST return status-code 402 "Method not valid in this state"
 for all other verification operations.

 A verifier resource MUST NOT have more than a single session active
 at one time.

 C->S: MRCP/2.0 ... START-SESSION 314161
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/voiceprintdbase/
 Voiceprint-Mode:verify
 Voiceprint-Identifier:johnsmith.voiceprint
 Adapt-Model:true

 S->C: MRCP/2.0 ... 314161 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

11.7. END-SESSION

 The END-SESSION method terminates an ongoing verification session and
 releases the verification voiceprint resources. The session may
 terminate in one of three ways:
 1. abort - the voiceprint adaptation or creation may be aborted so
 that the voiceprint remains unchanged (or is not created).
 2. commit - when terminating a voiceprint training session, the new
 voiceprint is committed to the repository.
 3. adapt - an existing voiceprint is modified using a successful
 verification.

 The Abort-Model header field MAY be included in the END-SESSION to

Burnett & Shanmugham Expires January 12, 2012 [Page 159]

Internet-Draft MRCPv2 July 2011

 control whether or not to abort any pending changes to the
 voiceprint. The default behavior is to commit (not abort) any
 pending changes to the designated voiceprint.

 The END-SESSION method may be safely executed multiple times without
 first executing the START-SESSION method. Any additional executions
 of this method without an intervening use of the START-SESSION method
 have no effect on the verifier resource.

 The following example assumes there is either a training session or a
 verification session in progress.

 C->S: MRCP/2.0 ... END-SESSION 314174
 Channel-Identifier:32AECB23433801@speakverify
 Abort-Model:true

 S->C: MRCP/2.0 ... 314174 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

11.8. QUERY-VOICEPRINT

 The QUERY-VOICEPRINT method is used to get status information on a
 particular voiceprint and can be used by the client to ascertain if a
 voiceprint or repository exists and if it contains trained
 voiceprints.

 The response to the QUERY-VOICEPRINT request contains an indication
 of the status of the designated voiceprint in the Voiceprint-Exists
 header field, allowing the client to determine whether to use the
 current voiceprint for verification, train a new voiceprint, or
 choose a different voiceprint.

 A voiceprint is completely specified by providing a repository
 location and a voiceprint identifier. The particular voiceprint or
 identity within the repository is specified by a string identifier
 that is unique within the repository. The Voiceprint-Identifier
 header field carries this unique voiceprint identifier within a given
 repository.

 The following example assumes a verification session is in progress
 and the voiceprint exists in the voiceprint repository.

Burnett & Shanmugham Expires January 12, 2012 [Page 160]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... QUERY-VOICEPRINT 314168
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/voiceprints/
 Voiceprint-Identifier:johnsmith.voiceprint

 S->C: MRCP/2.0 ... 314168 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/voiceprints/
 Voiceprint-Identifier:johnsmith.voiceprint
 Voiceprint-Exists:true

 The following example assumes that the URI provided in the
 Repository-URI header field is a bad URI.

 C->S: MRCP/2.0 ... QUERY-VOICEPRINT 314168
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/bad-uri/
 Voiceprint-Identifier:johnsmith.voiceprint

 S->C: MRCP/2.0 ... 314168 405 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/bad-uri/
 Voiceprint-Identifier:johnsmith.voiceprint
 Completion-Cause:007 repository-uri-failure

11.9. DELETE-VOICEPRINT

 The DELETE-VOICEPRINT method removes a voiceprint from a repository.
 This method MUST carry the Repository-URI and Voiceprint-Identifier
 header fields.

 If the corresponding voiceprint does not exist, the DELETE-VOICEPRINT
 method MUST return a 200 status code.

 The following example demonstrates a DELETE-VOICEPRINT operation to
 remove a specific voiceprint.

 C->S: MRCP/2.0 ... DELETE-VOICEPRINT 314168
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/bad-uri/
 Voiceprint-Identifier:johnsmith.voiceprint

 S->C: MRCP/2.0 ... 314168 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

Burnett & Shanmugham Expires January 12, 2012 [Page 161]

Internet-Draft MRCPv2 July 2011

11.10. VERIFY

 The VERIFY method is used to request that the verifier resource
 either train/adapt the voiceprint or verify/identify a claimed
 identity. If the voiceprint is new or was deleted by a previous
 DELETE-VOICEPRINT method, the VERIFY method trains the voiceprint.
 If the voiceprint already exits, it is adapted and not retrained by
 the VERIFY command.

 C->S: MRCP/2.0 ... VERIFY 543260
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 543260 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speakverify

 When the VERIFY request is completes, the MRCPv2 server MUST send a
 VERIFICATION-COMPLETE event to the client.

11.11. VERIFY-FROM-BUFFER

 The VERIFY-FROM-BUFFER method directs the verifier resource to verify
 buffered audio against a voiceprint. Only one VERIFY or VERIFY-FROM-
 BUFFER method may be active for a verifier resource at a time.

 The buffered audio is not consumed by this method and thus VERIFY-
 FROM-BUFFER may be invoked multiple times by the client to attempt
 verification against different voiceprints.

 For the VERIFY-FROM-BUFFER method, the server MAY optionally return
 an IN-PROGRESS response before the VERIFICATION-COMPLETE event.

 When the VERIFY-FROM-BUFFER method is invoked and the verification
 buffer is in use by another resource sharing it, the server MUST
 return an IN-PROGRESS response and wait until the buffer is available
 to it. The verification buffer is owned by the verifier resource but
 is shared with write access from other input resources on the same
 session. Hence, it is considered to be in use if there is a read or
 write operation such as a RECORD or RECOGNIZE with the Ver-Buffer-
 Utterance header field set to "true" on a resource that shares this
 buffer. Note that if a RECORD or RECOGNIZE method returns with a
 failure cause code, the VERIFY-FROM-BUFFER request waiting to process
 that buffer MUST also fail with a Completion-Cause of 005 (buffer-
 empty).

 The following example illustrates the usage of some buffering
 methods. In this scenario the client first performed a live
 verification, but the utterance had been rejected. In the meantime,
 the utterance is also saved to the audio buffer. Then, another

Burnett & Shanmugham Expires January 12, 2012 [Page 162]

Internet-Draft MRCPv2 July 2011

 voiceprint is used to do verification against the audio buffer and
 the utterance is accepted. For the example, we assume both Num-Min-
 Verification-Phrases and Num-Max-Verification-Phrases are 1.

 C->S: MRCP/2.0 ... START-SESSION 314161
 Channel-Identifier:32AECB23433801@speakverify
 Verification-Mode:verify
 Adapt-Model:true
 Repository-URI:http://www.example.com/voiceprints
 Voiceprint-Identifier:johnsmith.voiceprint

 S->C: MRCP/2.0 ... 314161 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

 C->S: MRCP/2.0 ... VERIFY 314162
 Channel-Identifier:32AECB23433801@speakverify
 Ver-buffer-utterance:true

 S->C: MRCP/2.0 ... 314162 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... VERIFICATION-COMPLETE 314162 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="What-Grammar-URI">
 <verification-result>
 <voiceprint id="johnsmith">
 <incremental>
 <utterance-length> 500 </utterance-length>
 <device> cellular-phone </device>
 <gender> female </gender>
 <decision> rejected </decision>
 <verification-score> 0.05465 </verification-score>
 </incremental>
 <cumulative>
 <utterance-length> 500 </utterance-length>
 <device> cellular-phone </device>
 <gender> female </gender>
 <decision> rejected </decision>
 <verification-score> 0.05465 </verification-score>
 </cumulative>
 </voiceprint>
 </verification-result>

Burnett & Shanmugham Expires January 12, 2012 [Page 163]

Internet-Draft MRCPv2 July 2011

 </result>

 C->S: MRCP/2.0 ... QUERY-VOICEPRINT 314163
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/voiceprints/
 Voiceprint-Identifier:johnsmith

 S->C: MRCP/2.0 ... 314163 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Repository-URI:http://www.example.com/voiceprints/
 Voiceprint-Identifier:johnsmith.voiceprint
 Voiceprint-Exists:true

 C->S: MRCP/2.0 ... START-SESSION 314164
 Channel-Identifier:32AECB23433801@speakverify
 Verification-Mode:verify
 Adapt-Model:true
 Repository-URI:http://www.example.com/voiceprints
 Voiceprint-Identifier:marysmith.voiceprint

 S->C: MRCP/2.0 ... 314164 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

 C->S: MRCP/2.0 ... VERIFY-FROM-BUFFER 314165
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 314165 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... VERIFICATION-COMPLETE 314165 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="What-Grammar-URI">
 <verification-result>
 <voiceprint id="marysmith">
 <incremental>
 <utterance-length> 1000 </utterance-length>
 <device> cellular-phone </device>
 <gender> female </gender>
 <decision> accepted </decision>
 <verification-score> 0.98 </verification-score>
 </incremental>
 <cumulative>

Burnett & Shanmugham Expires January 12, 2012 [Page 164]

Internet-Draft MRCPv2 July 2011

 <utterance-length> 1000 </utterance-length>
 <device> cellular-phone </device>
 <gender> female </gender>
 <decision> accepted </decision>
 <verification-score> 0.98 </verification-score>
 </cumulative>
 </voiceprint>
 </verification-result>
 </result>

 C->S: MRCP/2.0 ... END-SESSION 314166
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 314166 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

 VERIFY-FROM-BUFFER example

11.12. VERIFY-ROLLBACK

 The VERIFY-ROLLBACK method discards the last buffered utterance or
 discards the last live utterances (when the mode is "train" or
 "verify"). The client should invoke this method when the user
 provides undesirable input such as non-speech noises, side-speech,
 out-of-grammar utterances, commands, etc. Note that this method does
 not provide a stack of rollback states. Executing VERIFY-ROLLBACK
 twice in succession without an intervening recognition operation has
 no effect on the second attempt.

 C->S: MRCP/2.0 ... VERIFY-ROLLBACK 314165
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 314165 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

 VERFY-ROLLBACK Example

11.13. STOP

 The "STOP" method from the client to the server tells the verifier
 resource to stop the VERIFY or VERIFY-FROM-BUFFER request if one is
 active. If such a request is active and the "STOP" request
 successfully terminated it, then the response header section contains
 an active-request-id-list header field containing the request-id of
 the VERIFY or VERIFY-FROM-BUFFER request that was terminated. In
 this case, no VERIFICATION-COMPLETE event is sent for the terminated
 request. If there was no verify request active, then the response

Burnett & Shanmugham Expires January 12, 2012 [Page 165]

Internet-Draft MRCPv2 July 2011

 MUST NOT contain an active-request-id-list header field. Either way
 the response MUST contain a status-code of 200 (Success).

 The "STOP" method can carry a Abort-Verification header field which
 specifies if the verification result until that point should be
 discarded or returned. If this header field is not present or if the
 value is "true", the verification result is discarded and the "STOP"
 response does not contain any result data. If the header field is
 present and its value is "false", the "STOP" response MUST contain a
 Completion-Cause header field and carry the Verification result data
 in its body.

 An aborted VERIFY request does an automatic roll-back and hence does
 not affect the cumulative score. A VERIFY request that was stopped
 with no Abort-Verification header field or with the Abort-
 Verification header field set to "false" does affect cumulative
 scores and would need to be explicitly rolled-back if the client does
 not want the verification result considered in the cumulative scores.

 The following example assumes a voiceprint identity has already been
 established.

 C->S: MRCP/2.0 ... VERIFY 314177
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 314177 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speakverify

 C->S: MRCP/2.0 ... STOP 314178
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 314178 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Active-Request-Id-List:314177

 STOP verification Example

11.14. START-INPUT-TIMERS

 This request is sent from the client to the verifier resource to
 start the no-input timer, usually once the client has ascertained
 that any audio prompts to the user have played to completion.

 C->S: MRCP/2.0 ... START-INPUT-TIMERS 543260
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 543260 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

Burnett & Shanmugham Expires January 12, 2012 [Page 166]

Internet-Draft MRCPv2 July 2011

11.15. VERIFICATION-COMPLETE

 The VERIFICATION-COMPLETE event follows a call to VERIFY or VERIFY-
 FROM-BUFFER and is used to communicate the verification results to
 the client. The event message body contains only verification
 results.

