11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

Internet Engineering Task Force SIP WG

INTERNET-DRAFT Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler

draft-ietf-sip-rfc2543bis-07.ps Various places
February 4, 2002
Expires: Aug 2002

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1lid-abstracts.txt
To view the list Internet-Draft Shadow Directories, $eg://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2002). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
telephone calls, multimedia distribution and multimedia conferences.

SIP invitations used to create sessions carry session descriptions which allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests to
the users current location, authenticate and authorize users for services, implement provider call routing
policies, and provide features to users. SIP also provides a registration function that allows them to
upload their current location for use by proxy servers. SIP runs ontop of several different transport

protocols.

Contents

1 Introduction 8
2 Overview of SIP Functionality 8
3 Terminology 9
4 Overview of Operation 9
5 Structure of the Protocol 14
6 Definitions 16
7 SIP Messages 20

7.1 Requests 20

7.2 RESPONSES o o e e e e e e 21

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

34 7.3 HeaderFields e 22
35 7.3.1 HeaderFieldFormat 22
36 7.3.2 Header Field Classification 24

37 7.3.3 CompactForm e e e e 24
38 7.4 BodieS e 24
39 7.4.1 MessageBody Type e 25

40 7.4.2 MessageBodylLength 25

a 7.5 Framing SIPmMessages o 0 i i e e 25

22 8 General User Agent Behavior 25

a3 8.1 UACBehavior. e e e 26
a4 8.1.1 Generatingthe Request e 26
a5 8.1.2 Sendingthe Request 29
46 8.1.3 Processing Responses. 30

a7 8.2 UASBehavior e 32
a8 8.2.1 Method Inspection 32
49 8.2.2 HeaderlInspection e 32
50 8.2.3 Content Processing... v o v i i 34

51 8.2.4 Applying EXtensions e e 34
52 8.25 Processingthe Request 34

53 8.2.6 Generatingthe Response i i e 34

54 8.2.7 Stateless UAS Behavior 35
55 8.3 Redirect Servers e 36
ss 9 Canceling a Request 37

57 9.1 ClientBehavior e 37
58 9.2 ServerBehavior e 38
so 10 Registrations 38

60 10.1 OVEIVIEW o o e e e e e 38
61 10.2 Constructing thREGISTERRequest e 39
62 10.2.1 Adding Bindings e 41
63 10.2.2 Removing Bindings 41
64 10.2.3 Fetching Bindings e e 42
65 10.2.4 Refreshing Bindings e e 42
66 10.2.5 Settingthe Internal Clock 42

67 10.2.6 Discoveringa Reqistrar e e 42
68 10.2.7 Transmittinga Request. 43

69 10.2.8 Error RESpoNSES 0 o e e e e e e e 43
70 10.3 ProcessinREGISTER Requests i i 43
7 11 Querying for Capabilities 45

7 11.1 Construction oDPTIONS Request e 45
73 11.2 Processing of OPTIONS Request i 46

72 12 Dialogs 47

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 2]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

75 12.1 CreationofaDialog. e 47
76 12.1.1 UASbehavior e 48
7 12.1.2 UAC behavior 48
78 12.2 RequestswithinaDialog e 49
79 12.2.1 UACBehavior e e 49
80 12.2.2 UASbehavior e 50
81 12.3 TerminationofaDialog 51
82 13 Initiating a Session 51

83 13.1 OVEIVIEW o o e e e e e 51
84 13.2 Caller ProCcessing o v v v e e e e e 52
85 13.2.1 Creatingthe InitidNVITE i 52

86 13.2.2 ProcessintNVITEResponses it 54
87 13.3 Callee ProCessing o o v v v e e e e 55
88 13.3.1 Processing of tHBIVITE i e 55

ss 14 Modifying an Existing Session 57

90 14.1 UACBehavior e e e 57
o1 14.2 UAS Behavior o e e e e e 58
92 15 Terminating a Session 59

93 15.1 Terminating a Dialog withBYE Request 60
94 15.1.1 UACBehavior e 60
95 15.1.2 UASBehavior e 60
96 16 Proxy Behavior 61

97 16.1 OVEIVIEW o o e e e e e e e e e 61
98 16.2 Stateful Proxy e e e e e e 61
99 16.3 Request Validation 62
100 16.4 Making a Routing Decision 64
101 16.5 Request Processing. o e 66
102 16.6 Response Processing. o o i e e e e e e 71
103 16.7 Processing TiImer C i e 76
104 16.8 Handling Transport Errors e e e e e e e e e e 76
105 16.9 CANCEL Processing. o 0 i i i e e e e e e 76
106 16.10Stateless Proxy 76
107 16.11Summary of Proxy Route Processing e 77

108 16.11.1Examples o 78
109 17 Transactions 81

110 17.1 Client Transaction e e e 83
111 17.1.1 INVITE Client Transaction et 83
112 17.1.2 nonNVITE Client Transaction 87
113 17.1.3 Matching Responses to Client Transactions 88
114 17.1.4 Handling Transport Errors e 89
115 17.2 Server Transaction 89

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 3]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

116 17.2.1 INVITE Server Transaction it i e 89
17 17.2.2 nonNVITE Server Transaction 91
118 17.2.3 Matching Requests to Server Transactions 93
119 17.2.4 Handling Transport Errors e e 93
120 17.3 RTTEStimation e 94
121 18 Reliability of Provisional Responses 94

122 18.1 UASBehavior e 95
123 18.2 UAC Behavior e e 96
14 19 Transport 97

125 19.1 Clients e 97
126 19.1.1 Sending Requests e 97
127 19.1.2 Receiving RESpONSES. 99

128 19.2 SeIVers . . . o e 99
129 19.2.1 Receiving Requests... 99

130 19.2.2 Sending RESPONSES i i i e e e e e e 99
131 19.3 Framing o 100
132 19.4 ErrorHandling e e e e 100
133 20 Usage of HTTP Authentication 100

134 20.1 Framework e e 101
135 20.2 User-to-User Authentication e 102
136 20.3 Proxy-to-User Authentication e 103
137 20.4 The Digest Authentication Scheme 105
138 21 SIMIME 106

139 21.1 S/MIME Certificates. e 106
140 21.2 SIMIME Key Exchange 107
141 21.3 Securing MIME bodies 108
142 21.4 Tunneling SIPINMIME 109

143 21.4.1 Integrity and Confidentiality Properties of SIP Headers. 109

144 21.4.2 Tunneling Integrity and Authentication 110

145 21.4.3 Tunneling Encryption. e e 112
146 22 Security Considerations 113

147 22.1 Attacksand ThreatModels 113
148 22.1.1 Registration Hijacking 113
149 22.1.2 Impersonating aServer e e e e e e 114
150 22.1.3 Tampering with Message Bodies 114

151 22.1.4 Tearing DOWNn SESSIONS. o v i e e e e e e 115
152 22.1.5 Denial of Service and Amplification oL 115
153 22.2 Security Mechanisms e 116
154 22.2.1 Transport and Network Layer Security, 116

155 22.2.2 HTTP Authentication 117
156 22.2.3 SIMIME 117

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 4]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

157 22.3 Implementing Security Mechanisms e 117
158 22.3.1 Requirements for Implementersof SIP. 117
159 22.3.2 Security Solutions 118
160 22,4 Limitations L e e 121
161 22.4.1 HTTPDIgest e e e e e e e e e e e 121
162 22.4.2 SIMIME e 122
163 22.4.3 TLS . . . 122
164 225 Privacy 123
165 23 Common Message Components 123
166 23.1 SIP Uniform Resource Indicators 123
167 23.1.1 SIPURICoOmponents. e e e e 123
168 23.1.2 Character Escaping Requirements 126
169 23.1.3 Example SIPURIS 127
170 23.1.4 SIPURICOMPArison e e e e e e e 127
i 23.1.5 Forming RequestsfromaSIPURI 128
172 23.1.6 Relating SIPURIsandtelURLs0.... 129
173 232 OptON TAGS .« « o o v e e e 130
174 23.3 Ta0S . . . o e e e 131
175 24 Header Fields 131

176 24.1 ACCEPL . . o o 134
177 24.2 Accept-Encoding e e 134
178 24.3 Accept-Language e e e e e e 135
179 24.4 Alert-Info L e e 135
180 245 Allow . . L e 135
181 24.6 Authentication-Info 136
182 247 Authorization L e 136
183 24.8 Call-ID e e 136
184 249 Call-Info e 136
185 24.10C0NtACE L e 137
186 24.11Content-Disposition e e e 137
187 24.1Content-Encoding 138
188 24.13ontent-Language e e e e 138
189 24.14Content-Length L 138
190 24 18C0oNtent-TYPe e 139
191 2406CSEQ -« v v e 139
192 24.1DAtE e e e e e e e e 139
193 24 18rror-Info . . L L L e 139
194 24.0FEXPITES . . o o 140
195 2420FIOM . . . L e e e 140
196 24.21N-Reply-TO o o 141
197 242Max-Forwards e 141
198 2423VIN-EXpIres 141
199 24 2AMIME-Version e e 141

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 5]

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 6]

24.250rganization L e e e e e e e 141
24.26PrIONtY . . . L e e e e e e 142
24.27Proxy-Authenticate 142
24.28roxy-Authorization L e e 142
242Proxy-Require e 143
243RACK . . e 143
24.31Record-Route L e 143
243Reply-TO o o e 143
243REQUITE . . . o 144
24.34Retry-After e e e 144
243R0ULE . . . e 144
2436RSEQ . . . e 144
24.3TSEIVEN . . o o e 144
24.385Ubject 145
24.3upported e e e e e e 145
2440TIMESIAMP o o 145
244TT0 o e 145
24.420nsupported L L 146
24.43User-Agent L L e e e e e e e e e e 146
24400A e e 146
24.48NaArMiNg e e e e e e e e e e e 147
24 ABNWW-Authenticate e e 148
Response Codes 148
25.1 Provisional IXX e e e e 148
25.1.1 100 Trying . . . o o o o e 149
25.1.2 180 RINGING o o e e 149
25.1.3 181 CalllsBeingForwarded 149
25.1.4 182 Queued e 149
25.1.5 183 SesSion Progress v . i i e e e e e 149
25.2 Successful 2xXX L e e 149
25.2.1 200 0K e 149
25.3 Redirection 3XX e e e e e e 149
25.3.1 300 Multiple Choices e 149
25.3.2 301 Moved Permanently 150
25.3.3 302 Moved Temporarily. e 150
25.3.4 305USe ProxXy o i i e e 150
25.3.5 380 Alternative Service 150
25.4 Request Failure 4xx e e e e 150
25.4.1 400 Bad Request 151
25.4.2 401 Unauthorized e 151
25.4.3 402 PaymentRequired 151
25.4.4 403 Forbidden e 151
25.45 404 NotFound 151
25.4.6 405 Method Not Allowed L 151

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

284

285

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25.4.7 406 Not Acceptable... oo 151
25.4.8 407 Proxy Authentication Required 151
25.4.9 408 Request TImeout e e 152
25410410 GONE e 152
25.4.11413 Request Entity Too Large. 152
25.4.12414 Request-URI TooLong i i e 152
25.4.13415 Unsupported Media Type. o o o i o 152
25.4.14 416 Unsupported URIScheme, 152
25.4.15420 Bad EXtension e e 152
25.4.16 421 Extension Required e e e e 152
25.4.17 423 Registration Too Brief 153
25.4.18 480 Temporarily Unavailable 153
25.4.19 481 Call/Transaction Does NotExist. 153
25.4.20482 Loop Detected 153
25421483 TooMany HOpSs e e e 153
25.4.22 484 Address Incomplete L 153
25.4.23485 AMbIguUOUS L 153
25.4.24 486 Busy Here 154
25.4.25487 Request Terminated e 154
25.4.26 488 Not Acceptable Here. 154
25.4.27491 RequestPending 154
25.4.28493 Undecipherable 154
255 ServerFailure 5xx L 154
25.5.1 500 Server Internal Error 155
25.5.2 501 NotImplemented 155
2553 B02Bad Gateway 155
25.5.4 503 Service Unavailable 155
25.5.,5 504 Server Time-out e 155
25.5.6 505 Version Not Supported 155
25.5.7 513 Message TooLarge e e e 155
25.6 Global Failures 6XX o e e e 156
25.6.1 600 Busy Everywhere 156
25.6.2 603 Decline e 156
25.6.3 604 Does Not Exist Anywhere 156
25.6.4 606 Not Acceptable... e 156
26 Examples 156
26.1 Registration e 156
26.2 SesSioN Setup L e 158
27 Augmented BNF for the SIP Protocol 162
27.1 BasicRules e 162
28 IANA Considerations 177
28.1 OptioNn TagS v v e e e e e e e e e 178

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 7]

286

287

288

289

290

291

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

28.1.1 Registrationof 100rel. e 178
28.2 Warn-Codes e 179
28.3 Header Field Names e 179
28.4 Methodand Response Codes i i i i i i 179
29 Changes From RFC 2543 180
29.1 Major Functional Changes 180
29.2 Minor Functional Changes e 183
30 Acknowledgments 183
31 Authors’ Addresses 184
32 Normative References 185
33 Non-Normative References 187

1 Introduction

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation
of these services is complicated by the practices of participants; users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia
session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling
Internet endpoints (called “user agents”) to discover one another and to agree on a characterization of a
session they would like to share. For locating prospective session participants, and for other functions, SIP
enables creation of an infrastructure of network hosts (called “proxy servers”) to which user agents can send
registrations, invitations to sessions and other requests. SIP is an agile, general-purpose tool for creating,
modifying and terminating sessions that works independently of underlying transport protocols and without
dependency on the type of session that is being established.

2 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify, and
terminate multimedia sessions (conferences) such as Internet telephony calls. SIP can also invite participants
to already existing sessions, such as multicast conferences. Media can be added to (and removed from)
an existing session. SIP transparently supports name mapping and redirection services, which supports
personal mobilityf29, p. 44] - users can maintain a single externally visible identifier (SIP URI) regardless
of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 8]

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

User capabilities: determination of the media and media parameters to be used;
Session setup:‘ringing”, establishment of session parameters at both called and calling party;

Session managementincluding transfer and termination of sessions, modifying session parameters, and
invoking services.

SIP is not a vertically integrated communications system. SIP is rather a component that can be used with
other IETF protocols to build a complete multimedia architecture. Typically, these architectures will include
protocols such as the real-time transport protocol (RTP) (RFC 1889 [32]) for transporting real-time data and
providing QoS feedback, the real-time streaming protocol (RTSP) (RFC 2326 [35]) for controlling delivery
of streaming media, the Media Gateway Control Protocol (MEGACO) (RFC 3015 [43]) for controlling
gateways to the Public Switched Telephone Network (PSTN), and the session description protocol (SDP)
(RFC 2327 [11]) for describing multimedia sessions. Therefore, SIP should be used in conjunction with
other protocols in order to provide complete services to the users. However, the basic functionality and
operation of SIP does not depend on any of these protocols.

SIP does not provide services. SIP rather provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the parameters of a session
can be agreed between endpoints. If the same primitive is used to deliver a photo of the caller as well as
the session description, a "caller ID” service can be easily implemented. As this example shows, a single
primitive is typically used to provide several different services.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed. SIP can be used to initiate a session that uses some other conference control
protocol. Since SIP messages and the sessions they establish can pass through entirely different networks,
SIP cannot, and does not, provide any kind of network resource reservation capabilities.

The nature of the services provided by SIP make security particularly important. To that end, SIP
provides a suite of security services, which include denial-of-service prevention, authentication (both user
to user and proxy to user), integrity protection, and encryption and privacy services.

SIP works with both IPv4 and IPv6.

3 Terminology

In this document, the key wordsfUsT”, “ MUST NOT”, “ REQUIRED’, “ SHALL", “ SHALL NOT”, “ SHOULD",
“SHOULD NOT’, “RECOMMENDED’, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [24] and indicate requirement levels for compliant SIP implementations.

4 Overview of Operation

This section introduces the basic operations of SIP using simple examples. This section is tutorial in nature
and does not contain any normative statements.

The first example shows the basic functions of SIP: location of an end point, signal of a desire to com-
municate, negotiation of session parameters to establish the session, and teardown of the session once es-
tablished.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 9]

357

358

359

360

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dashed lines in Figure 1.

= =
- e * S ~
-7 atlanta.com biloxi.com Proxy Sso
L7 Proxy Server Server Sso
3 g ’ -) @
Alice’s PC Bob’s SIP Phone
INVITE FI
- > INVITE F2
< 100 Trying £3 > INVITE £4
100 Trying F5 >
180 Ringing F6
180 Ringing £7 <

180 Ringing F8

200 OK F9

200 OK F10
200 OK F11 <

ACK F12

RTP Media Session

>
>

BYE F13

A AT A A

200 OK F14

>

Figure 1: SIP session setup example with SIP trapezoid

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) called a SIP URI
and defined in Section 23.1. It has a similar form to an email address, typically containing a username and
a host name. In this case, it is sip:bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP service
provider (which can be an enterprise, retail provider, etc). Alice also has a SIP URI of sip:alice@atlanta.com.
Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink or an entry in an address book.

SIP is based on an HTTP-like request/response transacton model. Each transaction consists of a request
that invokes a particular “Method”, or function, on the server, and at least one response. In this example, the
transaction begins with Alice’s softphone sendindd¥ITE request addressed to Bob’s SIP URIVITE
is an example of a SIP method which specifies the action that the requestor (Alice) wants the server (Bob)
to take. ThelNVITE request contains a number of header fields. Header fields are named attributes that
provide additional information about a message. The ones presentNWV#FE include a unique identifier
for the call, the destination address, Alice’s address, and information about the type of session that Alice
wishes to establish with Bob. THNVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 10]

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>
Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method nEME E). The lines that follow
are a list of header fields. This example contains a minimum required set. The headers are briefly described
below:

Via contains the address (pc33.atlanta.com) on which Alice is expecting to receive responses to this
request. It also contains a branch parameter that contains an identifier for this transaction.

To contains a display name (Bob) and a SIP URI (sip:bob@biloxi.com) towards which the request was
originally directed. Display nhames are described in RFC 2822 [20].

From also contains a display name (Alice) and a SIP URI (sip:alice@atlanta.com) that indicate the
originator of the request. This header field also haagaparameter containing a pseudorandom string
(1928301774) that was added to the URI by the softphone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the combination of a pseudoran-
dom string and the softphone’s IP address. The combination dbtiferom, andCall-ID completely define
a peer-to-peer SIP relationship betwee Alice and Bob, and is referred to as a “dialog”.

CSeq or Command Sequence contains an integer and a method nameSéhgenumber is incremented
for each new request, and is a traditional sequence number.

Contact contains a SIP URI that represents a direct route to reach or contact Alice, usually composed
of a username at an FQDN. While an FQDN is preferred, many end systems do not have registered domain
names, so IP addresses are permitted. Whilévikeheader field tells other elements where to send the
response, th€ontact header field tells other elements where to send future requests for this dialog.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 24.

The details of the session, type of media, codec, sampling rate, etc. are not described using SIP. Rather,
the body of a SIP message contains a description of the session, encoded in some other protocol format. One
such format is Session Description Protocol (SDP) [11]. This SDP message (nhot shown in the example) is
carried by the SIP message in a way that is analogous to a document attachment being carried by an email
message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in the biloxi.com domain, the
softphone sends tHBIVITE to the SIP server that serves Alice’s domain, atlanta.com. The IP address of the
atlanta.com SIP server could have been configured in Alice’s softphone, or it could have been discovered by
DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives
SIP requests and forwards them on behalf of the requestor. In this example, the proxy server receives the
INVITE request and sends a 100 (Trying) response back to Alice’s softphone. The 100 (Trying) response
indicates that th&NVITE has been received and that the proxy is working on her behalf to roulid VWEE

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 11]

423

424

425

426

427

428

429

430

431

432

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

460

461

462

463

464

465

466

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

to the destination. Responses in SIP use a three-digit code followed by a descriptive phrase. This response
contains the samio, From, Call-ID, andCSeq as thelNVITE, which allows Alice’s softphone to correlate

this response to the seMIVITE. The atlanta.com proxy server locates the proxy server at biloxi.com,
possibly by performing a particular type of DNS (Domain Name Service) lookup to find the SIP server
that serves the biloxi.com domain. This is described in [2]. As a result, it obtains the IP address of the
biloxi.com proxy server and forwards, or proxies, tN&/ITE request there. Before forwarding the request,

the atlanta.com proxy server adds an additidfialheader field that contains its own IP address (I TE

already contains Alice’s IP address in the fih). The biloxi.com proxy server receives théVITE and
responds with a 100 (Trying) response back to the Atlanta.com proxy server to indicate that it has received
theINVITE and is processing the request. The proxy server consults a database, generically called a location
service, that contains the current IP address of Bob. (We shall see in the next section how this database can
be populated.) The biloxi.com proxy server adds ancothatheader with its own IP address to the&VITE

and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives thRVITE and alerts Bob to the incoming call from Alice so that Bob can
decide whether or not to answer the call, i.e., Bob’s phone rings. Bob’s SIP phone sends an indication of
this in a 180 (Ringing) response, which is routed back through the two proxies in the reverse direction.
Each proxy uses théia header to determine where to send the response and removes its own address from
the top. As a result, although DNS and location service lookups were required to route théNIMtiBE,
the 180 (Ringing) response can be returned to the caller without lookups or without state being maintained
in the proxies. This also has the desirable property that each proxy that sdb¥/th& will also see all
responses to th&NVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes this information to Alice, perhaps
using an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a
200 (OK) response to indicate that the call has been answered. The 200 (OK) contains a message body with
the SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages; Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model of
SDP exchange. If Bob did not wish to answer the call or was busy on another call, an error response would
have been sent instead of the 200 (OK), which would have resulted in no media session being established.
The complete list of SIP response codes is in Section 25. The 200 (OK) (message F9 in Figure 1) might
look like this as Bob sends it out:

SIP/2.0 200 OK

Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bKnashds8
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9nG4bK77ef4c2312983.1
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.8>

Content-Type: application/sdp

Content-Length: 131

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 12]

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

(Bob’s SDP not shown)

The first line of the response contains the response code (200) and the reason phrase (OK). The remain-
ing lines contain header fields. Th&a header fieldsJo, From, Call- ID, andCSeq are all copied from
the INVITE request. (There are thrada headers - one added by Alice’s SIP phone, one added by the
atlanta.com proxy, and one added by the biloxi.com proxy.) Bob’s SIP phone has addgpeaameter to
the To header field. This tag will be incorporated by both User Agents into the dialog and will be included
in all future requests and responses in this call. Thatact header field contains a URI at which Bob can
be directly reached at his SIP phone. T®entent-Type and Content-Length refer to the message body
(not shown) that contains Bob's SDP media information.

In additon to DNS and location service lookups shown in this example, proxy servers can make flexible
“routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned a 486 (Busy
Here) response, the biloxi.com proxy server could proxylMMITE to Bob’s voicemail server. A proxy
server can also send #NVITE to a number of locations at the same time. This type of parallel search is
known as “forking”.

In this case, the 200 (OK) is routed back through the two proxies and is received by Alice’s softphone
which then stops the ringback tone and indicates that the call has been answered. Finally, an acknowledge-
ment messag@&\CK, is sent by Alice to Bob to confirm the reception of the final response (200 (OK)). In this
example, theACK is sent directly from Alice to Bob, bypassing the two proxies. This is because, through
the INVITE/200 (OK) exchange, the two SIP user agents have learned each other’s IP address through the
Contact header fields, which was not known when the initlVITE was sent. The lookups performed by
the two proxies are no longer needed, so they drop out of the call flow. This complelis¥/th&/200/ACK
three-way handshake used to establish SIP sessions and is the end of the transaction. Full details on session
setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media packets using the format agreed to
in the exchange of SDP. In general, the end-to-end media packets take a different path from the SIP signaling
messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session.
This is accomplished by sending aliVITE containing a new media description. If the change is accepted
by the other party, a 200 (OK) is sent, which is itself responded to wih@K. This reiNVITE references
the existing dialog so the other party knows that it is to modify an existing session instead of establishing a
new session. If the change is not accepted, an error response, such as a 406 (Not Acceptable), is sent, which
also receives aACK. However, the failure of the riNVITE does not cause the existing call to fail - the
session continues using the previously negotiated characteristics. Full details on session modification are in
Section 14.

At the end of the call, Bob disconnects (hangs up) first, and gener&&&anessage. ThiBYE is
routed directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt B¥tavith a
200 (OK) response, which terminates the session anBtietransaction. NACK is sent - arACK is only
sent in response to a response tdMXITE request. The reasons for this special handlingN/ITE will
be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take for a ringing
phone to be answered, and forking. For this reason, request handling in SIP is often classified as either
INVITE or non-INVITE, referring to all other methods besid®&VITE. Full details on session termination
are in Section 15.

Full details of all the messages shown in the example of Figure 1 are shown in Section 26.2.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 13]

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

5562

553

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to remain
in the SIP messaging path beyond the initkdY/ITE, it would add to thdNVITE a required routing header

field known asRecord-Route that contained a URI resolving to the proxy. This information would be
received by both Bob’s SIP phone and (due to Rexord-Route header field being passed back in the

200 (OK)) Alice’s softphone and stored for the duration of the dialog. The biloxi.com proxy server would
then receive and proxy th&CK, BYE, and 200 (OK) to th&YE. Each proxy can independently decide to
receive subsequent messaging, and that messaging will go through all proxies that elect to receive it. This
capability is frequently used for proxies that are providing mid-call features.

Registration is another common operation in SIP. Registration is one way that the biloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in the biloxi.com domain known as a SIP registraRHGETER
messages associate Bob’s SIP URI (sip:bob@biloxi.com) with the machine he is currently logged in at
(conveyed as a SIP URI in tHeontact header). The registrar writes this association, also called a binding,
to a database, called thacation servicewhere it can be used by the proxy in the biloxi.com domain. Often,

a registrar server for a domain is co-located with the proxy for that domain. It is an important concept that
the distinction between types of SIP servers is logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and
the one in the office could send registrations. This information is stored together in the location service and
allows a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be
registered on a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy to
input a URI and get back a translated URI that tells the proxy where to send the request. Registrations are
one way to create this information, but not the only way. Arbitrary mapping functions can be programmed,
at the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and
has no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either
on a request-by-request, challenge/response mechanism, or using a lower layer scheme as discussed in
Section 22.

The complete set of SIP message details for this registration example is in Section 26.1.

Additional operations in SIP, such as querying for the capabilities of a SIP server or clientQRing
TIONS, canceling a pending request usiGfANCEL, or supporting reliability of provisional responses
usingPRACK will be introduced in later sections.

5 Structure of the Protocol

SIP is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly
independent processing stages with only a loose coupling between each stage. The protocol is structured
into layers for the purpose of presentation and conciseness; it allows the grouping of functions common
across elements into a single place. It does not dictate an implementation in any way. When we say that an
element “contains” a layer, we mean it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified
by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its syntax and encoding. Its encoding is specified using a BNF. The complete
BNF is specified in Section 27. However, a basic overview of the structure of a SIP message can be found

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 14]

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

in Section 7. This section provides enough understanding of the format of a SIP message to facilitate
understanding the remainder of the protocol.

The next higher layer is the transport layer. This layer defines how a client takes a request and physically
sends it over the network, and how a response is sent by a server and then received by a client. All SIP
elements contain a transport layer. The transport layer is described in Section 19.

The next higher layer is the transaction layer. Transactions are a fundamental component of SIP. A
transaction is a request, sent by a client transaction (using the transport layer), to a server transaction, along
with all responses to that request sent from the server transaction back to the client. The transaction layer
handles application layer retransmissions, matching of responses to requests, and application layer timeouts.
Any task that a UAC accomplishes takes place using a series of transactions. Discussion of transactions can
be found in Section 17. User agents contain a transaction layer, as do stateful proxies. Stateless proxies do
not contain a transaction layer.

The transaction layer has a client component (referred to as a client transaction), and a server component
(referred to as a server transaction), each of which are represented by an FSM that is constructed to process
a particular request. The layer on top of the transaction layer is called the transaction user (TU), of which
there are several types. When a TU wishes to send a request, it creates a client transaction instance and
passes it the request along with the destination IP address, port, and transport to which to send the request.

A TU which creates a client transaction can also cancel it. When a client cancels a transaction, it requests
that the server stop further processing, revert to the state that existed before the transaction was initiated,
and generate a specific error response to that transaction. This is done @ANGEL request, which
constitutes its own transaction, but references the transaction to be cancelled. Cancellation is described in
Section 9.

There are several different types of transaction users. A UAC contains a UAC core, a UAS contains a
UAS core, and a proxy contains a proxy core. The behavior of the UAC and UAS cores depend largely on
the method. However, there are some common rules for all methods. These rules are captured in Section 8.
They primarily deal with construction of a request, in the case of a UAC, and processing of that request and
generation of a response, in the case of a UAS.

UAC and UAS core behavior for tHREGISTER method is described in Section 10. Registrations play
an important role in SIP. In fact, a UAS that handleRBGISTER is given a special hame - a registrar -
and it is described in that section.

UAC and UAS core behavior for tr@PTIONS method, used for determining the capabilities of a UA,
are described in Section 11.

Certain other requests are sent withidialog. A dialog is a peer-to-peer SIP relationship between two
user agents that persists for some time. The dialog facilitates sequencing of messages and proper routing
of requests between the user agents. W& TE method is the only way defined in this specification to
establish a dialog. When a UAC sends a request that is within the context of a dialog, it follows the common
UAC rules as discussed in Section 8, but also the rules for mid-dialog requests. Section 12 discusses dialogs
and presents the procedures for their construction, and maintenance, in addition to construction of requests
within a dialog.

The UAS core can generate provisional responses to requests, which are responses that provide ad-
ditional information about the request processing but do not indicate completion. Normally, provisional
responses are not transmitted reliably. However, an optional mechanism exists for them to be transmitted
reliably. This mechanism makes use of a method ca#BACK, sent as a separate transaction within the
dialog between the UAC and UAS, which is used to acknowledge a reliable provisional response.

The most important method in SIP is the¢VITE method, which is used to establish a session between

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 15]

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are maodified through the ub&\OT&Tequest
within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core (Section 9
describes cancellation, which applies to both UA core and proxy core). Section 16 discusses the proxy
element, which facilitates routing of messages between user agents.

6 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The terms and generic syntax of URI and URL are defined in RFC 2396 [13]. The following terms have
special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it as an user agent server (UAS). In order to determine how the request should be
answered, it acts as an user agent client (UAC) and generates requests. Unlike a proxy server, it
maintains dialog state and must participate in all requests sent on the dialogs it has established. Since
it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behavior.

Call: A callis an informal term that refers to a dialog between peers generally set up for the purposes of a
multimedia conversation.

Call leg: Another name for a dialog.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiatidVITE to the termi-
natingBYE request. A call stateful proxy is always stateful, but the converse is not true.

Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may or
may not interact directly with a human usbkser agent clienteindproxiesare clients.

Conference: A multimedia session (see below) that contains multiple participants.

Dialog: A dialog is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time.
A dialog is established by SIP messages, such as a 2xx responsé\WIaiE request. A dialog is
identified by a call identifier, local address, and remote address. A dialog was formerly known as a
call leg in RFC 2543.

Downstream: A direction of message forwarding within a transaction that refers to the direction that re-
quests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposeg@ravigional respons¢hat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Header: A header is a component of a sip message that conveys information about the message. It is
structured as a header name, followed by a colon, followed by its value.

Home Domain: The domain providing service to a SIP user. Typically, this is the domain present in the
URI in the address-of-record of a registration.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 16]

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Informational Response: Same as a provisional response.

Initiator, calling party, caller: The party initiating a session (and dialog) withI&tVITE request. A caller
retains this role from the time it sends the initillVITE which established a dialog, until the termi-
nation of that dialog.

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives dNVITE request for the purposes of
establishing a new session. A callee retains this role from the time it receivé\WHEE until the
termination of the dialog established by thisi/ITE.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It contains a list of bindings of adress-of-record keys to zero or more
contact addresses. The bindings can be created and removed in many ways; this specification defines
aREGISTER method that updates the bindings.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, iBequest-URI is identical to the first time, and other headers that affect
proxy operation are unchanged, so that the proxy would make the same processing decision on the
request it made the first time around. Looped requests are errors, and the procedures for detecting
them and handling them are described by the protocol.

Loose Routing: A proxy is said to be loose routing if it follows the procedures defined in this specification
for processing of th&koute header field. These procedures separate the destination of the request
(present in th&Request-URI) from the set of proxies that need to be visited along the way (present
in the Route header field). A proxy compliant to these mechanisms is also known as a loose router.

Message: Data sent between SIP elements as part of the the protocol. SIP messages are either requests or
responses.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example method&Natid E andBYE.

Outbound proxy: A proxythat receives all requests from a client, even though it is not the server resolved
by the Request-URI. The outbound proxy sends these requests, after any local processing, to the
address indicated in tHRequest-URI, or to another outbound proxy. Typically, a UA is manually
configured with its outbound proxy, or can learn it through auto-configuration protocols.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as isagquential searcha parallel search issues requests without waiting for
the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are consigerétbrmally, provisional
responses are not sent reliably. A provisional response that is sent reliably is referredrétiaidea
provisional response

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 17]

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Proxy, proxy server: Anintermediary entity that acts as both a server and a client for the purpose of making
requests on behalf of other clients. A proxy server primarily plays the role of routing, which means
its job is to ensure that a request is passed on to another entity “closer” to the targeted user. Proxies
are also useful for enforcing policy (for example, making sure a user is allowed to make a call). A
proxy interprets, and, if necessary, rewrites specific parts of a request message before forwarding it.

Recursion: A client recurses on a 3xx response when it generates a new request to the URISonthet
headers in the response.

Redirect Server: Aredirect server is a server that generates 3xx responses to requests it receives, directing
the client to contact an alternate URI.

Registrar: A registrar is a server that accefREGISTER requests, and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other tR&HMTE, ACK, or
CANCEL.

Reliable Provisional Response:A provisional response that is sent reliably from the UAS to UAC.
Request: A SIP message sent from a client to a server, for the purpose of invoking a particular operation.

Response:A SIP message sent from a server to a client, for indicating the status of a request sent from the
client to the server.

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Route Refresh Request:A route refresh request sent within a dialog is defined as a request that can modify
theroute setof the dialog.

Server: A server is a network element that receives requests in order to service them and sends back re-
sponses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential search:In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [11]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session.
If SDP is used, a session is defined by the concatenation afsdienamesession igdnetwork type
address typeandaddresselements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client, and th&CK for the response in the case the response was a non-2xxAdKdor a
2XX response is a separate transaction.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 18]

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

736

737

739

740

741

742

743

744

745

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Spiral: A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again at that
proxy, but this time, differs in a way that will result in a different processing decision than the original
request. Typically, this means that the requeREzjuest-URI differs from its previous arrival. A
spiral is not an error condition, unlike a loop. A typical cause for this is call forwarding. A user calls
joe@example.com. The example.com proxy forwards it to Joe’s PC, which in turn, forwards it to
bob@example.com. This request is proxied back to the example.com proxy. However, this is not a
loop. Since the request is targeted at a different user, it is considered a spiral, and is a valid condition.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request. Also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A stateful proxy is not the same as a call
stateful proxy.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Strict Routing: A proxy is is said to be strict routing if it follows thRoute processing rules of RFC 2543
and many prior Internet Draft versions of this RFC. That rule caused proxies to destroy the contents of
the Request-URI when aRoute header field was present. Strict routing behavior is not used in this
specification, in favor of a loose routing behavior. Proxies that perform strict routing are also known
as strict routers.

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction that refers to the direction that responses
flow from the user agent server to user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [4].

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later on, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later on, it assumes the role of a user agent client
for the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that reside above the transaction and transport
layers.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 19]

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

User agent (UA): A logical entity that can act as both a user agent client and user agent server for the
duration of a dialog.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-
transaction basis. For example, the user agent initiating a call acts as a UAC when sending the initial
INVITE request and as a UAS when receivinB¥4E request from the callee. Similarly, the same software
can act as a proxy server for one request and as a redirect server for the next request.

Proxy, location, and registrar servers defined abovdogiieal entities; implementationsAy combine
them into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [25]).

A SIP message is either a request from a client to a server, or a response from a server to a client.

Both Request (section 7.1) andResponse (section 7.2) messages use the basic format of RFC 2822
[20], even though the syntax differs in character set and syntax specifics. (SIP allows header fields that
would not be valid RFC 2822 header fields, for example.)

Both types of messages consist ddtart-line, one or more header fields (also known as “headers”), an
empty line indicating the end of the header fields, and an optimeakage-body.

generic-message = start-line
*message-header
CRLF
[message-body]

The start-line, each message-header line, and the emptwyilise be terminated by a carriage-return
line-feed sequenceCRLF). Note that the empty lineusT be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is
identical to HTTP/1.1. Rather than repeating the syntax and semantics here, we use [HX.Y] to refer to
Section X.Y of the current HTTP/1.1 specification (RFC 2616 [15]).

However, SIP is not an extension of HTTP.

7.1 Requests

SIP requests are distinguished by havinReguest-Line for a start-line. A Request-Line contains a
method name, Request-URI, and the protocol version separated by a single sgaeg ¢haracter.

The Request-Line ends withCRLF. No CR or LF are allowed except in the end-of-lifeRLF se-
guence. No LWS is allowed in any of the elements.

Method Request-URI SIP-Version

Method: This specification defines seven methoBEGISTER for registering contact informatiornN-
VITE, ACK, PRACK and CANCEL for setting up session8YE for terminating sessions artaP-
TIONS for querying servers about their capabilities. SIP extensions, documented in standards track
RFCs, may define additional methods.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 20]

779

780

781

782

783

784

785

786

787

788

789

790
791

792

793

794

795

796

797

798

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Request-URI: TheRequest-URIis a SIP URI as described in Section 23.1 or a general URI (RFC 2396 [13]).
It indicates the user or service to which this request is being addresseBeghnest-URI MUST NOT
contain unescaped spaces or control charactersasd NOT be enclosed in&>".

SIP elementsiAy supportRequest-URIs with schemes other than “sip”, for example the “tel” URI
scheme of RFC 2806 [19]. SIP elememay translate non-SIP URIs using any mechanism at their
disposal, resulting in either a SIP URI or some other scheme.

SIP-Version: Both request and response messages include the version of SIP in use, and follow [H3.1] (with
HTTP replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance
requirements, and upgrading of version numbers. To be compliant with this specification, applications
sending SIP messages)sT include aSIP-Version of “SIP/2.0". TheSIP-Version string is case-
insensitive, but implementationsusT send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP responses are distinguished from requests by havBigtas-Line as theirstart-line. A Status-Line
consists of the protocol version followed by a numetatus-Code and its associated textual phrase, with
each element separated by a sirfgkecharacter.

No CR or LF is allowed except in the find RLF sequence.

SIP-version Status-Code Reason-Phrase

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand
and satisfy a request. ThHeeason-Phrase is intended to give a short textual description of Status-
Code. TheStatus-Code is intended for use by automata, whereasRleason-Phrase is intended for the
human user. A client is not required to examine or displayRbason-Phrase.

While this specification suggests specific wording for the reason phrase, implementatiorthoose
other text, e.g., in the language indicated in Aoeept-Language header field of the request.

The first digit of theStatus-Code defines the class of response. The last two digits do not have any

categorization role. For this reason, any response with a status code between 100 and 199 is referred to as

a “1xx response”, any response with a status code between 200 and 299 as a “2xx response”, and so on.
SIP/2.0 allows six values for the first digit:

1xx: Provisional — request received, continuing to process the request;

2xx: Success — the action was successfully received, understood, and accepted;

3xx: Redirection — further action needs to be taken in order to complete the request;
4xx: Client Error — the request contains bad syntax or cannot be fulfilled at this server;
5xx: Server Error — the server failed to fulfill an apparently valid request;

6xx: Global Failure — the request cannot be fulfilled at any server.

Section 25 defines these classes and describes the individual codes.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 21]

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax fanessage-header, and the rules for extending header fields
over multiple lines. However, the latter is specified in HTTP with implicit white space and folding. This
specification conforms with RFC 2234 [28] and uses only explicit white space and folding as an integral
part of the grammar.

[H4.2] also specifies that multiple header fields of the same field name whose value is a comma separated
list can be combined into one header field. That applies to SIP as well, but the specific rule is different
because of the different grammars. Specifically, any SIP header whose grammar is of the form:

header = "header-name” HCOLON header-value *(COMMA header-value)

allows for combining header fields of the same name into a comma separated list. This is also true for
the Contact header, as long as none of the header instances have a value of “*”.
7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 2.2 of RFC 2822 [20]. Each
header field consists of a field name followed by a colon (") and the field value.

field-name: field-value

The formal grammar for anessage-header specified in Section 27 allows for an arbitrary amount of
whitespace on either side of the colon; however, implementations should avoid spaces between the field
name and the colon and use a single sp&Y petween the colon and thield-value. Thus,

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

are all valid and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at Ie88t one
horizontal tab HT). The line break and the whitespace at the beginning of the next line are treated as a
single SP character. Thus, the following are equivalent:

Subject: | know you're there, pick up the phone and talk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

The relative order of header fields with different field names is not significant. HoweveRHCioM-
MENDED that headers which are needed for proxy procesaiigy Route, Record-Route, Proxy-Require,
Max-Forwards, andProxy-Authorization, for example) appear towards the top of the message, to facilitate
rapid parsing. The relative order of header fields with the same field name is important. Multiple header
fields with the samdield-name MAY be present in a message if and only if the entire field-value for that

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 22]

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

header field is defined as a comma-separated list (that is, if follows the grammar defined in Section 7.3).
It MUST be possible to combine the multiple header fields into one “field-name: field-value” pair, without
changing the semantics of the message, by appending each subs$iedgienatue to the first, each separated
by a comma. The exception to this rule are ghahorization, Proxy-Authorization, Proxy-Authenticate
and Proxy-Authorization headers. Multiple header fields with these namesg be present in a message,
but since their grammar does not follow the general form listed in Section 7.3vth&y NOT be combined
into a single header field.

ImplementationsiusT be able to process multiple header fields with the same nhame in any combination
of the single-value-per-line or comma-separated value forms.

The following groups of header fields are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>, <sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It will always be either an opaque se-
qguence of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings. Many
existing headers will adhere to the general form of a value followed by a semi-colon separated sequence of
parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

Even though an arbitrary number of parameter pairs may be attached to a header field value, any given
parameter-name MUST NOT appear more than once.

All new header fieldsausT follow this generic format unless they have been inherited from other RFC
2822-like specifications.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 23]

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

When comparing header fields, field names are always case-insensitive. Unless otherwise stated in
the definition of a particular header field, field values, parameter names, and parameter values are case-
insensitive. Tokens are always case-insensitive. Unless specified otherwise, values expressed as quoted
strings are case-sensitive.

For example,

Contact: <sip:alice@atlanta.com>;expires=3600

is equivalent to

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

and

Content-Disposition: session;handling=optional

is equivalent to

content-disposition: Session;HANDLING=OPTIONAL
The following two header fields are not equivalent:

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called request header fields and
response header fields, respectively. If a header appears in a message not matching its category (such as a
request header field in a responseMitsT be ignored. Section 24 defines the classification of each header

field.

7.3.3 Compact Form

SIP provides a mechanism to represent common header fields in an abbreviated form. This may be useful
when messages would otherwise become too large to be carried on the transport available to it (exceeding
the maximum transmission unit (MTU) when using UDP, for example). These compact forms are defined
in Section 24. A compact formAy be substituted for the longer form of a header name at any time without
changing the semantics of the message. The same type of headefaftelgppear in both long and short

forms within the same message. ImplementationsT accept both the long and short forms of each header
name.

7.4 Bodies

Requests, including new requests defined in extensions to this specificatiorcontain message bodies
unless otherwise noted. The interpretation of the body depends on the request method.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 24]

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

For response messages, the request method and the response status code determine the type and inter-
pretation of any message body. All responses include a body.

7.4.1 Message Body Type

The Internet media type of the message brd\sT be given by theContent-Type header field. If the body
has undergone any encoding such as compression, theaubisbe indicated by th€ontent-Encoding
header field; otherwis€&ontent-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of tl@ontent-Type header-field value.

The “multipart” MIME type defined in RFC 2046 [8)iAY be used within the body of the message.
Implementations that send requests containing multipart message bugigssend a session description
as a non-multipart message body if the remote implementation requests this throdgteahheader field
that does not contaimultipart.

Note that SIP messages\y contain binary bodies or body parts.

7.4.2 Message Body Length

The body length in bytes is provided by tl@mntent-Length header field. Section 24.14 describes the
necessary contents of this header in detail.

The “chunked” transfer encoding of HTTP/IMMUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

7.5 Framing SIP messages

Unlike HTTP, SIP implementations can use UDP or other unreliable datagram protocols. Each such data-

gram carries one request or response. See Section 19 on constraints on usage of unreliable transports.
Likewise, implementations processing SIP messages over stream-oriented tramsygarignore any

CRLF appearing before thetart-line [H4.1]

8 General User Agent Behavior

A user agent represents an end system. It contains a User Agent Client (UAC), which generates requests,
and a User Agent Server (UAS) which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line), and processing a response.
A UAS is capable of receiving a request, and generating a response, based on user input, external stimulus,
the result of a program execution, or some other mechanism.

When a UAC sends a request, it will pass through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, whether the request or response is
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly
in Section 12; they represent a peer-to-peer relationship between user agents, and are established by specific
SIP methods, such da8VITE.

In this section, we discuss the method independent rules for UAC and UAS behavior when processing
requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 25]

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Security procedures for requests and responses outside of a dialog are described in Section 22. Specif-
ically, mechanisms exist for the UAS and UAC to mutually authenticate. A limited set of privacy features
are also supported through encryption of bodies using S/IMIME.

8.1 UAC Behavior

This section covers UAC behavior outside of a dialog.

8.1.1 Generating the Request

A valid SIP request formulated by a UAGUST at a minimum contain the following header, From,
CSeq, Call-ID, Max-Forwards, andVia; all of these headers are mandatory in all SIP messages. These
six headers are the fundamental building blocks of a SIP message, as they jointly provide for most of the
critical message routing services including the addressing of messages, the routing of responses, limiting
message propagation, ordering of messages, and the unique identification of transactions. These headers are
in addition to the mandatory request line, which contains the meteduest-URI and SIP version.

Examples of requests sent outside of a dialog includéNafiTE to establish a session (Section 13) and
anOPTIONS to query for capabilities (Section 11).

8.1.1.1 Request-URI The initial Request-URI of the messageHoOULD be set to the value of the URI
in theTo field. One notable exception is tREGISTER method; behavior for setting tiRequest-URI of
register is given in Section 10.

In some special circumstances, the presence of a pre-existing route set can afRedulest-URI of
the message. A pre-existing route set is an ordered set of URIs that identify a chain of servers, to which a
UAC will send outgoing requests that are outside of a dialog. Commonly, they are configured on the user
agent by a user or service provider manually, or through some non-SIP mechanism. When a provider wishes
to configure a UA with an outbound proxy, it RECOMMENDED that this by done by providing it with a
pre-existing route set with a single URI, that of the outbound proxy.

When a pre-existing route set is present, the procedures for populatirRetheest-URI and Route
header field detailed in Section 12.2.MUST be followed, even though there is no dialog.

8.1.1.2 To TheTo field first and foremost specifies the desired “logical” recipient of the request, or the
address-of-record of the user or resource that is the target of this request. This may or may not be the
ultimate recipient of the request. Tfie heademAy contain a SIP URI, but it may also make use of other

URI schemes (the tel URL [19], for example) when appropriate. All SIP implementatioss support the

SIP URI. TheTo header field allows for a display nhame.

A UAC may learn how to populate thEo header field for a particular request in a number of ways.
Usually the user will suggest thio header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book. Frequently, the user will not enter a complete URI,
but rather, a string of digits or letters (i.e., “bob”). Itis at the discretion of the UA to choose how to interpret
this input. Using it to form the user part of a SIP URL implies that the UA wishes the name to be resolved in
the domain the right hand side (RHS) of the at-sign in the SIP URI (i.e., sip:bob@example.com). The RHS
will frequently be the home domain of the user, which allows for the home domain to process the outgoing
request. This is useful for features like “speed dial” which require interpretation of the user part in the home
domain. The tel URL is used when the UA does not wish to specify the domain that should interpret the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 26]

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035
1036
1037
1038

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

user input. Rather, each domain that the request passes through would be given that opportunity. As an
example, a user in an airport might log in, and send requests through an outbound proxy in the airport. If
they enter “411” (this is the phone number for local directory assistance in the United States), that needs to
be interpreted and processed by the outbound proxy in the airport, not the user's home domain. In this case,
tel:411 would be the right choice.

A request outside of a dialagusT NOT contain a tag; the tag in thio field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on th&o header field, see Section 24.41. The following is an example of valid
To header:

To: Carol <sip:carol@chicago.com>

8.1.1.3 From TheFrom general-header field indicates the logical identity of the initiator of the request,
possibly the user’s address of record. Like Tiwefield, it contains a URI and optionally a display name.

It is used by SIP elements to determine processing rules to apply to a request (for example, automatic call
rejection). As such, itis very important that thRemm URI not contain IP addresses or the FQDN of the host

the UA is running on, since these are not logical names.

The From header field allows for a display hame. A UASHOULD use the display name “Anony-
mous”, along with a syntactically correct, but otherwise meaningless URI (like sip:988776a@ahhs.aa), if
the identity of the client is to remain hidden.

Usually the value that populates tReom header field in requests generated by a particular user agent
is pre-provisioned by the user or by the administrators of the user’s local domain. If a particular user agent
is used by multiple users, it might have switchable profiles that include a URI corresponding to the identity
of the profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain
that they are who thelfrom header field claims they are (see Section 20 for more on authentication).

The From field MUST contain a newtag” parameter, chosen by the UAC. See Section 23.3 for details
on choosing a tag.

For further information on thErom header see Section 24.20. Examples:

From: "Bob" <sip:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

8.1.1.4 Call-ID TheCall-ID general-header field acts as a unique identifier to group together a series of
messages. MusT be the same for all requests and responses sent by either UA in a diadeg Ut D be
the same in each registration from a UA.

In a new request created by a UAC outside of any dialogCalID heademusT be selected by the
UAC as a globally unique identifier over space and time unless overridden by method specific behavior.
All SIP user agents must have a means to guarantee th&ateD headers they produce will not be
inadvertently generated by any other user agent. Note that when requests are retried after certain failure
responses that solicit an amendment to a request (for example, a challenge for authentication), these retried

requests are not considered new requests, and therefore do not needlhEhheaders; see Section 8.1.3.6.

Use of cryptographically random identifiers [5] in the generation of Call-IDSESOMMENDED. Im-
plementationsvAy use the form “localid@host”.Call-IDs are case-sensitive and are simply compared
byte-by-byte.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 27]

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072
1073

1074

1075

1076

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Using cryptographically random identifiers provides some protection against session hijacking and reduces the
likelihood of unintentional Call-ID collisions.
No provisioning or human interface is required for the selection ofxhk-1D header field value for a
request.
For further information on th€all-ID header see Section 24.8.
Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c9le6bf6@foo.bar.com

8.1.1.5 CSeq The Cseq header serves as a way to identify and order transactions. It consists of a
sequence number and a method. The methodT match that of the request. For requests outside of a
dialog, the sequence number value is arbitrary,NbusT be expressible as a 32-bit unsigned integer and
MUST be less than 2**31. As long as it follows the above guidelines, a client may use any mechanism it
would like to selectCSeq header field values.

Section 12.2.1.1 discusses construction of@lszq for requests within a dialog.

Example:

CSeq: 4711 INVITE

8.1.1.6 Max-Forwards The Max-Forwards header serves to limit the number of hops a request can
transit on the way to its destination. It consists of an integer that is decremented by one at each hop.
If the Max-Forwards value reaches 0 before the request reaches its destination, it will be rejected with a
483 Too Many Hops error response.

A UAC MuUsT insert aMax-Forwards header field into each request it originates with a value which
SHOULD be 70. This number was chosen to be sufficiently large to guarantee that a request would not be
dropped in any SIP network when there were no loops, but not so large as to consume proxy resources when
a loop does occur. Lower values should be used with caution, only in networks where topologies are known
by the UA.

8.1.1.7 Via TheVia header is used to indicate the transport used for the transaction, and to identify the
location where the response is to be sent.

When the UAC creates a requestMit'ST insert aVia into that request. The protocol and version in
the heademusT be SIP and 2.0, respectively. TR@ header it insertUsT contain a branch parameter.
This parameter is used to uniquely identify the transaction created by that request. This parameter is used
by both the client, and the server.

Thebranch parameter valu&usT be unique across time for all requests sent by the UA. The exception
to this rule isSCANCEL. As discussed below, @BANCEL request will have the same value of the branch
parameter as the request it cancels.

The uniqueness property of the branch ID parameter, to facilitate its use as a transaction ID, was not part of RFC
2543

The branch ID inserted by an element compliant with this specificatioaT always begin with the
characters “zZ9nG4bK”. These 7 characters are used as a magic cookie (7 is deemed sufficient to ensure that
an older RFC 2543 implementation would not pick such a value), so that servers receiving the request can

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 28]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1077 determine that the branch ID was constructed in the fashion described by this specification (i.e., globally
1078 Unique). Beyond this requirement, the precise format obtlamch token is implementation-defined.

1079 The Via heademaddr, ttl, andsent-by components will be set when the request is processed by the
1080 transport layer (Section 19).
1081 Via processing for proxies is described in Sections 3sgaproxy-response-processing-via.

102 8.1.1.8 Contact The Contact header provides a SIP URI that can be used to contact that specific in-
183 Stance of the user agent for subsequent requestsCohtact heademusT be present in any request that

1084 can result in the establishment of a dialog. For the methods defined in this specification, that includes only
10ss the INVITE request. For these requests, the scope ofCthietact is global. That is, theContact header

1086 refers to the URI at which the UA would like to receive requests, and thisNuRIT be valid even if used

1087 IN subsequent requests outside of any dialo@sly a single URIMUST be present.

1088 For further information on th€ontact header, see Section 24.10.

10ss 8.1.1.9 Supported and Require If the UAC supports extensions to SIP that can be applied by the
1000 Server to the response, the USBoOULD include aSupported header in the request listing the option tags

1001 (Section 23.2) for those extensions. This includes support for reliability for provisional responses, which is
1092 an extension even though it is defined within this specification. The option tag for reliability of provisional
1003 responses i$00rel

1094 The option-tags listeahusT only refer to extensions defined in standards-track RFCs. This is to prevent
1005 Servers from insisting that clients implement non-standard, vendor-defined features in order to receive ser-
1006 Vice. Extensions defined by experimental and informational RFCs are explicitly excluded from usage with
1097 the Supported header in a request, since they too are often used to document vendor-defined extensions.
1098 If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request
1009 in order to process the requestMusT insert aRequire header into the request listing the option tag for

oo that extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are
o1 traversed understand that extensionmitsT insert aProxy-Require header into the request listing the

102 option tag for that extension.

1103 As with the Supported header, the option-tags in tiRequire heademusT only refer to extensions
104 defined in standards-track RFCs.
1105 A Require header in a request with the option th@0rel means that the UAC wishes for all provi-

106 Sional responses to this request to be transmitted reliably. This headarNOT be present in any requests
107 exceptingINVITE, although extensions to SIP may allow its usage with other request methods.

1mos 8.1.1.10 Additional Message ComponentsAfter a new request has been created, and the headers de-

1100 Scribed above have been properly constructed, any additional optional headers are added, as are any headers
110 Specific to the method.

1111 SIP requestsiAy contain a MIME-encoded message-body. Regardless of the type of body that a request

112 contains, certain headers must be formulated to characterize the contents of the body. For further information
11z on these headers see Sections 24.14, 24.15 and 24.12.

ma 8.1.2 Sending the Request

s The destination for the request is then computed. Unless there is local policy specifying otherwise, then
s the destinatiormusT be determined by applying the DNS proceedures described in [2] as follows. If

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 29]

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145
1146

1147
1148

1149

1150

1151

1152

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the first element in the route set indicated a strict router (resulting in forming the request as described in
Section 12.2.1.1), the proceedum@ssT be applied to thdRequest-URI of the request. Otherwise, the
proceedures are applied to the fiRziute header field value in the request (if one exists), or to the request’s
Request-URI if there is noRoute header field present. These procedures yield an ordered set of address,
port, and transports to attempt.

Local policy MAY specify an alternate set of destinations to attempt. There are no restrictions on the
alternate destinations if the request containfwoaote headers. This provides a simple alternative to a pre-
existing route set as way to specify an outbound proxy. However, that approach for configuring outbound
proxy iSNOT RECOMMENDED, a pre-existing route set with a single UBHoULD be used instead. If the
request containRoute headers, the requegiy be sent to any server that the UA is certain will honor the
Route andRequest-URI policies specified in this document (as opposed to those in RFC 2543).

The UACsHouULD follow the procedures defined in [2] for stateful elements, trying each address until a
server is contacted. Each try constitutes a new transaction, and therefore each carries a\différesder
with a new branch parameter. Furthermore, the transport value Wighteeader is set to whatever transport
was determined for the target server.

8.1.3 Processing Responses

Responses are first processed by the transport layer and then passed up to the transaction layer. The trans-
action layer performs its processing and then passes it up to the TU. The majority of response processing in
the TU is method specific. However, there are some general behaviors independent of the method.

8.1.3.1 Transaction Layer Errors In some cases, the response returned by the transaction layer will
not be a SIP message, but rather a transaction layer event. The only event that the TU will encounter is the
timeout event. When the timeout event is received from the transaction layersit be treated as if a 408
(Request Timeout) status code has been received.

8.1.3.2 Unrecognized ResponsesA UAC MUST treat any response it does not recognize as being equiv-
alent to the x00 response code of that class, lmaodT be able to process the x00 response code for all
classes. For example, if a UAC receives an unrecognized response code of 431, it can safely assume that
there was something wrong with its request and treat the response as if it had received a 400 (Bad Request)
response code.

8.1.3.3 Vias If more than oneVia header field is present in a response, the UMOULD discard the
message.

The presence of addition®ia header fields that precede the originator of the request suggests that the message
was misrouted or possibly corrupted.

8.1.3.4 Processing Reliable 1xx Responses 1xx response that containsRequire header with the
option tag100rel is a reliable provisional response. The UA core follows the procedures in Section 18.2
to process the response, which will result in the generatiorPiR ACK request to acknowledge the reliable
provisional response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 30]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

uss 8.1.3.5 Processing 3xx responsedJpon receipt of a redirection response (for example, a 3xx response
usa Status code), clientsHouLD use the URI(S) in th&Contact header field to formulate one or more new

uss requests based on the redirected request.

1156 If more than one URI is present @ontact header fields within the 3xx response, the MAST deter-

us7 - Mine an order in which these contact addresses should be processeslusAsonsult the §” parameter

uss value of the Contact header fields (see Section 24.10) if available. Contact addressease ordered from

useo highest gvalue to lowest. If no gvalue is present, a contact address is considered to have a qvalue of 1.0.
ue0 Note that two or more contact addresses might have an equal gvalue - these URIs are eligible to be tried in
uer parallel.

1162 Once an ordered list has been established, UACST try to contact each URI in the ordered list in turn

163 UNtil a server responds. If there are contact addresses with an equal qvalue, theagAtecide randomly

162 0N an order in which to process these addresses, &yt attempt to process contact addresses of equal

ues gqvalue in parallel.

1166 Note that for example, the UAC may effectively divide the ordered list into groups, processing the groups
ue7 Serially and processing the destinations in each group in parallel.

1168 If contacting an address in the list results in a failure, as defined in the next paragraph, the element moves
e to the next address in the list, until the list is exhausted. If the list is exhausted, then the request has failed.
1170 FailuressHouLD be detected through failure response codes (codes greater than 399) or network time-
u71 outs. Client transaction will report any transport layer failures to the transaction user.

1172 When a failure for a particular contact address is received, the dieouLD try the next contact

u7zs address. This will involve creating a new client transaction to deliver a new request.

1174 In order to create a request based on a contact address in a 3xx responseMa APy the entire

urs URI from theContact header into th&equest-URI, except for the thethod-param” and “header” URI

uze parameters (see Section 23.1.1 for a definition of these parameters). It usegdker” parameters to

u77 create headers for the new request, overwriting headers associated with the redirected request in accordance
u7zs With the guidelines in Section 23.1.5.

1179 Note that in some instances, headers that have been communicated in the contact address may instead
uso append to existing request headers in the original redirected request. As a general rule, if the header can
us1 accept a comma-separated list of values, then the new headematuee appended to any existing values

us2 in the original redirected request. If the header does not accept multiple values, the value in the original redi-
uss rected requestiAY be overwritten by the header value communicated in the contact address. For example,
usa if @ contact address is returned with the following value:

uss Sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

1186 Then anySubject header in the original redirected request is overwritten, but the HTTP URL is merely

us7 - appended to any existir@all-Info header field values.

1188 Itis RECOMMENDEDthat the UAC reuse the sarie, From, andCall-ID used in the original redirected

1use request, but the UA@AY also choose to update for example @al-ID header field value for new requests.

1190 Finally, once the new request has been constructed, it is sent using a new client transaction, and therefore
191 MUST have a new branch ID in the tofia field as discussed in Section 8.1.1.7.

1102 In all other respects, requests sent upon receipt of a redirect respeosa D re-use the headers and

193 bodies of the original request.

1194 In some instance$;ontact header values may be cached at UAC temporarily or permanently depending

195 0N the status code received and the presence of an expiration interval; see Sections 25.3.2 and 25.3.3.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 31]

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.1.3.6 Processing 4xx responsegCertain 4xx response codes require specific UA processing, indepen-
dent of the method.

If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, theH$AL D
follow the authorization procedures of Section 20.2 and Section 20.3 to retry the request with credentials.

If a 413 (Request Entity Too Large) response is received (Section 25.4.11), the request contained a body
that was longer than the UAS was willing to accept. If possible, the JAGULD retry the request, either
omitting the body or using one of a smaller length.

If a 415 (Unsupported Media Type) response is received (Section 25.4.13), the request contained media
types not supported by the UAS. The UABOULD retry sending the request, this time only using content
with types listed in thé\ccept header in the response, with encodings listed irAtteept-Encoding header
in the response, and with languages listed inAbeept-Language in the response.

If a 416 (Unsupported URI Scheme) response is received (Section 25.4.1Redest-URI used a
URI scheme not supported by the server. The clgbuLD retry the request, this time, using a SIP URI.

If a 420 (Bad Extension) response is received (Section 25.4.15), the request cont&aqdii@ or
Proxy-Require header listing an option-tag for a feature not supported by a proxy or UAS. The UAC
SHOULD retry the request, this time omitting any extensions listed inltheupported header in the re-
sponse.

In all of the above cases, the request is retried by creating a new request with the appropriate modifica-
tions. This new requestHoOULD have the same value of ti@all-1D, To, andFrom of the previous request,
but theCSeq should contain a new sequence number that is one higher than the previous.

With other 4xx responses, including those yet to be defined, a retry may or may not be possible depend-
ing on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there is a set of processing rules which are
followed, independent of the method. Section 12 gives guidance on how a UAS can tell whether a request
is inside or outside of a dialog.

Note that request processing is atomic. If arequest is accepted, all state changes associated svith it
be performed. If it is rejected, all state changessT NOT be performed.

8.2.1 Method Inspection

Once arequest is authenticated (or no authentication was desired), thelW#Snspect the method of the

request. If the UAS does not support the method of a requeststr generate a 405 (Method Not Allowed)

response. Procedures for generation of responses are described in Section 8.2.6. MesuAaio add

an Allow header to the 405 (Method Not Allowed) response. BHew header fieldvwusT list the set of

methods supported by the UAS generating the messageAlldve header field is presented in Section 24.5.
If the method is one supported by the server, processing continues.

8.2.2 Header Inspection

If a UAS does not understand a header field in a request (that is, the header is not defined in this specification
or in any supported extension), the sermersT ignore that header and continue processing the message. A
UAS sHouLD ignore any malformed headers that are not necessary for processing requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 32]

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250
1251
1252
1253

1254
1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.2.2.1 To and Request-URI TheTo header field identifies the original recipient of the request desig-
nated by the user identified in tikeom field. The original recipient may or may not be the UAS processing
the request, due to call forwarding or other proxy operations. A WAS apply any policy it wishes in
determination of whether to accept requests wherTthigeld is not the identity of the UAS. However, it is
RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (for example,
atel: URI) in the To header, or if thelo header field does not address a known or current user of this
UAS. If, on the other hand, the UAS decides to reject the requestduLD generate a response with a 403
(Forbidden) status code and pass it to the server transaction layer for transmission.

However, theRequest-URI identifies the UAS that is to process the request. IfReguest-URI uses
a scheme not supported by the UASSHOULD reject the request with a 416 (Unsupported URI Scheme)
response. If th&kequest-URI does not identify an address that the UAS is willing to accept requests for,
it SHOULD reject the request with a 404 (Not Found) response. Typically, a UA that us&EBETER
method to bind its address of record to a specific contact address will see requestRefasst-URI
equals those contact addressess. Other potential sources of received Request-URIs in€Qattatite
headers of requests and responses sent by the UA that establish or refresh dialogs.

8.2.2.2 Merged Requests If the request has no tag in tie, the TU checks ongoing transactions. If the
To, From, Call-ID, CSeq exactly match (including tags) those of any request received previously, but the
branch-ID in the topmosVia is different from those received previously, the BHoOULD generate a 482
(Loop Detected) response and pass it to the server transaction.

The same request has arrived at the UAS more than once, following different paths, most likely due to forking.
The UAS processes the first such request received and responds with a 482 (Loop Detected) to the rest of them.

8.2.2.3 Require Assuming the UAS decides that it is the proper element to process the request, it ex-
amines thdRequire header field, if present.

The Require general-header field is used by a UAC to tell a UAS about SIP extensions that the UAC
expects the UAS to support in order to process the request properly. Its format is described in Section 24.33.
If a UAS does not understand an option-tag listed Reguire header field, imusT respond by generating a
response with status code 420 (Bad Extension). The MAST add anUnsupported header field, and list
in it those options it does not understand amongst those iRéggiire header of the request. Upon receipt
of the 420 (Bad Extension) the cliesHOULD retry the request, this time without using those extensions
listed in theUnsupported header field in the response.

Note thatRequire and Proxy-Require MusT NOT be used in a SIEANCEL request, or in alMACK
request sent for a non-2xx response. These headers should be ignored if they are present in these requests.

An ACK request for a 2xx respons@&sST contain only thos&kequire andProxy-Require values that
were present in the initial request.

Example:

UAC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: 100rel

UAS->UAC: SIP/2.0 420 Bad Extension
Unsupported: 100rel

This behavior ensures that the client-server interaction will proceed without delay when all options are under-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 33]

1277
1278
1279
1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

stood by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

8.2.3 Content Processing

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
message, and the headers that describe it. If there are any bodies whose type (indicateddmyehte

Type), language (indicated by teéontent-Language) or encoding (indicated by théontent-Encoding)

are not understood, and that body part is not optional (as indicated Botitent-Disposition header), the

UAS MUST reject the request with a 415 (Unsupported Media Type) response. The resposiseontain

an Accept header listing the types of all bodies it understands, in the event the request contained bodies
of types not supported by the UAS. If the request contained content encodings not understood by the UAS,
the respons@usT contain anAccept-Encoding header listing the encodings understood by the UAS. If

the request contained content with languages not understood by the UAS, the regpsmseontain an
Accept-Language header indicating the languages understood by the UAS. Beyond these checks, body
handling depends on the method and type. For further information on the processing of content-specific
headers see Section 7.4 as well as Section 24.11 through 24.15.

8.2.4 Applying Extensions

A UAS that wishes to apply some extension when generating the resparsseonly do so if support for

that extension is indicated in tl8upported header in the request. If the desired extension is not supported,

the serversHoULD rely only on baseline SIP and any other extensions supported by the client. To ensure
that thesHouLD can be fulfilled, any specification of a new extensiensT include discussion of how

to return gracefully to baseline SIP when the extension is not present. In rare circumstances, where the
server cannot process the request without the extension, the setvesend a 421 (Extension Required)
response. This response indicates that the proper response cannot be generated without support of a specific
extension. The needed extensiongs)sT be included in &Require header in the response. This behavior

iSNOT RECOMMENDED, as it will generally break interoperability.

Any extensions applied to a non-421 respongesT be listed in aRequire header included in the
response. Of course, the senwewsT NOT apply extensions not listed in tHeupported header in the
request. As a result of this, tieequire header in a response will only ever contain option tags defined in
standards-track RFCs.

8.2.5 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method-
specific. Section 10 covers tRREGISTER request, section 11 covers tRPTIONS request, section 13
covers thdNVITE request, and section 15 covers B¥E request.

8.2.6 Generating the Response

When a UAS wishes to construct a response to a request, it follows these procedures. Additional procedures
may be needed depending on the status code of the response and the circumstances of its construction. These
additional procedures are documented elsewhere.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 34]

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.2.6.1 Sending a Provisional ResponseOne largely non-method-specific guideline for the generation
of responses is that UASSHOULD NOT issue a provisional response for a AdW/ITE request. Rather,
UASsSHOULD generate a final response to a AbMVITE request as soon as possible.

When a 100 (Trying) response is generated, @imgestamp header present in the requestsT be
copied into this 100 (Trying) response. If there is a delay in generating the response, tli0ASD add
a delay value into th@imestamp value in the response. This valuesT contain the difference between
time of sending of the response and receipt of the request, measured in seconds.

8.2.6.2 Headers and Tags The From field of the responseiusT equal theFrom field of the request.
TheCall-ID field of the responseusT equal theCall-ID field of the request. Th€seq field of the response
MUST equal theCseq field of the request. Th¥ia headers in the responsesT equal theVia headers in
the request anshusT maintain the same ordering.

If a request contained® tag in the request, tho field in the responseusT equal that of the request.
However, if theTo field in the request did not contain a tag, the URI in Tioefield in the responseiusT
equal the URI in thelo field in the request; additionally, the UABUST add a tag to thdo field in the
response (with the exception of the 100 (Trying) response, in which mAsgbe present). This serves to
identify the UAS that is responding, possibly resulting in a component of a dialog ID. The same $ag
be used for all responses to that request, both final and provisional (again excepting the 100 (Trying)).
Procedures for generation of tags are defined in Section 23.3.

8.2.7 Stateless UAS Behavior

A stateless UAS is a UAS that does not maintain transaction state. It replies to requests normally, but
discards any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless
UAS receives a retransmission of a request, it regenerates the response and resends it, just as if it were
replying to the first instance of the request. Stateless UASs do not use a transaction layer; they receive
requests directly from the transport layer and send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge
response is issued. If unauthenticated requests were handled statefully, then malicious floods of unau-
thenticated requests could create massive amounts of transaction state that might slow or completely halt
call processing in a UAS, effectively creating a denial of service condition; for more information see Sec-
tion 22.1.5.

The most important behaviors of a stateless UAS are the following:

A stateless UAS1UST NOT send provisional (1xx) responses.

A stateless UASAUST NOT retransmit responses.

A stateless UAS1UST ignore ACK requests.

A stateless UAS/1UST ignore CANCEL requests.

To header tagsusT be generated for responses in a stateless manner - in a manner that will generate
the same tag for the same request consistently. For information on tag construction see Section 23.3.

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate
in either a stateful or stateless mode for each new request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 35]

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378
1379
1380
1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests, and improve signaling path robustness, by relying on redirection. Redirection allows
servers to push routing information for a request back in a response to the client, thereby taking themselves
out of the loop of further messaging for this transaction while still aiding in locating the target of the request.
When the originator of the request receives the redirection, it will send a new request based on the URI it has
received. By propagating URIs from the core of the network to its edges, redirection allows for considerable
network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has
access to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request otli@khan
CEL, the server gathers the list of alternative locations from the location service and either returns a final
response of class 3xx or it refuses the request. For well-fol@&NCEL requests, ilSHOULD return a
2xx response. This response ends the SIP transaction. The redirect server maintains transaction state for an
entire SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alterna-
tive locations intoContact headers. Anéxpires” parameter to th&ontact header may also be supplied
to indicate the lifetime of th€ontact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily) response
may also give the same location and username that was targeted by the initial request but specify additional
transport parameters such as a different server or multicast address to try, or a change of SIP transport from

UDP to TCP or vice versa.

However, redirect servergusT NOT redirect a request to a URI equal to the one inReguest-URI,
instead, provided that the URI does not point to itself, the redirect sereuLD proxy the request to the
destination URI.

If a client is using an outbound proxy, and that proxy actually redirects requests, a potential arises for infinite
redirection loops.

Note that theContact header fieldnAy also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special informational announcement
such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URIs for phones, fax, (@rthey were
defined) or anailto: (RFC 2368, [36]) URL.

The “expires” parameter of th&Contact header field indicates how long the URI is valid. The value of
the parameter is a number indicating seconds. If this parameter is not provided, the valu&xitbe
header field determines how long the URI is valid. Implementatioms treat values larger than 2**32-

1 (4294967295 seconds or 136 years) as equivalent to 2**32-1. Malformed values should be treated as
equivalent to 3600.

Redirect serversmusT ignore features that are not understood (including unrecognized he&ders,
quired extensions, or even method names) and proceed with the redirection of the session in question. If
a particular extension requires that intermediate devices support it, the extenssanbe tagged in the
Proxy-Require field as well (see Section 24.29).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 36]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e 9 Canceling a Request

1400 The previous section has discussed general UA behavior for generating requests, and processing responses,
1401 for requests of all methods. In this section, we discuss a general purpose method; ANIEEL .

1402 TheCANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specif-
1403 ically, it asks the UAS to cease processing the request and to generate an error response to that request.
140« CANCEL has no effect on a request to which a UAS has already responded. Because of this, it is most
1405 Useful toCANCEL requests to which can take a long time to respond. For this re€8NCEL is most

1406 Useful forINVITE requests, which can take a long time to generate a response. In that usage, a UAS that
1407 receives &£ ANCEL request for anNVITE, but has not yet sent a response, would “stop ringing”, and then

1408 respond to théNVITE with a specific error response (a 487).

1409 CANCEL requests can be constructed and sent by any type of client, including both proxies and user
1410 agent clients. Section 15 discusses under what conditions a UAC WAMCEL anINVITE request, and

1411 Section 16.9 discusses proxy usag€aiNCEL.

1412 Because a stateful proxy can generate its GAMNCEL, a stateful proxy also responds t€ANCEL,

113 rather than simply forwarding a response it would receive from a downstream element. For that reason,
1412 CANCEL is referred to as a “hop-by-hop” request, since it is responded to at each stateful proxy hop.

s 9.1 Client Behavior

1416 A CANCEL requestsHOULD NOT be sent to cancel a request other tHeWITE.

1417 Since requests other th&VITE are responded to immediately, sendinQA&NCEL for a noniNVITE request

1418 would always create a race condition.

1419 The following procedures are used to constru@ANCEL request. Thd&request-URI, Call-ID, To,

1420 the numeric part o€Seq andFrom header fields in th€ ANCEL requestmMusT be identical to those in

1421 the request being cancelled, including tagsCANCEL constructed by a clientusT have only a single

1422 Via header, whose value matches the Y6a in the request being cancelled. Using the same values for
1423 these headers allows tRANCEL to be matched with the request it cancels (Section 9.2 indicates how such
1424 matching occurs). However, the method part of @®eq heademusT have a value oCANCEL. This

1425 allows it to be identified and processed as a transaction in its own right (See Section 17).

1426 If the request being cancelled contaReute header fields, th€ ANCEL requestMuUsT include these
1427 Route header fields.

1428 This is needed so that stateless proxies are able to @ANCEL requests properly.

1429 The CANCEL requestmMusT NOT contain anyRequire or Proxy-Require header fields.

1430 Once theCANCEL is constructed, the clieHoULD check whether any response (provisional or final)

1431 has been received for the request being cancelled (herein referred to as the "original requeSTANTTEL

1432 requestMusT NOT be sent if no provisional response has been received, rather, thenolismtwait for the

1433 arrival of a provisional response before sending the request. If the original request has generated a final
1434 response, th€ANCEL sHOULD NOT be sent, as it is an effective no-op, SiIfCANCEL has no effect

1435 ON requests that have already generated a final response. When the client decides toGANCHRE, it

1436 Creates a client transaction for tBANCEL and passes it the ANCEL request along with the destination

1437 address, port, and transport. The destination address, port, and transporCfANGE&EL MusT be identical

1438 t0 those used to send the original request.

1439 If it was allowed to send th€ ANCEL before receiving a response for the previous request, the server could
1440 receive theaCANCEL before the original request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 37]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1441 Note that both the transaction corresponding to the original request aftiINEEL transaction will

1422 complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request
1243 Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a
1sa response. If there is no final response for the original request in 64*T1 seconds (T1 is defined in Section
1es 17.1.1.1), the cliensHOULD then consider the original transaction cancelled sinduLD destroy the client

a6 transaction handling the original request.

s 9.2 Server Behavior

128 The CANCEL method requests that the TU at the server side cancel a pending transaction. The transaction
129 t0 be canceled is determined by taking tBANCEL request, and then assuming that the request method
1450 were anything buCANCEL, apply the transaction matching procedures of Section 17.2.3. The matching
1451 transaction is the one to be canceled.

1452 The processing of EBANCEL request at a server depends on the type of server. A stateless proxy will
sz forward it, a stateful proxy might respond to it and generate sGARCEL requests of its own, and a UAS

1452 Will respond to it. See Section 16.9 for proxy treatmenCafiNCEL.

1455 A UAS first processes th€ ANCEL request according to the general UAS processing described in
1456 Section 8.2. However, sinc@ANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be
1457 Challenged by the server in order to get proper credentials Bwudmorization header field. Note also that

14ss CANCEL requests do not contaRequire header fields.

1459 If the CANCEL did not find a matching transaction according to the procedure abov€ANCEL

1460 SHOULD be responded to with a 481 (Call Leg/Transaction Does Not Exist). If the transaction for the
1461 Original request still exists, the behavior of the UAS on receivi@ANCEL request depends on whether it

ez has already sent a final response for the original request. If it haSANECEL request has no effect on the

1463 processing of the original request, no effect on any session state, and no effect on the responses generated
1sa for the original request. If the UAS has not issued a final response for the original request, its behavior
1465 depends on the method of the original request. If the original request WaVahE, the UASSHOULD

1es iIMmediately respond to th&NVITE with a 487 (Request Terminated). The behavior upon reception of a
1467 CANCEL request for any other method defined in this specification is effectively no-op. Extensions to this
1468 Specification that define new methadssT define the behavior of a UAS upon reception @@ANCEL for

1460 those methods.

1470 Regardless of the method of the original request, as long aSAMNCEL matched an existing trans-

1471 action, theCANCEL request itself is answered with a 200 (OK) response. This response is constructed
1472 following the procedures described in Section 8.2.6 noting thalattag of the response to tH@ANCEL

1473 and theTo tag in the response to the original requestuLD be the same. The responseGANCEL is

1474 passed to the server transaction for transmission.

ws 10 Registrations

1 10.1 Overview

1477 SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP must discover
1478 the current host(s) at which the destination user is reachable. This discovery process is accomplished by
1479 SIP proxy servers, which are responsible for receiving a request, determining where to send it based on
1480 knowledge of the location of the user, and then sending it there. To do this, proxies consult an abstract

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 38]

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

service known as lmcation servicewhich provides address bindings for a particular domain. These address
bindings map an incoming SIP URdjp:bob@Biloxi.com , for example, to one or more SIP URIs
that are somehow “closer” to the desired us#p;bob@engineering.Biloxi.com , for example.
Ultimately, a proxy will consult a location service that maps a received URI to the current host(s) into which
a user is logged.

Registration creates bindings in a location service for a particular domain that associate an address-of-
record URI with one or more contact addresses. Thus, when a proxy for that domain receives a request whose
Request-URI matches the address-of-record, the proxy will forward the request to the contact addresses
registered to that address-of-record. Generally, it only makes sense to register an address-of-record at a
domain’s location service when requests for that address-of-record would be routed to that domain. In
most cases, this means that the domain of the registration will need to match the domain in the URI of the
address-of-record.

There are many ways by which the contents of the location service can be established. One way is
administratively. In the above example, Bob is known to be a member of the engineering department through
access to a corporate database. However, SIP provides a mechanism for a UA to create a binding explicitly.
This mechanism is known as registration.

Registration entails sendingREGISTER request to a special type of UAS known as a registrar. The
registrar acts as a front end to the location service for a domain, reading and writing mappings based on the
contents of theREGISTER requests. This location service will then be consulted by a proxy server that is
responsible for routing requests for that domain.

SIP does not mandate a particular mechanism for implementing the location service. The only require-
ment is that a registrar for some domaisT be able to read and write data to the location service, and
a proxy for that domaimusT be capable of reading that same data. A registrar be co-located with a
particular SIP proxy server for the same domain.

10.2 Constructing theREGISTER Request

REGISTER requests add, remove, and query bindingsRBGISTER request may add a new binding
between an address-of-record and one or more contact addresses. Registration on behalf of a particular
address-of-record may be performed by a suitably authorized third party. A client may also remove previous
bindings or query to determine which bindings are currently in place for an address-of-record.

Except as noted, the construction of tREGISTER request and the behavior of clients sending a
REGISTER request is identical to the general UAC behavior described in Section 8.1 and Section 17.1.
The following header fieldsiusT be included:

Request-URI: The Request-URI names the domain of the location service for which the registration is
meant (for example, “sip:chicago.com”). The “userinfo” and “@” components of the SIPMURT
NOT be present.

To: The To header field contains the address of record whose registration is to be created, queried, or
modified. TheTo header field and thRequest-URI field typically differ, as the former contains a
user name. This address-of-recosdsT be a SIP URI.

From: TheFrom header field contains the address-of-record of the person responsible for the registration.
The value is the same as the header field unless the request is a third-party registration.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 39]

1521

1522

1523
1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

bob
+——t
| UA|
|1
+———t
I
[3)INVITE
| carol@chicago.com
chicago.com +————— + Vv
- + 2)Store|Location|4)Query +————— +
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
+—— + - +=======>+4———— +
A 5)Resp |
| I
| I
1)REGISTER]| |
| I
+———t |
| VA |<-——"rr————————— +
cube2214a| | 6)INVITE
+——t carol@cube2214a.chicago.com
carol

Figure 2:REGISTER example

Call-ID: All registrations from a UAGSHOULD use the sam€all-ID header value for registrations sent to
a particular registrar.

If the same client were to use differe@all-ID values, a registrar could not detect whether a delayed
REGISTER request might have arrived out of order.

CSeq: TheCSeq value guarantees proper orderingREGISTER requests. A UAMUST increment the
CSeq value by one for eacREGISTER request with the sam@all-1D.

Contact : REGISTER requests contain zero or ma@®ntact header fields, containing address bindings.

UAs MUST NOT send a new registration (that is, containing néantact header fields, as opposed to
a retransmission) until they have received a final response from the registrar for the previous one or the
previousREGISTER request has timed out.

The following Contact header parameters have a special meaniREGISTER requests:

action : The “action” parameter from RFC 2543 has been deprecated. USESULD NOT use the
“action” parameter.

expires : The “expires” parameter indicates how long the UA would like the binding to be valid. The value
is a number indicating seconds. If this parameter is not provided, the valueBfpires header field
is used instead. Implementatiomay treat values larger than 2**32-1 (4294967295 seconds or 136
years) as equivalent to 2**32-1. Malformed values should be treated as equivalent to 3600.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 40]

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

10.2.1 Adding Bindings

TheREGISTER request sent to a registrar includes contact addresses to which SIP requests for the address-
of-record should be forwarded. The address-of-record is included ifotheader field of th®ISTER
request.

The Contact header fields of the request typically contain SIP URIs that identify particular SIP end-
points (for example, “sip:carol@cube2214a.chicago.com”), but threy use any URI scheme. A SIP UA
can choose to register telephone numbers (with the tel URL, [19]) or email addresses (with a mailto URL,
[36]) asContacts for an address-of-record.

For example, Carol, with address-of-record “sip:carol@chicago.com”, would register with the SIP reg-
istrar of the domain chicago.com. Her registrations would then be used by a proxy server in the chicago.com
domain to route requests for Carol’'s address-of-record to her SIP endpoint.

Once a client has established bindings at a registrarat send subsequent registrations containing
new bindings or modifications to existing bindings as necessary. The 2xx responseRE®STER
request will contain, irContact header fields, a complete list of bindings that have been registered for this
address-of-record at this registrar.

Registrations do not need to update all bindings. Typically, a UA only updates its own SIP URI as well
as any non-SIP URIs.

10.2.1.1 Setting the Expiration Interval of Contact Addresses When a client sends REGISTER
request, itMAY suggest an expiration interval that indicates how long the client would like the registration
to be valid. (As described in Section 10.3, the registrar selects the actual time interval based on its local
policy.)

There are two ways in which a client can suggest an expiration interval for a binding: through an
Expires header field or anexpires” Contact header parameter. The latter allows expiration intervals to
be suggested on a per-binding basis when more than one binding is given in aRHBIBTER request,
whereas the former suggests an expiration interval foCalhtact header fields that do not contain the
“expires” parameter.

If neither mechanism for expressing a suggested expiration time is preseREGESTER, a default
suggestion of one hour is assumed.

10.2.1.2 Preferences amon@ontact Addresses If more than oneContact is sent in aREGISTER
request, the registering UA intends to associate all of the URIs given in @@#act header fields with the
address-of-record present in the field. This list can be prioritized with theg® parameter in the&Contact
header fields. Thed” parameter indicates a relative preference for the particGlamtact header field
compared to other bindings present in tREGISTER message or existing within the location service of
the registrar. Section 16.5 describes how a proxy server uses this preference indication.

10.2.2 Removing Bindings

Registrations are soft state and expire unless refreshed, but can also be explicitly removed. A client can
attempt to influence the expiration interval selected by the registrar as described in Section 10.2.1. A UA
requests the immediate removal of a binding by specifying an expiration interval of “0” for that contact
address in ®ISTER request. UAsSHOULD support this mechanism so that bindings can be removed
before their expiration interval has passed.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 41]

1578

1579

1580
1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613
1614

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

TheREGISTER-specificContact header field value of “*” applies to all registrations, butib ST only
be used when thExpires header field is present with a value of “0”.

Use of the “*” Contact header field value allows a registering UA to remove all of its bindings without knowing
their precise values.

If no Contact header fields are present iREGISTER request, the list of bindings is left unchanged.

10.2.3 Fetching Bindings

A success response to aREGISTER request contains the complete list of existing bindings, regardless of
whether the request containe€antact header field.

10.2.4 Refreshing Bindings

Each UA is responsible to refresh the bindings that it has previously established. sAQALD NOTrefresh
bindings set up by other UAs.

The 200 (OK) response from the registrar contains a lis€oftact fields enumerating all current
bindings. The UA compares each contact address to see if it created the contact address, using comparison
rules in Section 23.1.4. If so, it updates the expiration time interval according &xfliees parameter or,
if absent, theexpires field value. The UA then issuesREGISTER request for each of its bindings before
the expiration interval has elapsedmity combine several updates into dREGISTER request.

A UA sHouLD use the same€all-ID for all registrations during a single boot cycle. Registration re-
freshessHOULD be sent to the same network address as the original registration, unless redirected.

10.2.5 Setting the Internal Clock

If the response fOREGISTER request contains Rate header field, the cliemaAy use this header field to
learn the current time in order to set any internal clocks.

10.2.6 Discovering a Registrar

UAs can use three ways to determine the address to which to send registrations: by configuration, using the
address-of-record, and multicast. A UA can be configured, in ways beyond the scope of this specification,
with a registrar address. If there is no configured registrar address, tl10BLD use the host part of the
address-of-record as tfequest-URI and address the request there, using the normal SIP server location
mechanisms [2]. For example, the UA for the user “sip:carol@chicago.com” addressiRE®ISTER
request to “chicago.com”.

Finally, a UA can be configured to use multicast. Multicast registrations are addressed to the well-known
“all SIP servers” multicast address “sip.mcast.net” (224.0.1.75 for IPv4). No well-known IPv6 multicast
address has been allocated; such an allocation will be documented separately when needed. This request
MUST be scoped to ensure it is not forwarded beyond the boundaries of the administrative system. This
MAY be done with either TTL or administrative scopes (see [12]), depending on what is implemented in the
network. SIP UAsvAY listen to that address and use it to become aware of the location of other local users
(see [40]); however, they do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 42]

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

10.2.7 Transmitting a Request

Once theREGISTER method has been constructed, and the destination of the message identified, UACs
should follow the procedures described in Section 8.1.2 to hand oRE®ISTER to the transaction layer.