 S->C: MRCP/2.0 ... VERIFICATION-COMPLETE 543259 COMPLETE
 Completion-Cause:000 success
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="What-Grammar-URI">
 <verification-result>
 <voiceprint id="johnsmith">
 <incremental>
 <utterance-length> 500 </utterance-length>
 <device> cellular-phone </device>
 <gender> male </gender>
 <decision> accepted </decision>
 <verification-score> 0.85 </verification-score>
 </incremental>
 <cumulative>
 <utterance-length> 1500 </utterance-length>
 <device> cellular-phone </device>
 <gender> male </gender>
 <decision> accepted </decision>
 <verification-score> 0.75 </verification-score>
 </cumulative>
 </voiceprint>
 </verification-result>
 </result>

11.16. START-OF-INPUT

 The START-OF-INPUT event is returned from the server to the client
 once the server has detected speech. This event is always returned
 by the verifier resource when speech has been detected, irrespective
 of whether the recognizer and verifier resources share the same
 session or not.

 S->C: MRCP/2.0 ... START-OF-INPUT 543259 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speakverify

Burnett & Shanmugham Expires January 12, 2012 [Page 167]

Internet-Draft MRCPv2 July 2011

11.17. CLEAR-BUFFER

 The CLEAR-BUFFER method can be used to clear the verification buffer.
 This buffer is used to buffer speech during a recognition, record or
 verification operations that may later be used by VERIFY-FROM-BUFFER.
 As noted before, the buffer associated with the verifier resource is
 shared by other input resources like recognizers and recorders.
 Hence, a CLEAR-BUFFER request fails if the verification buffer is in
 use. This can happen when any one of the input resources that shares
 this buffer has an active read or write operation such as RECORD,
 RECOGNIZE or VERIFY with the Ver-Buffer-Utterance header field set to
 "true".

 C->S: MRCP/2.0 ... CLEAR-BUFFER 543260
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 543260 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify

11.18. GET-INTERMEDIATE-RESULT

 A client can use the GET-INTERMEDIATE-RESULT method to poll for
 intermediate results of a verification request that is in progress.
 Invoking this method does not change the state of the resource. The
 verifier resource collects the accumulated verification results and
 returns the information in the method response. The message body in
 the response to a GET-INTERMEDIATE-RESULT REQUEST contains only
 verification results. The method response MUST NOT contain a
 Completion-Cause header field as the request is not yet complete. If
 the resource does not have a verification in progress the response
 has a 402 failure status-code and no result in the body.

Burnett & Shanmugham Expires January 12, 2012 [Page 168]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... GET-INTERMEDIATE-RESULT 543260
 Channel-Identifier:32AECB23433801@speakverify

 S->C: MRCP/2.0 ... 543260 200 COMPLETE
 Channel-Identifier:32AECB23433801@speakverify
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 grammar="What-Grammar-URI">
 <verification-result>
 <voiceprint id="marysmith">
 <incremental>
 <utterance-length> 50 </utterance-length>
 <device> cellular-phone </device>
 <gender> female </gender>
 <decision> undecided </decision>
 <verification-score> 0.85 </verification-score>
 </incremental>
 <cumulative>
 <utterance-length> 150 </utterance-length>
 <device> cellular-phone </device>
 <gender> female </gender>
 <decision> undecided </decision>
 <verification-score> 0.65 </verification-score>
 </cumulative>
 </voiceprint>
 </verification-result>
 </result>

12. Security Considerations

 MRCPv2 is designed to comply with the security-related requirements
 documented in SpeechSC Requirements [RFC4313]. Implementers and
 users of MRCPv2 are strongly encouraged to read the Security
 Considerations section of [RFC4313], because that document contains
 discussion of a number of important security issues associated with
 the utilization of speech as biometric authentication technology, and
 on the threats against systems which store recorded speech, contain
 large corpora of voiceprints, and send and receive sensitive
 information based on voice input to a recognizer or speech output
 from a synthesizer. Specific security measures employed by MRCPv2
 are summarized in the following subsections. See the corresponding
 sections of this specification for how the security-related machinery
 is invoked by individual protocol operations.

Burnett & Shanmugham Expires January 12, 2012 [Page 169]

Internet-Draft MRCPv2 July 2011

12.1. Rendezvous and Session Establishment

 MRCPv2 control sessions are established as media sessions described
 by SDP within the context of a SIP dialog. In order to ensure secure
 rendezvous between MRCPv2 clients and servers, the following are
 required:

 1. The SIP implementation in MRCPv2 clients and servers MUST support
 SIP digest authentication [RFC3261] and SHOULD employ it.
 2. The SIP implementation in MRCPv2 clients and servers SHOULD
 employ ’sips’ URIs, including that clients and servers SHOULD set
 up TLS [RFC5246] connections.
 3. If media stream cryptographic keying is done through SDP (e.g.
 using [RFC4568]), the MRCPv2 clients and servers MUST employ
 SIPS:.
 4. When TLS is used for SIP, the client MUST verify the identity of
 the server to which it connects, following the rules and
 guidelines defined in [RFC5922].

12.2. Control channel protection

 Sensitive data is carried over the MRCPv2 control channel. This
 includes things like the output of speech recognition operations,
 speaker verification results, input to text-to-speech conversion,
 personally-identifying grammars, etc. For this reason MRCPv2 servers
 must be properly authenticated and the control channel must permit
 the use of both confidentiality and integrity for the data. To
 ensure control channel protection, MRCPv2 clients and servers MUST
 support TLS and SHOULD utilize it by default unless alternative
 control channel protection is used. When TLS is used, the client
 MUST verify the identity of the server to which it connects,
 following the rules and guidelines defined in [RFC4572]. If there
 are multiple TLS-protected channels between the client and the
 server, the server MUST NOT send a response to the client over a
 channel for which the TLS identities of the server or client differ
 from the channel over which the server received the corresponding
 request. Alternative control channel protection MAY be used if
 desired (e.g. Security Architecture for the Internet Protocol
 (IPsec) [RFC4301]).

12.3. Media session protection

 Sensitive data is also carried on media sessions terminating on
 MRCPv2 servers (the other end of a media channel may or may not be on
 the MRCPv2 client). This data includes the user’s spoken utterances
 and the output of text-to-speech operations. MRCPv2 servers MUST
 support a security mechanism for protection of audio media sessions.
 MRCPv2 clients that originate or consume audio similarly MUST support

Burnett & Shanmugham Expires January 12, 2012 [Page 170]

Internet-Draft MRCPv2 July 2011

 a security mechanism for protection of the audio. If appropriate,
 usage of the Secure Real-time Transport Protocol (SRTP) [RFC3711] is
 RECOMMENDED.

12.4. Indirect Content Access

 MCRPv2 employs content indirection extensively. Content may be
 fetched and/or stored based on URI-addressing on systems other than
 the MRCPv2 client or server. Not all of the stored content is
 necessarily sensitive (e.g. XML schemas), but the majority generally
 needs protection, and some indirect content, such as voice recordings
 and voiceprints, are extremely sensitive and must always be
 protected. MRCPv2 clients and servers MUST implement HTTPS for
 indirect content access, and SHOULD employ secure access for all
 sensitive indirect content. Other secure URI-schemes such as Secure
 FTP (FTPS) [RFC4217] MAY also be used. See Section 6.2.15 for the
 header fields used to transfer cookie information between the MRCPv2
 client and server if needed for authentication.

 MRCPv2 makes no inherent assumptions about the lifetime and access
 controls associated with a URI. For example, if neither
 authentication nor scheme-specific access controls are used, a leak
 of the URI is equivalent to a leak of the content. Moreover, MRCPv2
 makes no specific demands on the lifetime of a URI. If a server
 offers a URI and the client takes a long, long time to access that
 URI, the server may have removed the resource in the interim time
 period. MRCPv2 deals with this case by using the URI access scheme’s
 resource not found error, such as 404 for HTTPS. How long a server
 should keep a dynamic resource available is highly application and
 context dependent. However, the server SHOULD keep the resource
 available for a reasonable amount of time to make it likely the
 client will have the resource available when the client needs the
 resource. Conversely, to mitigate state exhaustion attacks, MRCPv2
 servers are not obligated to keep resources and resource state in
 perpetuity. The server SHOULD delete dynamically-generated resources
 associated with an MRCPv2 session when the session ends.

 One method to avoid resource leakage is for the server to use one-
 time resource URIs. In this instance, there can be only a single
 access to the underlying resource using the given URI. A downside to
 this approach is if an attacker uses the URI before the client uses
 the URI, then the client is denied the resource. Other methods would
 be to adopt a mechanism similar to the URLAUTH IMAP extension
 [RFC4467], where the server sets cryptographic checks on URI usage,
 as well as capabilities for expiration, revocation, and so on.
 Specifying such a mechanism is beyond the scope of this document.

Burnett & Shanmugham Expires January 12, 2012 [Page 171]

Internet-Draft MRCPv2 July 2011

12.5. Protection of stored media

 MRCPv2 applications often require the use of stored media. Voice
 recordings are both stored (e.g. for diagnosis and system tuning),
 and fetched (for replaying utterances into multiple MRCPv2
 resources). Voiceprints are fundamental to the speaker
 identification and verification functions. This data can be
 extremely sensitive and can present substantial privacy and
 impersonation risks if stolen. Systems employing MRCPv2 should be
 deployed in ways that minimize these risks. The SpeechSC
 Requirements [RFC4313] contains a more extensive discussion of these
 risks and ways they may be mitigated.

12.6. DTMF and recognition buffers

 DTMF buffers and recognition buffers may grow large enough to exceed
 the capabilities of a server, and the server MUST be prepared to
 gracefully handle resource consumption. A server MAY respond with
 the appropriate recognition incomplete if the server is in danger of
 running out of resources.

13. IANA Considerations

13.1. New registries

 This section describes the name spaces (registries) for MRCPv2 that
 IANA is requested to create and maintain. Assignment/registration
 policies are described in RFC5226 [RFC5226].

13.1.1. MRCPv2 resource types

 IANA SHALL create a new name space of "MRCPv2 resource types". All
 maintenance within and additions to the contents of this name space
 MUST be according to the "Standards Action" registration policy. The
 initial contents of the registry, defined in Section 4.2, are given
 below:
 Resource type Resource description Reference
 ------------- -------------------- ---------
 speechrecog Speech Recognizer [RFCXXXX]
 dtmfrecog DTMF Recognizer [RFCXXXX]
 speechsynth Speech Synthesizer [RFCXXXX]
 basicsynth Basic Synthesizer [RFCXXXX]
 speakverify Speaker Verifier [RFCXXXX]
 recorder Speech Recorder [RFCXXXX]

Burnett & Shanmugham Expires January 12, 2012 [Page 172]

Internet-Draft MRCPv2 July 2011

13.1.2. MRCPv2 methods and events

 IANA SHALL create a new name space of "MRCPv2 methods and events".
 All maintenance within and additions to the contents of this name
 space MUST be according to the "Standards Action" registration
 policy. The initial contents of the registry, defined by the
 "method-name" and "event-name" BNF in Section 15 and explained in
 Section 5.2 and Section 5.5, are given below.

Burnett & Shanmugham Expires January 12, 2012 [Page 173]

Internet-Draft MRCPv2 July 2011

 Name Resource type Method/Event Reference
 ---- ------------- ------------ ---------
 SET-PARAMS Generic Method [RFCXXXX]
 GET-PARAMS Generic Method [RFCXXXX]
 SPEAK Synthesizer Method [RFCXXXX]
 STOP Synthesizer Method [RFCXXXX]
 PAUSE Synthesizer Method [RFCXXXX]
 RESUME Synthesizer Method [RFCXXXX]
 BARGE-IN-OCCURRED Synthesizer Method [RFCXXXX]
 CONTROL Synthesizer Method [RFCXXXX]
 DEFINE-LEXICON Synthesizer Method [RFCXXXX]
 DEFINE-GRAMMAR Recognizer Method [RFCXXXX]
 RECOGNIZE Recognizer Method [RFCXXXX]
 INTERPRET Recognizer Method [RFCXXXX]
 GET-RESULT Recognizer Method [RFCXXXX]
 START-INPUT-TIMERS Recognizer Method [RFCXXXX]
 STOP Recognizer Method [RFCXXXX]
 START-PHRASE-ENROLLMENT Recognizer Method [RFCXXXX]
 ENROLLMENT-ROLLBACK Recognizer Method [RFCXXXX]
 END-PHRASE-ENROLLMENT Recognizer Method [RFCXXXX]
 MODIFY-PHRASE Recognizer Method [RFCXXXX]
 DELETE-PHRASE Recognizer Method [RFCXXXX]
 RECORD Recorder Method [RFCXXXX]
 STOP Recorder Method [RFCXXXX]
 START-INPUT-TIMERS Recorder Method [RFCXXXX]
 START-SESSION Verifier Method [RFCXXXX]
 END-SESSION Verifier Method [RFCXXXX]
 QUERY-VOICEPRINT Verifier Method [RFCXXXX]
 DELETE-VOICEPRINT Verifier Method [RFCXXXX]
 VERIFY Verifier Method [RFCXXXX]
 VERIFY-FROM-BUFFER Verifier Method [RFCXXXX]
 VERIFY-ROLLBACK Verifier Method [RFCXXXX]
 STOP Verifier Method [RFCXXXX]
 START-INPUT-TIMERS Verifier Method [RFCXXXX]
 GET-INTERMEDIATE-RESULT Verifier Method [RFCXXXX]
 SPEECH-MARKER Synthesizer Event [RFCXXXX]
 SPEAK-COMPLETE Synthesizer Event [RFCXXXX]
 START-OF-INPUT Recognizer Event [RFCXXXX]
 RECOGNITION-COMPLETE Recognizer Event [RFCXXXX]
 INTERPRETATION-COMPLETE Recognizer Event [RFCXXXX]
 START-OF-INPUT Recorder Event [RFCXXXX]
 RECORD-COMPLETE Recorder Event [RFCXXXX]
 VERIFICATION-COMPLETE Verifier Event [RFCXXXX]
 START-OF-INPUT Verifier Event [RFCXXXX]

Burnett & Shanmugham Expires January 12, 2012 [Page 174]

Internet-Draft MRCPv2 July 2011

13.1.3. MRCPv2 header fields

 IANA SHALL create a new name space of "MRCPv2 header fields". All
 maintenance within and additions to the contents of this name space
 MUST be according to the "Standards Action" registration policy. The
 initial contents of the registry, defined by the "message-header" BNF
 in Section 15 and explained in Section 5.1, are given below. Note
 that the values permitted for the "Vendor-Specific-Parameters"
 parameter are managed according to a different policy. See
 Section 13.1.6.
 Name Resource type Reference
 ---- ------------- ---------
 channel-identifier Generic [RFCXXXX]
 accept Generic [RFC2616]
 active-request-id-list Generic [RFCXXXX]
 proxy-sync-id Generic [RFCXXXX]
 accept-charset Generic [RFC2616]
 content-type Generic [RFCXXXX]
 content-id Generic [RFC2392, RFC2046, and RFC5322]
 content-base Generic [RFCXXXX]
 content-encoding Generic [RFCXXXX]
 content-location Generic [RFCXXXX]
 content-length Generic [RFCXXXX]
 fetch-timeout Generic [RFCXXXX]
 cache-control Generic [RFCXXXX]
 logging-tag Generic [RFCXXXX]
 set-cookie Generic [RFCXXXX]
 set-cookie2 Generic [RFCXXXX]
 vendor-specific Generic [RFCXXXX]
 jump-size Synthesizer [RFCXXXX]
 kill-on-barge-in Synthesizer [RFCXXXX]
 speaker-profile Synthesizer [RFCXXXX]
 completion-cause Synthesizer [RFCXXXX]
 completion-reason Synthesizer [RFCXXXX]
 voice-parameter Synthesizer [RFCXXXX]
 prosody-parameter Synthesizer [RFCXXXX]
 speech-marker Synthesizer [RFCXXXX]
 speech-language Synthesizer [RFCXXXX]
 fetch-hint Synthesizer [RFCXXXX]
 audio-fetch-hint Synthesizer [RFCXXXX]
 failed-uri Synthesizer [RFCXXXX]
 failed-uri-cause Synthesizer [RFCXXXX]
 speak-restart Synthesizer [RFCXXXX]
 speak-length Synthesizer [RFCXXXX]
 load-lexicon Synthesizer [RFCXXXX]
 lexicon-search-order Synthesizer [RFCXXXX]
 confidence-threshold Recognizer [RFCXXXX]
 sensitivity-level Recognizer [RFCXXXX]

Burnett & Shanmugham Expires January 12, 2012 [Page 175]

Internet-Draft MRCPv2 July 2011

 speed-vs-accuracy Recognizer [RFCXXXX]
 n-best-list-length Recognizer [RFCXXXX]
 input-type Recognizer [RFCXXXX]
 no-input-timeout Recognizer [RFCXXXX]
 recognition-timeout Recognizer [RFCXXXX]
 waveform-uri Recognizer [RFCXXXX]
 input-waveform-uri Recognizer [RFCXXXX]
 completion-cause Recognizer [RFCXXXX]
 completion-reason Recognizer [RFCXXXX]
 recognizer-context-block Recognizer [RFCXXXX]
 start-input-timers Recognizer [RFCXXXX]
 speech-complete-timeout Recognizer [RFCXXXX]
 speech-incomplete-timeout Recognizer [RFCXXXX]
 dtmf-interdigit-timeout Recognizer [RFCXXXX]
 dtmf-term-timeout Recognizer [RFCXXXX]
 dtmf-term-char Recognizer [RFCXXXX]
 failed-uri Recognizer [RFCXXXX]
 failed-uri-cause Recognizer [RFCXXXX]
 save-waveform Recognizer [RFCXXXX]
 media-type Recognizer [RFCXXXX]
 new-audio-channel Recognizer [RFCXXXX]
 speech-language Recognizer [RFCXXXX]
 ver-buffer-utterance Recognizer [RFCXXXX]
 recognition-mode Recognizer [RFCXXXX]
 cancel-if-queue Recognizer [RFCXXXX]
 hotword-max-duration Recognizer [RFCXXXX]
 hotword-min-duration Recognizer [RFCXXXX]
 interpret-text Recognizer [RFCXXXX]
 dtmf-buffer-time Recognizer [RFCXXXX]
 clear-dtmf-buffer Recognizer [RFCXXXX]
 early-no-match Recognizer [RFCXXXX]
 num-min-consistent-pronunciations Recognizer [RFCXXXX]
 consistency-threshold Recognizer [RFCXXXX]
 clash-threshold Recognizer [RFCXXXX]
 personal-grammar-uri Recognizer [RFCXXXX]
 enroll-utterance Recognizer [RFCXXXX]
 phrase-id Recognizer [RFCXXXX]
 phrase-nl Recognizer [RFCXXXX]
 weight Recognizer [RFCXXXX]
 save-best-waveform Recognizer [RFCXXXX]
 new-phrase-id Recognizer [RFCXXXX]
 confusable-phrases-uri Recognizer [RFCXXXX]
 abort-phrase-enrollment Recognizer [RFCXXXX]
 sensitivity-level Recorder [RFCXXXX]
 no-input-timeout Recorder [RFCXXXX]
 completion-cause Recorder [RFCXXXX]
 completion-reason Recorder [RFCXXXX]
 failed-uri Recorder [RFCXXXX]

Burnett & Shanmugham Expires January 12, 2012 [Page 176]

Internet-Draft MRCPv2 July 2011

 failed-uri-cause Recorder [RFCXXXX]
 record-uri Recorder [RFCXXXX]
 media-type Recorder [RFCXXXX]
 max-time Recorder [RFCXXXX]
 trim-length Recorder [RFCXXXX]
 final-silence Recorder [RFCXXXX]
 capture-on-speech Recorder [RFCXXXX]
 ver-buffer-utterance Recorder [RFCXXXX]
 start-input-timers Recorder [RFCXXXX]
 new-audio-channel Recorder [RFCXXXX]
 repository-uri Verifier [RFCXXXX]
 voiceprint-identifier Verifier [RFCXXXX]
 verification-mode Verifier [RFCXXXX]
 adapt-model Verifier [RFCXXXX]
 abort-model Verifier [RFCXXXX]
 min-verification-score Verifier [RFCXXXX]
 num-min-verification-phrases Verifier [RFCXXXX]
 num-max-verification-phrases Verifier [RFCXXXX]
 no-input-timeout Verifier [RFCXXXX]
 save-waveform Verifier [RFCXXXX]
 media-type Verifier [RFCXXXX]
 waveform-uri Verifier [RFCXXXX]
 voiceprint-exists Verifier [RFCXXXX]
 ver-buffer-utterance Verifier [RFCXXXX]
 input-waveform-uri Verifier [RFCXXXX]
 completion-cause Verifier [RFCXXXX]
 completion-reason Verifier [RFCXXXX]
 speech-complete-timeout Verifier [RFCXXXX]
 new-audio-channel Verifier [RFCXXXX]
 abort-verification Verifier [RFCXXXX]
 start-input-timers Verifier [RFCXXXX]
 input-type Verifier [RFCXXXX]

13.1.4. MRCPv2 status codes

 IANA SHALL create a new name space of "MRCPv2 status codes" with the
 initial values that are defined in Section 5.4 All maintenance within
 and additions to the contents of this name space MUST be according to
 the "Specification Required with Expert Review" registration policy.

13.1.5. Grammar Reference List Parameters

 IANA SHALL create a new name space of "Grammar Reference List
 Parameters". All maintenance within and additions to the contents of
 this name space MUST be according to the "Specification Required with
 Expert Review" registration policy. There is only one initial
 parameter, "weight", which is defined in Section 13.5.1 and
 Section 9.9.

Burnett & Shanmugham Expires January 12, 2012 [Page 177]

Internet-Draft MRCPv2 July 2011

13.1.6. MRCPv2 vendor-specific parameters

 IANA SHALL create a new name space of "MRCPv2 vendor-specific
 parameters". All maintenance within and additions to the contents of
 this name space MUST be according to the "Hierarchical Allocation"
 registration policy as follows. Each name (corresponding to the
 "vendor-av-pair-name" ABNF production) MUST satisfy the syntax
 requirements of Internet Domain Names as described in section 2.3.1
 of RFC 1035 [RFC1035] (and as updated or obsoleted by successive
 RFCs), with one exception, the order of the domain names is reversed.
 For example, a vendor-specific parameter "foo" by example.com would
 have the form "com.example.foo". The first, or top-level domain, is
 restricted to exactly the set of Top-Level Internet Domains defined
 by IANA and will be updated by IANA when and only when that set
 changes. The second-level and all subdomains within the parameter
 name MUST be allocated according to the "Expert Review" policy. The
 Designated Expert MAY advise IANA to allow delegation of subdomains
 to the requester. As a general guideline, the Designated Expert is
 encouraged to manage the allocation of corporate, organizational, or
 institutional names and delegate all subdomains accordingly. For
 example, the Designated Expert MAY allocate "com.example" and
 delegate all subdomains of that name to the organization represented
 by the Internet domain name "example.com". For simplicity, the
 Designated Expert is encouraged to perform allocations according to
 the existing allocations of Internet domain names to organizations,
 institutions, corporations, etc.

 The registry contains a list of vendor-registered parameters, where
 each defined parameter is associated with a reference to an RFC
 defining it. The registry is initially empty.

13.2. NLSML-related registrations

13.2.1. application/nlsml+xml Media Type registration

 IANA is requested to register the following Media Type according to
 the process defined in RFC 4288 [RFC4288].
 To: ietf-types@iana.org
 Subject: Registration of media type application/nlsml+xml
 MIME media type name: application
 MIME subtype name: nlsml+xml
 Required parameters: none
 Optional parameters:
 charset: All of the considerations described in RFC 3023
 [RFC3023] also apply to the application/nlsml+xml media type.

Burnett & Shanmugham Expires January 12, 2012 [Page 178]

Internet-Draft MRCPv2 July 2011

 Encoding considerations: All of the considerations described in RFC
 3023 also apply to the application/nlsml+xml media type.
 Security considerations: As with HTML, NLSML documents contain links
 to other data stores (grammars, verifier resources, etc.). Unlike
 HTML, however, the data stores are not treated as media to be
 rendered. Nevertheless, linked files may themselves have security
 considerations, which would be those of the individual registered
 types. Additionally, this media type has all of the security
 considerations described in RFC 3023.
 Interoperability considerations: Although an NLSML document is
 itself a complete XML document, for a fuller interpretation of the
 content a receiver of an NLSML document may wish to access
 resources linked to by the document. The inability of an NLSML
 processor to access or process such linked resources could result
 in different behavior by the ultimate consumer of the data.
 Published specification: RFCXXXX
 Applications which use this media type: MRCPv2 clients and servers
 Additional information: none
 Magic number(s): There is no single initial octet sequence that is
 always present for NLSML files.
 Person & email address to contact for further information: Sarvi
 Shanmugham, sarvi@cisco.com
 Intended usage: This media type is expected to be used only in
 conjunction with MRCPv2.

13.3. NLSML XML Schema registration

 IANA is requested to register and maintain the following XML Schema.
 Information provided follows the template in RFC 3688 [RFC3688].
 XML element type: schema
 URI: http://www.ietf.org/xml/schema/mrcpv2
 Registrant Contact: IESG
 XML: See Section 16.1.