If the transaction layer returns a timeout error becausdrRtB€ISTER vyielded no response, the UAC
SHOULD wait some reasonable time interval before re-attempting a registration to the same registrar; no
specific interval is mandated.

10.2.8 Error Responses

If a UA receives a 423 (Registration Too Brief) responsevialr retry the registration after making the
expiration interval of all contact addresses in REGISTER request equal to or greater than the expiration
interval within theMin-Expires header field of the 423 (Registration Too Brief) response.

10.3 ProcessiniREGISTER Requests

Aregistrar is a UAS that respondsREGISTER requests and maintains a list of bindings that are accessible
to proxy servers within its administrative domain. A registrar handles requests according to Section 8.2 and
Section 17.2, but it accepts orlREGISTER requests. A registrar does not generate 6xx responses.

If a registrar listens at a multicast interfacemidy redirect multicasREGISTER requests to its own
unicast interface with a 302 (Moved Temporarily) response.

A REGISTER requestMUST NOT contain Record-Route or Route header fields; registrarausT
ignore them if they appear.

A registrar must know (for example, through configuration) the set of domain(s) for which it main-
tains bindings.REGISTER requestsvusT be processed by a registrar in the order that they are received.
REGISTER requestsvusT also be processed atomically, meaning tR&EGISTER requests are either
processed completely or not at all. EdREGISTER message must be processed independently of any
other registration or binding changes.

When receiving ®ISTER request, a registrar follows these steps:

1. The registrar inspects tiequest-URI to determine whether it has access to bindings for the domain
identified in theRequest-URI. If not, and if the server also acts as a proxy server, the seAeuLD
forward the request to the addressed domain, following the general behavior for proxying messages
described in Section 16.

2. To guarantee that the registrar supports any necessary extensions, the registrar pRezpsses
header fields as described for UASs in Section 8.2.2.

3. AregistrarsHouULD authenticate the UAC. Mechanisms for the authentication of SIP user agents are
described in Section 20; registration behavior in no way overrides the generic authentication frame-
work for SIP. If no authentication mechanism is available, the registrar take theFrom address as
the asserted identity of the originator of the request.

4. The registraisHouLD determine if the authenticated user is authorized to modify registrations for
this address-of-record. For example, a registrar might consult a authorization database that maps user
names to a list of addresses-of-record for which this identity is authorized to modify bindings. If not,
the registrar returns 403 (Forbidden) and skips the remaining steps.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 43]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1653 In architectures that support third-party registration, one entity may be responsible for updating the regis-
1654 trations associated with multiple addresses-of-record.

1655 5. The registrar extracts the address-of-record fromTthéeader field of request. If the address-of-

1656 record is not valid for the domain in tiRequest-URI, the registrar sends a 404 (Not Found) response
1657 and skips the remaining steps. The WRIST then be converted to a canonical form. To do that, all
1658 URI parameters are removed (including tieer-param), and any escaped characters are converted
1659 to their unescaped form. The result serves as an index into the list of bindings.

1660 6. The registrar checks whether the request contain€anyact header fields. If not, it skips to the last
1661 step.

1662 Next, the registrar checks if there is oft®ntact field that contains the special value “*” and a

1663 Expires field. If the request has addition&lontact fields or an expiration time other than zero,

1664 the request is invalid, and the server returns 400 (Invalid Request) and skips the remaining steps. If
1665 not, the registrar checks whether tBall-ID agrees with the value stored for each binding. If not, it

1666 removes the binding. If it does agree, it only removes the binding i€CtBeq in the request is higher

1667 than the value stored for that binding and leaves the binding as is otherwise. It then skips to the last
1668 step.

1669 7. The registrar now processes each contact address@otitact header field in turn. For each address,

1670 it determines the expiration interval as follows:

1671 ¢ If the field value has angxpires” parameter, that value is used.

1672 e If there is no such parameter, but the request hd&xgires header field, that value is used.

1673 e If there is neither, a locally-configured default value is used.

1674 The registramAy shorten the expiration interval. If and only if the expiration interval is greater than
1675 zero AND smaller than one hour AND less than a registrar-configured minimum, the registrar

1676 reject the registration with a response of 423 (Registration Too Brief). This respaurssecontain a

1677 Min-Expires header field that states the minimum expiration interval the registrar is willing to honor.
1678 It then skips the remaining steps.

1679 Allowing the registrar to set the registration interval protects it against excessively frequent registration

1680 refreshes while limiting the state that it needs to maintain and decreasing the likelihood of registrations going

1681 stale. The expiration interval of a registration is frequently used in the creation of services. An example is a

1682 follow-me service, where the user may only be available at a terminal for a brief period. Therefore, registrars

1683 should accept brief registrations; a request should only be rejected if the interval is so short that the refreshes

1684 would degrade registrar performance.

1685 For each address, the registrar then searches the list of current bindings using the URI comparison
1686 rules. If the binding does not exist, it is tentatively added. If the binding does exist, the registrar
1687 checks theCall-ID value. If theCall-ID value in the existing binding differs from th@all-ID value

1688 in the request, the binding is removed if the expiration time is zero and updated otherwise. If they
1689 are the same, the registrar compares@iseq value. If the value is higher than that of the existing

1690 binding, it updates or removes the binding as above. If not, the update is aborted and the request fails.
1691 This algorithm ensures that out-of-order requests from the same UA are ignored.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 44]

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710
1711
1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Each binding record records ti@all-ID andCSeq values from the request.

The binding updates are committed (that is, made visible to the proxy) if and only if all binding
updates and additions succeed. If any one of them fails, the request fails with 500 (Server Error)
response and all tentative binding updates are removed.

8. The registrar returns a 200 (OK) response. The respapnsa containContact header fields enu-
merating all current bindings. Ea€ontact valuemusT feature an &xpires” parameter indicating
its expiration interval chosen by the registrar. The respersauLD include aDate header field.

11 Querying for Capabilities

The SIP metho®PTIONS allows a UA to query another UA or a proxy server as to its capabilities. This
allows a client to discover information about the supported methods, content types, extensions, codecs, etc.
without "ringing” the other party. For example, before a client inseRequire header field into atNVITE
listing an option that it is not certain the destination UAS supports, the client can query the destination UAS
with anOPTIONS to see if this option is returned in@upported header field.

The target of the®OPTIONS request is identified by thRequest-URI, which could identify another
UA or a SIP server. If th©PTIONS is addressed to a proxy server, fRequest-URI is set without a user
part, similar to the way equest-URI is set for BREGISTER request.

Alternatively, a server receiving &0PTIONS request with avlax-Forwards header value of @AY
respond to the request regardless ofRegjuest-URI.

This behavior is common with HTTP/1.1. This behavior can be used as a “traceroute” functionality to check the
capabilities of individual hop servers by sending a serie®®TIONS requests with incrementédax-Forwards
values.

As is the case for general UA behavior, the transaction layer can return a timeout errddRPTHONS
yields no response. This may indicate that the target is unreachable and hence unavailable.

An OPTIONS requesiAY be sent as part of an established dialog to query the peer on capabilities that
may be utilized later in the dialog.

11.1 Construction of OPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed Section 8.1.1.

A Contact header fielduay be present in a@PTIONS.

An Accept header fieldsHOULD be included to indicate the type of message body the UAC wishes to
receive in the response. Typically, this is set to a format that is used to describe the media capabilities of a
UA, such as SDP (application/sdp).

The response to a®@PTIONS request is assumed to be scoped toReguest-URI in the original
request. However, only when &PTIONS is sent as part of an established dialog is it guaranteed that
future requests will be received by the server which generate@BWEONS response.

ExampleOPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKhjhs8ass877
To: <sip:carol@chicago.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 45]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1730 From: Alice <sip:alice@atlanta.com>;tag=1928301774
1731 Call-ID: a84b4c76e66710

1732 CSeq: 63104 OPTIONS

1733 Contact: <sip:alice@192.0.2.4>

1734 Max-Forwards: 70

1735 Accept: application/sdp

1736 Content-Length: 0

a7 11.2 Processing of OPTIONS Request

1738 The response to a@PTIONS is constructed using the standard rules for a SIP response as discussed in
1739 Section 8.2.6. The response code chosen is the same that would have been chosen had the request been an
a0 INVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy Here)
171 would be returned if the UAS is busy, etc. This allows@RTIONS request to be used to determine the

1722 basic state of a UAS, which can be an indication of whether the UAC will accelpt\&T E request.

1743 An OPTIONS request received within a dialog generates a 200 (OK) response that is identical to one
1744 constructed outside a dialog and does not have any impact on the dialog.

1745 This use ofOPTIONS has limitations due the differences in proxy handlingd®TIONS andINVITE

a6 requests. While a forketNVITE can result in multiple 200 (OK) responses being returned, a fotked

1747 TIONS will only result in a single 200 (OK) response, since it is treated by proxies using thENWGmE

a8 handling. See Section 13.2.1 for the normative details.

1749 If the response to a@PTIONS is generated by a proxy server, the proxy returns a 200 (OK) listing the
1750 capabilities of the server. The response does not contain a message body.
1751 Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fieldssHouLD be

1752 present in a 200 (OK) response to @PTIONS request. If the response is generated by a proxy, the

173 Allow header field(sHOULD be omitted as it is ambiguous since a proxy is method agndtintact header

1754 fieldsMAY be present in a 200 (OK) response and have the same semantics as in a redirect. That is, they may
1755 list a set of alternative names and methods of reaching the uséarAing header fieldnAy be present.

1756 A message bodwAy be sent, the type of which is determined by faept header in th@©PTIONS

1757 request (application/sdp if th&ccept header was not present). If the types include one that can describe
175¢ Mmedia capabilities, the UAHoULD include a body in the response for that purpose. Details on construction

1759 Of such a body in the case of application/sdp are described in [1].

1760 ExampleOPTIONS response generated by a UAS (corresponding to the request in Section 11.1):

1761 SIP/2.0 200 OK

1762 Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKhjhs8ass877
1763 To: <sip:carol@chicago.com>;tag=93810874

1764 From: Alice <sip:alice@atlanta.com>;tag=1928301774
1765 Call-ID: a84b4c76e66710@100.1.3.3

1766 CSeq: 63104 OPTIONS

1767 Contact: <sip:carol@chicago.com>

1768 Contact: <mailto:carol@chicago.com>

1769 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE

1770 Accept:. application/sdp

1771 Accept-Encoding: gzip

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 46]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1772 Accept-Language: en

1773 Supported: foo

1774 Content-Type: application/sdp
1775 Content-Length: 274

1776

1777 (SDP not shown)

s 12 Dialogs

1779 A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP relationship between
1780 @ two user agents that persists for some time. The dialog facilitates sequencing of messages between the
1781 User agents and proper routing of requests between both of them. The dialog represents a context in which to
1782 interpret SIP messages. Section 8 discussed method independent UA processing for requests and responses
1783 outside of a dialog. This section discusses how those requests and responses are used to construct a dialog,
17sa and then how subsequent requests and responses are sent within a dialog.

1785 A dialog is identified at each UA with a dialog ID, which consists dtall-ID value, a local URI and

1786 local tag (together called the local address), and a remote URI and remote tag (together called the remote
1757 address). The dialog ID at each UA involved in the dialog is not the same. Specifically, the local URI and
1788 local tag at one UA are identical to the remote URI and remote tag at the peer UA. The tags are opaque
1789 tokens that facilitate the generation of unique dialog IDs.

1790 A dialog ID is also associated with all responses and with any request that contains a tagoirfidihe:

1791 The rules for computing the dialog ID of a message depend on whether the entity is a UAC or UAS. For a
172 UAC, theCall-ID value of the dialog ID is set to theall-ID of the message, the remote address is set to the

1793 TO field of the message, and the local address is set térira field of the message (these rules apply to

1794 both requests and responses). As one would expect, for a UASallD value of the dialog ID is set to

1795 the Call-ID of the message, the remote address is set tbribim field of the message, and the local address

1796 IS set to theTlo field of the message.

1797 A dialog contains certain pieces of state needed for further message transmissions within the dialog.
1798 This state consists of the dialog ID, a local sequence number (used to order requests from the UA to its
1799 pPeer), a remote sequence number (used to order requests from its peer to the UA), the URI of the remote
1800 target, and a route set, which is an ordered list of URIS. The route set is the set of servers that need to
1801 be traversed to send a request to the peer. A dialog can also be in the “early” state, which occurs when it
1802 IS created with a provisional response, and then transition to the “confirmed” state when the final response
1803 COMeS.

1a 12.1 Creation of a Dialog

1805 Dialogs are created through the generation of non-failure responses to requests with specific methods.
1806 Within this specification, only 2xx and 101-199 responses wiffodag to INVITE establish a dialog.

1807 A dialog established by a non-final response to a request is in the “early” state and it is called an early dia-
1808 l0g. ExtensionsAy define other means for creating dialogs. Section 13 gives more details that are specific
1800 to theINVITE method. Here, we describe the process for creation of dialog state that is not dependent on
1810 the method.

1811 A dialog is identified by a dialog ID. A dialog ID consists of three components, namely a call identifier
1812 component, a local address component and a remote address componenrt &iAassign values to these

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 47]

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831
1832
1833
1834
1835
1836
1837

1838

1839

1840

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852

1853

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

components as described below.

12.1.1 UAS behavior

When a UAS responds to a request with a response that establishes a dialog (such adid\2b0&) the
UAS muUsT copy allRecord-Route headers from the request into the response (including the URIs, URI
parameters, and arfyecord-Route header parameters, whether they are known or unknown to the UAS)
andMusT maintain the order of those headers. The UAST add aContact header field to the response.
The Contact header field contains an address where the UAS would like to be contacted for subsequent
requests in the dialog (which includes €K for a 2xx response in the case of INVITE). Generally, the
host portion of this URI is the IP address or FQDN of the host. The URI provided iGémeact header
field MusT be a SIP URI and have global scope (i.e., the same SIP URI can be used outside this dialog to
contact the UAS). The same way, the scope of the SIP URI i€trgact header field of théNVITE is not
limited to this dialog either. It can therefore be used to contact the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This stateT be maintained for the duration of the
dialog.

The route semusT be set to the list of URIs in thRecord-Route header field from the request, taken
in order and preserving all URI parameters. IfRecord-Route header field is present in the request, the
route seMuUsST be set to the empty set. This route set, even if empty, overrides any pre-existing route set for
future requests in this dialog. The remote tangetsT be set to the URI from th€ontact header field of

the request.

The remote sequence numhbassT be set to the value of the sequence number ilCteg header field
of the request. The local sequence numbesT be empty. The call identifier component of the dialog ID
MUST be set to the value of th@all-ID in the request. The local address component of the dialaguBT
be set to thdo field in the response to the request (which therefore includes the tag), and the remote address
component of the dialog IMUST be set to thd-rom field in the request. A UASAUST be prepared to
receive a request without a tag in them field, in which case the tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not maréae tags.

12.1.2 UAC behavior

When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state

MUST be maintained for the duration of the dialog.

The route semusT be set to the list of URIs in thRecord-Route header field from the response,
taken in reverse order and preserving all URI parameters. Reunrd-Route header field is present in the
response, the route set/ST be set to the empty set. This route set, even if empty, overrides any pre-existing
route set for future requests in this dialog. The remote tamyetT be set to the URI from th€ontact
header field of the response. The local sequence numbg&T be set to the value of the sequence number in
the Cseq header field of the request. The remote sequence numbgT be empty (it is established when
the UA sends a request within the dialog). The call identifier component of the dialag 9 be set to the
value of theCall-ID in the request. The local address component of the dialaguBT be set to thé-rom
field in the request, and the remote address component of the dialag $D be set to thelo field of the
response. A UAQUUST be prepared to receive a response without a tag ifeh@eld, in which case the
tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mantiatags.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 48]

1854

1855

1856

1857

1858

1859

1860

1861

1862
1863
1864
1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878
1879
1880
1881
1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

12.2 Requests within a Dialog

Once a dialog has been established between two UAs, either oMhgnnitiate new transactions as needed
within the dialog. However, a dialog imposes some restrictions on the use of simultaneous transactions.

A TU MUST NOT initiate a new regular transaction within a dialog while a regular transaction is in
progress (in either direction) within that dialog. If there is a tWITE client or server transaction in
progress the TWuUST wait until this transaction enters the completed or the terminated state to initiate the
new transaction.

OPEN ISSUE #113: Should we relax the constraint on non-overlapping regular transactions?

A route refresh request sent within a dialog is defined as a request that can modify the route set of
the dialog. For dialogs that have been established wittNSAiTE, the only route refresh request defined
is redNVITE (see Section 14). Other extensions may define different route refresh requests for dialogs
established in other ways.

Note that artACK is NOT a route refresh request.

12.2.1 UAC Behavior

12.2.1.1 Generating the Request A request within a dialog is constructed by using many of the com-
ponents of the state stored as part of the dialog.

TheTo header field of the requestusT be set to the remote address, andRham header fieldwusT
be set to the local address (both including tags, assuming the tags are not null).

The Call-ID of the requestusT be set to theCall-ID of the dialog. Requests within a dialogysT
contain strictly monotonically increasing and contigu@Seq sequence numbers (increasing-by-one) in
each direction. Therefore, if the local sequence number is not empty, the value of the local sequence humber
MUST be incremented by one, and this valuesT placed into theCseq header. If the local sequence
number is empty, an initial valugausT be chosen using the guidelines of Section 8.1.1.5. The method field
in the Cseq heademusT match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within
the same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence
number. A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial
sequence number.

The UAC uses the remote target and route set to buildRénguest-URI andRoute header field of the
request.

If the route set is empty, the UAGUST place the remote target URI into tiRequest-URI. The UAC
MUST NOT add aRoute header field to the request.

If the route set is not empty, and the first URI in the route set containdr tharameter (see Sec-
tion 23.1.1), the UAGuUST place the remote target URI into tRRequest-URI andMusT a Route header
field containing the route set values in order, including all parameters.

If the route set is not empty and its first URI does not containitiparameter, the UAGUST place
the first URI from the route set into tiRequest-URI, stripping any parameters that are not allowed in a
Request-URI. The UACMUST add aRoute header field containing the remainder of the route set values in
order, including all parameters. The UAGST then place the the remote target URI into Beute header
field as the last value.

For example, if the remote target is sip:user@remoteua and the route set contains

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 49]

1896

1897

1898

1899

1900
1901
1902
1903
1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916
1917

1918

1919
1920
1921
1922

1923

1924

1925
1926
1927

1928

1929

1930

1931

1932

1933

1934

1935

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

<sip:proxyl>,<sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>
The request will be formed with the followingequest-URI andRoute header field:

METHOD sip:proxyl
Route: <sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>,<sip:user@remoteua>

If the first URI of the route set does not contain th@arameter, the proxy indicated does not understand the
routing mechanisms described in this document and will act as specified in RFC 2543, repla&legukst-URI
with the firstRoute header field value it receives while forwarding the message. PlacirRafeest-URI at the
end of theRoute header field preserves the information in tRequest-URI across the strict router (it will be
returned to th&Request-URI when the request reaches a loose-router).

A UAC sHouLD include aContact header in any route refresh requests within a dialog, and unless
there is a need to change it, the UslOULD be the same as used in previous requests within the dialog. As
discussed in Section 12.2.2Cantact header in a route refresh request updates the remote target URI. This
allows a UA to provide a new contact address, should its address change during the duration of the dialog.

However, requests that are not route refresh requests do not affect the remote target URI for the dialog.

Once the request has been constructed, the address of the server is computed and the request is sent,
using the same procedures for requests outside of a dialog (Section 8.1.1).

12.2.1.2 Processing the Response3he UAC will receive responses to the request from the transaction
layer. If the client transaction returns a timeout this is treated as a 408 (Request Timeout) response.

The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if
the request had been sent outside a dialog. This behavior is described in Section 13.2.2.

Note, however, that when the UAC tries alternative locations, it still uses the route set for the dialog to build the
Route header of the request.

When a UAC recieves a 2xx response to a route refresh resquestsit replace the dialog’'s remote

target URI with the URI from th&€ontact header field in that response, if present.

If the response for the a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408
(Request Timeout), the UAGHOULD terminate the dialog. A UAGHOULD also terminate a dialog if no
response at all is received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of sendiBY &.

12.2.2 UAS behavior

Requests sent within a dialog, as any other requests, are atomic. If a particular request is accepted by the
UAS, all the state changes associated with it are performed. If the request is rejemtedf the state
changes is performed.

Note that some requests such¥ITEs affect several pieces of state.

The UAS will receive the request from the transaction layer. If the request has a tagTio tleader
field, the UAS core computes the dialog identifier corresponding to the request and compares it with existing
dialogs. If there is a match, this is a mid-dialog request. In that case, the UAS applies the same processing
rules for requests outside of a dialog, discussed in Section 8.2.

If the request has a tag in ti® header field, but the dialog identifier does not match any existing di-
alogs, the UAS may have crashed and restarted, or it may have received a request for a different (possibly
failed) UAS (the UASs can construct tiie tags so that a UAS can identify that the tag was for a UAS

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 50]

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951
1952
1953

1954
1955
1956
1957
1958
1959
1960
1961
1962

1963
1964
1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

for which it is providing recovery). Another possibility is that the incoming request has been simply mis-
srouted. Based on thi tag, the UASMAY either accept or reject the request. Accepting the request for
acceptabléelo tags provides robustness, so that dialogs can persist even through crashes. UAs wishing to
support this capability must take into consideration some issues such as choosing monotonically increasing
CSeq sequence humbers even across reboots, reconstructing the route set, and accepting out-of-range RTP
timestamps and sequence numbers.

If the UAS wishes to reject the request, because it does not wish to recreate the dialogft itespond
to the request with a 481 (Call/Transaction Does Not Exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (for
example, atDPTIONS request). They are processed as if they had been received outside the dialog.

Requests within a dialogiAy containRecord-Route and Contact header fields. However, these re-
quests do not cause the dialog’s route set to be modified, although they may modify the remote target
URI. Specifically, requests which are not refresh requests do not modify the dialog's remote target URI,
and requests which are route refresh requests do. This specification only defines one route refresh request:
re-INVITE (see Section 14).

Route refresh requests only update the dialog’s remote target URI, and not the route set formReddond:
Route. Updating the latter would introduce severe backwards compatibility problems with RFC 2543-compliant
systems.

If the remote sequence number is emptyiisT be set to the value of the sequence number in the
Cseq header in the request. If the remote sequence number was not empty, but the sequence number of the
request is lower than the remote sequence number, the request is out of ordevsante rejected with
a 500 (Server Internal Error) response. If the remote sequence number was not empty, and the sequence
number of the request is greater than the remote sequence number, the request is in order. It is possible
for the CSeq header to be higher than the remote sequence number by more than one. This is not an error
condition, and a UASHOULD be prepared to receive and process requests @ftbg values more than
one higher than the previous received request. The MAST then set the remote sequence number to the
value of the sequence number in tiseq header in the request.

If a proxy challenges a request generated by the UAC, the UAC has to resubmit the request with credentials. The
resubmitted request will have a n&@geq number. The UAS will never see the first request, and thus, it will notice
a gap in theCseq number space. Such a gap does not represent any error condition.

12.3 Termination of a Dialog

Dialogs can end in several different ways, depending on the method. When a dialog is established with
INVITE, itis terminated with 8YE. No other means to terminate a dialog are described in this specification,
but extensions can define other ways.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates
anINVITE request. ThéNVITE request asks a server to establish a session. This request is forwarded by
proxies, eventually arriving at one or more UAS that can potentially accept the invitation. These UASs will
frequently need to query the user about whether to accept the invitation. After some time, those UAS can
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx, 4xx, 5xx or 6xx response is sent, depending on the reason for the rejection. Before

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 51]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1978 Ssending a final response, the UAS can also send a provisional response (1xx), either reliably or unreliably,
1979 t0 advise the UAC of progress in contacting the called user.

1980 After possibly receiving one or more provisional responses, the UA will get one or more 2xx responses or
1981 One non-2xx final response. Because of the protracted amount of time it can take to receive final responses
1982 t0 INVITE, the reliability mechanisms faiNVITE transactions differ from those of other requests (like

19s3 OPTIONS). Once it receives a final response, the UAC needs to seddC#nfor every final response it

1984 receives. The procedure for sending thiSK depends on the type of response. For final responses between
1985 300 and 699, th&CK processing is done in the transaction layer and follows one set of rules (See Section
1986 17). For 2xx responses, tWeCK is generated by the UAC core.

1987 A 2xx response to aiNVITE establishes a session, and it also creates a dialog between the UA that
1988 Issued théNVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are
1989 received from different remote UAs (because IR¥ITE forked), each 2xx establishes a different dialog.

1900 All these dialogs are part of the same call.

1991 This section provides details on the establishment of a session INSHGE.

w2 13.2 Caller Processing
w93 13.2.1 Creating the Initial INVITE

1904 Since the initiaINVITE represents a request outside of a dialog, its construction follows the procedures of
1995 Section 8.1.1. Additional processing is required for the specific caBe\iTE.

1996 An Allow header field (Section 24.SHoOULD be present in théNVITE. It indicates what methods can

1997 be invoked within a dialog, on the UA sending tiVITE, for the duration of the dialog. For example, a

1998 UA capable of receivingNFO requests within a dialog [393HouULD include anAllow header listing the

1000 INFO method.

2000 A Supported header field (Section 24.3%HouULD be present in théNVITE. It enumerates all the

2000 extensions understood by the UAC.

2002 An Accept (Section 24.1) header fieMay be present in thitNVITE. It indicates which content-types

2003 are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
2004 dialogs established by thBIVITE. The Accept header is especially useful for indicating support of various

2005 Session description formats.

2006 The UAMAY add anExpires header field (Section 24.19) to limit the validity of the invitation. If the

2007 time indicated in th&xpires header field is reached and no final answer forlMéI TE has been received

2008 the UAC coresHOULD generate £ ANCEL request for the origindNVITE.

2009 A UAC mAY also find useful to add, among othe&ybject (Section 24.38)Qrganization (Section

2010 24.25) andJser-Agent (Section 24.43) header fields. They all contain information related tONVETE.

2011 The UACMAY choose to add a message body toltH®ITE. Section 8.1.1.10 deals with how to con-

2012 struct the header fieldsGontent-Type among others — needed to describe the message body.

2013 There are special rules for message bodies that contain a session description - their corresponding
2014 Content-Disposition is “session”. SIP uses an offer/answer model where one UA sends a session de-
2015 Scription, called the offer, which contains a proposed description of the session. The offer indicates the
2016 desired communications means (audio, video, games), parameters of those means (such as codec types) and
2017 addresses for receiving media from the answerer. The other UA responds with another session description,
208 called the answer, which indicates which communications means are accepted, the parameters which ap-
2019 ply to those means, and addresses for receiving media from the offerer. The offer/answer model defines
2020 restrictions on when offers and answers can be made. This results in restrictions on where the offers and

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 52]

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051
2052
2053
2054
2055

2056

2057

2058

2059

2060

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

answers can appear in SIP messages. In this specification, offers and answers can only ddp¢aEIn
andPRACK requests and responses. The usage of offers and answers is further restricted. For the initial
INVITE transaction, the rules are:

e The initial offer MusT be in either ariNVITE or, if not there, in the first reliable message from the
callee back to the caller. In this specification, that is either the first reliable provisional response or the
final 2xx response.

¢ If the initial offer is in anINVITE, the answemusT be in a reliable message from callee back to
caller which is correlated to th&VITE. For this specification, that is either a reliable provisional
response or the final 2xx response to I TE.

¢ If the initial offer is in the first reliable message from the callee back to caller, the amswser be in
the acknowledgement for that messaBRACK for a reliable provisional response ACK for a 2xx
response).

e After having sent or received an answer to the first offer, the WAE generate subsequent offers
in requestsPRACK alone for this specification), but only if it has received answers to any previous
offers, and has not send any offers to which it hasn’t gotten an answer.

e Once the UAS has sent or received an answer to the initial offeny#T NOT generate subsequent
offers in any responses to th&VITE. Since only the UAC can serfRACK, this means the a UAS
based on this specification alone can never generate subsequent offers.

Extensions to SIP which define new methoasy specify whether offers and answers can appear in
requests of that method or its responses. However, those extemsimtsadhere to the protocol rules
specified in [2], and1usT adhere to the additional constraints in the list above.

Concretely, the above rules specify two exchanges for UAs which don't support reliable provisional
responses - the offer is in thRVITE, and the answer in the 2xx, or the offer is in the 2xx, and the answer
is in the ACK. When reliable provisional responses is supported, several more flows are possible. One
possibility is to have the offer in thENVITE, and the answer in a reliable provisional response, with no
further SDP exchanges.

All user agents that suppdiiVITE and/orPRACK mMusT support all exchanges that are possible based
on the above rules and on their supportRRACK.

The Session Description Protocol (SDP) [IMysST be supported by all user agents as a means to
describe sessions, and its usage for constructing offers and ansug&rdollow the procedures defined in
1].
- The restrictions of the offer-answer model just described only apply to bodies Wloasent-Disposition
header field is “session”. Therefore, it is possible that botHRNNETE and theACK contain a body mes-

sage (e.g., th&NVITE carries a photoGontent-Disposition: render) and thé&CK a session description
(Content-Disposition: session)).

If the Content-Disposition header field is missing, bodies G6bntent-Type application/sdp imply the
disposition “session”, while other content types imply “render”.

Once thdNVITE has been created, the UAC follows the procedures defined for sending requests outside
of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
request and deliver responses to the UAC.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 53]

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095
2096
2097

2098

2099

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

13.2.2 ProcessingNVITE Responses

Once thdNVITE has been passed to thid¢VITE client transaction, the UAC waits for responses forltiie
VITE. Responses are matched to their correspondNMiTE because they have the sa@all-1D, the same
From header field, the sami® header field, excluding the tag, and the sad$®q. Rules for comparisons
of these headers are described in Section 24. INNGTE client transaction returns a timeout rather than a
response the TU acts as if a 408 (Request Timeout) response had been received.

13.2.2.1 1xx responses Zero, one or multiple provisional responses may arrive before one or more
final responses are received. Provisional responses ftN\AITE request can create “early dialogs”. If a
provisional response has a tag in feefield, and if the dialog ID of the response does not match an existing
dialog, one is constructed using the procedures defined in Section 12.1.2.

The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog
before the initiaINVITE transaction completes. This will be the case for all reliable provisional responses,
which require transmission ?# RACK. Header fields present in a provisional response are applicable as
long as the dialog is in the early state (e.g.,Adlow header field in a provisional response contains the
methods that can be used in the dialog while this is in the early state).

If the 1xx is reliable and contains a session description, the WAGT generate an answer if the
description is an offer. If the description is an answer, the sesstwuLD be established based on the
parameters of the offer and answer.

13.2.2.2 3xxresponses A 3xx response may containGontact header field providing new addresses
where the callee might be reachable. Depending on the status code of the 3xx response (see Section 25.3)
the UACMAY choose to try those new addresses.

13.2.2.3 4xx, 5xx and 6xx responses A single non-2xx final response may be received forltle
VITE. 4xx, 5xx and 6xx responses may contaiG@@ntact header field indicating the location where addi-
tional information about the error can be found.

All early dialogs are considered terminated upon reception of the non-2xx final response.

After having received the non-2xx final response the UAC core considers the INVITE transaction com-
pleted. TheNVITE client transaction handles generationA@Ks for the response (see Section 17).

13.2.2.4 2xx responses Multiple 2xx responses may arrive at the UAC for a sinil&/ITE request
due to a forking proxy. Each response is distinguished byatg@arameter in th@o header field, and each
represents a distinct dialog, with a distinct dialog identifier.

If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
MUST be transitioned to the “confirmed” state, and the route set for the dialsy be recomputed based
on the 2xx response using the procedures of Section 12.1.2. Otherwise, a new dialog in the “confirmed”
state is constructed in the same fashion.

The route set only is recomputed for backwards compatibility. RFC 2543 did not mandate mirrdRagartl-
Route headers in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog
requests may have been sent within the early call leg, modifying the sequence numbers, for example.

The UAC coremusT generate a\CK request for each 2xx received from the transaction layer. The
header fields of thACK are constructed in the same way as for any request sent within a dialog (see Section

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 54]

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

12) with the exception of th€Seq and the header fields related to authentication. The sequence number of
the CSeq header fielduusT be the same as tHBVITE being acknowledged, but t&Seq methodmusT

be ACK. The ACK MUST contain the same credentials as tN&/ITE. If the 2xx contains an offer (based

on the rules above), th&CK MUST carry an answer in its body. If the offer in the 2xx response is not
acceptable, the UAC comeusT generate a valid answer in the€K and then send BYE immediately.

Once theACK has been constructed, the procedures of [2] are used to determine the destination address,
port and transport. However, the request is passed to the transport layer directly for transmission, rather than
a client transaction. This is because the UAC core handles retransmissionsA@fKhaot the transaction
layer. TheACK MUST be passed to the client transport every time a retransmission of the 2xx final response
that triggered théCK arrives.

The UAC core considers thH&lVITE transaction completed 64*T1 seconds after the reception of the
first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are
terminated. Once theNVITE transaction is considered completed by the UAC core, no more new 2xx
responses are expected to arrive.

If, after acknowledging any 2xx response tol&lVITE, the caller does not want to continue with that
dialog, then the callemusT terminate the dialog by sendingB¥ E request as described in Section 15.

13.3 Callee Processing
13.3.1 Processing of théNVITE

The UAS core will receivéNVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the
additional processing steps:

1. If the request is atNVITE that contains afxpires header field the UAS core inspects this header
field. If the INVITE has already expired a 487 (Request Terminated) resgseLD be generated.
In any case, if thdNVITE expires before the UAS has generated a final response a 487 (Request
Terminated) responseHOULD be generated.

2. Ifthe request is a mid-dialog request, the method-independent processing described in Section 12.2.2
is first applied. It might also modify the session; Section 14 provides details.

3. Iftherequest has atag in tfie header field but the dialog identifier does not match any of the existing
dialogs, the UAS may have crashed and restarted, or may have received a request for a different
(possibly failed) UAS. Section 12.2.2 provides guidelines to achieve a robust behaviour under such a
situation.

Processing from here forward assumes thatRNETE is outside of a dialog, and is thus for the purposes
of establishing a new session.

ThelINVITE may contain a session description, in which case the UAS is being presented with an offer
for that session. It is possible that the user is already a participant in that session, even thaNghTEe
is outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
other participants. If desired, the UA®AY use identifiers within the session description to detect this
duplication. For example, SDP contains a session id and version number in the oyifield. If the user
is already a member of the session, and the session parameters contained in the session description have

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 55]

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163
2164
2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

not changed, the UABIAY silently accept théNVITE (that is, send a 2xx response without prompting the
user).

The INVITE may not contain a session description at all, in which case the UAS is being asked to
participate in a session, but the UAC has asked that the UAS provide the offer of the sessiusT It
provide the offer in its first reliable message back to the UAC.

The callee can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formu-
lates a response using the procedures described in Section 8.2.6.

13.3.1.1 Progress The UAS may not be able to answer the invitation immediately, and might choose

to indicate some kind of progress to the caller (for example, an indication that a phone is ringing). This

is accomplished with a provisional response between 101 and 199. These provisional responses establish
early dialogs and therefore follow the procedures of Section 12.1.1 in addition to those of Section 8.2.6. A
UAS MAY send as many provisional responses as it likes. Each of tnesg indicate the same dialog ID.
However, these will not be delivered reliably unless reliable provisional responses are used.

If the INVITE contained an offer, the UABAY generate an answer in a reliable provisional response
(assuming these are supported by the UAC). That results in the establishment of the session before com-
pletion of the call. Similarly, if a reliable provisional response is the first reliable message sent back to the
caller, and théNVITE did not contain an offer, on@usT appear in that reliable provisional response.

If the UAS will require an extended period of time to answer IR ITE, it will need to ask for an
“extension” in order to prevent proxies from cancelling the transaction. A proxy has the option of canceling
a transaction when there is a gap of 3 minutes between messages in a transaction. To prevent cancellation,
the UASMUST send a non-100 provisional response at least that often. This respeosa D be sent
reliably, if supported by the UAC. If not, the UASHOULD send provisional responses every minute, to
handle the possibility of lost provisional responses.

An INVITE transaction can go on for extended durations when the user is placed on hold, or when interworking
with PSTN systems which allow communications to take place without answering the call. The latter is common in
Interactive Voice Response (IVR) systems.

13.3.1.2 The INVITE is redirected If the UAS decides to redirect the call, a 3xx response is sent. A
300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) resgHBeLD contain

a Contact header field containing URIs of new addresses to be tried. The response is passeNWTEe
server transaction, which will deal with its retransmissions.

13.3.1.3 The INVITE is rejected A common scenario occurs when the callee is currently not willing
or able to take additional calls at this end system. A 486 (Busy Here)uLD be returned in such scenario.
If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response
SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
this response will not usually be used. The response is passedINMMHIEE server transaction, which will
deal with its retransmissions.

A UAS rejecting an offer contained in aNVITE sHOULD return a 488 (Not Acceptable Here) response.
Such a responseHouLD include awarning header field explaining why the offer was rejected.

13.3.1.4 The INVITE is accepted The UAS core generates a 2xx response. This response establishes
a dialog, and therefore follows the procedures of Section 12.1.1 in addition to those of Section 8.2.6.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 56]

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197
2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210
2211
2212
2213
2214

2215
2216

2217

2218

2219

2220

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

If the UAS had placed a session description in any reliable provisional response that is unacknowl-
edged when theNVITE is accepted, the UABUST delay sending the 2xx until the provisional response is
acknowledged. Otherwise, the reliability of the 1xx cannot be guaranteed.

A 2xx response to alNVITE sHouLD contain theAllow header field and th8upported header field,
andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
features and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, and the UAS had not yet sent an answer, thie/ 8% contain
an answer. If theNVITE did not contain an offer, the 2xmusT contain an offer if the UAS had not yet
sent an offer.

Once the response has been constructed it is passed lIMHEE server transaction. Note, however,
that thelNVITE server transaction will be destroyed as soon as it receives this final response. Therefore, itis
necessary to pass periodically the response to the transport uiiCarrives. The 2xx response is passed
to the transport with an interval that starts at T1 seconds and doubles for each retransmission until it reaches
T2 seconds (T1 and T2 are defined in Section 17). Response retransmissions ceaseA@i€neguest is
received with the same dialog ID as the response. This is independent of whatever transport protocols are
used to send the response.

Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC which are UDP. To ensure

reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is
reliable.

If the server retransmits the 2xx response for 64*T1 seconds without receivisGlanit considers the
dialog completed, the session terminated, and therefeteduLD send éBYE.

14 Modifying an Existing Session

A successfullNVITE request (see Section 13) establishes both a dialog between two user agents and a
session (using the offer/answer model). Section 12 explains how to modify an existing dialog using a route
refresh request (for example, changing the remote target &fRhe dialog). This section describes how

to modify the actual session. This modification can involve changing addresses or ports, adding a media
stream, deleting a media stream, and so on. This is accomplished by sendingNMi€® request within

the same dialog that established the sessionINMITE request sent within an existing dialog is known as
areiNVITE.

Note that a single rédNVITE can modify the dialog and the parameters of the session at the same time.

Either the caller or callee can modify an existing session.

The behavior of a UA on detection of media failure is a matter of local policy. However, automated
generation of rdNVITE or BYE is NOT RECOMMENDED to avoid flooding the network with traffic when
there is congestion. In any case, if these messages are sent automaticaltydhey be sent after some
randomized interval.

Note that the paragraph above refers to automatically geneBatéd and relNVITEs. If the user hangs up
upon media failure the UA would sendB¥ E request as usual.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptidh8/ITEs (Section 13.2.1) applies to
redINVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that ilNAAITE request to its peer. Itis important to note that the full

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 57]

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

description of the session, not just the change, is sent. This supports stateless session processing in various
elements, and supports failover and recovery capabilities. Of course, adAGend a rdNVITE with no
session description, in which case the first reliable response to th&/i&E will contain the offer.

If the session description format has the capability for version numbers, the dffecerLD indicate
that the version of the session description has changed.

TheTo, From, Call-ID, CSeq, andRequest-URI of a reINVITE are set following the same rules as
for regular requests within an existing dialog, described in Section 12.

A UAC mAY choose not to addlert-Info header fields or bodies witBiontent-Disposition "alert” to
redINVITEs because UASs do not typically alert the user upon reception ofiNME-E.

Note that, as opposed to inititlVITES (see Section 13), iNVITES contain tags in th€o header field
and are sent using the route set for the dialog. Therefore, a single final (2xx or non-2xx) response is received
for redNVITEs.

Note that a UAQWUST NOT initiate a newINVITE transaction within a dialog while another transaction
(INVITE or nonINVITE) is in progress in either direction.

1. If there is an ongoingNVITE client transaction, the TMusT wait until the transaction reaches the
completedbr terminatedstate before initiating the neiNVITE.

2. If there is an ongoing\NVITE server transaction, the TMUST wait until the transaction reaches the
confirmedor terminatedstate before initiating the neiNVITE.

3. Ifthere is an ongoing NoMNVITE client or server transaction, the TWUST wait until the transaction
reaches theompletedor terminatedstate before initiating the neilNVITE.

However, a UAMAY initiate a regular transaction while aNVITE transaction is in progress.

If a UA receives a non-2xx final response to alR/TE, the session parametewsJST remain un-
changed, as if no rtNVITE had been issued. Note that, as stated in Section 12.2.1.2, if the non-2xx final
response is a 481 (Call/Transaction Does Not Exist), or a 408 (Request Timeout), or no response at all is
received for the réNVITE (that is, a timeout is returned by thEVITE client transaction), the UAC wiill
terminate the dialog.

The rules for transmitting a rlNVITE and for generating aACK for a 2xx response to riNVITE are
the same as for aNVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the steps to follow in order to distinguish incomifgWad-Es from incoming
initial INVITEs. This section describes the procedures to follow upon reception ofNMVI&E for an
existing dialog.

A UAS that receives a seconVITE before it sends the final response to a filé¢ITE with a lower
CSeq sequence number on the same dialgsT return a 500 (Server Internal Error) response to the second
INVITE andMusT include aRetry-After header field with a randomly chosen value of between 0 and 10
seconds.

A UAS that receives aiNVITE on a dialog while adNVITE it had sent on that dialog is in progress
MUST return a 491 (Request Pending) response to the recBiWE and MuSsT include aRetry-After
header field with a value chosen as follows:

1. If the UAS is the owner of th€all-ID of the dialog ID, theRetry-After header field has a randomly
chosen value of between 2.1 and 4 seconds in units of 10 ms.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 58]

2262

2263

2264
2265
2266
2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292
2293
2294

2295

2296

2297

2298
2299
2300
2301
2302
2303
2304

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2. If the UAS isnot the owner of theCall-ID of the dialog ID, theRetry-After header field has a ran-
domly chosen value of between 0 and 2 seconds in units of 10 ms.

If a UA receives a rdNVITE for an existing dialog, iMusT check any version identifiers in the session
description or, if there are no version identifiers, the content of the session description to see if it has changed.
If the session description has changed, the WAST adjust the session parameters accordingly, possibly
after asking the user for confirmation.

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media or change from a unicast to a multicast conference.

If the new session

description is not acceptable, the UAS can reject it by returning a 488 (Not Acceptable Here) response
for the reINVITE. This responssHoULD include aWarning header field.

If a UAS generates a 2xx response and never receive&h it SHOULD generate 8YE to terminate
the dialog.

A UAS MAY choose not to generate 180 (Ringing) responses forlVEFE because UACs do not
typically render this information to the user. For the same reason, WSschoose not to usAlert-Info
header fields or bodies witBontent-Disposition "alert” in responses to a riNVITE.

A UAS providing an offer in a 2xx (because th€VITE did not contain an offersHouULD construct
the offer as if the UAS were making a brand new call, subject to the constraints of sending an offer which
updates an existing session, as described in [1] in the case of SDP. Specifically, this mearssithat it
include as many media formats and media types that the UA is willing to support. ThevdAS ensure
that the session description overlaps with its previous session description in media formats, transports, or
other parameters that require support from the peer. This is to avoid the need for the peer to reject the session
description. If, however, it is unacceptable to the UAC, the UBMOULD generate an answer with a valid
session description, and then serB¥E to terminate the session.

15 Terminating a Session

This section describes the procedures for terminating a SIP dialog. For two-party sessions that are otherwise
unbound in time, the termination of the dialog implies the termination of the session. Other types of sessions,
such as multicast sessions, are not terminated when a participant terminates the SIP dialog that he used to
join the session. However, the SIP dia®igouLD be terminated even though its termination does not imply

the termination of the session. A UA joining a multicast sessiam terminate the SIP dialog immediately

after thelNVITE transaction used to join the session has completed.
Either the caller or callee may terminate a dialog for any reason. A caller terminates a dialog either with
BYE or CANCEL depending on the state of the dialog. A callee IB€E to terminate a confirmed dialog.

If the callee wants to terminate an early dialog, it just returns a non-2xx final response RNMIA&.

Sections 13 and 12 document some cases where dialog termination is normative behavior. If a UA
decides to terminate the dialog,MtusT follow the procedures here to initiate signaling action to convey

that.

When a UAC sends alNVITE request to create a session, if a 1xx response with a tag ifotfield
is received, an early dialog is created. When a 2xx response is received, the dialog becomes confirmed. For
a confirmed dialog, if the UAC desires to terminate the session, the £iA&@ULD follow the procedures
described in Section 15.1.1 to terminate the session. If the callee for a new session wishes to terminate the
dialog, it uses the procedures of Section 15.1.1 MusT NOT do so until it has received ahCK or until
the server transaction times out.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 59]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2305 This does not mean a user cannot hang up right away; it just means that the software in his phone needs to
2306 maintain state for a short while in order to clean up properly.
2307 If the UAC desires to end the session before a confirmed dialog has been createdyitp send a

208 CANCEL for the INVITE request that requested establishment of the session that is to be terminated. The
2300 UAC constructs and sends tBRANCEL following the procedures described in Section 9. TRWSNCEL

2310 Will normally result in a 487 (Request Terminated) response to be returned lNWHEE, indicating suc-

2311 cessful cancellation. However, it is possible that @&NCEL and a 2xx response to thVITE “pass on

22312 the wire”. In this case, the UAC will receive a 2xx to théVITE. It SHOULD then terminate the call by

2213 following the procedures described in Section 15.1.1.

2314 A UAC can terminate a specific early dialog by following the procedures described in Section 15.1.1.
2315 This would only terminate one particular early dialog.

26 15.1 Terminating a Dialog with aBYE Request

2217 15.1.1 UAC Behavior

2218 A user agent client uses tHBYE request, sent within a dialog, to indicate to the server that it wishes to
2219 terminate the session. This will also terminate the dialo@® Y& requesivAY be issued by either caller or
2320 callee. ABYE requestSHOULD NOT be sent before the creation of a dialog (either early or confirmed). In
2221 that case the UAGHoULD follow the procedures described in Section 9 instead.

2322 Proxies ensure that @ANCEL request is routed in the same way as IN¥ITE was. However, a proxy

2323 performing load balancing may routd3& E without aRoute header field in a different way than theéVITE, since

2324 both requests have differe@Seq sequence numbers.

2325 The To, From, Call-ID, CSeq, andRequest-URI of a BYE are set following the same rules as for
2326 regular requests sent within a dialog, described in Section 12.

2327 Once theBYE is constructed, it creates a new niNVITE client transaction, and passes it tB¥E

238 request. The UAHOULD stop sending media as soon asB¥E request is passed to the client transaction.
2329 If the response for thBYE is a 481 (Call/Transaction Does Not Exist) or a 408 (Request Timeout) or ho
230 response at all is received for tlEYE (that is, a timeout is returned by the client transaction), the UAC
2331 considers the dialog down.

232 15.1.2 UAS Behavior

2333 A UAS first processes thBYE request according to the general UAS processing described in Section 8.2.
223 A UAS core receiving 8YE request checks if it matches an existing dialog. IfB¥E does not match an

2335 existing dialog, the UAS corsHOULD generate a 481 (Call/Transaction Does Not Exist) response and pass
2336 that to the server transaction.

2337 This rule means thatBYE sent without tags by a UAC will be rejected. This is a change from RFC 2543, which
2338 allowedBYE without tags.
2339 A UAS core receiving 8BYE request for an existing dialogusT follow the procedures of Section

2340 12.2.2 to process the request. Once done, the MAST cease transmitting media streams for the session
2241 being terminated. The UAS comeusT generate a 2xx response to tB¥E, andMusT pass that to the

2342 Server transaction for transmission.

2343 The UASMuUST still respond to any pending requests received for that dialog, (which can only be an
2244 INVITE). It is RECOMMENDED that a 487 (Request Terminated) response is generated to those pending
2345 requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 60]

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request arrives, an element that can play the
role of a proxy must first decide if it needs to respond to the request on its own. For instance, the request
could be malformed or the element may need credentials from the client before acting as a proxy. The
elementmAY respond with any appropriate error code. When responding directly to a request, the element
is playing the role of a UAS andlusT behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request. When stateless, a proxy
acts as a simple forwarding element. It forwards each request downstream to a single element determined
by making a routing decision based on the request. It simply forwards every response it receives upstream.
A stateless proxy discards information about a message once it has been forwarded.

On the other hand, a stateful proxy remembers information (specifically, transaction state) about each
incoming request and any requests it sends as a result of processing the incoming request. It uses this
information to affect the processing of future messages associated with that request. A statefulgroxy
chose to “fork” a request, routing it to multiple destinations. Any request that is forwarded to more than one
locationMUsT be handled statefully.

In some circumstances, a proxay forward requests using stateful transports (such as TCP) without
being transaction stateful. For instance, a prexgy forward a request from one TCP connection to another
transaction statelessly as long as it places enough information in the message to be able to forward the
response down the same connection the request arrived on. Requests forwarded between different types of
transports where the proxy’s TU must take an active role in ensuring reliable delivery on one of the transports
MUST be forwarded transaction statefully.

A stateful proxyMAY transition to stateless operation at any time during the processing of a request,
so long as it did not do anything that would otherwise prevent it from being stateless initially (forking, for
example, or generation of a 100 response). When performing such a transition, all state is simply discarded.
The proxysHouLD NOTsend aCANCEL.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those
places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms
of the Server and Client Transactions defined in Section 17. A stateful proxy has a server transaction
associated with one or more client transactions by a higher layer proxy processing component (see figure 3),
known as a proxy core. An incoming request is processed by a server transaction. Requests from the server
transaction are passed to a proxy core. The proxy core determines where to route the request, choosing
one or more next-hop locations. An outgoing request for each next-hop location is processed by its own
associated client transaction. The proxy core collects the responses from the client transactions and uses
them to send responses to the server transaction.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 61]

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

A stateful proxy creates a new server transaction for each new request received. Any retransmissions of
the request will then be handled by that server transaction per Section 17.

This is a model of proxy behavior, not of software. An implementation is free to take any approach that
replicates the external behavior this model defines.

For all new requests, including any with unknown methods, an element intending to proxy the request
MUST:

1. Validate the request (Section 16.3)

2. Make a routing decision (Section 16.4)

3. Forward the request to each chosen destination (Section 16.5)
4

. Process all responses (Section 16.6)

16.3 Request Validation

Before an element can proxy a requesimiitsT verify the message’s validity. A valid message must pass
the following checks:

. Reasonable Syntax

. Max-Forwards

1
2
3. (Optional) Loop Detection
4. Proxy-Require

5

. Proxy-Authorization

If any of these checks fail, the elememt ST behave as a user agent server (see Section 8.2) and respond
with an error code.

Notice that a proxy is not required to detect merged requestsiasa NOT treat merged requests as an
error condition. The endpoints receiving the requests will resolve the merge as described in Section 8.2.2.2.

1. Reasonable Syntax check

The requestusT be well-formed enough to be handled with a server transaction. Any components
involved in the remainder of these Request Validation steps or the Request Processing/mestiba
well-formed. Any other components, well-formed or n�oULD be ignored and remain unchanged
when the message is forwarded. For instance, an elestemt/LD NOT reject a request because of

a malformedDate header field. Likewise, a proxyHoOULD NOT remove a malforme®ate header

field before forwarding a request.

This protocol is designed to be extended. Future extensions may define new methods and header fields
at any time. An elememniusT NOT refuse to proxy a request because it contains a method or header
field it does not know about.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 62]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

client
transaction

proxy "higher"
layer

uonoesuen
JEINES
client

transaction

client
transaction

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 63]

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438
2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2. Max-Forwards check

TheMax-Forwards header field (Section 24.22) is used to limit the number of elements a SIP request
can traverse.

If the request does not contairMax-Forwards header field, this check is passed.

If the request containsMax-Forwards header field with a field value greater than zero, the check is
passed.

If the request containsMax-Forwards header field with a field value of zero (0), the elemenisT
NoT forward the request. If the request was@PTIONS, the elementiAy act as the final recipient
and respond per Section 11. Otherwise, the elemerstr return a 483 (Too many hops) response.

3. Optional Loop Detection check

An elementmAY check for forwarding loops before forwarding a request. If the request contains a
Via header field with a sent-by value that equals a value placed into previous requests by the proxy,
the request has been forwarded by this element before. The request has either looped or is legitimately
spiraling through the element. To determine if the request has looped, the elemeperform the

branch parameter calculation described in Step 3 of Section 16.5 on this message and compare it to
the parameter received in thdia header field. If the parameters match, the request has looped. If
they differ, the request is spiraling, and processing continues. If a loop is detected, the element
return a 482 (Loop Detected) response.

In earlier versions of this memo, loop detection veQUIRED. This requirement has been relaxed in
favor of theMax-Forwards mechanism.

4. Proxy-Require check

Future extensions to this protocol may introduce features that require special handling by proxies.
Endpoints will include &roxy-Require header field in requests that use these features, telling the
proxy it should not process the request unless the feature is understood.

If the request containsRroxy-Require header field (Section 24.29) with one or more option-tags this

element does not understand, the elemessT return a 420 (Bad Extension) response. The response
MUST include anUnsupported (Section 24.42) header field listing those option-tags the element did
not understand.

5. Proxy-Authorization check

If an element requires credentials before forwarding a request, the raequestbe inspected as
described in Section 20.3. That section also defines what the element must do if the inspection fails.

16.4 Making a Routing Decision

At this point, the proxy must decide where to forward the request. This can be modeled as computing a set
of destinations for the request. This set will either be predetermined by the contents of the request or will be
obtained from an abstract location service. Each destination is represented as a URI, and is is referred to as
a “next-hop location”.

First, the proxymusT inspect theRequest-URI of the request. If thd&Request-URI of the request
contains a value this proxy previously placed intBecord-Route header field (see Section 16.5 item 6),

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 64]

2458

2459

2460

2461
2462
2463
2464

2465
2466
2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477
2478

2479

2480

2481

2482
2483
2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the proxyMmusT replace theRequest-URI in the request with the last value from tR®ute header field,
and remove that value from thRoute header field. The proxyusT then proceed as if it received this
modified request.

This will only happen when the element sending the request to the proxy (which may have been an endpoint)
is a strict router. This rewrite on receive is necessary to enable backwards compatibility with those elements. It
also allows elements following this specification to preserveRbguest-URI through strict-routing proxies (see
Section refsec:dialog:uac:generate).

This requirement does not obligate a proxy to keep state in order to detect URIs it previously plaeedrid-
Route header fields. Instead, a proxy need only place enough information in those URIs to recognize them as values
it provided when they later appear.

If the Request-URI has a URI whose scheme is not understood by the proxy, the gte®wLD reject
the request with a 416 (Unsupported URI Scheme) response. Rélgeiest-URI contains amaddr
parameter, the proxyiusT check to see if its value is in the set of addresses or domains the proxy is
configured to be responsible for. If thequest-URI has an maddr parameter with a value the proxy is
responsible for, and the request was received using the port and transport indicated (explicitly or by default)
in the Request-URI, the proxymusT strip the maddr and any non-default port or transport parameter and
continue processing as if those values had not been present in the request. Otherwistedfutbst-URI
contains armaddr parameter, th®equest-URI MUSsT be placed into the destination set as the only next
hop URI, and the proxyusT proceed to Section 16.5.

A request may arrive with amaddr matching the proxy, but on a port or transport different from that indicated
in the URI. Such a request needs to be forwarded to the proxy using the indicated port and transport.

If the domain of theRequest-URI indicates a domain this element is not responsible fer®ULD set
the next hop URI to th&®equest-URI. That next hopmusT be placed into the destination set as the only
next hop, and the elememtusT proceed to the task of Request Processing (Section 16.5).

There are many circumstances in which a proxy might receive a request for a domain it is not responsible for.
A firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

If the destination set for the request has not been predetermined as described above, this implies that the
element is responsible for the domain in RRequest-URI, and the elementiAy use whatever mechanism
it desires to determine where to send the request. However, if the request conRuongeaheader, the
proxy MUST only choose a single destination for the requeshy of these mechanisms can be modeled as
accessing an abstract Location Service. This may consist of obtaining information from a location service
created by a SIP Registrar, reading a database, consulting a presence server, utilizing other protocols, or
simply performing an algorithmic substitution on tRequest-URI. When accessing the location service
constructed by the registrar, titequest-URI MUST first be canonicalized as described in Section 10.3
before being used as an index. The output of these mechanisms is used to construct the destination set.

If the Request-URI does not provide sufficient information for the proxy to determine the destination
set, itSHOULD return a 485 (Ambiguous) response. This resp@seuLD contain aContact header field
containing URIs of new addresses to be tried. For exampl&N®ITE to sip:John.Smith@company.com
may be ambiguous at a proxy whose location service has multiple John Smiths listed. See Section 25.4.23
for details.

Any information in or about the request or the current environment of the elewrenbe used in the
construction of the destination set. For instance, different sets may be constructed depending on contents or

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 65]

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515
2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential destinations are located through these services, their next hops are added to the destination
set (although, as pointed out above, the destinatiomgstr NOT ever contain more than one destination if
the request containsRoute header). Next-hop locations may only be placed in the destination set once.
If a next-hop location is already present in the set (based on the definition of equality for the URI type), it
MUST NOT be added again.

If the received request contained Route header fields, a proxyAy continue to add destinations to
the set after beginning Request ProcessingiAlt use any information obtained during that processing to
determine new locations. For instance, a proxy may choose to incorporate contacts obtained in a redirect
response (3xx) into the destination set. If a proxy uses a dynamic source of information while building the
destination set (for instance, if it consults a SIP RegistragHibuLD monitor that source for the duration
of processing the request. New locati@souLD be added to the destination set as they become available.
As above, any given URWUST NOT be added to the set more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incor-
porating contacts from redirect requests prevents infinite recursion.

For example, a trivial location service is a "no-op”, where the destination URI is equal to the incoming
request URI. The request is sent to a specific next hop proxy for further processing. During request process-
ing of Section 16.5, Item 5, the identity of that next hop, expressed as a SIP URI, is inserted as the top most
Route header into the request.

If the Request-URI indicates a resource at this proxy that does not exist, the pnagr return a 404
(Not Found) response.

If the destination set remains empty after applying all of the above, the pnaygr return an error
response, whicBHouLD be the 480 (Temporarily Unavailable) response.

16.5 Request Processing

As soon as the destination set is non-empty, a ptxy begin forwarding the request. A stateful proxy

MAY process the set in any orderMay process multiple destinations serially, allowing each client transac-
tion to complete before starting the nextmiay start client transactions with every destination in parallel. It
alsoMAY arbitrarily divide the set into groups, processing the groups serially and processing the destinations
in each group in parallel.

A common ordering mechanism is to use the qvalue parameter of destinations obtained from Contact
header fields (see Section 24.10). Destinations are processed from highest gvalue to lowest. Destinations
with equal gvalues may be processed in parallel.

A stateful proxy must have a mechanism to maintain the destination set as responses are received and
associate the responses to each forwarded request with the original request. For the purposes of this model,
this mechanism is a “response context” created by the proxy layer before forwarding the first request.

For each destination, the proxy forwards the request following these steps:

1. Make a copy of the received request
2. Update the Request-URI
3. Add a Via header field

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 66]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

. Update the Max-Forwards header field

2541
2542 . Update the Route header field if present
. Optionally add additional header fields

2544

2545 . send the new request

4
5

2543 6. Optionally add a Record-route header field value
7
8
9

2546 . Settimer C

2547 Each of these steps is detailed below:

2548 1. Copy request

2549 The proxy starts with a copy of the received request. The sopgT initially contain all of the header

2550 fields from the received request. Only those fields detailed in the processing described below may be
2551 removed. The copgHOULD maintain the ordering of the header fields as in the received request. The
2552 proxy MUST NOT reorder field values with a common field name (See Section 7.3.1).

2553 An actual implementation need not perform a copy; the primary requirement is that the processing of each

2554 next hop begin with the same request.

2555 2. Request-URI

2556 TheRequest-URI in the copy’s start linemusT be replaced with the URI for this destination. If the

2557 URI contains any parameters not allowed in a Request-URI, NheyT be removed.

2558 This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
2559 toward its destination.

2560 In some circumstances, the receiM@dquest-URI is placed into the destination set without being

2561 modified. For that destination, the replacement above is effectively a no-op.

2562 3. Via

2563 The proxyMusT insert aVia header field into the copy before the existi@g header fields. The

2564 construction of this header field follows the same guidelines of Section 8.1.1.7. This implies that
2565 the proxy will compute its own branch parameter, which will be globally unique for that branch, and
2566 contain the requisite magic cookie.

2567 Proxies choosing to detect loops have an additional constraint in the value they use for construction of
2568 the branch parameter. A proxy choosing to detect I@pSULD create a branch parameter separable

2569 into two parts by the implementation. The first par ST satisfy the constraints of Section 8.1.1.7 as

2570 described above. The second is used to perform loop detection and distinguish loops from spirals.
2571 Loop detection is performed by verifying that, when a request returns to a proxy, those fields having
2572 an impact on the processing of the request have not changed. The value placed in this part of the
2573 branch parametersHouLD reflect all of those fields (including arfigoute, Proxy-Require and

2574 Proxy-Authorization header fields). This is to ensure that if the request is routed back to the proxy
2575 and one of those fields changes, it is treated as a spiral and not a loop (Section 16.3 item 3) A
2576 common way to create this value is to compute a cryptographic hash @b tfreom, Call-ID header

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 67]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2577 fields, theRequest-URI of the request received (before translation) and the sequence number from
2578 the CSeq header field, in addition to arfroxy-Require andProxy-Authorization header fields that

2579 may be present. The algorithm used to compute the hash is implementation-dependent, but MD5 [31],
2580 expressed in hexadecimal, is a reasonable choice. (Base64 is not permissititekésr. o

2581 If a proxy wishes to detect loops, théranch” parameter it suppliemusT depend on all information

2582 affecting processing of a request, including the inconfRegiuest-URI and any header fields affecting the

2583 request’s admission or routing. This is necessary to distinguish looped requests from requests whose routing

2584 parameters have changed before returning to this server.

2585 The request methodusT NOT be included in the calculation of thanch parameter. In particular,

2586 CANCEL andACK requests (for non-2xx responses)sT have the sambranch value as the cor-

2587 responding request they cancel or acknowledge. Breach parameter is used in correlating those
2588 requests at the server handling them (see Section 17.2.3 and 9.2).

2589 4. Max-Forwards

2590 If the copy does not contain a Max-Forwards header field, the pymgT add one with a field value
2591 which sHouLD be 70.

2592 Some existing UAs will not provide Blax-Forwards header field in a request.

2503 If the copy contains Max-Forwards header field, the proxy must decrement its value by one (1).

2504 5. Route

2505 A proxy MAY have a local policy that mandates that a request visit a specific set of proxies before being
2596 delivered to the destination. A proxyusT ensure that all such proxies are loose routers. Generally,
2597 this can only be known with certainty if the proxies are within the same administrative domain. This
2508 set of proxies is represented by a set of URIs (each of which contaitrgads@meter). This setusT

2599 be pushed into thRoute header field ahead of any existing values, if present. I1fRbate header

2600 field is empty, itMUST be added, containing that list of URIs.

2601 If the proxy has a local policy that mandates that the request visit one specific proxy, an alternative to
2602 pushing aRoute value into theRoute header field is to bypass the forwarding logic of item 8 below,

2603 and instead just send the request to the address, port and transport for that specific proxy. If the request
2604 hasRoute headers, this alternativeusT NOT be used unless it known that next hop proxy is a loose
2605 router. Otherwise, this approaetay be used, but thRoute insertion mechanism above is preferred

2606 for its robustness, flexibility, generality and consistency of operation.

2607 In absence of a policy for forwarding a request through specific next hops, the proxy inspect

2608 the topmosRoute header field value. If that value indicates this proxy, the praxygT remove the

2609 value from the copy (removing the Route header field if that was the only value).

2610 If a Route header field remains after the previous step, the praxgT inspect the URI in its first

2611 value. If that URI does not containliaparameter, the proxyiusT modify the request as follows:

2612 e The proxymusT place theRequest-URI into theRoute header field as the last value.

2613 e The proxymusT then place the firdRoute header field value into tiRequest-URI and remove

2614 that value from th&Route header field.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 68]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2615 Appending theRequest-URI to theRoute header field is part of a mechanism used to pass the information
2616 in that Request-URI through strict-routing elements. "Popping” the fiRbute header field value into the

2617 Request-URI formats the message the way a strict-routing element expects to receive it (with its own URI in
2618 theRequest-URI and the next location to visit in the firRoute header field value).

2619 6. Record-Route

2620 If this proxy wishes to remain on the path of future requests in a dialog created by this request, it
2621 MUST insert aRecord-Route header field into the copy before any existiRgcord-Route header

2622 field, even if aRoute header field is already present.

2623 Requests establishing a dialog may contain preloaded Route header fields.

2624 If this request is already part of a dialog, the preyouLD insert aRecord-Route header field value

2625 if it wishes to remain on the path of future requests in the dialog. In normal endpoint operation as
2626 described in Section 12 theBecord-Route header field values will not have any effect on the route
2627 sets used by the endpoints.

2628 The proxy will remain on the path if it choses to not inseRecord-Route header field value into requests

2629 that are already part of a dialog. However, it would be removed from the path when an endpoint that has failed

2630 reconstitutes the dialog.

2631 A proxy MAY insert aRecord-Route header field into any request. If the request does not initiate
2632 a dialog, the endpoints will ignore the value. See Section 12 for details on how endpoints use the
2633 Record-Route header field values to constrigbute header fields.

2634 Each proxy in the path of a request chooses whether to &igkcard-Route header field indepen-

2635 dently - the presence ofRecord-Route header field in a request does not obligate this proxy to add
2636 a value.

2637 The URI placed in th&ecord-Route header field valuetusT be a SIP URI. This URMUST contain

2638 anlr parameter (see Section 23.1.1T.his URIMAY be different for each destination the request is
2639 forwarded to. The URSHOULD NOT contain the transport parameter unless the proxy has knowledge
2640 (such as in a private network) that the next downstream element that will be in the path of subsequent
2641 requests supports that transport.

2642 The URI this proxy provides will be used by some other element to make a routing decision. This proxy, in

2643 general, has no way to know what the capabilities of that element are, so it must restrict itself to the mandatory

2644 elements of a SIP implementation: SIP URIs and either the TCBDP transports.

2645 The URI placed in thdRecord-Route header fieldvusT resolve to this element when the server

2646 location procedures of [2] are applied to it. This ensures subsequent requests are routed back to this
2647 element.

2648 If the URI placed in theRecord-Route header field needs to be be rewritten when it passes back
2649 through in a response, the URIUST be distinct enough to locate at that time. (The request may
2650 spiral through this proxy, resulting in more than dRecord-Route header field value being added).

2651 Item 8 of Section 16.6 recommends a mechanism to make the URI sufficiently distinct.

2652 The proxymAY include Record-Route header field parameters in the value it provides. These will
2653 be returned in some responses to the request (200 (OK) resporisBdTé& for example) and may

2654 be useful for pushing state into the message.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 69]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2655 If a proxy needs to be in the path of any type of dialog (such as one straddling a firewsiq utLD

2656 add aRecord-Route header field to every request with a method it does not understand since that
2657 method may have dialog semantics.

2658 The URI a proxy places into Becord-Route header field is only valid for the lifetime of any dialog

2659 created by the transaction in which it occurs. A dialog-stateful proxy, for examiple, refuse to

2660 accept future requests with that value in fRequest-URI after the dialog has terminated. Non-

2661 dialog-stateful proxies, of course, have no concept of when the dialog has terminated, buathey

2662 encode enough information in the value to compare it against the dialog identifier of future requests
2663 andMAY reject requests not matching that information. EndpoinissT NOT use a URI obtained

2664 from aRecord-Route header field outside the dialog in which it was provided. See Section 12 for
2665 more information on an endpoint’s useR&cord-Route header fields.

2666 Generally, the choice about whether to record-route or not is a tradeoff of features vs. performance.
2667 Faster request processing and higher scalability is achieved when proxies do not record route. How-
2668 ever, provision of certain services may require a proxy to observe all messages in a dialog. It is
2669 RECOMMENDED that proxies do not automatically record route. They should do so only if specifi-
2670 cally required.

2671 TheRecord-Route process is designed to work for any SIP request that initiates a dialog. The only
2672 such request in this specificationINSVITE. Extensions to the protocodAy define others, and the

2673 mechanisms described here will apply.

2674 7. Adding Additional Header Fields
2675 The proxymMAY add any other appropriate header fields to the copy at this point.

2676 8. Forward Request

2677 A stateful proxy creates a new client transaction for this request as described in Section 17.1. The
2678 proxy MAY have a local policy to send the request to a specific IP address, port, and transport, inde-
2679 pendent of the values of tHRoute andRequest-URI. Such a policymusT NOT be used if the proxy

2680 is not certain that the IP address, port, and transport correspond to a server that is a loose router. How-
2681 ever, this mechanism for sending the request through a specific next h@x iIRECOMMENDED,

2682 instead &Route header field should be used for that purpose as described above.

2683 In the absence of such an overriding mechanism, the proxy applies the procedures listed in [2] as
2684 follows to determine where to send the request. If the proxy has reformatted the request to send to
2685 a strict-routing element as described in Section 5, the proxgT apply those proceedures to the

2686 Request-URI of the request. Otherwise, the proxusT apply the proceedures to the first value in

2687 the Route header field, if present, else tRequest-URI. The proceedures will produce an ordered

2688 set of addresses. As described in [2], the prax)sT attempt to contact the first address by instructing

2689 the client transaction to send the request thelgthe client transaction reports failure to send the

2690 request or a timeout from its state machine, the stateful proxy continues to the next address in that
2691 ordered set. Each attempt is a new client transaction, and therefore represents a new branch, so that the
2692 processing described above for each branch would need to be repeated. This results in a requirement
2693 to use a different branch ID parameter for each attempt. If the ordered set is exhausted, the request
2694 cannot be forwarded to this element in the destination set. The proxy does not need to place anything
2695 in the response context, but otherwise acts as if this element of the destination set returned a 408
2696 (Request Timeout) final response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 70]

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708
2709
2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

9.

Set timer C

In order to handle the case where I[&WITE request never generates a final response, a transaction
timeout value is used. This is accomplished through a timer, called timer C, whish be set for

each client transaction when B4VITE request is proxied. The timerusT be larger than 3 minutes.
Section 16.6 bullet 2 discusses how this timer is updated with provisional responses, and Section 16.7
discusses processing when it fires.

16.6 Response Processing

When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
ing the response. If none is found, the elemgoisT process the response (even if it is an informational
response) as a stateless proxy (described below). If a match is found, the response is handed to the client
transaction.

Forwarding responses for which a client transaction (or more generally any knowledge of having sent an associ-
ated request) is not found improves robustness. In particular, it ensures that “late” 2xx resptS¢SExequests
are forwarded properly.

As client transactions pass responses to the proxy layer, the following processitgake place:

. Find the appropriate response context
. Update timer C for provisional responses

1
2
3.
4
5

Remove the topmost Via

. Add the response to the response context

. Check to see if this response should be forwarded

The following processingiusT be performed on each response that is forwarded. It is likely that more
than one response to each request will be forwarded: at least each provisional and one final response.

1.
2.
3.

Aggregate authorization header fields if necessary;
forward the response;

generate any necess®@ANCEL requests.

If no final response has been forwarded after every client transaction associated with the response context
has been terminated, the proxy must choose and forward the “best” response from those it has seen so far.
Each of the above steps are detailed below:

1.

Find Context

The proxy locates the “response context” it created before forwarding the original request using the
key described in Section 16.5. The remaining processing steps take place in this context.

. Update timer C for provisional responses

For anINVITE transaction, if the response is a provisional response with status codes 101 to 199
inclusive (i.e., anything but 100), the proxyusT reset timer C for that client transaction. The timer
MAY be reset to a different value, but this valuesT be greater than 3 minutes.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 71]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2732 3. Via

2733 The proxy removes the topmaogta header field from the response.

2734 If no Via header fields remain in the response, the response was meant for this elementsand

2735 NOT be forwarded. The remainder of the processing described in this section is not performed on this
2736 message, the UAC processing rules described in Section 8.1.3 are followed instead (transport layer
2737 processing has already occurred).

2738 This will happen, for instance, when the element gener@®NCEL requests as described in Sec-

2739 tion 10.

2740 4. Add response to context ;

2741 Final responses received are stored in the response context until a final response is generated on the
2742 server transaction associated with this context. The response may be a candidate for the best final
2743 response to be returned on that server transaction. Information from this response may be needed in
2744 forming the best response even if this response is not chosen.

2745 If the proxy chooses to recurse on any contacts in a 3xx response by adding them to the destination
2746 set, itMUST remove them from the response before adding the response to the response context. If
2747 the proxy recurses on all of the contacts in a 3xx response, the proayLD NOT add the resulting

2748 contactless response to the response context.

2749 Removing the contact before adding the response to the response contact prevents the next element up-

2750 stream from retrying a location this proxy has already attempted.

2751 3xx responses may contain a mixture of SIP and non-SIP URIs. A proxy may choose to recurse on the SIP

2752 URIs and place the remainder into the response context to be returned potentially in the final response.

2753 If a proxy receives a 416 (Unsupported URI Scheme) response to a request Rdupsest-URI

2754 scheme was not SIP, but the scheme in the original received request was SIP (that is, the proxy changed
2755 the scheme from SIP to something else when it proxied a request), thegmaxyLb add a new URI

2756 to the destination set. This URHOULD be a SIP URI version of the non-SIP URI that was just tried.

2757 In the case of the tel URL, this is accomplished by placing the telephone-subscriber part of the tel
2758 URL into the user part of the SIP URI, and setting the hostpart to the domain where the prior request
2759 was sent.

2760 As with a 3xx response, if a proxy “recurses” on the 416 by trying a SIP URI instead, the 416 response
2761 SHOULD NOT be added to the response context.

2762 5. Check response for forwarding

2763 Until a final response has been sent on the server transaction, the following respoisgedse for-
2764 warded immediately:

2765 e Any provisional response other than 100 (Trying)

2766 e Any 2xx response

2767 If a 6xx response is received, it is not immediately forwarded, but the stateful pra®yLD cancel
2768 all pending transactions as described in Section 10.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 72]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2769 This is a change from RFC 2543, which mandated that the proxy was to forward the 6xx response imme-

2770 diately. For anNVITE transaction, this approach had the problem that a 2xx response could arrive on another

2771 branch, in which case the proxy would have to forward the 2xx. The result was that the UAC could receive

2772 a 6xx response followed by a 2xx response, which should never be allowed to happen. Under the new rules,

2773 upon receiving a 6xx, a proxy will issueGANCEL request, which will generally result in 487 responses from

2774 all outstanding client transactions, and then at that point the 6xx is forwarded upstream.

2775 After a final response has been sent on the server transaction, the following respossese for-

2776 warded immediately:

2777 e Any 2xx response to alNVITE request

2778 A stateful proxymusT NOT immediately forward any other responses. In particular, a stateful proxy
2779 MUST NOT forward any 100 (Trying) response. Those responses that are candidates for forwarding
2780 later as the “best” response have been gathered as described in step “Add Response to Context”.
2781 Any response chosen for immediate forwardimgsT be processed as described in steps “Aggregate
2782 Authorization Header Fields” through “Record-Route”.

2783 This step, combined with the next, ensures that a stateful proxy will forward exactly one final response
2784 to a noniNVITE request, and either exactly one non-2xx response or one or more 2xx responses to
2785 anINVITE request.

2786 6. Choosing the best response

2787 A stateful proxyMusT send a final response to a response context’s server transaction if no final
2788 responses have been immediately forwarded by the above rules and all client transactions in this
2789 response context have been terminated.

2790 The stateful proxymusT choose the “best” final response among those received and stored in the
2791 response context.

2792 If there are no final responses in the context, the praxgT send a 408 (Request Timeout) response

2793 to the server transaction.

2794 Otherwise, the proxyusT forward one of the responses from the lowest response class stored in the
2795 response context. The proxyay select any response within that lowest class. The pgxguULD

2796 give preference to responses that provide information affecting resubmission of this request, such as
2797 401, 407, 415, 420, and 484.

2798 A proxy which receives a 503 (Service Unavailable) respasiseuLd NOT forward it upstream

2799 unless it can determine that any subsequent requests it might proxy will also generate a 503. In other
2800 words, forwarding a 503 means that the proxy knows it cannot service any requests, not just the one
2801 for theRequest-URI in the request which generated the 503.

2802 The forwarded responseusT be processed as described in steps “Aggregate authorization Header
2803 Fields” through “Record-Route”.

2804 For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
2805 responses, it may choose to forward the 407 (Proxy Authentication Required) response.

2806 1xx and 2xx responses may be involved in the establishment dialogs. When a request does not contain
2807 a To tag, the To tag in the response is used by the UAC to distinguish multiple responses to a dialog
2808 creating request. A proxyiUST NOT insert a tag into th@o header field of a 1xx or 2xx response if

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 73]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2809 the request did not contain one. A promysT NOT modify the tag in théfo header field of a 1xx or

2810 2XX response.

2811 Since a proxy may not insert a tag into fieeheader field of a 1xx response to a request that did not

2812 contain one, it cannot issue non-100 provisional responses on its own. However, it can branch the
2813 request to a UAS sharing the same element as the proxy. This UAS can return its own provisional
2814 responses, entering into an early dialog with the initator of the request. The UAS does not have to be
2815 a discreet process from the proxy. It could be a virtual UAS implemented in the same code space as
2816 the proxy.

2817 3-6xx responses are delivered hop-hop. When issuing a 3-6xx response, the element is effectivly
2818 acting as a UAS, issuing its own response, usually based on the responses received from downstream
2819 elements. An elemergHOULD preserve the To tag when simply forwarding a 3-6xx response to a
2820 request that did not contain a To tag.

2821 A proxy MusT NOT modify the To tag in any forwarded response to a request that contains a To tag.
2822 While it makes no difference to the upstream elements if the proxy replaced the To tag in a forwarded

2823 3-6xx response, preserving the original tag may assist with debugging.

2824 When the proxy is aggregating information from several responses, choosing a To tag from among them

2825 is arbitrary, and generating a new To tag may make debugging easier. This happens, for instance, when

2826 combining 401 (Unauthorized) and 407 (Proxy Authentication Required) challenges, or combining Contact

2827 values from unencrypted and unauthenticated 3xx responses.

2828 7. Aggregate Authorization Header Fields

2829 If the selected response is a 401 (Unauthorized) or 407 (Proxy Authentication Required), the proxy
2830 MUST collect anyWWW-Authenticate and Proxy-Authenticate header fields from all other 401

2831 (Unauthorized) and 407 (Proxy Authentication Required) responses received so far in this response
2832 context and add them to this response before forwarding. BASAN-Authenticate and Proxy-

2833 Authenticate header field added to the responsesT preserve that header field value. The result-

2834 ing 401 (Unauthorized) or 407 (Proxy Authenication Required) response may have S&EVevs

2835 Authenticate AND Proxy-Authenticate header fields.

2836 This is necessary because any or all of the destinations the request was forwarded to may have re-
2837 quested credentials. The client must receive all of those challenges and supply credentials for each of
2638 them when it retries the request. Motivation for this behavior is provided in Section 22.

2839 8. Record-Route

2840 If the selected response contairRecord-Route header field value originally provided by this proxy,

2841 the proxyMAY chose to rewrite the value before forwarding the response. This allows the proxy to
2842 provide different URISs for itself to the next upstream and downstream elements. A proxy may choose
2843 to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

2844 The new URI provided by the proxyusT satisfy the same constraints on URIs place®atord-

2845 Route header fields in requests (see Step 6 of Section 16.5) with the following modifications:

2846 The URISHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
2847 upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
2848 that transport.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 74]

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

10.

When a proxy does decide to modify tRecord-Route header field in the response, one of the
operations it must perform is to locate tRecord-Route that it had inserted. If the request spiraled,

and the proxy insertedRecord-Route in each iteration of the spiral, locating the correct header field

in the response (which must be the proper iteration in the reverse direction) is tricky. The rules above
recommend that a proxy wishing to rewriiecord-Route header field values insert sufficiently
distinct URIs into theRecord-Route header field so that the right one may be selected for rewriting.

A RECOMMENDED mechanism to achieve this is for the proxy to append a unique identifier for the
proxy instance to to the user portion of the URNhen the response arrives, the proxy modifies the
first Record-Route whose identifier matches the proxy instance. The modification results in a URI
without this piece of data appended to the user portion of the URI. Upon the next iteration, the same
algorithm (find the topmodRecord-Route header field with the parameter) will correctly extract the
nextRecord-Route header field inserted by that proxy.

. Forward response

After performing the processing described in steps “Aggregate Authorization Header Fields” through
“Record-Route”, the proxy may perform any feature specific manipulations on the selected response.
Unless otherwise specified, the praxysT NOT remove the message body or any header fields other
than theVia header field discussed in Section 3. In particular, the praxgT NOT remove any
“received” parameter it may have added to the riéia header field while processing the request
associated with this response. The proxysT pass the response to the server transaction associated
with the response context. This will result in the response being sent to the location now indicated
in the topmostVia header field value. If the server transaction is no longer available to handle the
transmission, the elemeritusT forward the response statelessly by sending it to the server transport.
The server transaction may indicate failure to send the response or signal a timeout in its state machine.
These errors should be logged for diagnostic purposes as appropriate, but the protocol requires no
remedial action from the proxy.

The proxymMusT maintain the response context until all of its associated transactions have been ter-
minated, even after forwarding a final response.

Generat€ ANCELs

If the forwarded response was a final response, the pyraxgT generate £ANCEL request for all

pending client transactions associated with this response context. A pHDXYLD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response and has not had an assoc@AMICEL generated for it. GeneratingANCEL

requests is described in Section 9.1.

The requirement t&€ ANCEL pending client transactions upon forwarding a final response does not
guarantee that an endpoint will not receive multiple 200 (OK) responses B\AAE. 200 (OK)
responses on more than one branch may be generated bef@AMNE@EL requests can be sent and
processed. Further, it is reasonable to expect that a future extension may override this requirement to
issueCANCEL requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 75]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

a8 16.7 Processing Timer C

2880 If timer C should fire, the proxyusT either reset the timer with any value it chooses, or gener@tald-
2800 CEL for that particular request.

01 16.8 Handling Transport Errors

2802 If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 19.4), the
2803 Proxy MUST behave as if the forwarded request received a 400 (Bad Request) response.

2894 If the proxy is notified of an error when forwarding a response, it drops the response. ThespmxyD

2805 NOT cancel any outstanding client transactions associated with this response context due to this notification.

2896 If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all
2897 transactions to fail through its Via header field.

208 16.9 CANCEL Processing

2800 A stateful proxy may generate@ANCEL to any other request it has generated at any time (subject to re-
2000 Ceiving a provisional response to that request as described in section 9.1). Ayrexycancel any pending

2001 Client transactions associated with a response context when it receives a m&8NaEL request.

2002 A stateful proxymAy generateCANCEL requests for pendindNVITE client transactions based on the

2003 period specified in théNVITE's Expires header field elapsing. However, this is generally unnecessary
2004 Since the endpoints involved will take care of signaling the end of the transaction.

2905 While aCANCEL request is handled in a stateful proxy by its own server transaction, a hew response
2006 context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
2007 transaction handling the request associated with@BICEL. If a matching response context is found, the

2008 €lementmusT immediately return a 200 (OK) response to @&NCEL request. In this case, the element is

2000 acting as a user agent server as defined in Section 8.2. Furthermore, the elerseigienerataCANCEL

2010 requests for all pending client transactions in the context as described in Section 10.

2011 If a response context is not found, the element does not have any knowledge of the request to apply
2012 the CANCEL to. It MmusT forward theCANCEL request (it may have statelessly forwarded the associated
2013 request previously).

212 16.10 Stateless Proxy

2015 When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
2016 acting statelessly is the same as when behaving statefully. The differences are detailed here.

2917 A stateless proxy does not have any notion of a transaction, or of the response context used to describe
2018 Stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly
2019 from the transport layer (See section 19). As a result, stateless proxies do not retransmit messages on their
2000 OWN. They do, however, forward all retransmission they receive (they do not have the ability to distinguish

2021 @ retransmission from the original message). Furthermore, when handling a request statelessly, an element
2002 MUST NOT generate its own 100 (Trying) or any other provisional response.

2923 A stateless proxy must validate a request as described in Section 16.3
2924 A stateless proxy must make a routing decision as described in Section 16.4 with the following excep-
2025 tion:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 76]

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947
2948
2949
2950
2951
2952
2953

2954
2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e A stateless proxyiusT choose one and only one destination from the destination set. This choice
MUST only rely on fields in the message and time-invariant properties of the server. In particular, a
retransmitted requestusT be forwarded to the same destination each time it is processed. Further-
more, CANCEL and non-Routed\CK requestavusT generate the same choice as their associated
INVITE.

A stateless proxy must process the request before forwarding as described in Section 16.5 with the
following exceptions:

e The requirement for unique branch IDs across time applies to stateless proxies as well. However, a
stateless proxy cannot simply use a random number generator to compute the first component of the
branch ID, as described in Section 16.5 bullet 3. This is because retransmissions of a request need
to have the same value, and a stateless proxy cannot tell a retransmission from the original request.
Therefore, the component of the branch parameter that makes it uwiggrebe the same each time
a retransmitted request is forwarded. Thus for a stateless proxyrameh parametemusT be
computed as a combinatoric function of message parameters which are invariant on retransmission.

e The stateless proxyAY use any technique it likes to guarantee uniqueness of its branch IDs across
transactions. However, the following procedur&isCOMMENDED. The proxy examines the branch
ID of the received request. If it begins with the magic cookie, the first component of the branch ID of
the outgoing request is computed as a hash of the received branch ID. Otherwise, the first component
of the branch ID is computed as a hash of the topriastthe To header field, th&rom header field,
theCall-ID header field, th€Seq number (but not method), and tRequest-URI from the received
request. One of these fields will always vary across two different transactions.

e The request is sent directly to the transport layer instead of through a client transaction. If the next-
hop destination parameters don't provide an explicit destination, the element applies the procedures
of [2] to the Request-URI to determine where to send the request.

Since a stateless proxy must forward retransmitted requests to the same destination and add identical branch
parameters to each of them, it can only use information from the message itself and time-invariant configuration
data for those calculations. If the configuration state is not time-invariant (for example, if a routing table is updated)
any requests that could be affected by the change may not be forwarded statelessly during an interval equal to the

transaction timeout window before or after the change. The method of processing the affected requests in that
interval is an implementation decision. A common solution is to forward them transaction statefully.

Stateless proxie®usT NOT perform special processing fQ/ANCEL requests. They are processed by
the above rules as any other requests. In particular, a stateless proxy applies thiosdenieeader field
processing t&€ANCEL requests that it applies to any other request.

Response processing as described in Section 16.6 does not apply to a proxy behaving statelessly. When
a response arrives at a stateless proxy, the proxy inspects the sent-by value in the first (tdjantnastiler
field. If that address matches the proxy (it equals a value this proxy has inserted into previous requests) the
proxy MUST remove that value from the response and forward the result to the location indicated in the next
Via header field. Unless specified otherwise, the praxysT NOT remove any other header fields or the
message body. If the address does not match the proxy, the messagde silently discarded.