13.4. MRCPv2 XML Namespace registration

 IANA is requested to register and maintain the following XML Name
 space. Information provided follows the template in RFC 3688
 [RFC3688].
 XML element type: ns
 URI: http://www.ietf.org/xml/ns/mrcpv2
 Registrant Contact: IESG
 XML: RFCXXXX

13.5. text Media Type Registrations

 IANA is requested to register the following text Media Types
 according to the process defined in RFC 4288 [RFC4288].

Burnett & Shanmugham Expires January 12, 2012 [Page 179]

Internet-Draft MRCPv2 July 2011

13.5.1. text/grammar-ref-list

 To: ietf-types@iana.org
 Subject: Registration of media type text/grammar-ref-list
 MIME media type name: application
 MIME subtype name: text/grammar-ref-list
 Required parameters: none
 Optional parameters: none
 Encoding considerations: Depending on the transfer protocol, a
 transfer encoding may be necessary to deal with very long lines.
 Security considerations: This media type contains URIs which may
 represent references to external resources. As these resources
 are assumed to be speech recognition grammars, similar
 considerations as for the media types "application/srgs" and
 "application/srgs+xml" apply.
 Interoperability considerations; ’>’ must be percent encoded in URIs
 according to RFC 3986 [RFC3986].
 Published specification: The RECOGNIZE method of the MRCP protocol
 performs a recognition operation that matches input against a set
 of grammars. When matching against more than one grammar, it is
 sometimes necessary to use different weights for the individual
 grammars. These weights are not a property of the grammar
 resource itself but qualify the reference to that grammar for the
 particular recognition operation initiated by the RECOGNIZE
 method. The format of the proposed text/grammar-ref-list media
 type is as follows: body = *reference where reference = "<" uri
 ">" [parameters] CRLF parameters = ";" parameter *(";" parameter)
 and parameter = attribute "=" value. This specification currently
 only defines a ’weight’ parameter, but new parameters may be added
 through the "Grammar Reference List Parameters" IANA registry
 established through this specification. Example:
 <http://example.com/grammars/field1.gram>
 <http://example.com/grammars/field2.gram>;weight="0.85"
 <session:field3@form-level.store>;weight="0.9"
 <http://example.com/grammars/universals.gram>;weight="0.75"
 Applications which use this media type: MRCPv2 clients and servers
 Additional information: none
 Magic number(s): none
 Person & email address to contact for further information: Sarvi
 Shanmugham, sarvi@cisco.com
 Intended usage: This media type is expected to be used only in
 conjunction with MRCPv2.

13.6. session URI scheme registration

 IANA is requested to register the following new URI scheme. The
 information below follows the template given in RFC 4395 [RFC4395].

Burnett & Shanmugham Expires January 12, 2012 [Page 180]

Internet-Draft MRCPv2 July 2011

 URI scheme name: "session"
 Status: "Permanent"
 URI scheme syntax: The syntax of this scheme is identical to that
 defined for the "cid" scheme in section 2 of RFC 2392 [RFC2392].
 URI scheme semantics: The URI is intended to identify a data
 resource previously given to the network computing resource. The
 purpose of this scheme is to permit access to the specific
 resource for the lifetime of the session with the entity storing
 the resource. The media type of the resource CAN vary. There is
 no explicit mechanism for communication of the media type. This
 scheme is currently widely used internally by existing
 implementations, and the registration is intended to provide
 information in the rare (and unfortunate) case that the scheme is
 used elsewhere. The scheme SHOULD NOT be used for open internet
 protocols.
 Encoding considerations: There are no other encoding considerations
 for the ’session’ URIs not described in RFC 3986 [RFC3986]
 Applications/protocols that use this URI scheme name: This scheme
 name is used by MRCPv2 clients and servers.
 Interoperability considerations: Note that none of the resources are
 accessible after the MCRPv2 session ends, hence the name of the
 scheme. For clients who establish one MRCPv2 session only for the
 entire speech application being implemented this is sufficient,
 but clients who create, terminate, and recreate MRCP sessions for
 performance or scalability reasons will lose access to resources
 established in the earlier session(s).
 Security considerations: Generic security considerations for URIs
 described in RFC 3986 [RFC3986] apply to this scheme as well. The
 URIs defined here provide an identification mechanism only. Given
 that the communication channel between client and server is
 secure, that the server correctly accesses the resource associated
 with the URI, and that the server ensures session-only lifetime
 and access for each URI, the only additional security issues are
 those of the types of media referred to by the URI.
 Contact: Sarvi Shanmugham, sarvi@cisco.com
 Author/Change controller: IESG, iesg@ietf.org
 References: This specification, particularly sections Section 6.2.7,
 Section 8.5.2, Section 9.5.1, and Section 9.9.

13.7. SDP parameter registrations

 IANA is requested to register the following SDP parameter values.
 The information for each follows the template given in RFC 4566
 [RFC4566], Appendix B.

Burnett & Shanmugham Expires January 12, 2012 [Page 181]

Internet-Draft MRCPv2 July 2011

13.7.1. sub-registry "proto"

 "TCP/MRCPv2" value of the "proto" parameter
 Contact name, email address and telephone number: Sarvi Shanmugham,
 sarvi@cisco.com, +1.408.902.3875
 Name being registered (as it will appear in SDP): TCP/MRCPv2
 Long-form name in English: MCRPv2 over TCP
 Type of name: proto
 Explanation of name: This name represents the MCRPv2 protocol
 carried over TCP.
 Reference to specification of name: RFCXXXX

 "TCP/TLS/MRCPv2" value of the "proto" parameter
 Contact name, email address and telephone number: Sarvi Shanmugham,
 sarvi@cisco.com, +1.408.902.3875
 Name being registered (as it will appear in SDP): TCP/TLS/MRCPv2
 Long-form name in English: MCRPv2 over TLS over TCP
 Type of name: proto
 Explanation of name: This name represents the MCRPv2 protocol
 carried over TLS over TCP.
 Reference to specification of name: RFCXXXX

13.7.2. sub-registry "att-field (media-level)"

 "resource" value of the "att-field" parameter
 Contact name, email address and telephone number: Sarvi Shanmugham,
 sarvi@cisco.com, +1.408.902.3875
 Attribute name (as it will appear in SDP): resource
 Long-form attribute name in English: MRCPv2 resource type
 Type of attribute: media-level
 Subject to charset attribute? no
 Explanation of attribute: See Section 4.2 of RFCXXXX for description
 and examples.
 Specification of appropriate attribute values: See section
 Section 13.1.1 of RFCXXXX.

 "channel" value of the "att-field" parameter
 Contact name, email address and telephone number: Sarvi Shanmugham,
 sarvi@cisco.com, +1.408.902.3875
 Attribute name (as it will appear in SDP): channel
 Long-form attribute name in English: MRCPv2 resource channel
 identifier
 Type of attribute: media-level
 Subject to charset attribute? no

Burnett & Shanmugham Expires January 12, 2012 [Page 182]

Internet-Draft MRCPv2 July 2011

 Explanation of attribute: See Section 4.2 of RFCXXXX for description
 and examples.
 Specification of appropriate attribute values See Section 4.2 and
 the "channel-id" ABNF production rules of RFCXXXX.

 "cmid" value of the "att-field" parameter
 Contact name, email address and telephone number: Sarvi Shanmugham,
 sarvi@cisco.com, +1.408.902.3875
 Attribute name (as it will appear in SDP): cmid
 Long-form attribute name in English: MRCPv2 resource channel media
 identifier
 Type of attribute: media-level
 Subject to charset attribute? no
 Explanation of attribute: See Section 4.4 of RFCXXXX for description
 and examples.
 Specification of appropriate attribute values See Section 4.4 and
 the "cmid-attribute" ABNF production rules of RFCXXXX.

14. Examples

14.1. Message Flow

 The following is an example of a typical MRCPv2 session of speech
 synthesis and recognition between a client and a server. Although
 the SDP "s" attribute in these examples has a text description value
 to assist in understanding the examples, please keep in mind that RFC
 3264 [RFC3264] recommends that messages actually put on the wire use
 a space or a dash.

 The figure below illustrates opening a session to the MRCPv2 server.
 This exchange does not allocate a resource or setup media. It simply
 establishes a SIP session with the MRCPv2 server.

 C->S:
 INVITE sip:mresources@example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg1
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323123 INVITE
 Contact:<sip:sarvi@client.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0

Burnett & Shanmugham Expires January 12, 2012 [Page 183]

Internet-Draft MRCPv2 July 2011

 o=sarvi 2614933546 2614933546 IN IP4 192.0.2.12
 s=Set up MRCPv2 control and audio
 i=Initial contact
 c=IN IP4 192.0.2.12

 S->C:
 SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg1;received=192.0.32.10
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323123 INVITE
 Contact:<sip:mresources@server.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=- 3000000001 3000000001 IN IP4 192.0.2.11
 s=Set up MRCPv2 control and audio
 i=Initial contact
 c=IN IP4 192.0.2.11

 C->S:
 ACK sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg2
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323123 ACK
 Content-Length:0

 The client requests the server to create a synthesizer resource
 control channel to do speech synthesis. This also adds a media
 stream to send the generated speech. Note that in this example, the
 client requests a new MRCPv2 TCP stream between the client and the
 server. In the following requests, the client will ask to use the
 existing connection.

 C->S:
 INVITE sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg3
 Max-Forwards:6

Burnett & Shanmugham Expires January 12, 2012 [Page 184]

Internet-Draft MRCPv2 July 2011

 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323124 INVITE
 Contact:<sip:sarvi@client.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=sarvi 2614933546 2614933547 IN IP4 192.0.2.12
 s=Set up MRCPv2 control and audio
 i=Add TCP channel, synthesizer and one-way audio
 c=IN IP4 192.0.2.12
 t=0 0
 m=application 9 TCP/MRCPv2 1
 a=setup:active
 a=connection:new
 a=resource:speechsynth
 a=cmid:1
 m=audio 49170 RTP/AVP 0 96
 a=rtpmap:0 pcmu/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15
 a=recvonly
 a=mid:1

 S->C:
 SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg3;received=192.0.32.10
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323124 INVITE
 Contact:<sip:mresources@server.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=- 3000000001 3000000002 IN IP4 192.0.2.11
 s=Set up MRCPv2 control and audio
 i=Add TCP channel, synthesizer and one-way audio
 c=IN IP4 192.0.2.11
 t=0 0
 m=application 32416 TCP/MRCPv2 1
 a=setup:passive
 a=connection:new

Burnett & Shanmugham Expires January 12, 2012 [Page 185]

Internet-Draft MRCPv2 July 2011

 a=channel:32AECB23433801@speechsynth
 a=cmid:1
 m=audio 48260 RTP/AVP 0
 a=rtpmap:0 pcmu/8000
 a=sendonly
 a=mid:1

 C->S:
 ACK sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg4
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323124 ACK
 Content-Length:0

 This exchange allocates an additional resource control channel for a
 recognizer. Since a recognizer would need to receive an audio stream
 for recognition, this interaction also updates the audio stream to
 sendrecv, making it a 2-way audio stream.

 C->S:
 INVITE sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg5
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323125 INVITE
 Contact:<sip:sarvi@client.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=sarvi 2614933546 2614933548 IN IP4 192.0.2.12
 s=Set up MRCPv2 control and audio
 i=Add recognizer and duplex the audio
 c=IN IP4 192.0.2.12
 t=0 0
 m=application 9 TCP/MRCPv2 1
 a=setup:active
 a=connection:existing
 a=resource:speechsynth
 a=cmid:1

Burnett & Shanmugham Expires January 12, 2012 [Page 186]

Internet-Draft MRCPv2 July 2011

 m=audio 49170 RTP/AVP 0 96
 a=rtpmap:0 pcmu/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15
 a=recvonly
 a=mid:1
 m=application 9 TCP/MRCPv2 1
 a=setup:active
 a=connection:existing
 a=resource:speechrecog
 a=cmid:2
 m=audio 49180 RTP/AVP 0 96
 a=rtpmap:0 pcmu/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15
 a=sendonly
 a=mid:2

 S->C:
 SIP/2.0 200 OK
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg5;received=192.0.32.10
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323125 INVITE
 Contact:<sip:mresources@server.example.com>
 Content-Type:application/sdp
 Content-Length:...

 v=0
 o=- 3000000001 3000000003 IN IP4 192.0.2.11
 s=Set up MRCPv2 control and audio
 i=Add recognizer and duplex the audio
 c=IN IP4 192.0.2.11
 t=0 0
 m=application 32416 TCP/MRCPv2 1
 a=channel:32AECB23433801@speechsynth
 a=cmid:1
 m=audio 48260 RTP/AVP 0
 a=rtpmap:0 pcmu/8000
 a=sendonly
 a=mid:1
 m=application 32416 TCP/MRCPv2 1
 a=channel:32AECB23433801@speechrecog
 a=cmid:2
 m=audio 48260 RTP/AVP 0

Burnett & Shanmugham Expires January 12, 2012 [Page 187]

Internet-Draft MRCPv2 July 2011

 a=rtpmap:0 pcmu/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15
 a=recvonly
 a=mid:2

 C->S:
 ACK sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg6
 Max-Forwards:6
 To:MediaServer <sip:mresources@example.com>;tag=62784
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 Call-ID:a84b4c76e66710
 CSeq:323125 ACK
 Content-Length:0

 A MRCPv2 "SPEAK" request initiates speech.