16.11 Summary of Proxy Route Processing

In the absence of local policy to the contrary, the processing a proxy performs on a request containing a
route header can be summarized in the following steps.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 77]

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e 1 The proxy will inspect th&kequest-URI. If it indicates a resource owned by this proxy, the proxy
will replace it with the results of running a location service. Otherwise, the proxy will not change the
Request-URI.

e 2 The proxy will inspect the URI in the topmoRibute header field value. If it indicates this proxy,
the proxy removes it from thRoute header field (this route node has been reached).

e 3 The proxy will forward the request to the resource indicated by the URI in the todRwage
header field value or in thRequest-URI if no Route header field is present. The proxy determines
the address, port and transport to use when forwarding the request by applying the proceedures in [2]
to that URI.

If no strict-routing elements are encountered on the path of the requeRetheest-URI will always
indicate the target of the request.

16.11.1 Examples

16.11.1.1 Basic SIP Trapezoid This scenario is the basic sip trapeziod, U1 P1 = P2 = U2, with
both proxies record-routing. Here is the flow.
U1 sends:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@ul.example.com

to P1. P1is an outbound proxy. P1 is not responsible for domain.com, so it looks it up in DNS and
sends it there. It also add€Reecord-Route header field value:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:pl.example.com;lr>

P2 gets this. Itis responsible for domain.com so it runs a location service and rewrfkecphest-URI.
There are ndRoute headers, so it sends to the result of the location lookup. It also aBésard-Route
header field value:

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:pl.example.com;lr>

The callee at u2.domain.com gets this and responds with a 200 OK:
SIP/2.0 200 OK
Contact: sip:callee@u2.domain.com

Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:pl.example.com;lr>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 78]

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The callee at u2 also sets its dialog state’s remote target URI to sip:caller@ul.example.com and its route
set to

(<sip:p2.domain.com;Ir>,<sip:pl.example.com;lr>)

This is forwarded by P2 to P1 to Ul as normal. Now, U1l sets its dialog state’s remote target URI to
sip:callee@u2.domain.com and its route set to

(<sip:pl.example.com;lr>,<sip:p2.domain.com;lr>)

Since all the route set elements containlthgarameter, U1 constructs the following for the BYE:

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:pl.example.com;lr>,<sip:p2.domain.com;lr>

As any other element (including proxies) would do, it sends this request to the location obtained by
looking up the topmodRoute header field value in DNS. This goes to P1. P1 notices that it is not responsible
for the resource indicated in thiequest-URI so it doesn’t change it. It does see that it is the first value in
the Route header field, so it removes that value, and forwards the request to P2;

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:p2.domain.com;ir>

P2 also notices it is not responsible for the resource indicated dyaheest-URI (it is responsible for
domain.com, not u2.domain.com), so it doesn’t change it. It does see itself in tHedutt header field
value, so it removes it and forwards the following to u2.domain.com based on a DNS lookup against the
Request-URI:

BYE sip:callee@u2.domain.com SIP/2.0

16.11.1.2 Traversing a strict-routing proxy In this scanario, a dialog is established across three prox-
ies, each of which addRecord-Route header field values. The second proxy implements the strict-routing
proceedures specified in RFC2543 and the bis drafts up to bis-05.

Ul->P1->P2->P3->U2

The INVITE arriving at U2 contains

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:p3.domain.com;ir>
Record-Route: <sip:p2.middle.com>
Record-Route: <sip:pl.example.com;lr>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 79]

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Which U2 responds to with a 200 OK. Later, U2 sends the following BYE to P3 based on ttroiirtst
header field value.

BYE sip:caller@ul.example.com SIP/2.0
Route: <sip:p3.domain.com;ir>
Route: <sip:p2.middle.com>
Route: <sip:pl.example.com;lr>
P3 is not responsible for the resource indicated inRequest-URI so it will leave it alone. It notices
that it is the element in the firRoute header field value so it removes it. It then prepares to send the request
based on the now firfRoute header field value of sip:p2.middle.com, but it notices that this URI does not
contain thdr parameter, so before sending, it reformats the request to be:
BYE sip:p2.middle.com SIP/2.0
Route: <sip:pl.example.com;ir>
Route: <sip:caller@ul.example.com>
P2 is a strict router, so it forwards the following to P1:

BYE sip:pl.example.com;lr SIP/2.0
Route: <sip:caller@ul.example.com>

P1 sees the request-URI is a value it placed into a Record-Route header field, so before further process-
ing, it rewrites the request to be

BYE sip:caller@ul.example.com SIP/2.0

Since P1 is not responsible for ul.example.com and thereRonte header field, P1 will forward the
request to ul.example.com based onRleguest-URI:

BYE sip:caller@ul.example.com SIP/2.0

16.11.1.3 RewritingRecord-Route header field values In this scenario, U1 and U2 are in different

private namespaces and they enter a dialog through a proxy P1 which acts as a gateway between the names-
paces.

Ul->P1->U2

U1 receives:

INVITE sip:callee@gateway.leftprivatespace.com SIP/2.0
Contact: <sip:caller@ul.leftprivatespace.com>

P1 its location service and sends the following to U2:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 80]

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080
3081
3082
3083
3084
3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

INVITE sip:callee@rightprivatespace.com SIP/2.0
Contact: <sip:caller@ul.leftprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

U2 sends this 200 OK back to the gateway:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

P1 rewrites itRecord-Route header parameter to provide a value that U1 will find useful, and sends
the following to U1:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>
Record-Route: <sip:gateway.leftprivatespace.com;lr>

Later, U1 sends the following BYE to P1:

BYE sip:callee@u?2.rightprivatespace.com SIP/2.0
Route: <sip:gateway.leftprivatespace.com;lr>

which P1 forwards to U2 as

BYE sip:callee@u2.rightprivatespace.com SIP/2.0

17 Transactions

SIP is a transactional protocol: interactions between components take place in a series of independent
message exchanges. Specifically, a SIP transaction consists of a single request, and any responses to that
request (which include zero or more provisional responses and one or more final responses). In the case
of a transaction where the request wadM¥ITE (known as ariNVITE transaction), the transaction also
includes theACK only if the final response was not a 2xx response. If the response was a 2RCkhis

not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 (OK) responsésIYdHA to
the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them (see Section
13.3.1.4) , and the UAC alone takes responsibility for acknowledging themA@th(see Section 13.2.2.4). Since
this ACK is retransmitted only by the UAC, it is effectively considered its own transaction.

Transactions have a client side and a server side. The client side is known as a client transaction, and the
server side, as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example of
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 81]

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn, sends
the request to a server transaction in the UAS. This is shown pictorially in Figure 4.

F———————— + Fm———————— + Fm———————— + Fm———————— +
| +-+|Request [+-+ +-+|Request [+-+ +-+|Request [+-+ |
| ICl|===——= >[|S] |C|[=——==—= >[|S]|Cl[=—————= >[IS] |
[llel e flel e llel |
N | 11 11| 14 11 I | 4
[lell vl el {ivl lell vl
[Inll llel Il llel Inlllel |
N L 14 {14 I 11| |4 B
| | I | | 1 By
L | | | L | A 1 M B
N 14 | | 14 | O 14 N
[lall llal falllal fall - llal |
[Il dinl Inll dInf Inll]|
| [s||Responsel|s| |s||Responsel|s| |s||Response||s| |
| < [+—+ +—+|<—————- [+—+ +—+|<—————— [+—+
+—— + +——— + +——— + +——— +
UAC Outbound Inbound UAS
Proxy Proxy

Figure 4: Transaction relationships

A stateless proxy does not contain a client or server transaction. The transaction exists between the
UA or stateful proxy on one side of the stateless proxy, and the UA or stateful proxy on the other side.
As far as SIP transactions are concerned, stateless proxies are effectively transparent. The purpose of the
client transaction is to receive a request from the element the client is embedded in (call this element the
“Transaction User” or TU; it can be a UA or a stateful proxy), and reliably deliver the request to that server
transaction. The client transaction is also responsible for receiving responses, and delivering them to the
TU, filtering out any retransmissions or disallowed responses (such as a resp@a€)tan the case of
anINVITE transaction, that includes generation of &€K request for any final response excepting a 2xx
response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer, and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU, and delivers them to the transport layer for transmission over the
network. In the case of dNVITE transaction, it absorbs tHeCK request for any final response excepting
a 2xx response.

The 2xx response, and tWe&CK for it, have special treatment. This response is retransmitted only by a
UAS, and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows
the entire set of users that have accepted the call. Because of this special handling, retransmissions of the
2xx response are handled by the UA core, not the transaction layer. Similarly, generatioAGklier the
2xx is handled by the UA core. Each proxy along the path merely forwards each 2xx resptdséTia,
and its correspondingCK.

A reliable provisional response, and tARACK for it, also have special treatment. Reliable provisional

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 82]

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

responses are also only retransmitted by the UAS core, aRRIAEK generated by the UAC core. Unlike

ACK, howeverPRACK is a normal noriNVITE transaction, which means that it will generate its own final
response. The reason for this seemingly inexplicable difference beRR&GEK andACK is that reliability

of provisional responses was added on later as an extra feature, and therefore needed to be done within the
confines of SIP extensibility. SIP extensibility only allowed the additions of new methods which behaved
like any other nodNVITE method.

17.1 Client Transaction

The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction, and passes it the SIP request to send, and an IP
address, port, and transport to send it to. The client transaction begins execution of its state machine. Valid
responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed
by the TU. One handles client transactions HdWITE request. This type of machine is referred to as an
INVITE client transaction. Another type handles client transactions for all requests éXS4piE and
ACK. This is referred to as a ndNVITE client transaction. There is no client transaction A@K. If the
TU wishes to send aACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Nor-
mally, human input is required in order to respond tdldNITE. The long delays expected for sending a
response argue for a three way handshake. Requests of other methods, on the other hand, are expected to
complete rapidly. In fact, because of its reliance on just a two way handshakesHls D respond im-
mediately to nonNVITE requests. Protocol extensions which require longer durations for generation of a
response (such as a new method that does require human interaetmo) D instead use two transactions
- one to send the request, and another in the reverse direction to convey the result of the request.

17.1.1 INVITE Client Transaction

17.1.1.1 Overview ofNVITE Transaction ThelNVITE transaction consists of a three-way handshake.

The client transaction sends 84VITE, the server transaction sends responses, and the client transaction
sends aACK. For unreliable transports (such as UDP), the client transaction will retransmit requests at an
interval that starts at T1 seconds and doubles after every retransmission. T1 is an estimate of the RTT, and
it defaults to 500 ms. Nearly all of the transaction timers described here scale with T1, and changing T1 is
how their values are adjusted. The request is not retransmitted over reliable transports. After receiving a 1xx
response, any retransmissions cease altogether, and the client waits for further responses. The server trans-
action can send additional 1xx responses, which are not transmitted reliably by the server transaction. If the
provisional response needs to be sent reliably, this is handled by the TU. Eventually, the server transaction
decides to send a final response. For unreliable transports, that response is retransmitted periodically, and
for reliable transports, it is sent once. For each final response that is received at the client transaction, the
client transaction sends &CK, the purpose of which is to quench retransmissions of the response.

17.1.1.2 Formal Description The state machine for tH&IVITE client transaction is shown in Figure 5.
The initial state, “calling” MusT be entered when the TU initiates a new client transaction withNafiTE
request. The client transactioamusT pass the request to the transport layer for transmission (see Section

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 83]

3159

3160

3161

3162

3163

3164

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

[INVITE from TU
Timer A fires |INVITE sent

Reset A, \Y Timer B fires
INVITE sent +——————————— + or Transport Err.
- | |-——————— +inform TU
| | Calling | |
- >| |- >|
= + 2xX |
| | 2xxto TU |
| 1xx |
300-699 +——————————————— + |1xxto TU
ACK sent | | |
resp.to TU | 1xx \% |
| Ixxto TU ——————————— + |
R | |
| | |Proceeding |-———————————— >
|+ 5 l2x |
| = +2xxtoTU |
| 300-699 | |
| ACK sent, | |
| resp. to TU| |
| | | NOTE:
| 300-699 Vv |
| ACK sent +—————————— +Transport Err. | transitions
| +———————- | [Infform TU | labeled with
|] | Completed |-————————————~ >| the event
| +———— >| | | over the action
| F————— = + | to take
I o |
| | | Timer D fires |
+—— + |- |
| |
v I
- + |
I | I
| Terminated|<—————————————- +
I |
+——— +

Figure 5:INVITE client transaction

19). If an unreliable transport is being used, the client transadioouLD start timer A with a value
of T1, andsHoOULD NOT start timer A when a reliable transport is being used (Timer A controls request
retransmissions). For any transport, the client transastiosT start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

When timer A fires, the client transacti@HouLD retransmit the request by passing it to the transport
layer, andsHOULD reset the timer with a value of 2*T1. The formal definition refransmitwithin the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 84]

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

context of the transaction layer, is to take the message previously sent to the transport layer, and pass it to
the transport layer once more.

When timer A fires 2*T1 seconds later, the requasbuLD be retransmitted again (assuming the client
transaction is still in this state). This processouLD continue, so that the request is retransmitted with
intervals that double after each transmission. These retransmissians.D only be done while the client
transaction is in the “calling” state.

The default value for T1 is 500 ms. T1 is an estimate of the RTT between the client and server transac-
tions. The optional RTT estimation procedure of Section 18 be followed, in which case the resulting
estimatemAy be used instead of 500 ms. If no RTT estimation is used, other veilese used in private
networks where it is known that RTT has a different value. On the public InternetaA¥ Ibe chosen larger,
but sSHouLD NOTbe smaller.

If the client transaction is still in the “calling”state when timer B fires, the client transasticmuLD
inform the TU that a timeout has occurred. The client transastioaT NOT generate alCK. The value of
64*T1 is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the "calling” state, it transitions to the
“proceeding” state. In the “proceeding” state, the client transastioduLD NOT retransmit the request any
longer. Furthermore, the provisional responsesT be passed to the TU. Any further provisional responses
MUST be passed up to the TU while in the “proceeding” state. Passing of all provisional responses is
necessary since the TU will handle reliability of these messages, and therefore even retransmissions of a
provisional response must be passed upwards.

When in either the "calling” or “proceeding” states, reception of a response with status code from 300-
699 MUST cause the client transaction to transition to “completed”. The client transaeti®T pass the
received response up to the TU, and the client transastioaT generate arACK request, even if the
transport is reliable (guidelines for constructing @K from the response are given in Section 17.1.1.3)
and then pass th&CK to the transport layer for transmission. TREK MUST be sent to the same address,
port and transport that the original request was sent to. The client transaetiar D start timer D when it
enters the “completed” state, with a value of at least 32 seconds for unreliable transports, and a value of zero
seconds for reliable transports. Timer D is a reflection of the amount of time that the server transaction can
remain in the “completed” state when unreliable transports are used. This is equal to Timer HNW/IfhiE
server transaction, whose default is 64*T1. However, the client transaction does not know the value of T1
in use by the server transaction, so an absolute minimum of 32s is used instead of basing Timer D on T1.

Any retransmissions of the final response that are received while in the “completedistate D cause
the ACK to be re-passed to the transport layer for retransmission, but the newly received raegpesmse
NOT be passed up to the TU. A retransmission of the response is defined as any response which would match
the same client transaction, based on the rules of Section 17.1.3.

If timer D fires while the client transaction is in the “completed” state, the client transagtism move
to the terminated state, anoMtusT inform the TU of the timeout.

When in either the “calling” or “proceeding” states, reception of a 2xx respsiuser cause the client
transaction to enter the terminated state, and the response be passed up to the TU. The handling of
this response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation
of the ACK for this response, while a proxy core will always forward the 200 (OK) upstream. The differing
treatment of 200 (OK) between proxy and UAC is the reason that handling of it does not take place in the
transaction layer.

The client transactiomusT be destroyed the instant it enters the terminated state. This is actually nec-
essary to guarantee correct operation. The reason is that 2xx responsésVéTdhare treated differently;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 85]

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

each one is forwarded by proxies, and &@K handling in a UAC is different. Thus, each 2xx needs to be
passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No
transaction layer processing takes place. Whenever a response is received by the transport, if the transport
layer finds no matching client transaction (using the rules of Section 17.1.3), the response is passed directly
to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no
match and therefore be passed to the core.

17.1.1.3 Construction of theACK Request The ACK request constructed by the client transaction
MUST contain values for th€all-ID, From, andRequest-URI which are equal to the values of those header
fields in the request passed to the transport by the client transaction (call this the “original request”). The
To header field in thdCK MuUsST equal theTo header field in the response being acknowledged, and will
therefore usually differ from th@ header field in the original request by the addition of the tag parameter.
The ACK MUST contain a singleVia header field, and thisiusT be equal to the topia header field of

the original request. ThACK requestMusT contain the sam®oute header fields as the request whose
response it is acknowledging. TI@Seq header field in theACK MusT contain the same value for the
sequence number as was present in the original request, but the method pavamsetee equal to ACK”.

If the INVITE request whose response is being acknowledgedRuade header fields, those header
fields MmusT appear in thédCK. This is to ensure that th&CK can be routed properly through any down-
stream stateless proxies.

Although any requestiAy contain a body, a body in aACK is special since the request cannot be
rejected if the body is not understood. Therefore, placement of bodig€knhfor non-2xx iISNOT RECG
OMMENDED, but if done, the body types are restricted to any that appeared INYH&E, assuming that
that the response to thHVITE was not 415. If it was, the body in tieCK MAY be any type listed in the
Accept header field in the 415.

These rules for construction 8iCK only apply to the client transaction. A UAC core which generates
anACK for 2xx MUsT instead follow the rules described in Section 13. For example, consider the following
request:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Max-Forwards: 70

Call-ID: 987asjd97y7atg

CSeq: 986759 INVITE

The ACK request for a non-2xx final response to this request would look like this:

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>;tag=99sa0xk

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Max-Forwards: 70

Call-ID: 987asjd97y7atg

CSeq: 986759 ACK

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 86]

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3201

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

17.1.2 noniNVITE Client Transaction

17.1.2.1 Overview of the noNNVITE Transaction Non{NVITE transactions do not make useA€K.
They are a simple request-response interaction. For unreliable transports, requests are retransmitted at an
interval which starts at T1, and doubles until it hits T2. If a provisional response is received, retransmis-
sions continue for unreliable transports, but at an interval of T2. The server transaction retransmits the last
response it sent (which can be a provisional or final response) only when a retransmission of the request is
received. This is why request retransmissions need to continue even after a provisional response, they are
what ensure reliable delivery of the final response.

Unlike anINVITE transaction, a noiNVITE transaction has no special handling for the 2xx response.
The result is that only a single 2xx response to a NITE is ever delivered to a UAC.

17.1.2.2 Formal Description The state machine for the ndNVITE client transaction is shown in Fig-
ure 6. Itis very similar to the state machine fBWVITE.

The “Trying” state is entered when the TU initiates a new client transaction with a request. When
entering this state, the client transactemouLD set timer F to fire in 64*T1 seconds. The requesisT be
passed to the transport layer for transmission. If an unreliable transport is in use, the client tramgastion
set timer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this time with a
value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This process continues,
so that retransmissions occur with an exponentially increasing inverval that caps at T2. The default value
of T2 is 4s, and it represents the amount of time a MMITE server transaction will take to respond to a
request, if it does not respond immediately. For the default values of T1 and T2, this results in intervals of
500ms, 1s,2s,4s,4s,4s, etc.

If Timer F fires while the client transaction is still in the “Trying” state, the client transadioouLD
inform the TU about the timeout, and thersiouLD enter the “Terminated” state. If a provisional response
is received while in the “Trying” state, the responsesT be passed to the TU, and then the client transaction
SHOULD move to the “Proceeding” state. If a final response (status codes 200-699) is received while in the
“Trying” state, the responsRUST be passed to the TU, and the client transactirsT transition to the
“Completed” state.

If Timer E fires while in the “Proceeding” state, the requestsT be passed to the transport layer
for retransmission, and Timer BUST be reset with a value of T2 seconds. If timer F fires while in the
“Proceeding” state, the TMUST be informed of a timeout, and the client transactioysT transition to the
terminated state. If a final response (status codes 200-699) is received while in the “Proceeding” state, the
responsevUsT be passed to the TU, and the client transactiarsT transition to the “Completed” state.

Once the client transaction enters the “Completed” statey&T set Timer K to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. The “Completed” state exists to buffer any
additional response retransmissions that may be received (which is why the client transaction remains there
only for unreliable transports). T4 represents the amount of time the network will take to clear messages
between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it
matches the same transaction, using the rules specified in Section 17.1.3. If Timer K fires while in this state,
the client transactiomusT transition to the “Terminated” state.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responseNidITE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 87]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

|Request from app
[send request

Timer E Vv
send request +-——————————- +
Fm———————— | |- +
| | Trying | TimerF |
= >| | or Transport Err.|
o + inform TU |
200-699 | | |
resp.to TU | |1xx |
o + |resp. to TU |

I I
Timer E \% Timer F |

| -
I
| sendreq +-——————————- + or Transport Err. |
| +——————— | | inform TU |
| | |Proceeding |-———————————————- >|
| === >| |-———- + I
- +	1xx
	N [respto TU
200-699	+—— +
resp.to TU	
I I I	
I \Y I	
- +	
I I I I	
	Completed
I I I I	
- +	
I N I	
+—————————————— + |- |
I I
\Y I
NOTE: +——— + |
I I I
transitions | Terminated|<————————————————~ +
labeled with | [
the event e ———— +
over the action

to take

Figure 6: nonNVITE client transaction

202 17.1.3 Matching Responses to Client Transactions

3203 When the transport layer in the client receives a response, it has to figure out which client transaction will
3204 handle the response, so that the processing of Sections 17.1.1 and 17.1.2 can take place.
3295 The branch parameter in the tdfia header field is used for this purpose. A response matches a client

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 88]

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

transaction under two conditions. First, if the response has the same value of the branch parameter in the top
Via header field as the branch parameter in theisgheader field of the request that created the transaction.
Second, if the method parameter in tb8eq header field matches the method of the request that created the
transaction. The method is needed sin€c@fANCEL request constitutes a different transaction, but shares
the same value of the branch parameter.

A response which matches a transaction matched by a previous response is considered a retransmission
of that response.

17.1.4 Handling Transport Errors

When the client transaction sends a request to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

The client transactiosHoULD inform the TU that a transport failure has occurred, and the client trans-
actionsHouULD transition directly to the terminated state.

17.2 Server Transaction

The server transaction is responsible for the delivery of requests to the TU, and the reliable transmission of
responses. It accomplishes this through a state machine. Server transactions are created by the core when a
request is received, and transaction handling is desired for that request (this won't always be the case).

As with the client transactions, the state machine depends on whether the received requéBf IFEnN
request or not.

17.2.1 INVITE Server Transaction

The state diagram for tH&VITE server transaction is shown in Figure 7.

When a server transaction is constructed with a request, it enters the “Proceeding” state. The server
transactiorMUST generate a 100 response (not any status code — the specific value of 100) unless it knows
that the TU will generate a provisional or final response within 200 ms, in which cmge igenerate a 100
(Trying) response. This provisional response is needed to rapidly quench request retransmissions in order
to avoid network congestion. The 100 response is constructed according to the procedures in Section 8.2.6,
except that insertion of tags in tAe header field of the response (when none was present in the request), is
downgraded fronMAY to SHOULD NOT. The requestusT be passed to the TU.

The TU passes any number of provisional responses to the server transaction. So long as the server
transaction is in the “Proceeding” state, each of thegeT be passed to the transport layer for transmission.
They are not sent reliably by the transaction layer (they are not retransmitted by it), and do not cause a
change in the state of the server transaction. When provisional responses need to be delivered reliably,
it is handled by the TU, which will retransmit the provisional responses itself, and pass downwards each
retransmission to the server transaction. If a request retransmission is received while in the “Proceeding”
state, the most recent provisional response that was received from thiwJItUbe passed to the transport
layer for retransmission. A request is a retransmission if it matches the same server transaction based on the
rules of Section 17.2.3.

If, while in the “proceeding” state, the TU passes a 2xx Response to the server transaction, the server
transactionMusT pass this response to the transport layer for transmission. It is not retransmitted by the
server transaction; retransmissions of 2xx responses are handled by the TU. The server tramsaation
then transition to the “terminated” state.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 89]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

[INVITE
|[pass INV to TU
INVITE V send 100 if TU won't in 200ms
send response+——————————-— +
F———— | |-—————— +101-199 from TU
| | Proceeding| |send response
F————— >| |[<=—————— +
| | Transport Err.
| | Inform TU
| |- >+
Fm—————————e— + [
300-699 from TU | |2xx from TU |
send response | |send response |
| +~-—— >+
| I
INVITE \% Timer G fires |
send response+——————————— + send response |
A I |==—=—~ +
| | Completed | | |
- >| |[<=—————— + |
+—— + [
|| I
ACK| | |
- +-—— >+

| Timer H fires |
\Y; or Transport Err.|
PR + InformTU |

|[Timer | fires |

Rosenberg,Schulzrinne,CamarillBidatan3toN \ATE sevspeaksadtiodley, Schooler Expires Aug 2002 [Page 90]

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

While in the “Proceeding” state, if the TU passes a response with status code from 300 to 699 to the
server transaction, the responsesT be passed to the transport layer for transmission, and the state machine
MUST enter the “Completed” state. For unreliable transports, timer G is set to fire in T1 seconds, and is not
set to fire for reliable transports.

This is a change from RFC 2543, where responses were always retransmitted, even over reliable transports.

When the “Completed” state is entered, timexmdST be set to fire in 64*T1 seconds, for all transports.
Timer H determines when the server transaction gives up retransmitting the response. lIts value is chosen to
equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G
fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in
MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again for
transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it
is reset with the value of T2. This is identical to the retransmit behavior for requests in the “Trying” state of
the non-INVITE client transaction. Furthermore, while in the “completed” state, if a request retransmission
is received, the serveyHOULD pass the response to the transport for retransmission.

If an ACK is received while the server transaction is in the “Completed” state, the server transaction
MUST transition to the “confirmed” state. As Timer G is ignored in this state, any retransmissions of the
response will cease.

If timer H fires while in the “Completed” state, it implies that tAEK was never received. In this case,
the server transactionusT transition to the terminated state, andsT indicate to the TU that a transaction
failure has occurred.

The purpose of the “confirmed” state is to absorb any additid@ messages that arrive, triggered
from retransmissions of the final response. When this state is entered, timer | is set to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. Once timer | fires, thevseyvéransition
to the “Terminated” state.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responseNidITE.

17.2.2 noniNVITE Server Transaction

The state machine for the ndNVITE server transaction is shown in Figure 8.

The state machine is initialized in the “Trying” state, and is passed a request othdNWAIE or
ACK when initialized. This request is passed up to the TU. Once in the “Trying” state, any further request
retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using
the rules specified in Section 17.2.3.

While in the “Trying” state, if the TU passes a provisional response to the server transaction, the server
transactionmusT enter the “Proceeding” state. The responsesT be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the “Proceeding”
stateMusT be passed to the transport layer for transmission. If a retransmission of the request is received
while in the “Proceeding” state, the most recently sent provisional response be passed to the transport
layer for retransmission. If the TU passes a final response (status codes 200-699) to the server while in the
“Proceeding” state, the transactiomusT enter the “Completed” state, and the respomssT be passed to
the transport layer for transmission.

When the server transaction enters the “Completed” state)$tr set Timer J to fire in 64*T1 seconds
for unreliable transports, and zero seconds for reliable transports. While in the “Completed” state, the server
transactiorMusT pass the final response to the transport layer for retransmission whenever a retransmission

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 91]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

|Request received

|[passto TU
\Y
+——— +
I I
| Trying |-——————————- +
I I I
Fm———————— + |200-699 from TU
| |send response
|1xx from TU |
|send response |
I |
Request \Y 1xx from TU |
send response+——————————-— +send response|
o I — +
| | Proceeding| | |
+———— >| |[<=—————— + |
B I | I
|Trnsprt Err +—————————— + |
|Inform TU | |

I I |
| |200-699 from TU |

| |send response |

| Request vV |
| send response+-—————————— +
| | | |
| | | Completed |-————-——--——- .
| +——— >| |
+l———— | |
|Trnsprt Err +——————————- +
|Inform TU |
I |Timer J fires
I |-
| |
I \Y;
| F—————— +
| I I
N >| Terminated|
I I
e ——————— +

Rosenberg,Schulzrinne, CamaFiguie@sioniRei@EceSpatksmidactiey, Schooler Expires Aug 2002 [Page 92]

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

of the request is received. Any other final responses passed by the TU to the server tramsastidore
discarded while in the “Completed” state. The server transaction remains in this state until Timer J fires, at
which point itMUST transition to the “Terminated” state.

The server transactionusT be destroyed the instant it enters the “Terminated” state.

17.2.3 Matching Requests to Server Transactions

When a request is received from the network by the server, it has to be matched to an existing transaction.
This is accomplished in the following manner.

The branch parameter in the topma&a header field the request is examined. If it is present, and
begins with the magic cookie “zZ9hG4bK”, the request was generated by a client transaction compliant to
this specification. Therefore, the branch parameter will be unigque across all transactions sent by that client.
The request matches a transaction if the branch parameter in the request is equal to the one Mighe top
header field of the request that created the transaction, the source address and port of the request are the
same as the source address and port of the the request that created the transaction, and in the case of a
CANCEL request, the method of the request that created the transaction w&ANSIEL. This matching
rule applies to bothiNVITE and nonINVITE transactions alike.

Source address and port are used as part of the matching process because there could be duplication of branch pa-
rameters from different clients; uniqueness in time is mandated for construction of the parameter, but not uniqueness
In space.

If the branch parameter in the tadfia header field is not present, or does not contain the magic cookie,
the following procedures are used. These exist to handle backwards compatibility with RFC 2543 compliant
implementations.

TheINVITE request matches a transaction if fRequest-URI, To, From, Call-ID, CSeq, and topVia
header field match those of tHeVITE request which created the transaction. In this casdNKWETE is a
retransmission of the original one that created the transactionATKerequest matches a transaction if the
Request-URI, From, Call-ID, CSeq number (not the method), and tdjia header field match those of the
INVITE request which created the transaction, andTih&eader field of théACK matches thdo header
field of the response sent by the server transaction (which then includes the tag). Matching is done based
on the matching rules defined for each of those header fields. The usage of the tagdrhdeler field
helps disambiguatACK for 2xx from ACK for other responses at a proxy which may have forwarded both
responses (which can occur in unusual conditions).A@K request that matches #NVITE transaction
matched by a previouACK is considered a retransmission of that previa@K.

For all other request methods, a request is matched to a transactionRethesst-URI, To, From,

Call-ID andCseq (including the method) and togia header field match those of the request which created

the transaction. Matching is done based on the matching rules defined for each of those header fields. When
a noniNVITE request matches an existing transaction, it is a retransmission of the request which created
that transaction.

Because the matching rules include Bequest-URI, the server cannot match a response to a transac-
tion. When the TU passes a response to the server transaction, it must pass it to the specific server transaction
for which the response is targeted.

17.2.4 Handling Transport Errors

When the server transaction sends a response to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 93]

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

First, the procedures in [2] are followed, which attempt to deliver the response to a backup. If those
should all fail, such that all elements generate ICMP errors, or no SRV records are present, the server
transactionsHouULD inform the TU that a failure has occurred, agdouLD transition to the terminated
state.

17.3 RTT Estimation

Most of the timeouts used in the transaction state machines derive from T1, which is an estimate of the RTT
between the client and server transactions. This subsection defines optional procedures that a client can use
to build up estimates of the RTT to a particular IP address. To perform this procedure, thevclEnt
maintain a table of variables for each destination IP address to which an RTT estimate is being made.

If a client wishes to measure RTT for a particular IP addressuisT include aTimestamp header
field into a request containing the time when the request is initially created and passed to a new client
transaction, which transmits the request. If a 100 (Trying) response (not any 1xx, only the 100 (Trying)
response) is received before the client transaction generates a retransmission, an RTT estimate is made. This
is consistent with the RFC 2988 requirements on TCP for using Karn’s algorithm in RTT estimation.

The estimate, called R, is made by computing the difference between the current time and the value
of Timestamp header field in the 100 response, and then subtracting the value of the delay field of the
Timestamp header in the response, if presentThe value of R is applied to the estimation of RTO as
described in Section 2 of RFC 2988 [26], with the following differences. First, the initial value of RTO is
500 ms for SIP, not 3 s as is used for TCP. Second, there is no minimum value for the RTO, as there is for
TCP, if SIP is being run on a private network. When run on the public Internet, the minimum is 500 ms, as
opposed to 1 s for TCP. This difference is because of the expected usage of SIP in private networks where
rapid call setup times are service critical. Once RTO is computed, the timer T1 is set to the value of RTO,
and all other timers scale proportionally as described above.

This value of T1 would be used for scaling all of the client and server transaction timers described above,
when a request or response, respectively, is sent to that IP address.

If the IP address is that of a stateless proxy, the actual round trip time that is measured will be the average
to all transaction stateful proxies or UAs that are reached through the stateless proxy. This estimate may
therefore be too low or too high for a specific transactional element being communicated with through the
stateless proxy.

18 Reliability of Provisional Responses

Normally, provisional responses are not transmitted reliably. The TU generates a single provisional response
and passes it to the server transaction, which sends it once. RFC 2543 provided no means for reliable
transmission of these messages.

It was later observed that reliability was important in several cases, including interoperability scenarios
with the PSTN. Therefore, an optional capability was added in this specification to support reliable trans-
mission of provisional responses.

The reliability mechanism works by mirroring the current reliability mechanisms for 2xx final responses
to INVITE. Those requests are transmitted periodically by the TU until a separate transdeiinjs
received that indicates reception of the 2xx by the UAC. The reliability for the 2xx respon#id¥ fbE
andACK messages are end-to-end. In order to achieve reliability for provisional responses, we do nearly
the same thing. Reliable provisional responses are retransmitted by the TU with an exponential backoff.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 94]

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483
3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502
3503

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Those retransmissions cease WhéRACK message is received. TRRACK request plays the same role
asACK, but for provisional responses. There is an important difference, howBRACK is a normal
SIP message, likBYE. As such, its own reliability is ensured hop-by-hop through each stateful proxy.
Similarly, PRACK has its own response. If this were not the casePlRACK message could not traverse
existing proxy servers.

Each provisional response is given a sequence number, carried Rbe header field in the re-
sponse. Thé?RACK messages contain @Ack header field, which indicates the sequence number of
the provisional response that is being acknowledged. The acknowledgements are not cumulative, and the
specifications recommend a single outstanding provisional response at a time, for purposes of congestion
control.

18.1 UAS Behavior

A UAS MAY send any non-100 provisional respons&NWITE reliably, so long as the initidNVITE request
(the request whose provisional response is being sent reliably) contaBigeparted header field with the
option tag100rel . While this specification does not allow reliable provisional responses for any method
but INVITE, extensions that define new methods that can establish dialogs may make use of the mechanism.
The UASMUST send any non-100 provisional response reliably if the initial request contaRedare
header field with the option tatp0rel . If the UAS is unwilling to do so, iMusT reject the initial request
with a 420 (Bad Extension) and includdJasupported header field containing the option ta§0rel
A UAS MUST NOT attempt to send a 100 (Trying) response reliably. Only provisional responses num-
bered 101 to 199 may be sent reliably. If the request did not include eitBepported or Require header
field indicating this feature, the UABUST NOT send the provisional response reliably.

100 (Trying) responses are hop-by-hop only. For this reason, the reliability mechanisms described here, which
are end-to-end, cannot be used.

An element that can act as a proxy can also send reliable provisional Responses. In this case, it acts as a
UAS for purposes of that transaction. HowevenMitST NOT attempt to do so for any request that contains
atag in theTo field. That is, a proxy cannot generate reliable provisional responses to requests sent within
the context of a dialog. Of course, unlike a UAS, when the proxy element receRa@K that does not
match any outstanding reliable provisional responsePRRACK MUST be proxied.

The rest of this discussion assumes that the initial request contaiBagported or Require header
field listing 100rel , and that there is a provisional response to be sent reliably.

The provisional response to be sent reliably is constructed by the UAS core according to the procedures
of Section 8.2.6 and Section 12. Specifically, the provisional respansa establish a dialog if one is
not yet created. In addition, itusTcontain aRequire header field containing the option t&g0rel , and
mMusTinclude anRSeq header field. The value of the header field for the first reliable provisional response
in a transactiomusT be between 1 and 2**31 - 1. It BECOMMENDEDthat it be chosen uniformly in this
range. ThéRSeq numbering space is within a single transaction. This means that provisional responses for
different requestsAy use the same values for tRSeq number.

The reliable provisional response is passed to the transaction layer periodically with an interval that
starts at T1 seconds and doubles for each retransmission (T1 is defined in Section 17). Once passed to the
server transaction, it is added to an internal list of unacknowledged reliable provisional responses.

This differs from retransmissions of 2xx responses, which cap at T2 seconds. This is because retransmissions of
ACK are triggered on receipt of a 2xx, but retransmissiorRRACK take place independently of reception of 1xx.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 95]

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Retransmissions cease when a matclHRACK is received PRACK is like any other request within a
dialog, and the UAS core processes it according to the procedures of Sections 8.2 and 12.2.2. A matching
PRACK is defined as one within the same dialog as the response, and whose n@&#segnum, and
response-num in the RAck header field match, respectively, the method and sequence number from the
CSeq and sequence number from tR&eq of the reliable provisional response.

If a PRACK request is received that does not match any unacknowledged reliable provisional response,
the UASMUST respond to th€RACK with a 481 response. If titRACK does match an unacknowledged
reliable provisional response, MUST be responded to with a 2xx response. The UAS can be certain at
this point that the provisional response has been received in orderoliLD cease retransmissions of the
reliable provisional response, amsT remove it from the list of unacknowledged provisional responses.

If a reliable provisional response is retransmitted for 64*T1 seconds without reception of a correspond-
ing PRACK, the UASsHOULD reject the original request with a 5xx response.

If the PRACK contained a body, the body is treated in the same way a bodyAC#ns treated.

After the first reliable provisional response for a request has been acknowledged, theAyAsend
additional reliable provisional responses. The UWASST NOT send a second reliable provisional response
until the first is acknowledged. After the first, it RECOMMENDED that the UAS not send an additional
reliable provisional response until the previous is acknowledged. The first reliable provisional response
receives special treatment because it conveys the initial sequence number. If additional reliable provisional
responses were sent before the first was acknowledged, the UAS could not be certain these were received in
order.

The value of theRSeq in each subsequent reliable provisional response for the same requEste
greater by exactly ond&rSeq numbersvusT NOT wrap around. Because the initial one is chosen to be less
than 2**31 - 1, but the maximum is 2**32 - 1, there can be up to 2**31 reliable provisional responses per
request, which is more than sufficient.

Note that the UASMAY send a final response to the initial request before having recBiR&LCKSs for
all unacknowledged reliable provisional responses. In that casepitLD NOT continue to retransmit the
unacknowledged reliable provisional responses, buuisT be prepared to proce$RACK requests for
those outstanding responses. A UNMBSST NOT send new reliable provisional responses (as opposed to
retransmissions of unacknowledged ones) after sending a final response to a request.

18.2 UAC Behavior

If a provisional response is received for the initial request, and that response corRaigsiee header field
containing the option ta00rel , the response is to be sent reliably. If the response is a 100 (Trying) (as
opposed to 101 to 199), this option teg ST be ignored, and the procedures belawsT NOT be used.

Assuming the response is to be transmitted reliably, the WAGT create a new request with method
PRACK. This request is sent within the dialog associated with the provisional response (indeed, the provi-
sional response may have created the dialBACK requestavAy contain bodies, which are interpreted
according to their type and disposition.

Note that thePRACK is like any other noriNVITE request within a dialog. In particular, a UAC
SHOULD NOT retransmit thd?RACK request when it receives a retransmission of the provisional response
being acknowledged, although doing so does not create a protocol error.

Once a reliable provisional response is received, retransmissions of that resp@Ttske discarded. A
response is a retransmission when its dialog@3eq, andRSeq match the original response. The UAC
MUST maintain a sequence number that indicates the most recently received in-order reliable provisional

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 96]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

ssa7 - response for the initial request. This sequence numibeT be maintained until a final response is received

ssas foOr the initial request. Its valugusT be initialized to theRSeq header field in the first reliable provisional

3549 response received for the initial request.

3550 Handling of subsequent reliable provisional responses for the same initial request follows the same rules
351 as above, with the following difference: reliable provisional responses are guaranteed to be in order. As a
sss2 - result, if the UAC receives another reliable provisional response to the same request, R@ddgtsalue

sss3 IS Not one higher than the value of the sequence number, that regposseNoT be acknowledged with a

ss¢ PRACK, andMusT NOT be processed further by the TU. An implementatioxy discard the response, or

355 MAY cache the response in the hopes of receiving the missing responses.

3556 The UAC MAY acknowledge reliable provisional responses received after the final respomse or

sss7 - discard them.

ss 19 Transport

359 The transport layer is responsible for the actual transmission of requests and responses over network trans-
sse0 ports. This includes determination of the connection to use for a request or response, in the case of connec-
sse1 tion oriented transports.

3562 The transport layer is responsible for managing any persistent connections (for transports like TCP, TLS
63 and SCTP) including ones it opened, as well as ones opened to it. This includes connections opened by
sse4 the client or server transports, so that connections are shared between client and server transport functions.
s These connections are indexed by the [address, port, transport] at the far end of the connection. When a
366 connection is opened by the transport layer, this index is set to the destination IP, port and transport. When
367 the connection is accepted by the transport layer, this index is set to the source IP, port and transport. Note
sses that, because the source port is often ephemeral, connections accepted by the transport layer will frequently
sse0 NOt be reused. The result is that two proxies in a “peering” relationship using a connection oriented transport
ss70 - Will frequently have two connections in use, one for transactions initiated in each direction.

3571 It is RECOMMENDED that connections be kept open for some implementation defined duration after the
572 last message was sent or received over that connection. This dusatimwnLD at least equal the longest

3573 amount of time the element would need in order to bring a transaction from instantiation to the terminated
574 Sstate. This is to insure that transactions complete over the same connection they are initiated on (i.e., re-
3575 quest, response, and in the caséNWITE, ACK for non-2xx responses)). This usually means at least the

ss76 - maximum of T3 and 64*T1. However, it could be larger in an element that has a TU that is using a large
ss77 - value for timer C, for example.

3578 All SIP elementsvwusT implement UDP and TCP. Other transpavtay be implemented by any entity.

3579 Making TCP mandatory for UA is a substantial change from RFC 2543. It has arisen out of the need to handle
3580 larger messages, whialusT use TCP, as discussed below. Thus, even if an element never sends large messages, it
3581 may receive one, and needs to be able to do that.

sz 19.1 Clients
sz 19.1.1 Sending Requests

sssa The client side of the transport layer is responsible for sending the request and receiving responses. The
sses User of the transport layer passes the client transport the request, an IP address, port, transport, and possibly
ssss 1 1L for multicast destinations.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 97]

3587

3588

3589

3590

3591
3592
3593
3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

If a request is within 500 bytes of the path MTU, or if it is larger than 1000 bytes when the path MTU is
unknown, itMUST be sent using TCP. This is to prevent fragmentation of messages over UDP, and to provide
congestion control for larger messages. However, implementatioss be able to handle messages up to
the maximum datagram packet size. For UDP, this size is 65,535 bytes, including header fields.

The 500 byte “buffer” between the message size and the MTU accomodates the fact that the response in SIP
can be larger than the request. This happens due to the additRecofd-Route header fields to the responses to
INVITE, for example. With the extra buffer, the response can be 500 bytes larger than the request, and still not be
fragmented. 1000 is chosen when path MTU is not known, based on the assumption of a 1500 byte ethernet MTU.

A client that sends a request to a multicast addressT add the maddr” parameter to itd/ia header
field, andsHoOULD add the ttl” parameter. (In that case, tmeaddr parameteisHOULD contain the des-
tination multicast address, although under exceptional circumstaneesy itcontain a unicast address.)
Requests sent to multicast groupgouLD be scoped to ensure that they are not forwarded beyond the
administrative domain to which they were targeted. This scopimg be done with either TTL or adminis-
trative scopes [12], depending on what is implemented in the network.

It is important to note that the layers above the transport layer do not operate differently for multicast
as opposed to unicast requests. This means that SIP treats multicast more like anycast, assuming that there
is a single recipient generating responses to requests. If this is not the case, the first response will end
up “winning”, based on the client transaction rules. Any other responses from different UA will appear
as retransmissions and be discarded. This limits the utility of multicast to cases where an anycast type of
function is desired, such as registrations.

Before a request is sent, the client transpausT insert a value of the sent-by field into théa header
field. This field contains an IP address or host hame, and port. The usage of an FQBEMOIIMENDED.

This field is used for sending responses under certain conditions.

For reliable transports, the response is normally sent on the connection the request was received on.
Therefore, the client transportusT be prepared to receive the response on the same connection used to
send the request. Under error conditions, the server may attempt to open a new connection to send the
response. To handle this case, the transport layesT also be prepared to receive an incoming connection
on the source IP address that the request was sent from, and port number in the sent-by fielgiusalso
be prepared to receiving incoming connections on any address and port which would be selected by a server
based on the procedures described in Section 5 of [2].

For unreliable unicast transports, the client transpassT be prepared to receive responses on the
source IP address that the request is sent from (as responses are sent back to the source address), but the port
number in the sent-by field. Furthermore, as with reliable transports, in certain cases the response will be
sent elsewhere. The cliemtusT be prepared to receive responses on any address and port which would be
selected by a server based on the procedures described in Section 5 of [2].

For multicast, the client transpavtusT be prepared to receive responses on the same multicast group
and port that the request is sent to (e.g., it needs to be a member of the multicast group it sent the request
to.)

If a request is destined to an IP address, port, and transport to which an existing connection is open, it
is RECOMMENDED that this connection be used to send the request, but another connestidre opened
and used.

If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the transport
user. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided by
the transport user.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 98]

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

19.1.2 Receiving Responses

When a response is received, the client transport examines théiddpeader field. If the value of the
sent-by parameter in that header field does not correspond to a value that the client transport is configured
to insert into requests, the respomsasT be rejected.

If there are any client transactions in existence, the client transport uses the matching procedures of Sec-
tion 17.1.3 to attempt to match the response to an existing transaction. If there is a match, the nesgonse
be passed to that transaction. Otherwise, the respouse be passed to the core (whether it be stateless
proxy, stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on
the core (a stateless proxy will forward all responses, for example).

19.2 Servers
19.2.1 Receiving Requests

When the server transport receives a request over any transpeusit examine the value of the sent-by
parameter in the topia header field. If the host portion of the sent-by parameter contains a domain name,
or if it contains an IP address that differs from the packet source address, thexsesreadd a fteceived”
attribute to thaWVia header field. This attributausT contain the source address that the packet was received
from. This is to assist the server transport layer in sending the response, since it must be sent to the source
IP address that the request came from.

Consider a request received by the server transport which looks like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 1.2.3.4. Before passing the request up, the transport
would add a received parameter, so that the request would look like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;received=1.2.3.4

Next, the server transport attempts to match the request to the server transaction. It does so using
the matching rules described in Section 17.2.3. If a matching server transaction is found, the request is
passed to that transaction for processing. If no match is found, the request is passed to the core, which
may decide to construct a new server transaction for that request. Note that when a UAS core sends a 2xx
response tdNVITE, the server transaction is destroyed. This means that whekGHKearrives, there will
be no matching server transaction, and based on this rul&Gkeis passed to the UAS core, where it is
processed.

19.2.2 Sending Responses

The server transport uses the value of the top Via header field in order to determine where to send a response.
It MmusT follow the following process:

¢ If the “sent-protocol” is a reliable transport protocol such as TCP, TLS or SCTP, the response
be sent using the existing connection to the source of the original request that created the transaction, if

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 99]

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

that connection is still open. This does require the server transport to maintain an association between
server transactions and transport connections. If that connection is no longer open, theserver

open a connection to the IP address inndeeived parameter, if present, using the port in geant-

by value, or the default port for that transport, if no port is specified (5060 for UDP and TCP, 5061

for TLS and SSL). If that connection attempt fails, the serseouLD use the procedures in [2] for

servers in order to determine the IP address and port to open the connection and send the response to.

e Otherwise, if theVia header field contains arfaddr” parameter, forward the response to the address
listed there, using the port indicated is€ht-by”, or port 5060 if none is present. If the address is
a multicast address, the resporsseoULD be sent using the TTL indicated in th#l™ parameter, or
with a TTL of 1 if that parameter is not present.

e Otherwise (for unreliable unicast transports), if the ¥ip has areceived parameter, send the re-
sponse to the address in the€eived” parameter, using the port indicated in theett-by” value, or
using port 5060 if none is specified explicitly. If this fails, e.g., elicits an ICMP “port unreachable”
response, send the response to the address insdrg-by” parameter. The address to send to is
determined by following the procedures defined in Section 5 of [2].

e Otherwise, if it is not receiver-tagged, send the response to the address indicated sgnthiey”
value, using the procedures in Section 5 of [2].

19.3 Framing

In the case of message oriented transports (such as UDP), if the messag€dvaera-Length header
field, the message body is assumed to contain that many bytes. If there are additional bytes in the transport
packet below the end of the body, theywsT be discarded. If the transport packet ends before the end of
the message body, this is considered an error. If the message is a respwinse;, ite discarded. If its a
request, the elemesHOULD generate a 400 class response. If the message laament-Length header
field, the message body is assumed to end at the end of the transport packet.
In the case of stream oriented transports (such as TCPEdheent-Length header field indicates the
size of the body. Th€ontent-Length header fieldvusT be used with stream oriented transports.

19.4 Error Handling

Error handling is independent of whether the message was a request or response.

If the transport user asks for a message to be sent over an unreliable transport, and the result is an ICMP
error, the behavior depends on the type of ICMP error. A host, network, port or protocol unreachable errors,
or parameter problem erros10ULD cause the transport layer to inform the transport user of a failure in
sending. Source quench and TTL exceeded ICMP egersuLD be ignored.

If the transport user asks for a request to be sent over a reliable transport, and the result is a connection
failure, the transport layesHouLD inform the transport user of a failure in sending.

20 Usage of HTTP Authentication

SIP provides a stateless, challenge-based mechanism for authentication that is based on authentication in
HTTP. Any time that a proxy server or UA receives a request (with the exceptions given in Section 20.1), it

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 100]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

s704 MAY challenge the initiator of the request to provide assurance of its identity. Once the originator has been
3705 identified, the recipient of the requestiouLD ascertain whether or not this user is authorized to make the

s706 request in question. No authorization systems are recommended or discussed in this document.

3707 The “Digest” authentication mechanism described in this section provides message authentication and
s708 replay protection only, without message integrity or confidentiality. Protective measures above and beyond
s700 those provided by Digest need to be taken to prevent active attackers from modifying SIP requests and
3710 responses.

3711 Note that due to its weak security, the usage of “Basic” authentication has been deprecated. Servers
s712 MUST NOT accept credentials using the “Basic” authorization scheme, and serveksssanoT challenge

sr13 - With “Basic”. This is a change from RFC 2543.

se 20.1 Framework

sn1is The framework for SIP authentication closely parallels that of HTTP (RFC 2617 [16]). In particular, the
sre BNF for auth-scheme, auth-param, challenge, realm, realm-value, andcredentials is identical (al-

sn1i7 though the usage of “Basic” as a scheme is not permitted). In SIP, a UAS uses the 401 (Unauthorized)
s718 response to challenge the identity of a UAC. Additionally, registrars and redirect serxersnake use

sne Of 401 (Unauthorized) responses for authentication, but proxiest NOT, and insteadiAy use the 407

sr20 (Proxy Authentication Required) response. The requirements for inclusion d¢frthe/-Authenticate,

a1 Proxy-Authorization, WWW-Authenticate, and Authorization in the various messages are identical to

3722 those described in RFC 2617 [16].

3723 Since SIP does not have the concept of a canonical root URL, the notion of protection spaces is in-
a4 terpreted differently in SIP. The realm string alone defines the protection domain. This is a change from
s12s RFC 2543, in which th&equest-URI and the realm together defined the protection domain.

3726 This previous definition of protection domain caused some amount of confusion sirRedhest-URI sent by

3727 the UAC and theRequest-URI received by the challenging server might be different, and indeed the final form of
3728 theRequest-URI might not be known to the UAC. Also, the previous definition depended on the presence of a SIP
3729 URI in theRequest-URI and seemed to rule out alternative URI schemes (for example, the tel URL).

3730 Operators of user agents or proxy servers that will authenticate received requestadhere to the

a3 following guidelines for creation of a realm string for their server:

3732 e Realm stringsvusT be globally unique. It iIRECOMMENDED that a realm string contain a hostname

3733 or domain name, following the recommendation in Section 3.2.1 of RFC 2617 [16].

3734 e Realm stringssHOULD present a human-readable identifier that can be rendered to a user.

3735 For example:

3736 INVITE sip:bob@biloxi.com SIP/2.0

3737 WWW-Authenticate: Digest realm="biloxi.com", <...>

3738 Generally, SIP authentication is meaningful for a specific realm, a protection domain. Thus, for Digest

s739 authentication, each such protection domain has its own set of usernames and passwords. If a server does
s720 NOt require authentication for a particular requestjd accept a default username, “anonymous”, which
s721 has no password (password of “”). Similarly, UACs representing many users, such as PSTN gateways,

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 101]

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

have their own device-specific username and password, rather than accounts for particular users, for their
realm.

While a server can legitimately challenge most SIP requests, there are two requests defined by the SIP
standard today that require special handling for authenticafi@i< andCANCEL.

Under an authentication scheme that uses responses to carry values used to compute nonces (such as
Digest), some problems come up for any requests that take no response, iné@ngror this reason,
any credentials in thENVITE that were accepted by a serwewsT be accepted by that server for tAEK.
UACs creating a\CK message should duplicate all of tAethorization andProxy-Authorization header
fields that appeared in tHRVITE to which theACK corresponds. ServeksusT NOT attempt to challenge
anACK.

Although theCANCEL method does take a response (a 2xx), semnversT NOT attempt to challenge
CANCEL requests since these requests cannot be resubmitted. GeneGANGEL requestsSHOULD be
accepted by a server if it comes from the same host that sent the request being canceled (provided that some
sort of transport or network layer security association, as described in Section 22.2.1, is in place).

When a UAC receives a challenge,siiouLD render to the user the contents of thhedim” param-
eter in the challenge (which appears in eitha/'d/W-Authenticate header field oProxy-Authenticate
header field) if the UAC device does not already know of a credential for the realm in question. A service
provider that pre-configures UAs with credentials for its realm should be aware that users will not have the
opportunity to present their own credentials for this realm when challenged at a pre-configured device.

Finally, note that even if a UAC can locate credentials that are associated with the proper realm, the
potential exists that these credentials may no longer be valid or that the challenging server will not accept
these credentials for whatever reason (especially when “anonymous” with no password is submitted). In
this instance a server may repeat its challenge, or it may respond with a 403 Forbidden. AJ3AGIOT
re-attempt requests with the credentials that have just been rejected (unless the request was rejected because
of a stale nonce).

20.2 User-to-User Authentication

When a UAS receives a request from a UAC, the UAS authenticate the originator before the request

is processed. If no credentials (in taithorization header field) are provided in the request, the UAS

can challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status
code.

TheWWW-Authenticate response-header fieldusT be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to tRequest-URI. See [H14.47] for a definition of the syntax.

An example of theVWW-Authenticate header field in a 401 challenge is:

WWW-Authenticate: Digest
realm="biloxi.com",
gop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebafof0171e9517f40e41"

When the originating UAC receives the 401 (UnauthorizedyHbuLD, if it is able, re-originate the
request with the proper credentials. The UAC may require input from the originating user before proceeding.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 102]

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821
3822

3823

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Once authentication credentials have been supplied (either directly by the user, or discovered in an internal
keyring), UAssHOULD cache the credentials for a given value of ffeeheader field andréalm” and
attempt to re-use these values on the next request for that destinationmAYAsache credentials in any
way they would like.

If no credentials for a realm can be located, UA@sr attempt to retry the request with a username of
“anonymous” and no password (a password of “”).

Once credentials have been located, any UA that wishes to authenticate itself with a UAS or registrar
— usually, but not necessarily, after receiving a 401 (Unauthorized) respanse do so by including an
Authorization header field with the request. TAathorization field value consists of credentials containing
the authentication information of the UA for the realm of the resource being requested as well as parameters
required in support of authentication and replay protection.

An example of théAuthorization header field is:

Authorization: Digest username="bob",
realm="biloxi.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri=sip:alice@atlanta.com,
gop=auth,
nc=00000001,
cnonce="0a4f113b",
response="6629fae49393a05397450978507c4efl",
opaque="5ccc069c403ebafof0171e9517f40e41"

When a UAC resubmits a request with its credentials after receiving a 401 (Unauthorized) or 407 (Proxy
Authentication Required) responseMUST increment theCSeq header field as it would normally when
sending an updated request.

20.3 Proxy-to-User Authentication

Similarly, when a UAC sends a request to a proxy server, the proxy semeruthenticate the originator
before the request is processed. If no credentials (irPtio&y-Authorization header field) are provided

in the request, the UAS can challenge the originator to provide credentials by rejecting the request with a
407 (Proxy Authentication Required) status code. The pmaxgT populate the 407 (Proxy Authentica-

tion Required) message withRroxy-Authenticate header field applicable to the proxy for the requested
resource.

The use oProxy-Authentication andProxy-Authorization parallel that described in [16, Section 3.6],
with one difference. ProxiesusT NOT add theProxy-Authorization header field. 407 (Proxy Authen-
tication Required) responsesusT be forwarded upstream toward the UAC following the procedures for
any other response. It is the UAC’s responsibility to addRaxy-Authorization header field containing
credentials for the realm of the proxy that has asked for authentication.

If a proxy were to resubmit a request withPaoxy-Authorization header field, it would need to increment the
CSeq in the new request. However, this would cause the UAC that submitted the original request to discard a
response from the UAS, as tlsSeq value would be different.

When the originating UAC receives the 407 (Proxy Authentication Requirs#)auLD, if it is able, re-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 103]

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856
3857
3858
3859
3860
3861

3862

3863

3864

3865

3866

3867

3868

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

originate the request with the proper credentials. It should follow the same procedures for the display of the
“realm” parameter that are given above for responding to 401. If no credentials for a realm can be located,
UACs MAY attempt to retry the request with a username of “anonymous” and no password (a password of
“), The UACsSHOULD also cache the credentials used in the re-originated request.

The following rule isSRECOMMENDED for proxy credential caching:

If a UA receives &@roxy-Authenticate header field in a 401/407 response to a request with a particular
Call-ID, it should incorporate credentials for that realm in all subsequent requests that contain the same
Call-ID. These credentialsiusT NOT be cached across dialogs; however, if a UA is configured with the
realm of its local outbound proxy, when one exists, then theMd& cache credentials for that realm across
dialogs. Note that this does mean a future request in a dialog could contain credentials that are not needed
by any proxy along th&®oute header path.

Any UA that wishes to authenticate itself to a proxy server — usually, but not necessarily, after receiving
a 407 (Proxy Authentication Required) responseay do so by including d&roxy-Authorization header
field with the request. ThBroxy-Authorization request-header field allows the client to identify itself (or
its user) to a proxy that requires authentication. Pmexy-Authorization header field value consists of
credentials containing the authentication information of the UA for the proxy and/or realm of the resource
being requested.

A Proxy-Authorization header field applies only to the proxy whose realm is identified in téalh”
parameter (this proxy may previously have demanded authentication usiRgakeAuthenticate field).

When multiple proxies are used in a chain, Brexy-Authorization header fieldvusT NOT be consumed
by any proxy whose realm does not match tihealm” parameter specified in thBroxy-Authorization
header field.

Note that if an authentication scheme that does not support realms is usedPiroxiyeAuthorization
header field, a proxy serverusT attempt to parse alProxy-Authorization header fields to determine
whether one of them has what the proxy server considers to be valid credentials. Because this is potentially
very time-consuming in large networks, proxy sernv&ms®ULD use an authentication scheme that supports
realms in theProxy-Authorization header field.

If a request is forked (as described in Section 16.6), various proxy servers and/or UAs may wish to
challenge the UAC. In this case, the forking proxy server is responsible for aggregating these challenges
into a single response. EaWWW-Authenticate and Proxy-Authenticate received in responses to the
forked requestusT be placed into the single response that is sent by the forking proxy to the UA; the
ordering of these header fields is not significant.

When a proxy server issues a challenge in response to a request, it will not proxy the request until the UAC has
provided valid credentials. A forking proxy may forward a request simultaneously to multiple proxy servers that
require authentication, each of which in turn will not forward the request until the originating UAC has authenticated
itself in their respective realm. If the UAC does not provide credentials for each challenge, then the proxy servers
that issued the challenges will not forward requests to the UA where the destination user might be located, and
therefore, the virtues of forking are largely lost.

If at least one UAS responds to a forked request with a challenge, then a 401 (Unauthatizadde
sent as the aggregated response by the forking proxy to the UAC; otherwise, if only proxy servers respond,
a 407mMUsST be used.

When resubmitting its request in response to a 401 (Unauthorized) or 407 (Proxy Authentication Re-
quired) that contains multiple challenges, a UAGY include anAuthorization for eachwWW-Authenticate
andProxy-Authorization for eachProxy-Authenticate for which the UAC wishes to supply a credential.

As noted above, multiple credentials in a requesbuLD be differentiated by therealm” parameter.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 104]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

3869 It is possible for multiple challenges associated with the same realm to appear in the same 401 (Unautho-
ss70 rized) or 407 (Proxy Authentication Required). This can occur, for example, when multiple proxies within
ss71 the same administrative domain, which use a common realm, are reached by a forking request.

3872 See [H14.34] for a definition of the syntax Bfoxy-Authentication andProxy-Authorization.

sz 20.4 The Digest Authentication Scheme

ss74 This section describes the modifications and clarifications required to apply the HTTP Digest authentication
ss7s scheme to SIP. The SIP scheme usage is almost completely identical to that for HTTP [16].

3876 Since RFC 2543 is based on HTTP Digest as defined in RFC 2069 [27], SIP servers supporting RFC
877 2617MUST ensure they are backwards compatible with RFC 2069. Procedures for this backwards compat-
ss7s ibility are specified in RFC 2617. Note, however, that serwawssT NOT accept or request Basic authenti-

879 cation.

sss0 20.4.0.1 HTTP Digest The rules for Digest authentication follow those defined in [16, Section 3], with
s “HTTP 1.1" replaced by “SIP/2.0" in addition to the following differences:

3882 1. The URI included in the challenge has the following BNF:

3883 URI = SIP-URI

3884 2. The BNF in RFC 2617 has an error in that the 'uri’ parameter ofAthignorization header field for

3885 HTTP Digest authentication is not enclosed in quotation marks. (The example in Section 3.5 of RFC
3886 2617 is correct.) For SIP, the 'uniiusT be enclosed in quotation marks.

3887 3. The BNF fordigest-uri-value is:

3888 digest-uri-value = Request-URI ; as defined in Section 27

3889 4. The example procedure for choosing a nonce baséttamndoes not work for SIP.
3890 5. The text in RFC 2617 [16] regarding cache operation does not apply to SIP.

3801 6. RFC 2617 [16] requires that a server check that the URI in the request line and the URI included in

3892 the Authorization header field point to the same resource. In a SIP context, these two URIs may refer
3893 to different users, due to forwarding at some proxy. Therefore, in SIP, a 9emrecheck that the

3894 Request-URI in the Authorization header field corresponds to a user for whom that the server is
3895 willing to accept forwarded or direct requests.

3896 7. As a clarification to the calculation of the A2 value for message integrity assurance in the Digest

3897 authentication scheme, implementers should assume, when the entity-body is empty (that is, when
3898 SIP messages have no body) that the hash of the entity-body resolves to the MD5 hash of an empty
3899 string, or:

3900 H(entity-body) = MD5(") = "d41d8cd98f00b204e€9800998ecf8427¢e”"

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 105]

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916
3917
3918
3919
3920
3921

3922

3923
3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8. RFC 2617 notes that a cnonce valuesT NOT be sent in authorization (and by extensioProxy-
Authorization) header field if no qop directive has been sent. Therefore, any algorithms that have
a dependency on the cnonce (including “MD5-Sess”) require that the qop directive be sent. Use of
the “qop” parameter is optional in RFC 2617 for the purposes of backwards compatibility with RFC
2069; since RFC 2543 was based on RFC 2069, the “gop” parameter must unfortunately remain
optional for clients and servers to receive. However, senMersT always send a “qop” parameter in
WWW-Authenticate and Proxy-Authenticate header fields. If a client receives a “qop” parameter
in a challenge header field, NtusT send the “gop” parameter in any resulting authorization header
field.

RFC 2543 did not allow usage of tiuthentication-Info header field (it effectively used RFC 2069).
However, we now allow usage of this header field, since it provides integrity checks over the bodies and
provides mutual authentication. RFC 2617 [16] defines mechanisms for backwards compatibility using the
gop attribute in the request. These mechanisimsT be used by a server to determine if the client supports
the new mechanisms in RFC 2617 that were not specified in RFC 2069.

21 S/MIME

SIP messages carry MIME bodies and the MIME standard includes mechanisms for securing MIME con-
tents to ensure both integrity and confidentiality (including the 'multipart/signed’ and "application/pkcs7-
mime’ MIME types, see RFC 1847 [7], RFC 2630 [17] and RFC 2633 [18]). Implementers should note,
however, that there may be rare network intermediaries (not typical proxy servers) that rely on viewing or
modifying the bodies of SIP messages (especially SDP), and that secure MIME may prevent these sorts of
intermediaries from functioning.

This applies particularly to certain types of firewalls.

The PGP mechanism for encrypting the headers and bodies of SIP messages described in RFC 2543 has been
deprecated.

21.1 S/MIME Certificates

The certificates that are used to identify an end-user for the purposes of S/IMIME differ from those used
by servers in one important respect - rather than asserting that the identity of the holder corresponds to
a particular hostname, these certificates assert that the holder is identified by an end-user address. This
address is composed of the concatenation of tisefinfo” “@” and “domainname” portions of a SIP

URI (in other words, an email address of the form “bob@biloxi.com”), most commonly corresponding to a
user’s address of record.

These certificates are used to sign or encrypt bodies of SIP messages. Bodies are signed with the pri-
vate key of the sender (who may include their public key with the message as appropriate), but bodies are
encrypted with the public key of the intended recipient. Obviously, senders must have foreknowledge of the
public key of recipients in order to encrypt message bodies. Public keys can be stored within a UA on a
virtual keyring.

Each user agent that supports S/IMIMIEBST contain a keyring specifically for end-users’ certificates.

This keyring should map between addresses of record and corresponding certificates, including any asso-
ciated with the owner or operator of the UA, when appropriate. Over time, 8s&¥8LD use the same
certificate when they populate the originating URI of signaling @hem header field) with the same ad-

dress of record.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 106]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

3942 Any mechanisms depending on the existence of end-user certificates, is seriously limitated in that there is
3043 Virtually no consolidated authority today that provides certificates for end-user applications. However, users
344 SHOULD acquire certificates from known public certificate authorities. As an alternative, magrsreate

saas Self-signed certificates. The implications of self-signed certificates are explored further in Section 22.4.2.
3946 Above and beyond the problem of acquiring an end-user certificate, there are few well-known central-
3047 ized directories that distribute end-user certificates. However, the holder of a ceri#ficate.D publish

s48 their certificate in any public directories as appropriate. Similarly, UABoULD support a mechanism

39 for importing (manually or automatically) certificates discovered in public directories corresponding to the
ses0 target URIs of SIP requests.

st 21.2 SIMIME Key Exchange

352 SIP itself can also be used as a means to distribute public keys in the following manner.

3953 Whenever the CMS SignedData message is used in SIMIME for SR str contain the certificate

354 bearing the public key necessary to verify the signature.

3955 When a UAC sends a request containing an S/MIME body that initiates a dialog, or sends a non-
sss6 INVITE request outside the context of a dialog, the Us@uLD structure the body as an S/MIME 'multi-

3957 part/signed’ CMS SignedData body. If the desired CMS service is EnvelopedData, the WAL D send

358 the EnvelopedData message encapsulated within a SignedData message.

3959 When a UAS receives a request containing an S/IMIME CMS body that includes a certificate, the UAS
sse0 SHOULD first verify the certificate, if possible, with any available certificate authority. The JASuULD

361 also determine the subject of the certificate and compare this value Fodhefield of the request. If the

s962 certificate cannot be verified, because it is self-signed, or signed by no known authority, thetU$AS

3063 Notify the user of the status of the certificate (including the subject of the certificate, its signer, and any key
3964 fingerprint information) and request explicit permission before proceeding. If the certificate was successfully
3065 verified and the subject of the certificate corresponds td-then header field of the SIP request, or if the

3966 User (after notification) explicitly authorizes the use of the certificate, the §4@JLD add this certificate

367 10 @ local keyring, indexed by the address of record of the holder of the certificate.

3968 When a UAS sends a response containing an S/MIME body that answers the first request in a dialog, or
369 @ response to a ndiNVITE request outside the context of a dialog, the U8 uULD structure the body

3970 as a S/IMIME 'multipart/signed’ CMS SignedData body. If the desired CMS service is EnvelopedData, the
se1 - UAS sHOULD send the EnvelopedData message encapsulated within a SignedData message. If the SIMIME
372 body received by the UAS was encrypted with a public key recognized by the UM&y itopt not to sign

3973 itS response when appropriate.

3974 When a UAC receives a response containing an S/IMIME CMS body which includes a certificate, the
sz UAC sHOULD first verify the certificate, if possible, with any available certificate authority. The UAC
se76 SHOULD also determine the subject of the certificate and compare this value To fredd of the response;

3977 although the two may very well be different, and this is not necessarily indicative of a security breach.
so78 If the certificate cannot be verified because it is self-signed, or signed by no known authority, the UAC
3979 MUST notify the user of the status of the certificate (including the subject of the certificate, its signator, and
ss0 any key fingerprint information) and request explicit permission before proceeding. If the certificate was
3081 successfully verified, and the subject of the certificate corresponds 1o tieader in the response, or if the

3082 User (after notification) explicitly authorizes the use of the certificate, the BM@ULD add this certificate

3083 0 @ local keyring, indexed by the address of record of the holder of the certificate. If the UAC had not
3984 transmitted its own certificate to the UAS in any previous transactiosH@uLD use a CMS SignedData

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 107]

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

body for its next request or response.

On future occasions, when the UA receives requests or responses that coRtam aeader field
corresponding to a value in its keyring, the WNouLD compare the certificate offered in these messages
with the existing certificate in its keyring. If there is a discrepancy, theMU&sT notify the user of a change
of the certificate (preferably in terms that indicate that this is a potential security breach) and acquire the
user’s permission before continuing to process the signaling. If the user authorizes this certificags, it
be added to the keyring alongside any previous value(s) for this address of record.

Note well however, that this key exchange mechanism does not guarantee the secure exchange of keys
when self-signed certificates, or certificates signed by an obscure authority, are used - it is vulnerable to
well-known attacks. In the opinion of the authors, however, the security it provides is proverbially better
than nothing; it is in fact comparable to the widely used SSH application. These limitations are explored in
greater detail in Section 22.4.2.

If a UA receives an S/IMIME body that has been encrypted with a public key unknown to the recipient,
it MUST reject the request with a 493 (Undecipherable) response. This respensa D contain a valid
certificate for the respondent (corresponding, if possible, to any address of record giveTinhibader
of the rejected request) within a MIME body with a ‘certs-onlgiime-type” parameter. A 493 (Un-
decipherable) sent without any certificate indicates that the respondent cannot or will not utilize S/IMIME
encrypted messages, though they may still support SIMIME signatures

Note that a user agent that receives a request containing an S/MIME body that is not optional (with
a Content-Disposition header handling” parameter of “required”"MUST reject the request with a 415
Unsupported Media Type response if the MIME type is not understood. A user agent that receives such a
response when S/MIME is seeHOULD noitify its user that the remote device does not support S/IMIME,
and itmAY subsequently resend the request without S/IMIME, if appropriate.

If a user agent sends an S/IMIME body in a request, but receives a response that contains a MIME
body that is not secured, the user agerbuLD notify the end user that the session could not be secured.
However, if a user agent that supports S/IMIME receives a request with an unsecured badylib NOT
respond with a secured body.

Finally, if during the course of a dialog a UA receives a certificate in a CMS SignedData message that
does not correspond with the certificates previously exchanged during a dialog, the $i2notify its user
of the change, preferably in terms that indicate that this is a potential security breach.

21.3 Securing MIME bodies

There are two types of secure MIME bodies that are of interest to SIP: 'multipart/signed’ and "application/pkcs7-
mime’. The procedures for the use of these bodies should follow the S/IMIME specification ([18]) with a
few variations.

¢ UAs that support S/IMIME1UST support the ‘signed-data’ and ‘certs-only
support the ‘enveloped-data’ “smime-type”.

smime-types”. Udvsr

e “multipart/signed”MUsT be used only with CMS detached signatures.

This allows backwards compatibility with non-S/MIME-compliant recipients.

e S/MIME bodiessHOULD have aContent-Disposition header field, and the value of thiedndling”
parametesHOULD be “required.”

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 108]

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e If a UAC has no certificate on its keyring associated with the address of record to which it wants to
send a request, it cannot send an encrypted 'application/pkcs7-mime’ MIME message.MA&ACs
send an initial request such as @®PTIONS message with a CMS detached signature in order to
solicit the certificate of the remote side (the signatsireULD be over a ‘'message/sip’ body of the
type described in Section 21.4).

e Senders of S/IMIME bodiesHouLD use the 'SMIMECapabilities’ (see Section 2.5.2 of [18]) attribute
to express their capabilities and preferences for further communications. Note especially that senders
MAY use the 'preferSignedData’ capability to encourage receivers to respond with CMS SignedData
messages (for example, when sendingd®TIONS request as described above).

e S/MIME implementationsvusT at a minimum support SHA1 as a digital signature algorithm, and
3DES as an encryption algorithm. All other signature and encryption algoritmwsbe supported.
Implementations can negotiate support for these algorithms with the 'SMIMECapabilities’ attribute.

e Each S/MIME body in a SIP messageouLD be signed with only one certificate. If a UA receives
a message with multiple signatures, the outermost signature should be treated as the single certificate
for this body.

21.4 Tunneling SIP in MIME

As a means of providing some degree of end-to-end authentication, integrity or confidentiality for SIP head-
ers, SIMIME can encapsulate entire SIP messages within MIME bodies of type “message/sip” and then
apply MIME security to these bodies in the same manner as typical SIP bodies. These encapsulated SIP
requests and responses do not constitute a separate dialog or transaction, they are a copy of the “outer”
message that is used to verify integrity or to supply additional information.

If a UAS receives a request that contains a tunneled “message/sip” S/IMIME bedgitLD include a
tunneled “message/sip” body in the response with the same smime-type.

Any traditional MIME bodies (such as SDBHOULD be attached to the ‘inner” message so that they
can also benefit from S/IMIME security. Note that “message/sip” bodies can be sent as a part of a MIME
“multipart/mixed” body if any unsecured MIME types should also be transmitted in a request.

21.4.1 Integrity and Confidentiality Properties of SIP Headers

When the S/IMIME integrity or confidentiality mechanisms are used, there may be discrepancies between the
values in the “inner” message and values in the “outer” message. The rules for handling any such differences
for all of the headers described in this document are given in this section.

21.4.1.1 Integrity Headers that can be legitimately modified by proxy serversReguest-URI, Via,
Record-Route, Route, Max-Forwards, and Proxy-Authorization. If these headers are not intact end-
to-end, implementationsHoOULD NOT consider this a breach of security. Changes to any other headers
constitute an integrity violation; usekJST be notified of a discrepancy.

21.4.1.2 Confidentiality When messages are encrypted, headers may be included in the encrypted body
that are not present in the “outer” message.

Some headers must always have a plaintext version because they are required headers in requests and
responses - these includi, From, Call-ID, CSeq, Contact. While it is probably not useful to provide an

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 109]

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

encrypted alternative for th@all-ID, Cseq, or Contact, providing an alternative to the information in the
“outer” To or From is permitted. Note that the values in an encrypted body are not used for the purposes of
identifying transactions or dialogs - they are merely informational. IFiften header in an encrypted body
differs from the value in the “outer” message, the value within the encrypted $iledyLD be displayed to

the user, bumusT NOT be used in the “outer” headers of any future messages.

Primarily, a user agent will want to encrypt headers that have an end-to-end semantic, incBubing:
ject, Reply-To, Organization, Accept, Accept-Encoding, Accept-Language, Alert-Info, Error-Info,
Authentication-Info, Expires, In-Reply-To, Require, Supported, Unsupported, Retry-After, User-

Agent, Server, andWarning. If any of these headers are present in an encrypted body, they should be
used instead of any “outer” headers, whether this entails displaying the header field values to users or setting
internal states in the UA.

Since MIME bodies are attached to the “inner” message, implementations will usually encrypt MIME-
specific headers, including4IME-Version, Content-Type, Content-Length, Content-Language, Content-
Encoding andContent-Disposition. The “outer” message will have the proper MIME headers for SIMIME
bodies. These headers (and any MIME bodies they preface) should be treated as normal MIME headers and
bodies received in a SIP message.

Itis not particularly useful to encrypt the following headebste, Min-Expires, RAck, RSeq, Times-
tamp, Authorization, Priority, and WWW-Authenticate. This category also includes those headers that
can be changed by proxy servers (described in the preceding sectionsHdAR D never include these in
an “inner” message if they are not included in the “outer” message. UAs that receive any of these headers
in an encrypted bodgHoULD ignore the encrypted values.

Note that extensions to SIP may define additional headers; the authors of these extensions should de-
scribe the integrity and confidentiality properties of such headers. If a SIP UA encounters an unknown
header with an integrity violation, MuUST ignore the header.

21.4.2 Tunneling Integrity and Authentication

Tunneling SIP messages within S/IMIME bodies can provide integrity for SIP headers if the headers which
the sender wishes to secure are replicated in a “message/sip” MIME body signed with a CMS detached
signature.

Provided that the “message/sip” body contains at least the fundamental dialog identdieFsom,

Call-ID, CSeq), then a signed MIME body can provide limited authentication. At the very least, if the
certificate used to sign the body is unknown to the recipient and cannot be verified, the signature can be used
to ascertain that a later request in a dialog was transmitted by the same certificate-holder that initiated the
dialog. If the recipient of the signed MIME body has some stronger incentive to trust the certificate (they
were able to verify it, acquire it from a trusted repository, or they have used it frequently) then the signature
can be taken as a stronger assertion of the identity of the subject of the certificate.

In order to eliminate possible confusions about the addition or subtraction of entire headers, senders
SHOULD replicate all headers from the request within the signed body. Any message bodies that require
integrity protectionsHOULD be attached to the “inner” message.

If an integrity violation in a message is detected by its recipient, the messagde rejected with a
403 (Forbidden) response if it is a request, or any existing dislog be terminated. UASHOULD notify
users of this circumstance and request explicit guidance on how to proceed.

The following is an example of the use of a tunneled “message/sip” body:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 110]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

4105 INVITE sip:bob@biloxi.com SIP/2.0

4106 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
4107 To: Bob <bob@biloxi.com>

4108 From: Alice <alice@atlanta.com>;tag=1928301774

4109 Call-ID: a84b4c76e66710

4110 CSeq: 314159 INVITE

a111 Max-Forwards: 70

4112 Contact: <sip:alice@pc33.atlanta.com>

4113 Content-Type: multipart/signed;

4114 protocol="application/pkcs7-signature"”;

a115 micalg=shal; boundary=boundary42

4116

4117 --boundary42

4118 Content-Type: message/sip

4119

4120 INVITE sip:bob@biloxi.com SIP/2.0

4121 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
4122 To: Bob <bob@biloxi.com>

4123 From: Alice <alice@atlanta.com>;tag=1928301774

4124 Call-ID: a84b4c76e66710

4125 CSeq: 314159 INVITE

4126 Max-Forwards: 70

4127 Contact: <sip:alice@pc33.atlanta.com>

4128 Content-Type: application/sdp

4129 Content-Length: 147

4130

4131 v=0

132 o=UserA 2890844526 2890844526 IN IP4 here.com

4133 s=Session SDP

4134 c=IN IP4 pc33.atlanta.com

4135 t=0 0

4136 m=audio 49172 RTP/AVP 0

4137 a=rtpmap:0 PCMU/8000

4138

4139 --boundary42

4140 Content-Type: application/pkcs7-signature; name=smime.p7s
4141 Content-Transfer-Encoding: base64

4142 Content-Disposition: attachment; filename=smime.p7s;

4143 handling=required

4144

4145 ghyHhHUujhJhjH77n8HHGTrfvbnj756tbBOHGA4VQpfyF467GhIGfHfYT6
4146 4V QpfyF467GhIGfHfYT6jH77n8HHGghyHhHUuUjhJh756tbBOHG Trfvbnj
4147 N8HHGTrfvhJhjH776tbBOHG4VQbnj7567GhIGfHfYT6ghyHhHUUjpfyF4
4148 7Gh|GfoYT64VQbI’]j756

4149

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 111]

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

--boundary42-

21.4.3 Tunneling Encryption

It may also be desirable to use this mechanism to encrypt a “message/sip” MIME body within a CMS
EnvelopedData message S/MIME body, but in practice, most headers are of at least some use to the network;
the general use of encryption with S/IMIME is to secure message bodies like SDP rather than message
headers. Some informational headers, such aStigect or Organization could perhaps warrant end-to-

end security. Headers defined by future SIP applications might also require obfuscation.

Another possible application of encrypting headers is selective anonymity. A request could be con-
structed with &rom header field that contains no personal information (for example, sip:anonymous@anonymizer.c
However, a seconfrom header field containing the genuine address of record of the originator could be
encrypted within a “message/sip” MIME body where it will only be visible to the endpoints of a dialog.

In order to guarantee end-to-end integrity, encrypted “message/sip” MIME bsdesLD be signed
by the sender.

In the following example, the text boxed in asterisks (“*") is encrypted (note that this example is un-
signed):

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

To: Bob <bob@biloxi.com>

From: Alice <alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Max-Forwards: 70

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

handling=required

kkkkkkkkkkkhkkkkkkkkkkkhkkkhkkkkkkkkkhkhkkhkkkkkkkkkkkkkhkkkk

* Content-Type: application/sdp *

* *
* \/::() *
* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com *

* g=- *
*t=0 0 *
* ¢=IN IP4 pc33.atlanta.com *

* m=audio 3456 RTP/AVP 0 1 3 99 *
* a=rtpmap:0 PCMU/8000 *

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 112]

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

22 Security Considerations

SIP is not an easy protocol to secure. Its use of intermediaries, its multi-faceted trust relationships, its
expected usage between elements with no trust at all, and its user-to-user operation make security far from
trivial. Security solutions are needed that are deployable today, without extensive coordination, in a wide
variety of environments and usages. In order to meet these diverse needs, several distinct mechanisms
applicable to different aspects and usages of SIP will be required.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert
with SIP such as RTP, or with the security implications of any specific bodies SIP might carry (although
MIME security plays a substantial role in securing SIP). Any media associated with a session can be en-
crypted end-to-end independently of any associated SIP signaling. Media encryption is outside the scope of
this document.

The considerations that follow first examine a set of classic threat models which broadly identify the
security needs of SIP. The set of security services required to address these threats is then detailed, followed
by an explanation of several security mechanisms that can be used to provide these services. Next, the
requirements for implementers of SIP are enumerated, along with exemplary deployments in which these
security mechanisms could be used to improve the security of SIP. Some notes on privacy conclude this
section.

22.1 Attacks and Threat Models

This section details some threats that should be common to most deployments of SIP. These threats have
been chosen specifically to illustrate each of the security services that SIP requires.

The following examples by no means provide an exhaustive list of the threats against SIP; rather, these
are "classic” threats that demonstrate the need for particular security services which can potentially prevent
whole categories of threats.

These attacks assume an environment in which attackers can potentially read any packet on the network
- it is anticipated that SIP will frequently be used on the public Internet. Attackers on the network may be
able to modify packets (perhaps at some compromised intermediary). Attackers may wish to steal services,
eavesdrop on communications, or disrupt sessions.

22.1.1 Registration Hijacking

The SIP registration mechanism allows a user agent to identify itself to a registrar as a device at which a
user (designated by an address of record) is located. A registrar assesses the identity asseffiednn the
header field of ®ISTER message to determine whether this request can modify the contact addresses
associated with the address of record inThéheader field. While these two fields are frequently the same,
there are many valid deployments in which a third-party may register contacts on a user’s behalf.

TheFrom header field of a SIP request, however, can be modified arbitrarily by the owner of a UA, and
this opens the door to malicious registrations. An attacker that successfully impersonates a party authorized
to change contacts associated with an address of record could, for example, de-register all existing contacts
for a URI and then register their own device as the appropriate contact address, thereby directing all requests
for the affected user to the attacker’s device.

This threat belongs to a family of threats that rely on the absence of cryptographic assurance of a re-
quest’s originator. Any SIP UAS that represents a valuable service (a gateway that interworks SIP requests
with traditional telephone calls, for example) might want to control access to its resources by authenticating
requests that it receives. Even end-user UAs, for example SIP phones, have an interest in ascertaining the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 113]

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

identities of originators of requests.
This threat demonstrates the need for security services that enable SIP entities to authenticate the origi-
nators of requests.

22.1.2 Impersonating a Server

The domain to which a request is destined is generally specified iRégeiest-URI. UAs commonly

contact a server in this domain directly in order to deliver a request. However, there is always a possibility
that an attacker could impersonate the remote server, and that the UA's request could be intercepted by some
other party.

For example, consider a case in which a redirect server at one domain, chicago.com, impersonates a
redirect server at another domain, biloxi.com. A user agent sends a request to biloxi.com, but the redirect
server at chicago.com answers with a forged response that has appropriate SIP headers for a response from
biloxi.com. The forged contact addresses in the redirection response could direct the originating UA to
inappropriate or insecure resources, or simply prevent requests for biloxi.com from succeeding.

This family of threats has a vast membership, many of which are critical. As a converse to the registration
hijacking threat, consider the case in which a registration sent to biloxi.com is intercepted by chicago.com,
which replies to the intercepted registration with a forged 301 (Moved Permanently) response. This response
might seem to come from biloxi.com yet designate chicago.com as the appropriate registrar. All future
REGISTER requests from the originating UA would then go to chicago.com.

Prevention of this threat requires a means by which UAs can authenticate the servers to whom they send
requests.

22.1.3 Tampering with Message Bodies

As a matter of course, SIP UAs route requests through trusted proxy servers. Regardless of how that trust is
established (authentication of proxies is discussed elsewhere in this section), a UA may trust a proxy server
to route a request, but not to inspect or possibly modify the bodies contained in that request.

Consider a UA that is using SIP message bodies to communicate session encryption keys for a media
session. Although it trusts the proxy server of the domain it is contacting to deliver signaling properly, it
may not want the administrators of that domain to be capable of decrypting any subsequent media session.
Worse yet, if the proxy server were actively malicious, it could modify the session key, either acting as a
man-in-the-middle, or perhaps changing the security characteristics requested by the originating UA.

This family of threats applies not only to session keys, but to most conceivable forms of content car-
ried end-to-end in SIP. These might include MIME bodies that should be rendered to the user, SDP, or
encapsulated telephony signals, among others. Attackers might attempt to modify SDP bodies, for example,
in order to point RTP media streams to a wiretapping device in order to eavesdrop on subsequent voice
communications.

Also note that some header fields in SIP are meaningful end-to-end, for ex&upiect. UAs might
be protective of these headers as well as bodies (a malicious intermediary chan@nbjtiet header field
might make an important request appear to be spam, for example). However, since many header fields are
legitimately inspected or altered by proxy servers as a request is routed, not all headers should be secured
end-to-end.

For these reasons, the UA might want to secure SIP message bodies, and in some limited cases headers,
end-to-end. The security services required for bodies include confidentiality, integrity, and authentication.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 114]

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

These end-to-end services should be independent of the means used to secure interactions with intermedi-
aries such as proxy servers.