Burnett & Shanmugham Expires January 12, 2012 [Page 188]

Internet-Draft MRCPv2 July 2011

 C->S:
 MRCP/2.0 ... SPEAK 543257
 Channel-Identifier:32AECB23433801@speechsynth
 Kill-On-Barge-In:false
 Voice-gender:neutral
 Voice-age:25
 Prosody-volume:medium
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>You have 4 new messages.</s>
 <s>The first is from Stephanie Williams
 <mark name="Stephanie"/>
 and arrived at <break/>
 <say-as interpret-as="vxml:time">0345p</say-as>.</s>
 <s>The subject is <prosody
 rate="-20%">ski trip</prosody></s>
 </p>
 </speak>

 S->C:
 MRCP/2.0 ... 543257 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechsynth
 Speech-Marker:timestamp=857205015059

 The synthesizer hits the special marker in the message to be spoken
 and faithfully informs the client of the event.

 S->C: MRCP/2.0 ... SPEECH-MARKER 543257 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechsynth
 Speech-Marker:timestamp=857206027059;Stephanie

 The synthesizer finishes with the "SPEAK" request.

 S->C: MRCP/2.0 ... SPEAK-COMPLETE 543257 COMPLETE
 Channel-Identifier:32AECB23433801@speechsynth
 Speech-Marker:timestamp=857207685213;Stephanie

Burnett & Shanmugham Expires January 12, 2012 [Page 189]

Internet-Draft MRCPv2 July 2011

 The recognizer is issued a request to listen for the customer
 choices.

 C->S: MRCP/2.0 ... RECOGNIZE 543258
 Channel-Identifier:32AECB23433801@speechrecog
 Content-Type:application/srgs+xml
 Content-Length:...

 <?xml version="1.0"?>
 <!-- the default grammar language is US English -->
 <grammar xmlns="http://www.w3.org/2001/06/grammar"
 xml:lang="en-US" version="1.0" root="request">
 <!-- single language attachment to a rule expansion -->
 <rule id="request">
 Can I speak to
 <one-of xml:lang="fr-CA">
 <item>Michel Tremblay</item>
 <item>Andre Roy</item>
 </one-of>
 </rule>
 </grammar>

 S->C: MRCP/2.0 ... 543258 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog

 The client issues the next MRCPv2 "SPEAK" method.

Burnett & Shanmugham Expires January 12, 2012 [Page 190]

Internet-Draft MRCPv2 July 2011

 C->S: MRCP/2.0 ... SPEAK 543259
 Channel-Identifier:32AECB23433801@speechsynth
 Kill-On-Barge-In:true
 Content-Type:application/ssml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
 xml:lang="en-US">
 <p>
 <s>Welcome to ABC corporation.</s>
 <s>Who would you like Talk to.</s>
 </p>
 </speak>

 S->C: MRCP/2.0 ... 543259 200 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechsynth
 Speech-Marker:timestamp=857207696314

 This next section of this ongoing example demonstrates how kill-on-
 barge-in support works. Since this last "SPEAK" request had Kill-On-
 Barge-In set to "true", when the recognizer (the server) generated
 the START-OF-INPUT event while a SPEAK was active the client
 immediately issued a BARGE-IN-OCCURRED method to the synthesizer
 resource. The speech synthesizer then terminated playback and
 notified the client. The completion-cause code provided the
 indication that this was a kill-on-barge-in interruption rather than
 a normal completion.

 Note that since the recognition and synthesizer resources are in the
 same session on the same server, to obtain a faster response the
 server might have internally relayed the start-of-input condition to
 the synthesizer directly, before receiving the expected BARGE-IN-
 OCCURRED event. However, any such communication is outside the scope
 of the MRCPv2 protocol.

Burnett & Shanmugham Expires January 12, 2012 [Page 191]

Internet-Draft MRCPv2 July 2011

 S->C: MRCP/2.0 ... START-OF-INPUT 543258 IN-PROGRESS
 Channel-Identifier:32AECB23433801@speechrecog
 Proxy-Sync-Id:987654321

 C->S: MRCP/2.0 ... BARGE-IN-OCCURRED 543259
 Channel-Identifier:32AECB23433801@speechsynth
 Proxy-Sync-Id:987654321

 S->C: MRCP/2.0 ... 543259 200 COMPLETE
 Channel-Identifier:32AECB23433801@speechsynth
 Active-Request-Id-List:543258
 Speech-Marker:timestamp=857206096314

 S->C: MRCP/2.0 ... SPEAK-COMPLETE 543259 COMPLETE
 Channel-Identifier:32AECB23433801@speechsynth
 Completion-Cause:001 barge-in
 Speech-Marker:timestamp=857207685213

 The recognition resource matched the spoken stream to a grammar and
 generated results. The result of the recognition is returned by the
 server as part of the RECOGNITION-COMPLETE event.

 S->C: MRCP/2.0 ... RECOGNITION-COMPLETE 543258 COMPLETE
 Channel-Identifier:32AECB23433801@speechrecog
 Completion-Cause:000 success
 Waveform-URI:<http://web.media.com/session123/audio.wav>;
 size=423523;duration=25432
 Content-Type:application/nlsml+xml
 Content-Length:...

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="session:request1@form-level.store">
 <interpretation>
 <instance name="Person">
 <ex:Person>
 <ex:Name> Andre Roy </ex:Name>
 </ex:Person>
 </instance>
 <input> may I speak to Andre Roy </input>
 </interpretation>
 </result>

 Since the client was now finished with the session, including all

Burnett & Shanmugham Expires January 12, 2012 [Page 192]

Internet-Draft MRCPv2 July 2011

 resources, it issued a SIP BYE request to close the SIP session.
 This caused all control channels and resources allocated under the
 session to be de-allocated.

 C->S: BYE sip:mresources@server.example.com SIP/2.0
 Via:SIP/2.0/TCP client.atlanta.example.com:5060;
 branch=z9hG4bK74bg7
 Max-Forwards:6
 From:Sarvi <sip:sarvi@example.com>;tag=1928301774
 To:MediaServer <sip:mresources@example.com>;tag=62784
 Call-ID:a84b4c76e66710
 CSeq:323126 BYE
 Content-Length:0

14.2. Recognition Result Examples

14.2.1. Simple ASR Ambiguity

 System: To which city will you be traveling?
 User: I want to go to Pittsburgh.

 <?xml version="1.0"?>
 <result xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns:ex="http://www.example.com/example"
 grammar="http://www.example.com/flight">
 <interpretation confidence="0.6">
 <instance>
 <ex:airline>
 <ex:to_city>Pittsburgh</ex:to_city>
 <ex:airline>
 <instance>
 <input mode="speech">
 I want to go to Pittsburgh
 </input>
 </interpretation>
 <interpretation confidence="0.4"
 <instance>
 <ex:airline>
 <ex:to_city>Stockholm</ex:to_city>
 </ex:airline>
 </instance>
 <input>I want to go to Stockholm</input>
 </interpretation>
 </result>

Burnett & Shanmugham Expires January 12, 2012 [Page 193]

Internet-Draft MRCPv2 July 2011

14.2.2. Mixed Initiative

 System: What would you like?
 User: I would like 2 pizzas, one with pepperoni and cheese,
 one with sausage and a bottle of coke, to go.

 This example includes an order object which in turn contains objects
 named "food_item", "drink_item" and "delivery_method". The
 representation assumes there are no ambiguities in the speech or
 natural language processing. Note that this representation also
 assumes some level of intra-sentential anaphora resolution, i.e., to
 resolve the two "one’s" as "pizza".

 <?xml version="1.0"?>
 <nl:result xmlns:nl="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns="http://www.example.com/example"
 grammar="http://www.example.com/foodorder">
 <nl:interpretation confidence="1.0" >
 <nl:instance>
 <order>
 <food_item confidence="1.0">
 <pizza>
 <ingredients confidence="1.0">
 pepperoni
 </ingredients>
 <ingredients confidence="1.0">
 cheese
 </ingredients>
 </pizza>
 <pizza>
 <ingredients>sausage</ingredients>
 </pizza>
 </food_item>
 <drink_item confidence="1.0">
 <size>2-liter</size>
 </drink_item>
 <delivery_method>to go</delivery_method>
 </order>
 </nl:instance>
 <nl:input mode="speech">I would like 2 pizzas,
 one with pepperoni and cheese, one with sausage
 and a bottle of coke, to go.
 </nl:input>
 </nl:interpretation>
 </nl:result>

Burnett & Shanmugham Expires January 12, 2012 [Page 194]

Internet-Draft MRCPv2 July 2011

14.2.3. DTMF Input

 A combination of DTMF input and speech is represented using nested
 input elements. For example:
 User: My pin is (dtmf 1 2 3 4)

 <input>
 <input mode="speech" confidence ="1.0"
 timestamp-start="2000-04-03T0:00:00"
 timestamp-end="2000-04-03T0:00:01.5">My pin is
 </input>
 <input mode="dtmf" confidence ="1.0"
 timestamp-start="2000-04-03T0:00:01.5"
 timestamp-end="2000-04-03T0:00:02.0">1 2 3 4
 </input>
 </input>

 Note that grammars that recognize mixtures of speech and DTMF are not
 currently possible in SRGS; however, this representation might be
 needed for other applications of NLSML, and this mixture capability
 might be introduced in future versions of SRGS.

14.2.4. Interpreting Meta-Dialog and Meta-Task Utterances

 Natural language communication makes use of meta-dialog and meta-task
 utterances. This specification is flexible enough so that meta
 utterances can be represented on an application-specific basis
 without requiring other standard markup.

 Here are two examples of how meta-task and meta-dialog utterances
 might be represented.

Burnett & Shanmugham Expires January 12, 2012 [Page 195]

Internet-Draft MRCPv2 July 2011

System: What toppings do you want on your pizza?
User: What toppings do you have?

<interpretation grammar="http://www.example.com/toppings">
 <instance>
 <question>
 <questioned_item>toppings<questioned_item>
 <questioned_property>
 availability
 </questioned_property>
 </question>
 </instance>
 <input mode="speech">
 what toppings do you have?
 </input>
</interpretation>

User: slow down.

<interpretation grammar="http://www.example.com/generalCommandsGrammar">
 <instance>
 <command>
 <action>reduce speech rate</action>
 <doer>system</doer>
 </command>
 </instance>
 <input mode="speech">slow down</input>
</interpretation>

14.2.5. Anaphora and Deixis

 This specification can be used on an application-specific basis to
 represent utterances that contain unresolved anaphoric and deictic
 references. Anaphoric references, which include pronouns and
 definite noun phrases that refer to something that was mentioned in
 the preceding linguistic context, and deictic references, which refer
 to something that is present in the non-linguistic context, present
 similar problems in that there may not be sufficient unambiguous
 linguistic context to determine what their exact role in the
 interpretation should be. In order to represent unresolved anaphora
 and deixis using this specification, one strategy would be for the
 developer to define a more surface-oriented representation that
 leaves the specific details of the interpretation of the reference
 open. (This assumes that a later component is responsible for
 actually resolving the reference).

Burnett & Shanmugham Expires January 12, 2012 [Page 196]

Internet-Draft MRCPv2 July 2011

 Example: (ignoring the issue of representing the input from the
 pointing gesture.)

 System: What do you want to drink?
 User: I want this (clicks on picture of large root beer.)

 <?xml version="1.0"?>
 <nl:result xmlns:nl="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns="http://www.example.com/example"
 grammar="http://www.example.com/beverages.grxml">
 <nl:interpretation>
 <nl:instance>
 <doer>I</doer>
 <action>want</action>
 <object>this</object>
 </nl:instance>
 <nl:input mode="speech">I want this</nl:input>
 </nl:interpretation>
 </nl:result>

14.2.6. Distinguishing Individual Items from Sets with One Member

 For programming convenience, it is useful to be able to distinguish
 between individual items and sets containing one item in the XML
 representation of semantic results. For example, a pizza order might
 consist of exactly one pizza, but a pizza might contain zero or more
 toppings. Since there is no standard way of marking this distinction
 directly in XML, in the current framework, the developer is free to
 adopt any conventions that would convey this information in the XML
 markup. One strategy would be for the developer to wrap the set of
 items in a grouping element, as in the following example.