22.1.4 Tearing Down Sessions

Once a dialog has been established by initial messaging, subsequent requests can be sent that modify the
state of the dialog and/or session. It is critical that principals in a session can be certain that such requests
are not forged by attackers.

Consider a case in which a third-party attacker captures some initial messages in a dialog shared by
two parties in order to learn the parameters of the ses3mrHom, and so forth) and then inserntBXE
request into the session. The attacker could opt to forge the request such that it seemed to come from either
participant. Once thBYE is received by its target, the session will be torn down prematurely.

Similar mid-session threats include the transmission of forgé¥8TEs that alter the session (possibly
to reduce session security or redirect media streams as part of a wiretapping attack).

The most effective countermeasure to this threat is the authentication of the sendeB¥Ehia this
instance, the recipient needs only know thatBiYE came from the same party with whom the correspond-
ing dialog was established (as opposed to ascertaining the absolute identity of the sender). Also, if the
attacker is unable to learn the parameters of the session due to confidentiality, it would not be possible to
forge theBYE. However, some intermediaries (like proxy servers) will need to inspect those parameters as
the session is established.

22.1.5 Denial of Service and Amplification

Denial-of-service attacks focus on rendering a particular network element unavailable, usually by directing
an excessive amount of network traffic at its interfaces. A distributed denial-of-service attack allows one
network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures, SIP proxy servers face the public Internet in order to accept requests from world-
wide IP endpoints. SIP creates a number of potential opportunities for distributed denial-of-service attacks
that must be recognized and addressed by the implementers and operators of SIP systems.

Attackers can create bogus requests that contain a falsified source IP address and a correg@onding
header field that identify a targeted host as the originator of the request and then send this request to a large
number of SIP network elements, thereby using hapless SIP UAs or proxies to generate denial-of-service
traffic aimed at the target.

Similarly, attackers might use falsifid®Rloute headers in a request that identify the target host and then
send such messages to forking proxies that will amplify messaging sent to the Regetd-Route could
be used to similar effect when the attacker is certain that the SIP dialog initiated by the request will result in
numerous transactions originating in the backwards direction.

A number of denial-of-service attacks open UlREGISTER requests are not properly authenticated
and authorized by registrars. Attackers could de-register some or all users in an administrative domain,
thereby preventing these users from being invited to new sessions. An attacker could also register a large
number of contacts designating the same host for a given address of record in order to use the registrar and
any associated proxy servers as amplifiers in a denial-of-service attack. Attackers might also attempt to
deplete available memory and disk resources of a registrar by registering huge numbers of bindings.

The use of multicast to transmit SIP requests can greatly increase the potential for denial-of-service
attacks.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 115]

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

These problems demonstrate a general need to define architectures that minimize the risks of denial-of-
service, and the need to be mindful in recommendations for security mechanisms of this class of attacks.

22.2 Security Mechanisms

From the threats described above, we gather that the fundamental security services required for the SIP
protocol are: preserving the confidentiality and integrity of messaging, preventing replay attacks or message
spoofing, providing for the authentication and privacy of the participants in a session, and preventing denial-
of-service attacks. Bodies within SIP messages separately require the security services of confidentiality,
integrity, and authentication.

Rather than defining new security mechanisms specific to SIP, SIP reuses wherever possible existing
security models derived from the HTTP and SMTP space.

Full encryption of messages provides the best means to preserve the confidentiality of signaling - it
can also guarantee that messages are not modified by any malicious intermediaries. However, SIP requests
and responses cannot be naively encrypted end-to-end in their entirety because message fields such as the
Request-URI, Route, and Via need to be visible to proxies in most network architectures so that SIP
requests are routed correctly. Note that proxy servers need to modify some features of messages as well
(such as addin¥ia headers) in order for SIP to function. Proxy servers must therefore be trusted, to some
degree, by SIP UAs. To this purpose, low-layer security mechanisms for SIP are recommended, which
encrypt the entire SIP requests or responses on the wire on a hop-by-hop basis, and which allow endpoints
to verify the identity of proxy servers to whom they send requests.

SIP entities also have a need to identify one another in a secure fashion. When a SIP endpoint asserts
the identity of its user to a peer UA or to a proxy server, that identity should in some way be verifiable. A
cryptographic authentication mechanism is provided in SIP to address this requirement.

An independent security mechanism for SIP message bodies supplies an alternative means of end-to-end
mutual authentication, as well as providing a limit on the degree to which user agents must trust intermedi-
aries.

22.2.1 Transport and Network Layer Security

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and
integrity. Oftentimes, certificates are used in the establishment of lower-layer security, and these certificates
can also be used to provide a means of authentication in many architectures.

Two popular alternatives for providing security at the transport and network layer are, respectively, TLS
[9] and IPSec [14].

IPSec is a set of network-layer protocol tools that collectively can be used as a secure replacement for
traditional IP (Internet Protocol). IPSec is most commonly used in architectures in which a set of hosts or
administrative domains have an existing trust relationship with one another. IPSec is usually implemented
at the operating system level in a host, or on a security gateway that provides confidentiality and integrity
for all traffic it receives from a particular interface (as in a VPN architecture). IPSec can also be used on a
hop-by-hop basis.

In many architectures IPSec does not require integration with SIP applications; IPSec is perhaps best
suited to deployments in which adding security directly to SIP hosts would be arduous. UAs which have a
pre-shared keying relationship with their first-hop proxy server are also good candidates to use IPSec. Any
deployment of IPSec for SIP would require an IPSec profile describing the protocol tools that would be

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 116]

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

required to secure SIP. No such profile is given in this document.

TLS provides transport-layer security over connection-oriented protocols (for the purposes of this doc-
ument, TCP); “tIs” (signifying TLS over TCP) can be specified as the desired transport protocol within a
Via header field or a SIP-URI. TLS is most suited to architectures in which hop-by-hop security is required
between hosts with no pre-existing trust association. For example, Alice trusts her local proxy server, which
after a certificate exchange decides to trust Bob’s local proxy server, which Bob trusts, hence Bob and Alice
can communicate securely.

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on a
hop-by-hop basis in SIP, and that thus a UA that sends requests over TLS to a proxy server has no assurance
that TLS will be used end-to-end.

The TLSRSAWITH_AES_128 CBC_SHA ciphersuiteMusT be supported at a minimum by imple-
mentors when TLS is used in a SIP application. For purposes of backwards compatibility, proxy servers,
redirect servers, and registrassiouLD support TLSRSA WITH_3DESEDE CBC_SHA. Implementers
MAY also support any other ciphersuite.

22.2.2 HTTP Authentication

SIP provides a challenge capability, based on HTTP authentication, that relies on the 401 and 407 response

codes as well as headers for carrying challenges and credentials. Without significant modification, the reuse

of the HTTP Digest authentication scheme in SIP allows for replay protection and one-way authentication.
The usage of Digest authentication in SIP is detailed in Section 20.

22.2.3 S/MIME

As is discussed above, encrypting entire SIP messages end-to-end for the purpose of confidentiality is not ap-
propriate because network intermediaries (like proxy servers) need to view certain headers in order to route
messages correctly, and if these intermediaries are excluded from security associations, then SIP messages
will essentially be non-routable.

However, S/IMIME allows SIP UAs to encrypt MIME bodies within SIP, securing these bodies end-to-
end without affecting message headers. S/MIME can provide end-to-end confidentiality and integrity for
message bodies, as well as mutual authentication. It is also possible to use S/IMIME to provide a form of
integrity and confidentiality for SIP headers through SIP message tunneling.

The usage of S/IMIME in SIP is detailed in Section 21.

22.3 Implementing Security Mechanisms
22.3.1 Requirements for Implementers of SIP

Proxy servers, redirect servers, and registrausT implement TLS, andiusT support both mutual and
one-way authentication. It is strongheCOMMENDED that UAs be capable initiating TLS; UA8AY also
be capable of acting as a TLS server. Proxy servers, redirect servers, and registrar® possess a site
certificate whose subject corresponds to their hostname.MMshave certificates of their own for mutual
authentication with TLS, but no provisions are set forth in this document for their use MUAS support
a mechanism for verifying certificates they receive during TLS negotiation.

Proxy servers, redirect servers, registrars, and MAg also implement IPSec or other lower-layer
security protocols.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 117]

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428
4429

4430

4431

4432

4433

4434

4435

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

When a UA attempts to contact a proxy server, redirect server, or registrar, thesACGLD initiate a
TLS connection over which it will send SIP messages. In some architectures, WACseceive requests
over such TLS connections as well.

Proxy servers, redirect servers, registrars, and WAST implement Digest Authorization. Proxy
servers, redirect servers, and registst®ULD be configured with at least one Digest realm, and at least one
“realm” string supported by a given serveHOULD correspond to the server’s hostname or domainname.

Proxy servers, redirect servers, registrars, and MAg also implement enhancements to Digest or
alternate header-level security mechanisms.

UAs sHoOULD support S/IMIME encryption and signing of SIP message MIME bodies. If a UA holds
one or more root certificates of certificate authorities in order to verify certificates for TLS or IPSec, it
SHOULD be capable of reusing these to verify an SIMIME certificates, as appropriate. ayhold root
certificates specifically for verifying S/IMIME certifices.

22.3.2 Security Solutions

The operation of these security mechanisms in concert can follow the existing web and email security models
to some degree. At a high level, UAs authenticate themselves to servers (proxy servers, redirect servers, and
registrars) with a Digest username and password; servers authenticate themselves to UAs, and to one another,
with a site certificate delivered by TLS.

On a peer-to-peer level, UAs transitively trust the network to authenticate one another ordinarily; how-
ever, S/IMIME can also be used to provide direct authentication when the network does not, or if the network
itself is not trusted.

The following is an illustrative example in which these security mechanisms are used by various UAs
and servers to prevent the sorts of threats described in Section 22. While implementers and network admin-
istratorsmAY follow the normative guidelines given in the remainder of this section, these are provided only
as example implementations.

22.3.2.1 Registration When a UA comes online and registers with its local administrative domain, it
SHOULD establish a TLS connection with its registrar (Section 10 describes how the UA reaches its reg-
istrar). The registrasHOULD offer a certificate to the UA, and the site identified by the certifioatesT
correspond with the domain in which the UA intends to register; for example, if the UA intends to register
the address of record ’alice@atlanta.com’, the site certificate must identify a host within the atlanta.com
domain (such as 'sip.atlanta.com’). When it receives the TLS Certificate message, theduAp verify

the certificate and inspect the site identified by the certificate. If the certificate is invalid, revoked, or if it
does not identify the appropriate party, the WAIST NOT send theREGISTER message and otherwise
proceed with the registration.

When a valid certificate has been provided by the registrar, the UA knows that the registrar is not an attacker
who might redirect the UA, steal passwords, or attempt any similar attacks.

The UA then creates REGISTER request thasHOULD be addressed toRequest-URI correspond-
ing to the site certificate received from the registrar. When the UA sendRE@&STER request over
the existing TLS connection, the registemiouLD challenge the request with a 407 (Proxy Authentication
Required) response. The “realm” parameter within Fiexy-Authenticate header field of the response
SHOULD correspond to the domain previously given by the site certificate. When the UAC receives the
challenge, isHOULD either prompt the user for credentials or take an appropriate credential from a keyring

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 118]

4436

4437

4438

4439

4440

4441

4442
4443

4444

4445

4446

4447

4448

4449
4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467
4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

corresponding to the “realm” parameter in the challenge. The username of this credentialD corre-
spond with the “userinfo” portion of the URI in tHEo header field of th®ISTER request. Once the
Digest credentials have been inserted into an appropfieiry-Authorization header field, th®IS-
TER should be resubmitted to the registrar.
Since the registrar requires the user agent to authenticate itself, it would be difficult for an attacker to forge
REGISTER requests for the user’s address of record. Also note that sinEBG4&STER is sent over a confidential

TLS connection, attackers will not be able to interceptREGISTER to record credentials for any possible replay
attack.

Once the registration has been accepted by the registrar, theHdALD leave this TLS connection
open provided that the registrar also acts as the proxy server to which requests are sent for users in this
administrative domain. The existing TLS connection will be reused to deliver incoming requests to the UA
that has just completed registration.
Because the UA has already authenticated the server on the other side of the TLS connection, all requests that

come over this connection are known to have passed through the proxy server - attackers cannot create spoofed
requests that appear to have been sent through that proxy server.

22.3.2.2 Requests and Transitive Trust Now let’s say that Alice’s UA would like to initiate a session
with a user in a remote administrative domain, namely *bob@biloxi.com’. We will also say that the local
administrative domain (‘atlanta.com’) has a local outbound proxy.

The proxy server that handles inbound requests for an administrative domairalso act as a local
outbound proxy; for simplicity’s sake we’ll assume this to be the case for 'atlanta.com’ (otherwise the user
agent would initiate a new TLS connection to a separate server at this point). Assuming that the client has
completed the registration process described in the preceding seciei@utD reuse the TLS connection
to the local proxy server when it sends IAVITE request to another user. The WANouLD reuse cached
credentials in théNVITE to avoid prompting the user unnecessarily.

When the local outbound proxy server has validated the credentials presented by the UMNNITHe,
it SHOULD inspect theRequest-URI to determine how the message should be routed (see [2]). If the
“domainname” portion of th&kequest-URI had corresponded to the local domain (‘atlanta.com’) rather
than “biloxi.com”, then the proxy server would have consulted its location service to determine how best to
reach the requested user.

Had 'alice@atlanta.com’ been attempting to contact, say, 'alex@atlanta.com’, the local proxy would have prox-
ied to the request to the TLS connection Alex had established with the registrar when he registered. Since Alex

would receive this request over his authenticated channel, he would be assured that Alice’s request had been autho-
rized by the proxy server of the local administrative domain.

However, in this instance thRequest-URI designates a remote domain. The local outbound proxy
server at 'atlanta.comsHouULD therefore establish a TLS connection with the remote proxy server at
'biloxi.com’. Since both of the participants in this TLS connection are servers that possess site certifi-
cates, mutual TLS authenticati@HouLD occur. Each side of the connectisriouLD verify and inspect
the certificate of the other, noting the domain name that appears in the certificate for comparison with the
headers of SIP messages. The 'atlanta.com’ proxy server, for exasmae,LD verify at this stage that the
certificate received from the remote side corresponds with the 'biloxi.com’ domain. Once it has done so,
and TLS negotiation has completed, resulting in a secure channel between the two proxies, the "atlanta.com’
proxy can forward théNVITE request to 'biloxi.com’.

The proxy server at 'biloxi.comsHOULD inspect the certificate of the proxy server at 'atlanta.com’ in
turn and compare the domain asserted by the certificate with the “domainname” portior-adrthbeader

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 119]

4480

4481

4482

4483

4484

4485
4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499
4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522
4523

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

field in the INVITE request. The biloxi proxy can thereby ascertain whether it should consider Alice to
be authenticated transitively. The biloxi proxay have a strict security policy that requires it to reject
requests that do not match the administrative domain from which they have been proxied, or perhaps even
more strictly, requests that originate from administrative domains that do not have some policy agreement
with biloxi.

Such security policies could be instituted to prevent the SIP equivalent of SMTP 'open relays’ which are fre-
guently exploited to generate spam.

Once thdNVITE has been approved by the biloxi proxy, the proxy sesrepuLD identify the existing
TLS channel, if any, associated with the user targeted by this request (in this case 'bob@biloxi.com’). The
INVITE should be proxied through this channel to Bob. Since the request is received over a TLS connection
that had previously been authenticated as the biloxi proxy, Bob transitively trusts the identity asserted in the
From header.

Before they forward the request, both proxy sen&i®ULD add Record-Route header fields to the
request so that all future requests in this dialog will pass through the proxy servers. The proxy servers
can thereby continue to provide transitive authentication, confidentiality, replay protection, and so forth for
lifetime of this dialog. If the proxy servers do not add themselves tdtbeord-Route, future messages
will pass directly end-to-end between Alice and Bob without any security services (unless the two parties
agree on some independent end-to-end security).

An attacker preying on this architecture would, for example, be unable to fdyd&Eaequest and insert it into

the signaling stream between Bob and Alice because the attacker has no way of ascertaining the parameters of the
session and also because the integrity mechanism transitively protects the traffic between Alice and Bob.

22.3.2.3 Peerto Peer RequestsAlternatively, consider a UA asserting the identity 'carol@chicago.com’
that has no local outbound proxy. When Carol wishes to sendNsiiTE to 'bob@biloxi.com’, her UA
SHOULD initiate a TLS connection with the biloxi proxy directly (using the mechanism described in [2]
to determine how to best to reach the giveequest-URI). When her UA receives a certificate from the
biloxi proxy, it sHouLD be verified normally before she passes WVITE across the TLS connection.
However, 'carol@chicago.com’ has no means of proving her identity to the biloxi proxy, but she does have
a CMS-detached signature over a “message/sip” body ilNWETE. It is unlikely in this instance that Carol
would have any credentials in the 'biloxi.com’ realm, since she has no formal association with biloxi.com.
The biloxi proxyMAY also have a strict policy that precludes it from even bothering to challenge requests
that do not have 'biloxi.com’ in the “domainname” portion of tReom header - it treats these users as
unauthenticated.

The biloxi proxy has a policy for Bob that all non-authenticated requests should be redirected to the
appropriate contact address registered against 'bob@biloxi.com’, nawsitybob@192.0.24. Carol
receives the redirection response over the TLS connection she established with the biloxi proxy, so she
trusts the veracity of the contact address.

Carol sHouLD then establish a TCP connection with the designated address and send N\H&&
with a Request-URI containing the received contact address (recomputing the signature in the body as
the request is readied). Bob receives tINYITE on an insecure interface, but his UA inspects and, in
this instance, recognizes tieom header field of the request and subsequently matches a locally cached
certificate with the one presented in the signature of the body dNIMETE. He replies in similar fashion,
authenticating himself to Carol, and a secure dialog begins.

Sometimes firewalls or NATs in an administrative domain could preclude the establishment of a direct TCP
connection to a UA. In these cases, proxy servers could also potentially relay requests to UAs in a way that has no

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 120]

4524
4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538
4539
4540
4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

trust implications (for example, forgoing an existing TLS connection and forwarding the request over cleartext TCP)
as local policy dictates.

22.3.2.4 DoS Protection In order to minimize the risk of a denial-of-service attack against architectures
using these security solutions, implementers should take note of the following guidelines.

When the host on which a SIP proxy server is operating is routable from the public Inteswebdut.D
be deployed in an administrative domain with secure routing policies (blocking source-routed traffic, prefer-
ably filtering ping traffic). Both TLS and IPSec can also make use of bastion hosts at the edges of ad-
ministrative domains that participate in the security associations to aggregate secure tunnels and sockets.
These bastion hosts can also take the brunt of denial-of-service attacks, ensuring that SIP hosts within the
administrative domain are not encumbered with superfluous messaging.

No matter what security solutions are deployed, floods of messages directed at proxy servers can lock up
proxy server resources and prevent desirable traffic from reaching its destination. There is a computational
expense associated with processing a SIP transaction at a proxy server, and that expense is greater for
stateful proxy servers than it is for stateless proxy servers. Therefore, stateful proxies are more susceptible

to flooding than stateless proxy servers.

UAs and proxy serversHouULD challenge questionable requests with onbiragle401 (Unauthorized)
or 407 (Proxy Authentication Required), forgoing the normal response retransmission algorithm, and be-
having statelessly towards unauthenticated requests.

Retransmitting the 401 (Unauthorized) or 407 (Proxy Authentication Required) status response amplifies the
problem of an attacker using a falsified header (suctiasto direct traffic to a third party.

With either TCP or UDP, a denial-of-service attack exists by a rogue proxy sending 6xx responses.
Although a clientsHouLD choose to ignore such responses if it requested authentication, a proxy cannot do
so. Itis obliged to forward the 6xx response back to the client. The client can then ignore the response, but
if it repeats the request, it will probably reach the same rogue proxy again, and the process will repeat.

22.4 Limitations

Although these security mechanisms, when applied in a judicious manner, can thwart many threats, there are
limitations in the scope of the mechanisms that must be understood by implementers and network operators.

22.4.1 HTTP Digest

One of the primary limitations of using HTTP Digest in SIP is that the integrity mechanisms in Digest do
not work very well for SIP. Specifically, they offer protection of tRequest-URI and the method of a
message, but not for any of the headers that UAs would most likely wish to secure.

The existing replay protection mechanisms described in RFC 2617 also have some limitations for SIP.
The next-nonce mechanism, for example, does not support pipelined requests. The nonce-count mechanism
should be used for replay protection.

Another limitation of HTTP Digest is the scope of realms. Digest is valuable when a user wants to
authenticate themselves to a resource with which they have a pre-existing association, like a service provider
of which the user is a customer. Consider that, by contrast, the scope of TLS is global, since certificates are
globally verifiable regardless of any pre-existing association between the UA and the server.

Future enhancements to HTTP Digest could conceivably resolve some or all of these limitations.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 121]

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

22.4.2 S/MIME

The largest outstanding defect with the S/MIME mechanism is the lack of prevalent public key infrastructure
for end users. If self-signed certificates (or certificates that cannot be verified by one of the participants in
a dialog) are used, the SIP-based key exchange mechanism described in Section 21.2 is susceptible to a
man-in-the-middle attack with which an attacker can potentially inspect and modify S/IMIME bodies. The
attacker needs to intercept the first exchange of keys between the two parties in a dialog, remove the existing
CMS-detached signatures from the request and response, and insert a different CMS-detached signature
containing a certificate supplied by the attacker (but which seems to be a certificate for the proper address
of record). Each party will think they have exchanged keys with the other, when in fact each has the public
key of the attacker.

It is important to note that the attacker can only leverage this vulnerability on the first exchange of keys
between two parties - on subsequent occasions, the alteration of the key would be noticeable to the UAs. It
would also be difficult for the attacker to remain in the path of all future dialogs between the two parties
over time (as potentially days, weeks, or years pass).

SSH is susceptible to the same man-in-the-middle attack on the first exchange of keys; however, it is
widely acknowledged that while SSH is not perfect, it does improve the security of connections. The use of
key fingerprints could provide some assistance to SIP, just as it does for SSH. For example, if two parties use
SIP to establish a voice communications session, each could read off the fingerprint of the key they received
from the other, which could be compared against the original. It would certainly be more difficult for the
man-in-the-middle to emulate the voices of the participants than their signaling.

The S/IMIME mechanism allows UAs to send encrypted requests without preamble if they possess a
certificate for the destination address of record on their keyring. However, it is also possible that a device
that does not hold certificates, or at least not that particular certificate, will be currently registered as the sole
contact address for that address of record, and it will therefore be unable to process the encrypted request
properly, which could lead to some avoidable error signaling. This is especially likely when an encrypted
request is forked.

The keys associated with S/IMIME are most useful when associated with a particular user (an address
of record) rather than a device (a UA). When users move between devices, it may be difficult to transport
private keys securely between UAs; how such keys might be acquired by a device is outside the scope of
this document.

Another, more prosaic difficulty with the SIMIME mechanism is that it can result in very large messages,
especially when the SIP tunneling mechanism described in Section 21.4 is used. For that reason, it is
RECOMMENDEDthat TCP should be used as a transport protocol when S/IMIME tunneling is employed.

2243 TLS

The most commonly voiced concern about TLS is that it cannot run over UDP; TLS requires a connection-
oriented underlying transport protocol, which for the purposes of this document means TCP. Even running
TCP, regardless of any additional overhead incurred by TLS, is argued to be too intensive for some embedded
devices.

It may also be arduous for a local outbound proxy server and/or registrar to maintain many simultaneous
long-lived TLS connections with numerous UAs. This introduces some valid scalability concerns, especially
for intensive ciphersuites. Maintaining redundancy of long-lived TLS connections, especially when a UA is
solely responsible for their establishment, could also be cumbersome.

TLS only allows SIP entities to authenticate servers to which they are adjacent; TLS offers strictly

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 122]

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

hop-by-hop security. Neither TLS, nor any other mechanism specified in this document, allows clients to
authenticate proxy servers to whom they cannot form a direct TCP connection.

Note, however, when any lower-layer network security is employed the originator and recipient of a
session may be deducible by observers performing a network traffic analysis.

22.5 Privacy

SIP messages frequently contain sensitive information about their senders - not just what they have to say, but
with whom they communicate, when they communicate and for how long, and from where they participate
in sessions. Many applications and their users require that this sort of private information be hidden from
any parties that do not need to know it.

Note that there are also less direct ways in which private information can be divulged. If a user or service
chooses to be reachable at an address that is guessable from the person’s name and organizational affiliation
(which describes most addresses of record), the traditional method of ensuring privacy by having an unlisted
“phone number” is compromised. A user location service can infringe on the privacy of the recipient of a
session invitation by divulging their specific whereabouts to the caller; an implementation consequently
SHOULD be able to restrict, on a per-user basis, what kind of location and availability information is given
out to certain classes of callers.

23 Common Message Components

There are certain components of SIP messages that appear in various places within SIP messages (and
sometimes, outside of them) that merit separate discussion.

23.1 SIP Uniform Resource Indicators

A SIP URI identifies a communications resource. Like all URIs, SIP URIs may be placed in web pages,
email messages, or printed literature. They contain sufficient information to initiate and maintain a commu-
nication session with the resource.

Examples of communications resources include the following:

e a user of an online service

e an appearance on a multi-line phone

a mailbox on a messaging system

a PSTN number at a gateway service

a group (such as “sales” or “helpdesk”) in an organization

23.1.1 SIP URI Components

The “sip:” scheme follows the guidelines in RFC 2396 [13]. It uses a form similar tonthido URL,
allowing the specification of SIRRquest-header fields and the Slifhessage-body. This makes it possible

to specify the subject, media type, or urgency of sessions initiated by using a URI on a web page or in an
email message. The formal syntax for a SIP URI is presented in Section 27. Its general form is

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 123]

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

sip:user:password@host:port;url-parameters?headers

These tokens, and some of the tokens in their expansions, have the following meanings:

user:

The identifier of a particular resource at the host being addressed. The term “host” in this context
frequently refers to a domain. The “userpart” of a URI consists of this user field, the password field,
and the @ sign following them. The userpart of a URI is optional mad be absent when the
destination host does not have a notion of users or when the host itself is the resource being identified.
If the @ sign is present in a SIP URI, the user figldsT NOT be empty.

If the host being addressed can process telephone numbers, for instance, an Internet telephony gate-
way, atelephone-subscriber field defined in RFC 2806 [1NIAY be used to populate thuser field.

There are special escaping rules for encodéigphone-subscriber fields in SIP URIs described in

Section 23.1.2.

password : A password associated with the user. While the SIP URI syntax allows this field to be present,

host :

port :

its use iISNOT RECOMMENDED, because the passing of authentication information in clear text (such
as URIs) has proven to be a security risk in almost every case where it has been used. For instance,
transporting a PIN number in this field exposes the PIN.

Note that the password field is just an extension of user portion. Implementations not wishing to give
special significance to the password portion of the fiedt simply treat “user:password” as a single
string.

The entity hosting the SIP resource. Tiast part contains either a fully-qualified domain name
or numeric IPv4 or IPv6 address. Using the fully-qualified domain name forRE{SOMMENDED
whenever possible.

The port number where the request is to be sent.

URI parameters: Parameters affecting a request constructed from the URI.

URI parameters are added after timstport component and are separated by semi-colons.
URI parameters take the form:

parameter-name "=" parameter-value

Even though an arbitrary number of URI parameters may be included in a URI, any given parameter-
namemMuUST NOT appear more than once.

This extensible mechanism includes thensport, maddr, ttl, user, method andIr parameters.

Thetransport parameter determines the transport mechanism to be used for sending SIP messages,
as specified in [2]. SIP can use any network transport protocol. Parameter names are defined for
UDP [23], TCP [22], TLS [9] (note that this is specifically TLS over TCP), and SCTP [21].

Themaddr parameter indicates the server address to be contacted for this user, overriding any address
derived from théhost field. When armaddr parameter is present, thert andtransport components

of the URI apply to the address indicated in timaddr parameter value. [2] describes the proper
interpretation of théransport, maddr, andhostport in order to obtain the destination address, port,

and transport for sending a request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 124]

4677
4678
4679
4680
4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694
4695
4696

4697
4698
4699
4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Themaddr field has been used as a simple form of loose source routing. It allows a URI to specify a proxy
that must be traversed en-route to the destination. Continuing to useatiidr parameter this way is strongly
discouraged (the mechanisms that enable it are deprecated). Implementations should instea@aige the
mechanism described in this document, establishing a pre-existing route set if necessary (see item 8.1.1.1 in
section 8.1.1). This provides a full URI to describe the node to be traversed.

Thettl parameter determines the time-to-live value of the UDP multicast packetiasd only be

used ifmaddr is a multicast address and the transport protocol is UDP. For example, to specify to call
alice@atlanta.com using multicast to 239.255.255.1 with a ttl of 15, the following URI would

be used:

sip:alice@atlanta.com;maddr=239.255.255.1;ttI=15

The set of validtelephone-subscriber strings is a subset of validser strings. Theuser URI pa-

rameter exists to distinguish telephone numbers from user names that happen to look like telephone
numbers. If the user string contains a telephone number formattetebephone-subscriber, the

user parameter valuephone” sHoOULD be present. Even without this parameter, recipients of SIP
URIs MAY interpret the pre-@ part as a telephone number if local restrictions on the name space for
user name allow it.

The method of the SIP request constructed from the URI can be specified witiethed parameter.

Thelr parameter, when present, indicates that the element responsible for this resource implements
the routing mechanisms specified in this document. This parameter will be used in the URIs proxies
place intoRecord-Route header field values, and may appear in the URIs in a pre-existing route set.

This parameter is used to achieve backwards compatibility with systems implementing the strict-routing
mechanisms of RFC2543 and the rfc2543bis drafts up to bis-05. An element preparing to send a request
based on a URI not containing this parameter can assume the receiving element implements strict-routing and
reformat the message to preserve the information iftbguest-URI.

Since the url-parameter mechanism is extensible, SIP elemests silently ignore any url-parameters
that they do not understand.

Headers: Headers to be included in a request constructed from the URI. Headers fields in the SIP request
can be specified with the “?” mechanism within a SIP URI. The header names and values are en-
coded in ampersand separatethme = hvalue pairs. The specidiname “body” indicates that the
associatedhvalue is themessage-body of the SIP request.

Table 1 summarizes the use of SIP URI components based on the context in which the URI appears. The
external column describes URIs appearing anywhere outside of a SIP message, for instance on a web page
or business card. Entries marked “m” are mandatory, those marked “0” are optional, and those marked “-”
are not allowed. Elements processing URKOULD ignore any disallowed components if they are present.

The second column indicates the default value of an optional element if it is not present. “~” indicates that
the element is either not optional, or has no default value.

SIP URIs inContact header fields have different restrictions depending on the context in which the
header field appears. One set applies to messages that establish and maintainiNeldgsgnd its 200
(OK) response). The other applies to registration and redirection mesfRRESHITER, its 200 (OK)
response, and 3xx class responses to any method).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 125]

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

dialog
reg./redir. Contact/
default Req.-URI To From Contact R-R/Route external

user - 0 o] 0 o] o] 0
password - 0 o] 0 o] o] 0
host - m m m m m m
port 5060 o] - - o] o] o]
user-param ip o] 0 o} 0 0 o]
method INVITE - - - - - o]
maddr-param — 0 - - o] o] 0
ttl-param 1 0 - - o] - o]
transp.-param udp o] - - o] o] o]
Ir-param - 0 - - - o] o]
other-param — 0 o] 0 o} o] 0
headers - - - - 0 - 0

Table 1: Use and default values of URI components for SIP heaetgjest-URI and references

23.1.2 Character Escaping Requirements

SIP follows the requirements and guidelines of RFC 2396 [13] when defining the set of characters that must
be escaped in a SIP URI, and uses its “"%” HEX HEX” mechanism for escaping. From RFC 2396:

The set of characters actually reserved within any given URI component is defined by that com-
ponent. In general, a character is reserved if the semantics of the URI changes if the character
is replaced with its escaped US-ASCII encoding. [13].

Excluded US-ASCII characters [13, Sec. 2.4.3], such as space and control characters and characters used as
URI delimiters, alsavusT be escaped. URIBUST NOT contain unescaped space and control characters.

For each component, the set of valid BNF expansions defines exactly which characters may appear
unescaped. All other charactens/ST be escaped.

For example, “@” is not in the set of characters in the user component, so the user “j@s0n” must have
at least the @ sign encoded, as in “j%40s0n”.

Expanding thenname andhvalue tokens in Section 27 show that all URI reserved characters in header
names and valuegusT be escaped.

Thetelephone-subscriber subset of theiser component has special escaping considerations. The set
of characters not reserved in the RFC 2806 [19] descriptiaelephone-subscriber contains a number
of characters in various syntax elements that need to be escaped when used in SIP URIs. Any characters
occurring in aelephone-subscriber that do not appear in an expansion of the BNF fortker rule MusT
be escaped.

Note that character escaping is not allowed in the host component of a SIP URI (the % character is not
valid in its expansion). This is likely to change in the future as requirements for Internationalized Domain
Names are finalized. Current implementationssT NOT attempt to improve robustness by treating received
escaped characters in the host component as literally equivalent to their unescaped counterpart. The behavior
required to meet the requirements of IDN may be significantly different.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 126]

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

23.1.3 Example SIP URIs

sip:alice@atlanta.com
sip:alice:secretword@atlanta.com;transport=tcp
sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com

sip:alice@192.0.2.4
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com
sip:alice;day=tuesday@atlanta.com

The last example URI above hasiser field value of “alice;day=tuesday”. The escaping rules defined
above allow a semicolon to appear unescaped in this field. Note, however, that for the purposes of this
protocol, the field is opaque. The apparent structure in that value is only useful to the entity responsible for
the resource.

23.1.4 SIP URI Comparison
SIP URIs are compared for equality according to the following rules:

e Comparison of the userpart of sip URIs is case-sensitive. This includes userparts containing pass-
words or formatted as telephone-subscribers. Comparison of all other components of the URI is
case-insensitive unless explicitly defined otherwise.

The ordering of parameters and headers is not significant in comparing SIP URIs.

Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [13]) are equivalent to
their “"%” HEX HEX” encoding.

An IP address that is the result of a DNS lookup of a host namermimteanatch that host name.

For two URIs to be equal, theser, password, host, andport components must match. A URI
omitting the optional port component will match a URI explicitly declaring port 5060. A URI omitting
the user component witlot match a URI that includes one. A URI omitting the password component
will not match a URI that includes one.

URI uri-parameter components are compared as follows

— Any uri-parameter appearing in both URIs must match.

— A user, transport, ttl, or methodurl-parameter appearing in only one URI must contain its
default value or the URIs do not match.
A URI that includes ammaddr parameter willnot match a URI that contains noaddr param-
eter.

— All other url-parameters appearing in only one URI are ignored when comparing the URISs.

¢ URI header components are never ignored. Any predesader componentMusT be present in
both URIs and match for the URIs to match. The matching rules are defined for each header in
Section sec:header-fields.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 127]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

4777 The URIs within each of the following sets are equivalent:

4778 Sip:%61lice@atlanta.com:5060
479 Sip:alice@AtLanTa.CoM;Transport=udp

a7s0 Sip:carol@chicago.com
4731 Sip:carol@chicago.com;newparam=5
a7s2 Sip:carol@chicago.com;security=on

4783 Sip:biloxi.com;transport=tcp;method=REGISTER?to=sip:bob%40biloxi.com
a7ss Sip:biloxi.com;method=REGISTER;transport=tcp?to=sip:bob%40biloxi.com

4785 Sip:alice@atlanta.com?subject=project%20x&priority=urgent
a6 Sip:alice@atlanta.com?priority=urgent&subject=project%20x

4787 The URIs within each of the following sets amet equivalent:

a8 SIP:ALICE@AtLanTa.CoM;Transport=udp (different usernames)
479 Sip:alice@AtLanTa.CoM;Transport=UDP

a790 Sip:bob@biloxi.com (different port and transport)
4791 Sip:bob@biloxi.com:6000;transport=tcp

4792 Sip:carol@chicago.com (different header component)
4793 Sip:carol@chicago.com?Subject=next%20meeting

4794 Sip:bob@phone21.boxesbybob.com (even though that's what

4795 Sip:bob@192.0.2.4 phone21.boxesbybob.com resolves to)
4796 Note that equality is not transitive:

4797 sip:carol@chicago.com and sip:carol@chicago.com;security=on are equivalent

4798 and sip:carol@chicago.com and sip:carol@chicago.com;security=off are equivalent

a799 But sip:carol@chicago.com;security=on and sip:carol@chicago.com;security=ofbtagquivalent

4800 Comparing URIs is a major part of comparing several SIP headers (see Section 24).

w01 23.1.5 Forming Requests from a SIP URI

a2 An implementation must take care when forming requests directly from a URI. URIs from business cards,
as03 Web pages, and even from sources inside the protocol such as registered contacts may contain inappropriate
as04 header fields or body parts.

4805 AnimplementatiomusT include any providetransport, maddr, ttl, oruser parameter in th®equest-

as0s URI of the formed request. If the URI containgreethod parameter, its valuRusT be used as the method

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 128]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

a7 Of the request. Thmethod parametemusT NOT be placed in th®equest-URI. Unknown URI parameters
4808 MUST be placed in the messag&equest-URI.

4809 An implementationrsHOULD treat the presence of any headers or body parts in the URI as a request to
as10 include them in the message, and choose to honor the request on an per-component basis.

4811 AnimplementatiorsHOULD NOThonor these obviously dangerous header fidhdsm, Call-ID, CSeq,

412 Via, andRecord-Route.

4813 An implementationrsHouLD honor any requestedoute header field values in order to not be used as
4814 an unwitting agent in malicious attacks.

4815 An implementatiorsHOULD NOThonor requests to include headers that may cause it to falsely advertise

816 its location or capabilities. These includ&ccept, Accept-Encoding, Accept-Language, Allow, Contact

a7 (in its dialog usage)prganization, Supported, andUser-Agent.

4818 An implementatiorsHOULD verify the accuracy of any requested descriptive headers, incluGioigtent-

as19 Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Date, Mime-

as20 Version, andTimestamp.

4821 If the request formed from constructing a message from a given URI is not a valid SIP request, the URI
ag22 is invalid. An implementatiomusT NOT proceed with transmitting the request. It should instead pursue
as23 the course of action due an invalid URI in the context it occurs.

4824 The constructed request can be invalid in many ways. These include, but are not limited to, syntax error in
4825 header fields, invalid combinations of URI parameters, or an incorrect description of the message body.
4826 Sending a request formed from a given URI may require capabilities unavailable to the implementation.

a2 The URI might indicate use of an unimplemented transport or extension, for example. An implementation
4828 SHOULD refuse to send these requests rather than modifying them to match their capabilities. An imple-
4820 MentationMUST NOT send a request requiring an extension that it does not support.

4830 For example, such a request can be formed through the presence of a headerRequire header parameter or a
4831 method URI parameter with an unknown or explicitly unsupported value.

a2 23.1.6 Relating SIP URIs and tel URLs

as33 When a tel URL [19] is converted to a SIP URI, the entire telephone-subscriber portion of the tel URL,
s34 including any parameters, is placed into the userpart of the SIP URI.
4835 Thus, tel:+358-555-1234567;postd=pp22 becomes

4836 Sip:+358-555-1234567;postd=pp22@foo.com
4837 Not
4838 Sip:+358-555-1234567 @foo.com;postd=pp22

4839 In general, equivalent “tel” URLs converted to SIP URIs in this fashion may not produce equivalent SIP
as20 URIs. The userpart of SIP URIs is compared as a case-sensitive string. Variance in case-insensitive portions
a1 Of tel URLs and reordering of tel URL parameters does not affect tel URL equivalence, but does affect the
as22 equivalence of SIP URIs formed from them.

4843 For example,

4844 tel:+358-555-1234567;postd=pp22

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 129]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

4845 tel:+358-555-1234567;POSTD=PP22
a16 are equivalent, while

4847 sip:+358-555-1234567;postd=pp22 @foo.com
4848 Sip:+358-555-1234567;POSTD=PP22@foo.com

4849 @re Nnot.
4850 Likewise,

4851 tel:+358-555-1234567;postd=pp22;isub=1411
4852 tel:+358-555-1234567;isub=1411;postd=pp22

ags3 are equivalent, while

4854 Sip:+358-555-1234567;postd=pp22;isub=1411@foo.com
4855 Sip:+358-555-1234567;isub=1411;postd=pp22@foo.com

4856 are not.

4857 To mitigate this problem, elements constructing telephone-subscriber fields to place in the userpart of
ass8 @ SIP URIsHOULD fold any case-insensitive portion of telephone-subscriber to lower case, and order the
4859 telephone-subscriber parameters lexically by parameter name. (All components of a tel URL except for
age0 future-extension parameters are defined to be compared case-insensitive.)

4861 Following this suggestion, both

4862 tel:+358-555-1234567;postd=pp22
4863 tel:+358-555-1234567;POSTD=PP22

a6 become
4865 Sip:+358-555-1234567;postd=pp22@foo.com
ases and both

4867 tel:+358-555-1234567;postd=pp22;isub=1411
4868 tel:+358-555-1234567;isub=1411;postd=pp22

4860 become
4870 Sip:+358-555-1234567;isub=1411;postd=pp22

s 23.2 Option Tags

as72 Option tags are unique identifiers used to designate new options (extensions) in SIP. These tags are used in
as73 Require (Section 24.33)Proxy-Require (Section 24.29Supported (Section 24.39) antUnsupported

a4 (Section 24.42) header fields. Note that these options appear as parameters in those headptoim-tay

ss7s = token form (see Section 27 for the definition wken).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 130]

4876

4877

4878

4879

4880

4881

4882

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The creator of a new SIP optiomusT either prefix the option with their reverse domain name or register
the new option with the Internet Assigned Numbers Authority (IANA) (See Section 28).

An example of a reverse-domain-name option is “com.foo.mynewfeature”, whose inventor can be reached
at “foo.com”. For these features, individual organizations are responsible for ensuring that option names do
not collide within the same domain. The host name part of the optiggIr use lower-case; the option name
is case-insensitive.

Options registered with IANA do not contain periods and are globally unique. IANA option tags are
case-insensitive.

23.3 Tags

The “tag” parameter is used in thEo andFrom fields of SIP messages. It serves as a general mechanism
to identify a particular instance of a user agent for a particular SIP URI.

As proxies can fork requests, the same request can reach multiple instances of a user (mobile and home
phones, for example). Since each can respond, there needs to be a means for the originator of a session to
distinguish the responses. Tag fields in Teeand From disambiguate these multiple instances of the same
user.

This situation also arises with multicast requests.

When a tag is generated by a UA for insertion into a request or respons@sit be globally unique
and cryptographically random with at least 32 bits of randomness. A property of this selection requirement
is that a UA will place a different tag into therom header of ariNVITE as it would place into thdo
header of the response to the saM¥ITE. This is needed in order for a UA to invite itself to a session, a
common case for “hairpinning” of calls in PSTN gateways. Similarly, tNWITEs for different calls will
have different-rom tags.

Besides the requirement for global uniqueness, the algorithm for generating a tag is implementation
specific. Tags are helpful in fault tolerant systems, where a dialog is to be recovered on an alternate server
after a failure. A UAS can select the tag in such a way that a backup can recognize a request as part of a
dialog on the failed server, and therefore determine that it should attempt to recover the dialog and any other
state associated with it.

24 Header Fields

The general syntax for header fields is covered in Section 7.3. This section lists the full set of header fields
along with notes on syntax, meaning, and usage. Throughout this section, we use [HX.Y] to refer to Section
X.Y of the current HTTP/1.1 specification RFC 2616 [15]. Examples of each header field are given.
Information about header fields in relation to methods and proxy processing is summarized in Tables 2
and 3.
The “where” column describes the request and response types in which the header field can be used.
Values in this column are:

R: header fields may only appear in requests;
r: header field may only appear in responses;

2xX, 4xx, etc.: A numerical value or range indicates response codes with which the header field can be
used;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 131]

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

4928

4929

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

c. header field is copied from the request to the response.

An empty entry in the “where” column indicates that the header may be present in all requests and re-
sponses.