 <order>
 <pizza>
 <topping-group>
 <topping>mushrooms</topping>
 </topping-group>
 </pizza>
 <drink>coke</drink>
 </order>

 In this example, the programmer can assume that there is supposed to
 be exactly one pizza and one drink in the order, but the fact that
 there is only one topping is an accident of this particular pizza
 order.

 Note that the client controls both the grammar and the semantics to
 be returned upon grammar matches, so the user of the MRCPv2 protocol

Burnett & Shanmugham Expires January 12, 2012 [Page 197]

Internet-Draft MRCPv2 July 2011

 is fully empowered to cause results to be returned in NLSML in such a
 way that the interpretation is clear to that user.

14.2.7. Extensibility

 Extensibility in NLSML is provided via result content flexibility, as
 discussed in the discussions of meta utterances and anaphora. NLSML
 can easily be used in sophisticated systems to convey application-
 specific information that more basic systems would not make use of,
 for example defining speech acts.

15. ABNF Normative Definition

 The following productions make use of the core rules defined in
 Section 6.1 of RFC 5234 [RFC5234].

LWS = [*WSP CRLF] 1*WSP ; linear whitespace

SWS = [LWS] ; sep whitespace

UTF8-NONASCII = %xC0-DF 1UTF8-CONT
 / %xE0-EF 2UTF8-CONT
 / %xF0-F7 3UTF8-CONT
 / %xF8-FB 4UTF8-CONT
 / %xFC-FD 5UTF8-CONT

UTF8-CONT = %x80-BF
UTFCHAR = %x21-7E
 / UTF8-NONASCII
param = *pchar

quoted-string = SWS DQUOTE *(qdtext / quoted-pair)
 DQUOTE

qdtext = LWS / %x21 / %x23-5B / %x5D-7E
 / UTF8-NONASCII

quoted-pair = "\" (%x00-09 / %x0B-0C / %x0E-7F)

token = 1*(alphanum / "-" / "." / "!" / "%" / "*"
 / "_" / "+" / "‘" / "’" / "˜")

reserved = ";" / "/" / "?" / ":" / "@" / "&" / "="
 / "+" / "$" / ","

mark = "-" / "_" / "." / "!" / "˜" / "*" / "’"
 / "(" / ")"

Burnett & Shanmugham Expires January 12, 2012 [Page 198]

Internet-Draft MRCPv2 July 2011

unreserved = alphanum / mark

pchar = unreserved / escaped
 / ":" / "@" / "&" / "=" / "+" / "$" / ","

alphanum = ALPHA / DIGIT

BOOLEAN = "true" / "false"

FLOAT = *DIGIT ["." *DIGIT]

escaped = "%" HEXDIG HEXDIG

fragment = *uric

uri = [absoluteURI / relativeURI]
 ["#" fragment]

absoluteURI = scheme ":" (hier-part / opaque-part)

relativeURI = (net-path / abs-path / rel-path)
 ["?" query]

hier-part = (net-path / abs-path) ["?" query]

net-path = "//" authority [abs-path]

abs-path = "/" path-segments

rel-path = rel-segment [abs-path]

rel-segment = 1*(unreserved / escaped / ";" / "@"
 / "&" / "=" / "+" / "$" / ",")

opaque-part = uric-no-slash *uric

uric = reserved / unreserved / escaped

uric-no-slash = unreserved / escaped / ";" / "?" / ":"
 / "@" / "&" / "=" / "+" / "$" / ","

path-segments = segment *("/" segment)

segment = *pchar *(";" param)

scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

authority = srvr / reg-name

Burnett & Shanmugham Expires January 12, 2012 [Page 199]

Internet-Draft MRCPv2 July 2011

srvr = [[userinfo "@"] hostport]

reg-name = 1*(unreserved / escaped / "$" / ","
 / ";" / ":" / "@" / "&" / "=" / "+")

query = *uric

userinfo = (user) [":" password] "@"

user = 1*(unreserved / escaped
 / user-unreserved)

user-unreserved = "&" / "=" / "+" / "$" / "," / ";"
 / "?" / "/"

password = *(unreserved / escaped
 / "&" / "=" / "+" / "$" / ",")

hostport = host [":" port]

host = hostname / IPv4address / IPv6reference

hostname = *(domainlabel ".") toplabel ["."]

domainlabel = alphanum / alphanum *(alphanum / "-")
 alphanum

toplabel = ALPHA / ALPHA *(alphanum / "-")
 alphanum

IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "."
 1*3DIGIT

IPv6reference = "[" IPv6address "]"

IPv6address = hexpart [":" IPv4address]

hexpart = hexseq / hexseq "::" [hexseq] / "::"
 [hexseq]

hexseq = hex4 *(":" hex4)

hex4 = 1*4HEXDIG

port = 1*19DIGIT

; generic-message is the top-level rule

Burnett & Shanmugham Expires January 12, 2012 [Page 200]

Internet-Draft MRCPv2 July 2011

generic-message = start-line message-header CRLF
 [message-body]

message-body = *OCTET

start-line = request-line / response-line / event-line

request-line = mrcp-version SP message-length SP method-name
 SP request-id CRLF

response-line = mrcp-version SP message-length SP request-id
 SP status-code SP request-state CRLF

event-line = mrcp-version SP message-length SP event-name
 SP request-id SP request-state CRLF

method-name = generic-method
 / synthesizer-method
 / recognizer-method
 / recorder-method
 / verifier-method

generic-method = "SET-PARAMS"
 / "GET-PARAMS"

request-state = "COMPLETE"
 / "IN-PROGRESS"
 / "PENDING"

event-name = synthesizer-event
 / recognizer-event
 / recorder-event
 / verifier-event

message-header = 1*(generic-header / resource-header / generic-field)

generic-field = field-name ":" [field-value]
field-name = token
field-value = *LWS field-content *(CRLF 1*LWS field-content)
field-content = <the OCTETs making up the field-value
 and consisting of either *TEXT or combinations
 of token, separators, and quoted-string>

resource-header = synthesizer-header
 / recognizer-header
 / recorder-header
 / verifier-header

Burnett & Shanmugham Expires January 12, 2012 [Page 201]

Internet-Draft MRCPv2 July 2011

generic-header = channel-identifier
 / accept
 / active-request-id-list
 / proxy-sync-id
 / accept-charset
 / content-type
 / content-id
 / content-base
 / content-encoding
 / content-location
 / content-length
 / fetch-timeout
 / cache-control
 / logging-tag
 / set-cookie
 / set-cookie2
 / vendor-specific

; -- content-id is as defined in RFC2392, RFC2046 and RFC5322
; -- accept and accept-charset are as defined in RFC2616

mrcp-version = "MRCP" "/" 1*2DIGIT "." 1*2DIGIT

message-length = 1*19DIGIT

request-id = 1*10DIGIT

status-code = 3DIGIT

channel-identifier = "Channel-Identifier" ":"
 channel-id CRLF

channel-id = 1*alphanum "@" 1*alphanum

active-request-id-list = "Active-Request-Id-List" ":"
 request-id *("," request-id) CRLF

proxy-sync-id = "Proxy-Sync-Id" ":" 1*VCHAR CRLF

content-base = "Content-Base" ":" absoluteURI CRLF

content-length = "Content-Length" ":" 1*19DIGIT CRLF

content-type = "Content-Type" ":" media-type-value CRLF

media-type-value = type "/" subtype *(";" parameter)

type = token

Burnett & Shanmugham Expires January 12, 2012 [Page 202]

Internet-Draft MRCPv2 July 2011

subtype = token

parameter = attribute "=" value

attribute = token

value = token / quoted-string

content-encoding = "Content-Encoding" ":"
 *WSP content-coding
 *(*WSP "," *WSP content-coding *WSP)
 CRLF

content-coding = token

content-location = "Content-Location" ":"
 (absoluteURI / relativeURI) CRLF

cache-control = "Cache-Control" ":"
 [*WSP cache-directive
 *(*WSP "," *WSP cache-directive *WSP)]
 CRLF

fetch-timeout = "Fetch-Timeout" ":" 1*19DIGIT CRLF

cache-directive = "max-age" "=" delta-seconds
 / "max-stale" ["=" delta-seconds]
 / "min-fresh" "=" delta-seconds

delta-seconds = 1*19DIGIT

logging-tag = "Logging-Tag" ":" 1*UTFCHAR CRLF

vendor-specific = "Vendor-Specific-Parameters" ":"
 [vendor-specific-av-pair
 *(";" vendor-specific-av-pair)] CRLF

vendor-specific-av-pair = vendor-av-pair-name "="
 value

vendor-av-pair-name = 1*UTFCHAR

set-cookie = "Set-Cookie:" cookies CRLF

cookies = cookie *("," *LWS cookie)

cookie = attribute "=" value *(";" cookie-av)

Burnett & Shanmugham Expires January 12, 2012 [Page 203]

Internet-Draft MRCPv2 July 2011

cookie-av = "Comment" "=" value
 / "Domain" "=" value
 / "Max-Age" "=" value
 / "Path" "=" value
 / "Secure"
 / "Version" "=" 1*19DIGIT
 / "Age" "=" delta-seconds

set-cookie2 = "Set-Cookie2:" cookies2 CRLF

cookies2 = cookie2 *("," *LWS cookie2)

cookie2 = attribute "=" value *(";" cookie-av2)

cookie-av2 = "Comment" "=" value
 / "CommentURL" "=" DQUOTE uri DQUOTE
 / "Discard"
 / "Domain" "=" value
 / "Max-Age" "=" value
 / "Path" "=" value
 / "Port" ["=" DQUOTE portlist DQUOTE]
 / "Secure"
 / "Version" "=" 1*19DIGIT
 / "Age" "=" delta-seconds

portlist = portnum *("," *LWS portnum)

portnum = 1*19DIGIT

; Synthesizer ABNF

synthesizer-method = "SPEAK"
 / "STOP"
 / "PAUSE"
 / "RESUME"
 / "BARGE-IN-OCCURRED"
 / "CONTROL"
 / "DEFINE-LEXICON"

synthesizer-event = "SPEECH-MARKER"
 / "SPEAK-COMPLETE"

synthesizer-header = jump-size
 / kill-on-barge-in
 / speaker-profile
 / completion-cause
 / completion-reason
 / voice-parameter

Burnett & Shanmugham Expires January 12, 2012 [Page 204]

Internet-Draft MRCPv2 July 2011

 / prosody-parameter
 / speech-marker
 / speech-language
 / fetch-hint
 / audio-fetch-hint
 / failed-uri
 / failed-uri-cause
 / speak-restart
 / speak-length
 / load-lexicon
 / lexicon-search-order

jump-size = "Jump-Size" ":" speech-length-value CRLF

speech-length-value = numeric-speech-length
 / text-speech-length

text-speech-length = 1*UTFCHAR SP "Tag"

numeric-speech-length = ("+" / "-") positive-speech-length

positive-speech-length = 1*19DIGIT SP numeric-speech-unit

numeric-speech-unit = "Second"
 / "Word"
 / "Sentence"
 / "Paragraph"

kill-on-barge-in = "Kill-On-Barge-In" ":" BOOLEAN
 CRLF

speaker-profile = "Speaker-Profile" ":" uri CRLF

completion-cause = "Completion-Cause" ":" cause-code SP
 cause-name CRLF
cause-code = 3DIGIT
cause-name = *VCHAR

completion-reason = "Completion-Reason" ":"
 quoted-string CRLF

voice-parameter = voice-gender
 / voice-age
 / voice-variant
 / voice-name

voice-gender = "Voice-Gender:" voice-gender-value CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 205]

Internet-Draft MRCPv2 July 2011

voice-gender-value = "male"
 / "female"
 / "neutral"

voice-age = "Voice-Age:" 1*3DIGIT CRLF

voice-variant = "Voice-Variant:" 1*19DIGIT CRLF

voice-name = "Voice-Name:"
 1*UTFCHAR *(1*WSP 1*UTFCHAR) CRLF

prosody-parameter = "Prosody-" prosody-param-name ":"
 prosody-param-value CRLF

prosody-param-name = 1*VCHAR

prosody-param-value = 1*VCHAR

timestamp = "timestamp" "=" time-stamp-value

time-stamp-value = 1*20DIGIT

speech-marker = "Speech-Marker" ":"
 timestamp
 [";" 1*(UTFCHAR / %x20)] CRLF

speech-language = "Speech-Language" ":" 1*VCHAR CRLF

fetch-hint = "Fetch-Hint" ":" ("prefetch" / "safe") CRLF

audio-fetch-hint = "Audio-Fetch-Hint" ":"
 ("prefetch" / "safe" / "stream") CRLF

failed-uri = "Failed-URI" ":" absoluteURI CRLF

failed-uri-cause = "Failed-URI-Cause" ":" 1*UTFCHAR CRLF

speak-restart = "Speak-Restart" ":" BOOLEAN CRLF

speak-length = "Speak-Length" ":" positive-length-value
 CRLF

positive-length-value = positive-speech-length
 / text-speech-length

load-lexicon = "Load-Lexicon" ":" BOOLEAN CRLF

lexicon-search-order = "Lexicon-Search-Order" ":"

Burnett & Shanmugham Expires January 12, 2012 [Page 206]

Internet-Draft MRCPv2 July 2011

 "<" absoluteURI ">" *(" " "<" absoluteURI ">") CRLF

; Recognizer ABNF

recognizer-method = recog-only-method
 / enrollment-method

recog-only-method = "DEFINE-GRAMMAR"
 / "RECOGNIZE"
 / "INTERPRET"
 / "GET-RESULT"
 / "START-INPUT-TIMERS"
 / "STOP"

enrollment-method = "START-PHRASE-ENROLLMENT"
 / "ENROLLMENT-ROLLBACK"
 / "END-PHRASE-ENROLLMENT"
 / "MODIFY-PHRASE"
 / "DELETE-PHRASE"

recognizer-event = "START-OF-INPUT"
 / "RECOGNITION-COMPLETE"
 / "INTERPRETATION-COMPLETE"

recognizer-header = recog-only-header
 / enrollment-header

recog-only-header = confidence-threshold
 / sensitivity-level
 / speed-vs-accuracy
 / n-best-list-length
 / input-type
 / no-input-timeout
 / recognition-timeout
 / waveform-uri
 / input-waveform-uri
 / completion-cause
 / completion-reason
 / recognizer-context-block
 / start-input-timers
 / speech-complete-timeout
 / speech-incomplete-timeout
 / dtmf-interdigit-timeout
 / dtmf-term-timeout
 / dtmf-term-char
 / failed-uri
 / failed-uri-cause

Burnett & Shanmugham Expires January 12, 2012 [Page 207]

Internet-Draft MRCPv2 July 2011

 / save-waveform
 / media-type
 / new-audio-channel
 / speech-language
 / ver-buffer-utterance
 / recognition-mode
 / cancel-if-queue
 / hotword-max-duration
 / hotword-min-duration
 / interpret-text
 / dtmf-buffer-time
 / clear-dtmf-buffer
 / early-no-match

enrollment-header = num-min-consistent-pronunciations
 / consistency-threshold
 / clash-threshold
 / personal-grammar-uri
 / enroll-utterance
 / phrase-id
 / phrase-nl
 / weight
 / save-best-waveform
 / new-phrase-id
 / confusable-phrases-uri
 / abort-phrase-enrollment

confidence-threshold = "Confidence-Threshold" ":"
 FLOAT CRLF

sensitivity-level = "Sensitivity-Level" ":" FLOAT
 CRLF

speed-vs-accuracy = "Speed-Vs-Accuracy" ":" FLOAT
 CRLF

n-best-list-length = "N-Best-List-Length" ":" 1*19DIGIT
 CRLF

input-type = "Input-Type" ":" inputs CRLF
inputs = "speech" / "dtmf"

no-input-timeout = "No-Input-Timeout" ":" 1*19DIGIT
 CRLF

recognition-timeout = "Recognition-Timeout" ":" 1*19DIGIT
 CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 208]

Internet-Draft MRCPv2 July 2011

waveform-uri = "Waveform-URI" ":" ["<" uri ">"
 ";" "size" "=" 1*19DIGIT
 ";" "duration" "=" 1*19DIGIT] CRLF

recognizer-context-block = "Recognizer-Context-Block" ":"
 [1*VCHAR] CRLF

start-input-timers = "Start-Input-Timers" ":"
 BOOLEAN CRLF

speech-complete-timeout = "Speech-Complete-Timeout" ":"
 1*19DIGIT CRLF

speech-incomplete-timeout = "Speech-Incomplete-Timeout" ":"
 1*19DIGIT CRLF

dtmf-interdigit-timeout = "DTMF-Interdigit-Timeout" ":"
 1*19DIGIT CRLF

dtmf-term-timeout = "DTMF-Term-Timeout" ":" 1*19DIGIT
 CRLF

dtmf-term-char = "DTMF-Term-Char" ":" VCHAR CRLF

save-waveform = "Save-Waveform" ":" BOOLEAN CRLF

new-audio-channel = "New-Audio-Channel" ":"
 BOOLEAN CRLF

recognition-mode = "Recognition-Mode" ":"
 normal-value / hotword-value CRLF
normal-value = "normal"
hotword-value = "hotword"

cancel-if-queue = "Cancel-If-Queue" ":" BOOLEAN CRLF

hotword-max-duration = "Hotword-Max-Duration" ":"
 1*19DIGIT CRLF

hotword-min-duration = "Hotword-Min-Duration" ":"
 1*19DIGIT CRLF

interpret-text = "Interpret-Text" ":" 1*VCHAR CRLF

dtmf-buffer-time = "DTMF-Buffer-Time" ":" 1*19DIGIT CRLF

clear-dtmf-buffer = "Clear-DTMF-Buffer" ":" BOOLEAN CRLF

Burnett & Shanmugham Expires January 12, 2012 [Page 209]

Internet-Draft MRCPv2 July 2011

early-no-match = "Early-No-Match" ":" BOOLEAN CRLF

num-min-consistent-pronunciations =
 "Num-Min-Consistent-Pronunciations" ":" 1*19DIGIT CRLF

consistency-threshold = "Consistency-Threshold" ":" FLOAT
 CRLF

clash-threshold = "Clash-Threshold" ":" FLOAT CRLF

personal-grammar-uri = "Personal-Grammar-URI" ":" uri CRLF

enroll-utterance = "Enroll-Utterance" ":" BOOLEAN CRLF

phrase-id = "Phrase-ID" ":" 1*VCHAR CRLF

phrase-nl = "Phrase-NL" ":" 1*UTFCHAR CRLF

weight = "Weight" ":" weight-value CRLF
weight-value = FLOAT

save-best-waveform = "Save-Best-Waveform" ":"
 BOOLEAN CRLF

new-phrase-id = "New-Phrase-ID" ":" 1*VCHAR CRLF

confusable-phrases-uri = "Confusable-Phrases-URI" ":"
 uri CRLF

abort-phrase-enrollment = "Abort-Phrase-Enrollment" ":"
 BOOLEAN CRLF

; Recorder ABNF

recorder-method = "RECORD"
 / "STOP"
 / "START-INPUT-TIMERS"

recorder-event = "START-OF-INPUT"
 / "RECORD-COMPLETE"

recorder-header = sensitivity-level
 / no-input-timeout
 / completion-cause
 / completion-reason
 / failed-uri

Burnett & Shanmugham Expires January 12, 2012 [Page 210]

Internet-Draft MRCPv2 July 2011

 / failed-uri-cause
 / record-uri
 / media-type
 / max-time
 / trim-length
 / final-silence
 / capture-on-speech
 / ver-buffer-utterance
 / start-input-timers
 / new-audio-channel

record-uri = "Record-URI" ":" ["<" uri ">"
 ";" "size" "=" 1*19DIGIT
 ";" "duration" "=" 1*19DIGIT] CRLF

media-type = "Media-Type" ":" media-type-value CRLF

max-time = "Max-Time" ":" 1*19DIGIT CRLF

trim-length = "Trim-Length" ":" 1*19DIGIT CRLF

final-silence = "Final-Silence" ":" 1*19DIGIT CRLF

capture-on-speech = "Capture-On-Speech " ":"
 BOOLEAN CRLF

; Verifier ABNF

verifier-method = "START-SESSION"
 / "END-SESSION"
 / "QUERY-VOICEPRINT"
 / "DELETE-VOICEPRINT"
 / "VERIFY"
 / "VERIFY-FROM-BUFFER"
 / "VERIFY-ROLLBACK"
 / "STOP"
 / "CLEAR-BUFFER"
 / "START-INPUT-TIMERS"
 / "GET-INTERMEDIATE-RESULT"

verifier-event = "VERIFICATION-COMPLETE"
 / "START-OF-INPUT"

verifier-header = repository-uri
 / voiceprint-identifier

Burnett & Shanmugham Expires January 12, 2012 [Page 211]

Internet-Draft MRCPv2 July 2011

 / verification-mode
 / adapt-model
 / abort-model
 / min-verification-score
 / num-min-verification-phrases
 / num-max-verification-phrases
 / no-input-timeout
 / save-waveform
 / media-type
 / waveform-uri
 / voiceprint-exists
 / ver-buffer-utterance
 / input-waveform-uri
 / completion-cause
 / completion-reason
 / speech-complete-timeout
 / new-audio-channel
 / abort-verification
 / start-input-timers
 / input-type

repository-uri = "Repository-URI" ":" uri CRLF

voiceprint-identifier = "Voiceprint-Identifier" ":"
 vid *[";" vid] CRLF
vid = 1*VCHAR ["." 1*VCHAR]

verification-mode = "Verification-Mode" ":"
 verification-mode-string

verification-mode-string = "train" / "verify"

adapt-model = "Adapt-Model" ":" BOOLEAN CRLF

abort-model = "Abort-Model" ":" BOOLEAN CRLF

min-verification-score = "Min-Verification-Score" ":"
 [%x2D] FLOAT CRLF

num-min-verification-phrases = "Num-Min-Verification-Phrases"
 ":" 1*19DIGIT CRLF

num-max-verification-phrases = "Num-Max-Verification-Phrases"
 ":" 1*19DIGIT CRLF

voiceprint-exists = "Voiceprint-Exists" ":"

Burnett & Shanmugham Expires January 12, 2012 [Page 212]

Internet-Draft MRCPv2 July 2011

 BOOLEAN CRLF

ver-buffer-utterance = "Ver-Buffer-Utterance" ":"
 BOOLEAN CRLF

input-waveform-uri = "Input-Waveform-URI" ":" uri CRLF

abort-verification = "Abort-Verification " ":"
 BOOLEAN CRLF

 The following productions add a new SDP session-level attribute. See
 Paragraph 5.
 cmid-attribute = "a=cmid:" identification-tag

 identification-tag = token

16. XML Schemas

16.1. NLSML Schema Definition

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns="http://www.ietf.org/xml/ns/mrcpv2"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" >
 <xs:annotation>
 <xs:documentation> Natural Language Semantic Markup Schema
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="enrollment-schema.rng"/>
 <xs:include schemaLocation="verification-schema.rng"/>
 <xs:element name="result">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="interpretation" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="instance" minOccurs="0">
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0">
 <xs:any namespace="##other" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="input">

Burnett & Shanmugham Expires January 12, 2012 [Page 213]

Internet-Draft MRCPv2 July 2011

 <xs:complexType mixed="true">
 <xs:choice>
 <xs:element name="noinput" minOccurs="0"/>
 <xs:element name="nomatch" minOccurs="0"/>
 <xs:element name="input" minOccurs="0"/>
 </xs:choice>
 <xs:attribute name="mode"
 type="xs:string"
 default="speech"/>
 <xs:attribute name="confidence"
 type="confidenceinfo"
 default="1.0"/>
 <xs:attribute name="timestamp-start"
 type="xs:string"/>
 <xs:attribute name="timestamp-end"
 type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="confidence" type="confidenceinfo"
 default="1.0"/>
 <xs:attribute name="grammar" type="xs:anyURI"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="enrollment-result"
 type="enrollment-contents"/>
 <xs:element name="verification-result"
 type="verification-contents"/>
 </xs:sequence>
 <xs:attribute name="grammar" type="xs:anyURI"
 use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="confidenceinfo">
 <xs:restriction base="xs:float">
 <xs:minInclusive value="0.0"/>
 <xs:maxInclusive value="1.0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

16.2. Enrollment Results Schema Definition
 <?xml version="1.0" encoding="UTF-8"?>

 <!-- MRCP Enrollment Schema
 (See http://www.oasis-open.org/committees/relax-ng/spec.html)

Burnett & Shanmugham Expires January 12, 2012 [Page 214]

Internet-Draft MRCPv2 July 2011

 -->

 <grammar datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 ns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns="http://relaxng.org/ns/structure/1.0">

 <start>
 <element name="enrollment-result">
 <ref name="enrollment-content"/>
 </element>
 </start>

 <define name="enrollment-content">
 <interleave>
 <element name="num-clashes">
 <data type="nonNegativeInteger"/>
 </element>
 <element name="num-good-repetitions">
 <data type="nonNegativeInteger"/>
 </element>
 <element name="num-repetitions-still-needed">
 <data type="nonNegativeInteger"/>
 </element>
 <element name="consistency-status">
 <choice>
 <value>consistent</value>
 <value>inconsistent</value>
 <value>undecided</value>
 </choice>
 </element>
 <optional>
 <element name="clash-phrase-ids">
 <oneOrMore>
 <element name="item">
 <data type="token"/>
 </element>
 </oneOrMore>
 </element>
 </optional>
 <optional>
 <element name="transcriptions">
 <oneOrMore>
 <element name="item">
 <text/>
 </element>
 </oneOrMore>
 </element>
 </optional>

Burnett & Shanmugham Expires January 12, 2012 [Page 215]

Internet-Draft MRCPv2 July 2011

 <optional>
 <element name="confusable-phrases">
 <oneOrMore>
 <element name="item">
 <text/>
 </element>
 </oneOrMore>
 </element>
 </optional>
 </interleave>
 </define>

 </grammar>

16.3. Verification Results Schema Definition
 <?xml version="1.0" encoding="UTF-8"?>

 <!-- MRCP Verification Results Schema
 (See http://www.oasis-open.org/committees/relax-ng/spec.html)
 -->

 <grammar datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 ns="http://www.ietf.org/xml/ns/mrcpv2"
 xmlns="http://relaxng.org/ns/structure/1.0">

 <start>
 <element name="verification-result">
 <ref name="verification-contents"/>
 </element>
 </start>

 <define name="verification-contents">
 <element name="voiceprint">
 <ref name="firstVoiceprintContent"/>
 </element>
 <zeroOrMore>
 <element name="voiceprint">
 <ref name="restVoiceprintContent"/>
 </element>
 </zeroOrMore>
 </define>

 <define name="firstVoiceprintContent">
 <attribute name="id">
 <data type="string"/>
 </attribute>
 <interleave>
 <optional>

Burnett & Shanmugham Expires January 12, 2012 [Page 216]

Internet-Draft MRCPv2 July 2011

 <element name="adapted">
 <data type="boolean"/>
 </element>
 </optional>
 <optional>
 <element name="needmoredata">
 <ref name="needmoredataContent"/>
 </element>
 </optional>
 <optional>
 <element name="incremental">
 <ref name="firstCommonContent"/>
 </element>
 </optional>
 <element name="cumulative">
 <ref name="firstCommonContent"/>
 </element>
 </interleave>
 </define>

 <define name="restVoiceprintContent">
 <attribute name="id">
 <data type="string"/>
 </attribute>
 <element name="cumulative">
 <ref name="restCommonContent"/>
 </element>
 </define>

 <define name="firstCommonContent">
 <interleave>
 <element name="decision">
 <ref name="decisionContent"/>
 </element>
 <optional>
 <element name="utterance-length">
 <ref name="utterance-lengthContent"/>
 </element>
 </optional>
 <optional>
 <element name="device">
 <ref name="deviceContent"/>
 </element>
 </optional>
 <optional>
 <element name="gender">
 <ref name="genderContent"/>
 </element>

Burnett & Shanmugham Expires January 12, 2012 [Page 217]

Internet-Draft MRCPv2 July 2011

 </optional>
 <zeroOrMore>
 <element name="verification-score">
 <ref name="verification-scoreContent"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <define name="restCommonContent">
 <interleave>
 <optional>
 <element name="decision">
 <ref name="decisionContent"/>
 </element>
 </optional>
 <optional>
 <element name="device">
 <ref name="deviceContent"/>
 </element>
 </optional>
 <optional>
 <element name="gender">
 <ref name="genderContent"/>
 </element>
 </optional>
 <zeroOrMore>
 <element name="verification-score">
 <ref name="verification-scoreContent"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

 <define name="decisionContent">
 <choice>
 <value>accepted</value>
 <value>rejected</value>
 <value>undecided</value>
 </choice>
 </define>

 <define name="needmoredataContent">
 <data type="boolean"/>
 </define>

 <define name="utterance-lengthContent">
 <data type="nonNegativeInteger"/>

Burnett & Shanmugham Expires January 12, 2012 [Page 218]

Internet-Draft MRCPv2 July 2011

 </define>

 <define name="deviceContent">
 <choice>
 <value>cellular-phone</value>
 <value>electret-phone</value>
 <value>carbon-button-phone</value>
 <value>unknown</value>
 </choice>
 </define>

 <define name="genderContent">
 <choice>
 <value>male</value>
 <value>female</value>
 <value>unknown</value>
 </choice>
 </define>

 <define name="verification-scoreContent">
 <data type="float">
 <param name="minInclusive">-1</param>
 <param name="maxInclusive">1</param>
 </data>
 </define>

 </grammar>

17. References

17.1. Normative References

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC2326] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
 Streaming Protocol (RTSP)", RFC 2326, April 1998.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

Burnett & Shanmugham Expires January 12, 2012 [Page 219]

Internet-Draft MRCPv2 July 2011

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4572] Lennox, J., "Connection-Oriented Media Transport over the
 Transport Layer Security (TLS) Protocol in the Session
 Description Protocol (SDP)", RFC 4572, July 2006.

 [RFC5888] Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, August 1998.

 [RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2109, February 1997.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, October 2000.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,

Burnett & Shanmugham Expires January 12, 2012 [Page 220]

Internet-Draft MRCPv2 July 2011

 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

 [W3C.REC-speech-synthesis-20040907]
 Burnett, D., Walker, M., and A. Hunt, "Speech Synthesis
 Markup Language (SSML) Version 1.0", World Wide Web
 Consortium Recommendation REC-speech-synthesis-20040907,
 September 2004,
 <http://www.w3.org/TR/2004/REC-speech-synthesis-20040907>.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC2483] Mealling, M. and R. Daniel, "URI Resolution Services
 Necessary for URN Resolution", RFC 2483, January 1999.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC5922] Gurbani, V., Lawrence, S., and A. Jeffrey, "Domain
 Certificates in the Session Initiation Protocol (SIP)",
 RFC 5922, June 2010.

 [W3C.REC-speech-grammar-20040316]
 Hunt, A. and S. McGlashan, "Speech Recognition Grammar
 Specification Version 1.0", World Wide Web Consortium
 Recommendation REC-speech-grammar-20040316, March 2004,

Burnett & Shanmugham Expires January 12, 2012 [Page 221]

Internet-Draft MRCPv2 July 2011

 <http://www.w3.org/TR/2004/REC-speech-grammar-20040316>.

 [W3C.REC-semantic-interpretation-20070405]
 Tichelen, L. and D. Burke, "Semantic Interpretation for
 Speech Recognition (SISR) Version 1.0", World Wide Web
 Consortium REC REC-semantic-interpretation-20070405,
 April 2007, <http://www.w3.org/TR/2007/
 REC-semantic-interpretation-20070405>.

 [W3C.REC-xml-names11-20040204]
 Tobin, R., Layman, A., Bray, T., and D. Hollander,
 "Namespaces in XML 1.1", World Wide Web Consortium
 FirstEdition REC-xml-names11-20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-names11-20040204>.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [ISO.8859-1.1987]
 International Organization for Standardization,
 "Information technology - 8-bit single byte coded graphic
 - character sets - Part 1: Latin alphabet No. 1, JTC1/
 SC2", ISO Standard 8859-1, 1987.

17.2. Informative References

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [RFC4313] Oran, D., "Requirements for Distributed Control of
 Automatic Speech Recognition (ASR), Speaker
 Identification/Speaker Verification (SI/SV), and Text-to-
 Speech (TTS) Resources", RFC 4313, December 2005.

 [Q.23] International Telecommunications Union, "Technical
 Features of Push-Button Telephone Sets", ITU-T Q.23, 1993.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35,
 RFC 4395, February 2006.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 December 2006.

 [W3C.REC-voicexml20-20040316]
 Danielsen, P., Porter, B., Carter, J., Rehor, K., Hunt,
 A., McGlashan, S., Ferrans, J., Lucas, B., Burnett, D.,

Burnett & Shanmugham Expires January 12, 2012 [Page 222]

Internet-Draft MRCPv2 July 2011

 and S. Tryphonas, "Voice Extensible Markup Language
 (VoiceXML) Version 2.0", World Wide Web Consortium
 Recommendation REC-voicexml20-20040316, March 2004,
 <http://www.w3.org/TR/2004/REC-voicexml20-20040316>.

 [RFC4463] Shanmugham, S., Monaco, P., and B. Eberman, "A Media
 Resource Control Protocol (MRCP) Developed by Cisco,
 Nuance, and Speechworks", RFC 4463, April 2006.

 [refs.javaSpeechGrammarFormat]
 Sun Microsystems, "Java Speech Grammar Format Version
 1.0", October 1998.

 [W3C.REC-emma-20090210]
 Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl,
 D., McCobb, G., and D. Raggett, "EMMA: Extensible
 MultiModal Annotation markup language", World Wide Web
 Consortium Recommendation REC-emma-20090210,
 February 2009,
 <http://www.w3.org/TR/2009/REC-emma-20090210>.

 [RFC4467] Crispin, M., "Internet Message Access Protocol (IMAP) -
 URLAUTH Extension", RFC 4467, May 2006.

 [W3C.REC-pronunciation-lexicon-20081014]
 Baggia, P., Bagshaw, P., Burnett, D., Carter, J., and F.
 Scahill, "Pronunciation Lexicon Specification (PLS)",
 World Wide Web Consortium Recommendation REC-
 pronunciation-lexicon-20081014, October 2008, <http://
 www.w3.org/TR/2008/REC-pronunciation-lexicon-20081014>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [ISO.8601.1988]
 International Organization for Standardization, "Data
 elements and interchange formats - Information interchange
 - Representation of dates and times", ISO Standard 8601,
 June 1988.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4217] Ford-Hutchinson, P., "Securing FTP with TLS", RFC 4217,
 October 2005.

Burnett & Shanmugham Expires January 12, 2012 [Page 223]

Internet-Draft MRCPv2 July 2011

Appendix A. Contributors

 Pierre Forgues
 Nuance Communications Ltd.
 1500 University Street
 Suite 935
 Montreal, Quebec
 Canada H3A 3S7

 Email: forgues@nuance.com

 Charles Galles
 Intervoice, Inc.
 17811 Waterview Parkway
 Dallas, Texas 75252

 Email: charles.galles@intervoice.com

 Klaus Reifenrath
 Scansoft, Inc
 Guldensporenpark 32
 Building D
 9820 Merelbeke
 Belgium

 Email: klaus.reifenrath@scansoft.com

Burnett & Shanmugham Expires January 12, 2012 [Page 224]

Internet-Draft MRCPv2 July 2011

Appendix B. Acknowledgements

 Andre Gillet (Nuance Communications)
 Andrew Hunt (ScanSoft)
 Andrew Wahbe (Genesys)
 Aaron Kneiss (ScanSoft)
 Brian Eberman (ScanSoft)
 Corey Stohs (Cisco Systems Inc)
 Dave Burke (VoxPilot)
 Jeff Kusnitz (IBM Corp)
 Ganesh N Ramaswamy (IBM Corp)
 Klaus Reifenrath (ScanSoft)
 Kristian Finlator (ScanSoft)
 Magnus Westerlund (Ericsson)
 Martin Dragomirecky (Cisco Systems Inc)
 Paolo Baggia (Loquendo)
 Peter Monaco (Nuance Communications)
 Pierre Forgues (Nuance Communications)
 Ran Zilca (IBM Corp)
 Suresh Kaliannan (Cisco Systems Inc.)
 Skip Cave (Intervoice Inc)
 Thomas Gal (LumenVox)

 The chairs of the speechsc work group are Eric Burger (Georgetown
 University) and Dave Oran (Cisco Systems, Inc.).

 Many thanks go in particular to Robert Sparks, Alex Agranovsky, and
 Henry Phan, who were there at the end to dot all the i’s and cross
 all the t’s.

Authors’ Addresses

 Daniel C. Burnett
 Voxeo
 189 South Orange Avenue #2050
 Orlando, FL 32801
 USA

 Email: dburnett@voxeo.com

Burnett & Shanmugham Expires January 12, 2012 [Page 225]

Internet-Draft MRCPv2 July 2011

 Saravanan Shanmugham
 Cisco Systems, Inc.
 170 W. Tasman Dr.
 San Jose, CA 95134
 USA

 Email: sarvi@cisco.com

Burnett & Shanmugham Expires January 12, 2012 [Page 226]