The “proxy” column describes the operations a proxy may perform on a header:

c: A proxy can add (concatenate) comma-separated elements to the header.

m: A proxy can modify the header.

a: A proxy can add the header if not present.

r: A proxy must be be able to read the header and thus this header cannot be encrypted.
The next six columns relate to the presence of a header field in a method:

0: The header field is optional.

m: The header field is mandatory.

m*. The header fieldHOULD be sent, but servers need to be prepared to receive messages without that
header field.

t: The header fieldHouULD be sent, but servers need to be prepared to receive messages without that header
field. If TCP is used as transport, then the header firigT be sent.

*. The header field is required if the message body is not empty. See sections 24.14, 24.15 and 7.4 for
details.

-: The header field is ignored.

c. Conditional; the header field is either mandatory or optional, depending on the presence of a route set or
the response code.

“Optional” means that a UMAY include the header field in a request or response, and mAYAignore
the header field if present in the request or response (The exception to this rul®eqtiee header field
discussed in 24.33). A “mandatory” header fieldsT be present in a request, amisT be understood
by the UAS receiving the request. A mandatory response heademfigdd be present in the response,
and the header fieldusT be understood by the UAC processing the response. “Not applicable” means that
the header fieldhusT NOT be present in a request. If one is placed in a request by mistakesit be
ignored by the UAS receiving the request. Similarly, a header field labeled “not applicable” for a response
means that the UASIUST NOT place the header in the response, and the WAGT ignore the header in
the response.

A UA sHouLD ignore extension header parameters that are not understood.

A compact form of some common header fields is also defined for use when overall message size is an
issue.

The Contact, From, andTo header fields contain a URI. If the URI contains a comma, question mark
or semicolon, the URMUST be enclosed in angle brackets &nd>). Any URI parameters are contained
within these brackets. If the URI is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URI parameters.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 132]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Header field where proxy ACK BYE CAN INV OPT REG PRA
Accept R - o] - m* m* o] o]
Accept 2XX - - - m* m* o] -
Accept 415 - o] - 0 o] o] o]
Accept-Encoding R - o] - m* 0 o] o]
Accept-Encoding 2XX - - - m* m* o] -
Accept-Encoding 415 - o] - (o] o] (o] (o]
Accept-Language R - 0] - m* o] o] o]
Accept-Language 2XX - - - m* m* o] -
Accept-Language 415 - o] - o] 0] o] o]
Alert-Info R am - - - o] - - -
Alert-Info 180 am - - - o] - - -
Allow R 0 0 o] o] 0] o] o]
Allow 2XX - o] o] m* m* 0 o]
Allow r - 0 o] o] o] o] o]
Allow 405 - m m m m m m
Authentication-Info 2XX - o] - 0 0 0 0
Authorization R o] 0 o] o] o] o] o]
Call-ID c r m m m m m m m
Call-Info am - - - o] o] o] -
Contact R o] - - m 0 o] -
Contact Ixx - - - 0 o] - -
Contact 2XX - - - m o] o] -
Contact 3xx - o] - o] o] o] o]
Contact 485 - o] - o] o] o] o]
Content-Disposition o] o] - o] o] 0 0
Content-Encoding o] o] - o] o] (o] o]
Content-Language o] o] - o] o] 0 0
Content-Length r t t t t t t t
Content-Type * * - * * * *
CSeq c r m m m m m m m
Date a o] o] 0] (o] 0] (o] o]
Error-Info 300-699 - o] o] o] o] o] o]
Expires - - - o] - 0 -
From c r m m m m m m m
In-Reply-To R - - - 0 - - -
Max-Forwards R amr m m m m m m m
Min-Expires 423 - - - - - m -
MIME-Version o] o] o] o] o] o] o]
Organization am - - - 0 o] o] -

Table 2: Summary of header fields, A-O

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 133]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Header field where proxy ACK BYE CAN INV OPT REG PRA
Priority R a - - - (o] - - -
Proxy-Authenticate 407 - m m m m m m
Proxy-Authorization R r o] o] o] o] 0 0 0
Proxy-Require R r - 0 - 0 o] o] o]
RAck R - - - - - - m
Record-Route R amr o] o] o] o] o] - o]
Record-Route 2xx,401,484 - o] o] o] - o]
Reply-To - - - 0 - - -
Require acr - 0 - o] 0 0 0
Retry-After 404,413,480,486 - 0 0 0 0 o] o]
500,503 - 0 o] 0 o] o] o]
600,603 - 0 o] 0 o] o] o]
Route R r c c c c c - c
RSeq Ixx - o] - 0 o] o] -
Server r - o] o] o] o] o] o]
Subject R - - o] - - -
Supported R - 0 0 o] o] o] o]
Supported 2XX - 0 0 o] m* o] o]
Timestamp 0 0 0 0 o] o] o]
To c(1) r m m m m m m m
Unsupported 420 - o] o] o] 0] o] 0]
User-Agent o] o] o] o] o] o] o]
Via c acmr m m m m m m m
Warning r - o] o] o] o] o] o]
WWW-Authenticate 401 - m m m m m m

Table 3: Summary of header fields, P-Z; (1): copied with possible addition of tag

w51 24.1 Acce pt

as2 The Accept header follows the syntax defined in [H14.1]. The semantics are also identical, with the excep-
4953 tion that if noAccept header is present, the sergrouLD assume a default value application/sdp

4954 An emptyAccept header field means that no formats are acceptable.

4955 Example:

4956 Accept: application/sdp;level=1, application/x-private, text/html

w57 24.2 Accept-Encoding

a8 The Accept-Encoding header field is similar té\ccept, but restricts the content-codings [H3.5] that are

4959 acceptable in the response. See [H14.3]. The syntax of this header is defined in [H14.3]. The semantics in
a960 SIP are identical to those defined in [H14.3].

4961 An empty Accept-Encoding header field is permissible, even though the syntax in [H14.3] does not
a962 provide for it. It is equivalent té\ccept-Encoding: identity, that is, only the identity encoding, meaning

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 134]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

4963 N0 encoding, is permissible.

4964 If no Accept-Encoding header is present, the sengfouLD assume a default value wfentity.

4965 This differs slightly from the HTTP definition, which indicates that when not present, any encoding can
a66 be used, but the identity encoding is preferred.

4967 Example:

4968 Accept-Encoding: gzip

w0 24.3 Accept-Language

a970 The Accept-Language header is used in requests to indicate the preferred languages for reason phrases,
a971 Session descriptions, or status responses carried as message bodies in the respohseeptih@nguage
a972 header is present, the serngrouLD assume all languages are acceptable to the client.

4973 The Accept-Language header follows the syntax defined in [H14.4]. The rules for ordering the lan-
a974 guages based on thg™parameter apply to SIP as well.
4975 Example:

4976 Accept-Language: da, en-gb;q=0.8, en;q=0.7

wrr 24.4 Alert-Info

a8 When present in alNVITE request, thélert-Info header field specifies an alternative ring tone to the UAS.
a979 When present in a 180 (Ringing) response,Alert-Info header field specifies an alternative ringback tone
a9s0 to the UAC. A typical usage is for a proxy to insert this header to provide a distinctive ring feature.

4981 The Alert-Info header can introduce security risks. These risks and the ways to handle them are dis-
a8z cussed in Section 24.9, which discussesGh#-Info header since the risks are identical.

4983 In addition, a usesHOULD be able to disable this feature selectively.

4984 This helps prevent disruptions that could result from the use of this header by untrusted elements.

4985 Example:

a9ss Alert-Info: <http://wwww.example.com/sounds/moo.wav>

w87 245 Allow

a9s8 TheAllow header field lists the set of methods supported by the UA generating the message.

4989 All methods, includingACK and CANCEL, understood by the UMusST be included in the list of

a990 methods in theAllow header, when present. The absence oAbow heademusT NOT be interpreted to

a991 mMean that the UA sending the message supports no methods. Rather, it implies that the UA is not providing
4992 any information on what methods it supports.

4993 Supplying anAllow header in responses to methods other @&TIONS reduces the number of mes-
4994 Sages needed.
4995 Example:

4996 Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 135]

4997

4998

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

24.6 Authentication-Info

TheAuthentication-Info header provides for mutual authentication with HTTP Digest. A WAS include
this header in a 2xx response to a request that was successfully authenticated using digest based on the
Authorization header.

Syntax and semantics follow those specified in RFC 2617 [16].

Example:

Authentication-Info: nextnonce="47364c23432d2e131a5fh210812¢"

24.7 Authorization

The Authorization header field contains authentication credentials of a UA. Section 20.2 overviews the use
of the Authorization header field, and Section 20.4 describes the syntax and

semantics when used with HTTP authentication.

This header field, along witRroxy-Authorization, breaks the general rules about multiple header fields.
Although not a comma-separated list, this header field may be present multiple timesyandvoT be
combined into a single header using the usual rules described in Section 7.3.

In the example below, there are no quotes around the Digest parameter:

Authorization: Digest username="Alice", realm="Bob’s Friends",
nonce="84a4cc6f3082121f32b42a2187831a9e",
response="7587245234h3434cc3412213e5f113a5432"

24.8 Call-ID

The Call-ID header field uniquely identifies a particular invitation or all registrations of a particular client.
A single multimedia conference can give rise to several calls with diffeZafitIDs, for example, if a user
invites a single individual several times to the same (long-running) confer@adklDs are case- sensitive
and are simply compared byte-by-byte.

The compact form of th€all-ID header field is.

Examples:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@biloxi.com
i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6@192.0.2.4

24.9 Call-Info

The Call-Info header field provides additional information about the caller or callee, depending on whether
it is found in a request or response. The purpose of the URI is described bpuhgose” parameter.
The “icon” parameter designates an image suitable as an iconic representation of the caller or callee. The
“info” parameter describes the caller or callee in general, for example, through a web pageaiftie “
parameter provides a business card, for example, in vCard [37] or LDIF [38] formats. Additonal tokens can
be registered using IANA and the procedures in Section 28.

Use of theCall-Info header field can pose a security risk. If a callee fetches the URIs provided by a
malicious caller, the callee may be at risk for displaying inappropriate or offensive content, dangerous or

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 136]

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

5054

5055
5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

illegal content, and so on. Therefore, itRECOMMENDED that a UA only render the information in the
Call-Info header if it can verify the authenticity of the element that originated the header and trusts that
element. This need not be the peer UA; a proxy can insert this header into requests.

Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg> ;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

24.10 Contact

The Contact header field provides a URI whose meaning depends on the the type of request or response it
isin.

A Contact header field can contain a display name, a URI with URI parameters, and header parameters.

This document defines theontact parameters " and “expires”. These parameters are only used
when theContact is present in ®ISTER request or response, or in a 3xx response. Additional param-
eters may be defined in other specifications.

When the header field contains a display name, the URI including all URI parameters is enclosed in
“<"and “>". If no “ <” and “>" are present, all parameters after the URI are header parameters, not URI
parameters. The display name can be tokens, or a quoted string, if a larger character set is desired.

Even if the ‘display-name” is empty, the ‘hame-addr” form MuUsT be used if the &ddr-spec” con-
tains a comma, semicolon, or question mark. There may or may not be LWS betwetspiag-name
and the <”.

These rules for parsing a display name, URI and URI parameters, and header parameters also apply for
the header field$o andFrom.

The Contact header has a role similar to thecation header field in HTTP. However, the HTTP header field

only allows one address, unquoted. Since URIs can contain commas and semicolons as reserved characters, they
can be mistaken for header or parameter delimiters, respectively.

The compact form of th€ontact header field isn (for “moved”).
The second example below show€antact header field containing both a URI parametearfsport)
and a header parametexpires).

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
;g=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

m: <sip:bob@192.0.2.4;transport=tcp>;expires=60

24.11 Content-Disposition

The Content-Disposition header field describes how the message body or, for multipart messages, a mes-
sage body part is to be interpreted by the UAC or UAS. This SIP header field extends the GiiiM&nt-
Type (RFC 1806 [6]).

The value $ession” indicates that the body part describes a session, for either calls or early (pre-call)
media. The valuerénder” indicates that the body part should be displayed or otherwise rendered to the
user. For backward-compatibility, if tH@ontent-Disposition header is missing,

the servesHOULD assume bodies @ontent-Type application/sdp are the dispositionsession”,
while other content types areender”.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 137]

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107
5108
5109
5110

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The disposition typeiton” indicates that the body part contains an image suitable as an iconic repre-
sentation of the caller or callee. The valert” indicates that the body part contains information, such as
an audio clip, that should be rendered instead of ring tone.

The handling parametenandling-parm, describes how the UAS should react if it receives a message
body whose content type or disposition type it does not understand. The parameter has defined values
of “optional” and “required”. If the handling parameter is missing, the valueduired” sSHoOULD be
assumed.

If this header field is missing, the MIME type determines the default content disposition. If there is
none, ‘fender” is assumed.

Example:

Content-Disposition: session

24.12 Content-Encoding

The Content-Encoding header field is used as a modifier to theedia-type”. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanismaiusT be applied in order to obtain the media-type referenced byCitretent-Type header
field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of
its underlying media type.

If multiple encodings have been applied to an entity, the content codings be listed in the order in
which they were applied.

All content-coding values are case-insensitive. IANA acts as a registry for content-coding value tokens.
See [H3.5] for a definition of the syntax foobntent-coding.

ClientsmAY apply content encodings to the body in requests. A senver apply content encodings to
the bodies in responses. The senversT only use encodings listed in teccept-Encoding header in the
request.

The compact form of th€ontent-Encoding header field i®. Examples:

Content-Encoding: gzip
e: tar

24.13 Content-Language
See [H14.12]. Example:

Content-Language: fr

24.14 Content-Length

The Content-Length header field indicates the size of the message-body, in decimal number of octets,
sent to the recipient. ApplicatiorsHoOULD use this field to indicate the size of the message-body to be
transferred, regardless of the media type of the entity. If TCP is used as transport, the heasiersfiete:

used.

The size of the message-body does include the CRLF separating headers and body. Goptent-
Length greater than or equal to zero is a valid value. If no body is present in a message, tGemtéet-
Length header fielduusT be set to zero.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 138]

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138
5139

5140

5141

5142

5143

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate re-
sponses.

The compact form of the headerlis
Examples:

Content-Length: 349
l: 173

24.15 Content-Type

The Content-Type header field indicates the media type of the message-body sent to the recipient. The
“media-type” element is defined in [H3.7]. Th€ontent-Type heademusT be present if the body is not
empty. If the body is empty, and@ontent-Type header is present, it indicates that the body of the specific
type has zero length (for example, an empty audio file).

The compact form of the headerds

Examples:

Content-Type: application/sdp
c: text/html; charset=ISO-8859-4

24.16 CSeq

A CSeq header field in a request contains a single decimal sequence number and the request method. The
sequence numbefrusT be expressible as a 32-bit unsigned integer. C8eq header serves to order trans-
actions within a dialog, to provide a means to uniquely identify transactions, and to differentiate between
new requests and request retransmissions.

Example:

CSeq: 4711 INVITE

24.17 Date

The Date header field contains an RFC 1123 date (see [H14.18]). Unlike HTTP/1.1, SIP only supports the
most recent RFC 1123 [3] format for dates. As in [H3.3], SIP restricts the timezddi@wdate to “GMT”,
while RFC 1123 allows any timezondc1123-date is case-sensitive.

TheDate header field reflects the time when the request or response is first sent.

The Date header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time. However, in its GMT form, it requires clients to know their offset from GMT.

Example:

Date: Sat, 13 Nov 2010 23:29:00 GMT

24.18 Error-Info

TheError-Info header field provides a pointer to additional information about the error status response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 139]

5144
5145
5146
5147
5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

SIP UACs have user interface capabilities ranging from pop-up windows and audio on PC softclients to audio-
only on "black” phones or endpoints connected via gateways. Rather than forcing a server generating an error to
choose between sending an error status code with a detailed reason phrase and playing an audio recording, the
Error-Info header field allows both to be sent. The UAC then has the choice of which error indicator to render to the
caller.

A UAC MAY treat a SIP URI in arError-Info header field as if it were €ontact in a redirect and
generate a neWNVITE, resulting in a recorded announcement session being established. A non-SIP URI
MAY be rendered to the user.

Examples:

SIP/2.0 404 The number you have dialed is not in service
Error-Info: <sip:not-in-service-recording@atlanta.com>

24.19 Expires

The Expires header field gives the relative time after which the message (or content) expires.

The precise meaning of this is method dependent.

The expiration time in adNVITE doesnot affect the duration of the actual session that may result
from the invitation. Session description protocols may offer the ability to express time limits on the session
duration, however.

The value of this field is an integer number of seconds (in decimal), measured from the receipt of the
request.

Example:

Expires: 5

24.20 From

The From header field indicates the initiator of the request. This may be different from the initiator of the
dialog. Requests sent by the callee to the caller use the callee’s addresEriorthkeeader field.

The optional tisplay-name” is meant to be rendered by a human user interface. A systeDuLD use
the display name “Anonymous” if the identity of the client is to remain hidden. Even ifdisplay-name”
is empty, the hame-addr” form MusT be used if the &ddr-spec” contains a comma, question mark, or
semicolon. Syntax issues are discussed in Section 7.3.1.

Section 12 describes hotwrom header fields are compared for the purpose of matching requests to
dialogs. See Section 24.10 for the rules for parsing a display name, URI and URI parameters, and header
parameters.

The compact form of the headerfis

Examples:

From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s

From: sip:+12125551212@server.phone2net.com;tag=887s
f: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 140]

5180

5181

5182

5183
5184
5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

24.21 In-Reply-To

The In-Reply-To header field enumerates tlall-IDs that this call references or returns. Th&sdl-IDs
may have been cached by the client then included in this header in a return call.

This allows automatic call distribution systems to route return calls to the originator of the first call. This also
allows callees to filter calls, so that only return calls for calls they originated will be accepted. This field is not a
substitute for request authentication.

Example:

In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

24.22 Max-Forwards

The Max-Forwards header field must be used with any SIP method to limit the number of proxies or
gateways that can forward the request to the next downstream server. This can also be useful when the client
is attempting to trace a request chain that appears to be failing or looping in mid-chain.

TheMax-Forwards value is an integer in the range 0-255 indicating the remaining number of times this
request message is allowed to be forwarded. This count is decremented by each server that forwards the
request.

This header field should be inserted by elements that can not otherwise guarantee loop detection. For
example, a B2BUA should insertMax-Forwards header field.

Example:

Max-Forwards: 6

24.23 Min-Expires

The Min-Expires header field conveys the minimum registration expiration interval to a registrar. The
header field contains a decimal integer number of seconds. The use of the header field in a 423 (Registration
Too Brief) response is described in Sections 10.2.8, 10.3, and 25.4.17.

Example:

Min-Expires: 60

24.24 MIME-Version

See [H19.4.1].
Example:

MIME-Version: 1.0

24.25 Organization

The Organization header field conveys the name of the organization to which the entity issuing the request
or response belongs.

The fieldmAY be used by client software to filter calls.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 141]

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Example:

Organization: Boxes by Bob

24.26 Priority

ThePriority header field indicates the urgency of the request as perceived by the cliefridtigy header

field describes the priority that the SIP request should have to the receiving human or its agent. For example,
it may be factored into decisions about call routing and acceptance. It does not influence the use of commu-
nications resources such as packet forwarding priority in routers or access to circuits in PSTN gateways. The
header field can have the values “non-urgent”, “normal”, “urgent”, and “emergency”, but additional values
can be defined elsewhere. IIRECOMMENDED that the value of “emergency” only be used when life, limb,

or property are in imminent danger. Otherwise, there are no semantics defined for this header field.

These are the values of RFC 2076 [34], with the addition of “emergency”.

Examples:

Subject: A tornado is heading our way!
Priority: emergency

or

Subject: Weekend plans
Priority: non-urgent

24.27 Proxy-Authenticate

TheProxy-Authenticate header field contains an authentication challenge.
The syntax for this header and its use is defined in [H14.33]. See 20.3 for further details on its usage.
Example:

Proxy-Authenticate: Digest realm="Carrier SIP",
domain="sip:ssl.carrier.com",
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

24.28 Proxy-Authorization

TheProxy-Authorization header field allows the client to identify itself (or its user) to a proxy that requires
authentication. Th&roxy-Authorization field value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the resource being requested.

See [H14.34] for a definition of the syntax, and section 20.3 for a discussion of its usage.

This header field, along witAuthorization, breaks the general rules about multiple header fields. Al-
though not a comma-separated list, this header field may be present multiple timesysndvoT be
combined into a single header using the usual rules described in Section 7.3.1.

Example:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 142]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

s2a7 Proxy-Authorization: Digest username="Alice", realm="Atlanta ISP",
5248 nonce="c60f3082ee1212b402a21831ae",
5249 response="245f23415f11432b3434341c022"

ss0 24.29 Proxy-Require

s2s1 The Proxy-Require header field is used to indicate proxy-sensitive features that must be supported by the
s252 Proxy. See Section 24.33 for more details on the mechanics of this message and a usage example.
5253 Example:

5254 Proxy-Require: foo

sss 24.30 RAck

s256 TheRAck header is sent in BRACK request to support reliability of provisional responses. It contains two
s257 - humbers and a method tag. The first number is the value frolR$8®® header in the provisional response
s2s8 that is being acknowledged. The next number, and the method, are copied fr@8digen the response
s2s9 that is being acknowledged. The method name irRAek header is case sensitive.

5260 Example:

5261 RAck: 776656 1 INVITE

s262 24.31 Record-Route

s263 The Record-Route is inserted by proxies in a request to force future requests in the session to be routed
s264 through the proxy.

5265 Details of its use with th®oute header field are described in Section 16.4.

5266 Example:

5267 Record-Route: <sip:bob@biloxi.com;maddr=192.0.2.4>,
5268 <sip:bob@biloxi.com;maddr=192.0.6.1>

s00 24.32 Reply-To

s270 TheReply-To header field contains a logical return URI which may be different fronfrtben header field.

so11 - For example, the URIWAY be used to return missed calls or unestablished sessions. If the user wished to
s272 - remain anonymous, the header fisldouLD either be omitted from the request or populated in such as way
s273 that does not reveal any private information.

5274 Even if the ‘display-name” is empty, the ‘hame-addr” form MuUsT be used if the &ddr-spec” con-

5275 tains a comma, question mark, or semicolon. Syntax issues are discussed in Section 7.3.1.

5276 Example:

5277 Reply-To: Bob <sip:bob@biloxi.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 143]

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

24.33 Require

The Require header field is used by UACs to tell UASs about options that the UAC expects the UAS to
support in order to process the request. Although an optional headðeére MusT NOT be ignored if
it is present.

The Require header contains a list of option tags, described in Section 23.2. Each option tag defines
a SIP extension thatusT be understood to process the request. Frequently, this is used to indicate that a
specific set of extension headers need to be understood. A UAC compliant to this specificagioonly
include option tags corresponding to standards-track RFCs.

Example:

Require: 100rel

24.34 Retry-After

The Retry-After header field can be used with a 503 (Service Unavailable) response to indicate how long
the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 600 (Busy), or
603 (Decline) response to indicate when the called party anticipates being available again. The value of this
field is a positive integer number of seconds (in decimal) after the time of the response.

An optional comment can be used to indicate additional information about the time of callback. An
optional ‘duration” parameter indicates how long the called party will be reachable starting at the initial
time of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

Examples:

Retry-After: 18000;duration=3600
Retry-After: 120 (I'm in a meeting)

24.35 Route

TheRoute is used to force routing for a request through the listed set of proxies. Details of its use with the
Record-Route header field are described in Section 13.
Example:

Route: <sip:bob@biloxi.com;maddr=192.0.2.4>, <sip:bob@pc33.atlanta.com>

24.36 RSeq

The RSeq header is used in provisional responses in order to transmit them reliably. It contains a single
numeric value from 1 to 2**32 - 1. For details on its usage, see Section 18.1.
Example:

RSeq: 988789

24.37 Server

The Server header field contains information about the software used by the UAS to handle the request.
The syntax for this field is defined in [H14.38].

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 144]

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Revealing the specific software version of the server might allow the server to become more vulnerable
to attacks against software that is known to contain security holes. Implemsniots. D make theServer
header field a configurable option.

Example:

Server: HomeProxy v2

24.38 Subject

The Subject header field provides a summary or indicates the nature of the call, allowing call filtering
without having to parse the session description. The session description does not have to use the same
subject indication as the invitation.

The compact form of the headerss

Example:

Subject: Need more boxes
s: Tech Support

24.39 Supported

The Supported header field enumerates all the extensions supported by the UAC or UAS.

The Supported header contains a list of option tags, described in Section 23.2, that are understood by
the UAC or UAS. A UA compliant to this specificatiomusT only include option tags corresponding to
standards-track RFCs. If empty, it means that no extensions are supported.

Example:

Supported: 100rel

24.40 Timestamp

TheTimestamp header field describes when the UAC sent the request to the UAS.

See Section 8.2.6 for details on how to generate a response to a request that contains the header field,
and Section 17.3 for usage in RTT estimation.

Example:

Timestamp: 54

2441 To

The To header field specifies the logical recipient of the request.
The optional tisplay-name” is meant to be rendered by a human-user interface. Td@' ‘parameter
serves as a general mechanism to distinguish multiple instances of a user identified by a single SIP URI.
See Section 13 for details of th&ay” parameter.
Section 12 describes hovo andFrom header fields are compared for the purpose of matching requests
to dialogs. See Section 24.10 for the rules for parsing a display name, URI and URI parameters, and header
parameters.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 145]

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The compact form of the headertis
The following are examples of valitb headers:

To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
t. sip:+12125551212@server.phone2net.com

24.42 Unsupported

TheUnsupported header field lists the features not supported by the UAS. See Section 24.33 for motivation.
Example:

Unsupported: foo

24.43 User-Agent

The User-Agent header field contains information about the UAC originating the request. The syntax and
semantics are defined in [H14.43].

Revealing the specific software version of the user agent might allow the user agent to become more
vulnerable to attacks against software that is known to contain security holes. ImplenseansdD make
theUser-Agent header field a configurable option.

Example:

User-Agent: Softphone Betal.5

24.44 Via

The Via field indicates the path taken by the request so far and indicates the path that should be followed in
routing responses. The branch ID parameter inttaeheader serves as a transaction identifier, and is used
by proxies to detect loops.

TheVia header field contains the transport protocol used to send the message, the client’s host name or
network address and, if not the default port number, the port number at which it wishes to receive responses.
TheVia header field can also contain parameters suchmasitr”, “ttl”, “ received”, and “branch”, whose
meaning and use are described in other sections.

Transport protocols defined here atdDP”, “TCP”, “TLS”, and “SCTP”. “TLS” means TLS over
TCP.

The host or network address and port number are not required to follow the SIP URI syntax. Specifically,

LWS on either side of the “:” or /" is allowed, as shown in the second example below.

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060;branch=z9hG4bK87asdks7
Via: SIP/2.0/UDP 128.59.16.1:5060 ;received=128.59.19.3;branch=z9hG4bK77asjd

The compact form of the headenis

In this example, the message originated from a multi-homed host with two addresses, 128.59.16.1
and 128.59.19.3. The sender guessed wrong as to which network interface would be used. Erlang.bell-
telephone.com noticed the mismatch and added a parameter to the previougiati@ader field, contain-
ing the address that the packet actually came from.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 146]

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Another example:

Via: SIP / 2.0 / UDP first.example.com: 4000;ttl=16
:maddr=224.2.0.1 ;branch=z9hG4bKa7c6a8dlze.1

Even though this specification mandates that the branch parameter be present in all requests, the BNF
for the header indicates that it is optional. This allows interoperation with RFC 2543 elements, which did
not have to insert the branch parameter.

24.45 Warning

TheWarning header field is used to carry additional information about the status of a resjWwaseing
headers are sent with responses and contain a three-digit warning code, host name, and warning text.

The “warn-text” should be in a natural language that is most likely to be intelligible to the human user
receiving the response. This decision can be based on any available knowledge, such as the location of the
user, theAccept-Language field in a request, or th€ontent-Language field in a response. The default
language is i-default [10].

The currently-definedwarn-code”s are listed below, with a recommende@rn-text in English and a
description of their meaning. These warnings describe failures induced by the session description. The first
digit of warning codes beginning with “3” indicates warnings specific to SIP. Warnings 300 through 329 are
reserved for indicating problems with keywords in the session description, 330 through 339 are warnings
related to basic network services requested in the session description, 370 through 379 are warnings related
to quantitative QoS parameters requested in the session description, and 390 through 399 are miscellaneous
warnings that do not fall into one of the above categories.

300 Incompatible network protocol: One or more network protocols contained in the session description
are not available.

301 Incompatible network address formats: One or more network address formats contained in the ses-
sion description are not available.

302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
tion are not available.

303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
description were not understood.

304 Media type not available: One or more media types contained in the session description are not avail-
able.

305 Incompatible media format: One or more media formats contained in the session description are not
available.

306 Attribute not understood: One or more of the media attributes in the session description are not sup-
ported.

307 Session description parameter not understoodA parameter other than those listed above was not
understood.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 147]

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

330 Multicast not available: The site where the user is located does not support multicast.

331 Unicast not available: The site where the user is located does not support unicast communication (usu-
ally due to the presence of a firewall).

370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
exceeds that known to be available.

399 Miscellaneous warning: The warning text can include arbitrary information to be presented to a hu-
man user or logged. A system receiving this warmngsT NOT take any automated action.

1xx and 2xx have been taken by HTTP/1.1.

Additional “warn-code”s, as in the example below, can be defined through IANA.
Examples:

Warning: 307 isi.edu "Session parameter 'foo’ not understood"
Warning: 301 isi.edu "Incompatible network address type 'E.164™

24.46 WWW-Authenticate

TheWWW-Authenticate header field contains an authentication challenge. The syntax for this header field
and use is defined in [H14.47]. See 20.2 for further details on its usage.
Example:

WWW-Authenticate: Digest realm="Bob’s Friends",
domain="sip:boxesbybob.com”,
nonce="f84flcec4le6che5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

25 Response Codes

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
SHOULD NOT be used. Response codes not defined by HTTP/1.1 have codes x80 upwards to avoid clashes
with future HTTP response codes. Also, SIP defines a new class, 6xx.

25.1 Provisional 1xx

Provisional responses, also known as informational responses, indicate that the server or proxy contacted is
performing some further action and does not yet have a definitive response. A server typically sends a 1xx
response if it expects to take more than 200 ms to obtain a final response. Note that 1xx responses are not
transmitted reliably. That is, they do not cause the client to ser&lCah Provisional (1xx) responsegay

contain message bodies, including session descriptions.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 148]

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25.1.1 100 Trying

This response indicates that the request has been received by the next-hop server and that some unspecified
action is being taken on behalf of this call (for example, a database is being consulted). This response, like
all other provisional responses, stops retransmissions tNYITE by a UAC. The 100 (Trying) response

is different from other provisional responses, in that it is never forwarded upstream by a stateful proxy.

25.1.2 180 Ringing

The UA receiving théNVITE is trying to alert the user. This respongey be used to initiate local ringback.

25.1.3 181 Call Is Being Forwarded

A proxy serverMAY use this status code to indicate that the call is being forwarded to a different set of
destinations.

25.1.4 182 Queued

The called party is temporarily unavailable, but the callee has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, for example, “5 calls queued; expected waiting time is
15 minutes”. The servemAy issue several 182 (Queued) responses to update the caller about the status of
the queued call.

25.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call which is
not otherwise classified. THeeason-Phrase, header fields, or message boalyy be used to convey more
details about the call progress.

25.2 Successful 2xx

The request was successful.

25.2.1 2000K

The request has succeeded. The information returned with the response depends on the method used in the
request.

25.3 Redirection 3xx

3xx responses give information about the user's new location, or about alternative services that might be
able to satisfy the call.

25.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
UA) can select a preferred communication end point and redirect its request to that location.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 149]

5479

5480

5481

5482

5483

5484

5485

5486
5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502
5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The respons#AY include a message body containing a list of resource characteristics and location(s)
from which the user or UA can choose the one most appropriate, if allowed Acttept request header.
However, no MIME types have been defined for this message body.

The choicessHOULD also be listed a€ontact fields (Section 24.10). Unlike HTTP, the SIP response
MAY contain severaContact fields or a list of addresses inGontact field. UAs MAY use theContact
header field value for automatic redirectionnoxy ask the user to confirm a choice. However, this specifi-
cation does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot
or prefers not to proxy the request.

25.3.2 301 Moved Permanently

The user can no longer be found at the address iRdwest-URI, and the requesting cliesBHOULD retry

at the new address given by tli®ntact header field (Section 24.10). The requestaioULD update any

local directories, address books, and user location caches with this new value and redirect future requests to
the address(es) listed.

25.3.3 302 Moved Temporarily

The requesting cliemsHOULD retry the request at the new address(es) given byCihetact header field
(Section 24.10). ThRequest-URI of the new request uses the value of @entact header in the response.
The duration of the validity of th€ontact URI can be indicated through dExpires (Section 24.19)
header field or aexpires parameter in th&€ontact header field. Both proxies and UAsaY cache this
URI for the duration of the expiration time. If there is no explicit expiration time, the address is only valid
once for recursing, andusT NOT be cached for future transactions.
If the URI cached from th&€ontact header field fails, th&®equest-URI from the redirected request
MAY be tried again a single time.

The temporary URI may have become out-of-date sooner than the expiration time, and a new temporary URI
may be available.

25.3.4 305 Use Proxy

The requested resouremusT be accessed through the proxy given by @untact field. TheContact field
gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 (Use
Proxy) responsemusT only be generated by UASs.

25.3.5 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response. Formats for such bodies are not defined here, and may be the subject of
future standardization.

25.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. Thesel@ntD NOT retry the same
request without modification (for example, adding appropriate authorization). However, the same request to
a different server might be successful.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 150]

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

55627

5528

5529

5530

55631

5632

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25.4.1 400 Bad Request

The request could not be understood due to malformed syntaxR&ason-Phrase sHouLD identify the

syntax problem in more detail, for example, “Missing Call-ID header”.

25.4.2 401 Unauthorized

The request requires user authentication. This response is issued by UASs and registrars, while 407 (Proxy
Authentication Required) is used by proxy servers.

25.4.3 402 Payment Required

Reserved for future use.

25.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
SHOULD NOT be repeated.

25.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specifie®Raqthest-
URI. This status is also returned if the domain in Request-URI does not match any of the domains
handled by the recipient of the request.

25.4.6 405 Method Not Allowed

The method specified in tHeequest-Line is understood, but not allowed for the address identified by the
Request-URI.

The responserusT include anAllow header field containing a list of valid methods for the indicated
address.

25.4.7 406 Not Acceptable
The resource identified by the request is only capable of generating response entities that have content
characteristics not acceptable according toAbeept header fields sent in the request.

25.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the cliergT first authenticate itself with
the proxy. SIP access authentication is explained in section 22 and 20.3.

This status code can be used for applications where access to the communication channel (for example,
a telephony gateway) rather than the callee requires authentication.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 151]

5544

5545

5546

5547

5548

5549

5550

5551

55652

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, if it could not
determine the location of the user in time. The clismty repeat the request without modifications at any
later time.

25.4.10 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not FedodjLD be used instead.

25.4.11 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server is willing or
able to process. The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the serveHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clienhy try again.

25.4.12 414 Request-URI Too Long
The server is refusing to service the request becaudedtjaest-URI is longer than the server is willing to
interpret.

25.4.13 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not sup-
ported by the server for the requested method. The sereULD return a list of acceptable formats using

the Accept, Accept-Encoding and Accept-Language header fields. UAC processing of this response is
described in Section 8.1.3.6.

25.4.14 416 Unsupported URI Scheme
The server cannot process the request because the scheme of the URRagtest-URI is unknown to
the server. Client processing of this response is described in Section 8.1.3.6.

25.4.15 420 Bad Extension

The server did not understand the protocol extension specifie®inxy-Require (Section 24.29) oRe-
quire (Section 24.33) header field. The serggrouLD include a list of the unsupported extensions in an
Unsupported header in the response. UAC processing of this response is described in Section 8.1.3.6.

25.4.16 421 Extension Required

The UAS needs a particular extension to process the request, but this extension is not liSagpoed
header in the request. Responses with this status moda contain aRequire header field listing the
required extensions.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 152]

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602
5603

5604

5605

5606

5607

5608

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

A UAS sHOULD NOT use this response unless it truly cannot provide any useful service to the client.
Instead, if a desirable extension is not listed in $wgported header field, serversHOULD process the
request using baseline SIP capabilities and any extensions supported by the client.

25.4.17 423 Registration Too Brief

The registrar is rejecting a registration request beca@msact header field expiration time was too small.
The use of this response and the relat#id-Expires header field are described in Sections 10.2.8, 10.3,
and 24.23.

25.4.18 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (for example, is
not logged in, logged in such a manner as to preclude communication with the callee, or has activated the
“do not disturb” feature). The responsmy indicate a better time to call in thReetry-After header. The
user could also be available elsewhere (unbeknownst to this host). The reasongstwase indicate a
more precise cause as to why the callee is unavailable. This salaeLD be settable by the UA. Status
486 (Busy HereMAY be used to more precisely indicate a particular reason for the call failure.

This status is also returned by a redirect or proxy server that recognizes the user identified by the
Request-URI, but does not currently have a valid forwarding location for that user.

25.4.19 481 Call/Transaction Does Not Exist

This status indicates that the UAS received a request that does not match any existing dialog or transaction.

25.4.20 482 Loop Detected

The server has detected a loop (Section 3).

25.4.21 483 Too Many Hops

The server received a request that contaiMaa-Forwards (Section 24.22) header with the value zero.

25.4.22 484 Address Incomplete

The server received a request witlRaquest-URI that was incomplete. Additional informatidHoULD
be provided in the reason phrase.
This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the

dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 (Address Incomplete) status response.

25.4.23 485 Ambiguous

TheRequest-URI was ambiguous. The respongay contain a listing of possible unambiguous addresses

in Contact header fields. Revealing alternatives can infringe on privacy of the user or the organization. It
MUST be possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of
possible choices for ambiguo&equest-URIs.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 153]

5609

5610

5611

5612

5613

5614
5615
5616
5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Example response to a request with Bequest-URI sip:lee@example.com

485 Ambiguous SIP/2.0

Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>
Contact: Lee M. Foote <sip:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices
provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 (Ambiguous) response.

25.4.24 486 Busy Here

The callee’s end system was contacted successfully, but the callee is currently not willing or able to take
additional calls at this end system. The respomse indicate a better time to call in thRetry-After

header. The user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere)sHOULD be used if the client knows that no other end system will be able to accept this call.

25.4.25 487 Request Terminated
The request was terminated bBIE or CANCEL request. This response is never returned fGANCEL
request itself.

25.4.26 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific entity addressed
by theRequest-URI and the request may succeed elsewhere.

A message body containing a description of media capabilties be present in the response, which is
formatted according to th&ccept header field in théNVITE (or application/sdp if not present), the same
as a message body in a 200 (OK) response ©ORMIONS request.

25.4.27 491 Request Pending
The request was received by a UAS which had a pending request within the same dialog. Section 14.2
describes how such “glare” situations are resolved.

25.4.28 493 Undecipherable

The request was received by a UAS that contained an encrypted MIME body for which the recipient does not
possess or will not provide an appropriate decryption key. This responsdiave a single body containing

an appropriate public key that should be used to encrypt MIME bodies sent to this UA. Details of the usage
of this response code can be found in Section 21.2.

25.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 154]

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

5672

5673

5674

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. Thexlient
display the specific error condition amhy retry the request after several seconds.

If the condition is temporary, the serveny indicate when the client may retry the request using the
Retry-After header.

25.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.)

Note that a 405 (Method Not Allowed) is sent when the server recognizes the request method, but that
method is not allowed or supported.

25.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

25.5.4 503 Service Unavailable

The server is temporarily unable to process the request due to a temporary overloading or maintenance of
the server. The servefAy indicate when the client should retry the request Redry-After header field.
If no Retry-After is given, the clienmusT act as if it had received a 500 (Server Internal Error) response.

A client (proxy or UAC) receiving a 503 (Service Unavailabf)ouLD attempt to forward the request
to an alternate server. #HouLD NOT forward any other requests to that server for the duration specified in
the Retry-After header field, if present.

ServeravAy refuse the connection or drop the request instead of responding with 503 (Service Unavail-
able).

25.5.5 504 Server Time-out

The server did not receive a timely response from an external server it accessed in attempting to process the
request. 408 (Request Timeout) should be used instead if there was no response within the period specified
in the Expires header field from the upstream server.

25.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request. The
server is indicating that it is unable or unwilling to complete the request using the same major version as the
client, other than with this error message.

25.5.7 513 Message Too Large

The server was unable to process the request since the message length exceeded its capabilities.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 155]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

sers 25.6 Global Failures 6xx

se76 BXX responses indicate that a server has definitive information about a particular user, not just the particular
se77 instance indicated in thRequest-URI.

sers 25.6.1 600 Busy Everywhere

se79 The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
ses0 at this time. The responseAy indicate a better time to call in theetry-After header. If the callee does

ses1 NOt wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead. This
ses2 Status response is returned only if the client knows that no other end point (such as a voice mail system) will
ses3 answer the request. Otherwise, 486 (Busy Here) should be returned.

sees 25.6.2 603 Decline

sess The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partic-
sess ipate. The respons@Ay indicate a better time to call in thRetry-After header. This status response is
ses7 returned only if the client knows that no other end point will answer the request.

sess 25.6.3 604 Does Not Exist Anywhere

seo 1 he server has authoritative information that the user indicated iRelqeest-URI does not exist anywhere.

se0 25.6.4 606 Not Acceptable

seo1 The user’s agent was contacted successfully but some aspects of the session description such as the requested
se02 media, bandwidth, or addressing style were not acceptable.

5693 A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately
se0a SUppOTrt the session described. The 606 (Not Acceptable) resparseontain a list of reasons in\&arn-

seos iNg header field describing why the session described cannot be supported.

5696 A message body containing a description of media capabilities be present in the response, which is

seo7 formatted according to th&ccept header field in théNVITE (or application/sdp if not present), the same

se08 AS a message body in a 200 (OK) response ©ORMIONS request.

5699 Reasons are listed in Section 24.45. It is hoped that negotiation will not frequently be needed, and when
s700 @ NEW user is being invited to join an already existing conference, negotiation may not be possible. It is up
s7o1 O the invitation initiator to decide whether or not to act on a 606 (Not Acceptable) response.

5702 This status response is returned only if the client knows that no other end point will answer the request.

s0s 26 Examples

s704 [N the following examples, we often omit the message body and the correspdddirignt-Length and
s Content-Type headers for brevity.

se 26.1 Registration

s7o7 - Bob registers on start-up. The message flow is shown in Figure 9.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 156]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

- @

biloxi.com Bob's SIP
Registrar Phone

REGISTER F1 ‘
200 OK F2

Figure 9: SIP Registration Example

5708

s F1 REGISTER Bob -> Registrar

5710

5711 REGISTER sip:registrar.biloxi.com SIP/2.0
5712 Via: SIP/2.0/UDP 192.0.2.4:5060;branch=z9hG4bKnashds7
5713 To: Bob <sip:bob@biloxi.com>

5714 From: Bob <sip:bob@biloxi.com>;tag=456248
5715 Call-ID: 843817637684230@998sdasdh09
5716 CSeq: 1826 REGISTER

5717 Contact: <sip:bob@192.0.2.4>

5718 Max-Forwards: 70

5719 Expires: 7200

5720 Content-Length: 0

5721 The registration expires after two hours. The registrar responds with a 200 OK:

5722

s23 F2 200 OK Registrar -> Bob

5724

5725 SIP/2.0 200 OK

5726 Via: SIP/2.0/lUDP 192.0.2.4:5060;branch=z9hG4bKnashds7
5727 To: Bob <sip:bob@biloxi.com>

5728 From: Bob <sip:bob@biloxi.com>;tag=456248
5729 Call-ID: 843817637684230@998sdasdh09
5730 CSeq: 1826 REGISTER

5731 Contact: <sip:bob@192.0.2.4>

5732 Expires: 7200

5733 Content-Length: 0

5734

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 157]

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

26.2 Session Setup

This example contains the full details of the example session setup in Section 4. The message flow is shown
in Figure 1.

F1 INVITE Alice -> atlanta.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

F2 100 Trying atlanta.com proxy -> Alice

SIP/2.0 100 Trying

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Content-Length: 0

F3 INVITE atlanta.com proxy -> biloxi.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Max-Forwards: 69

Content-Type: application/sdp

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 158]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

5776 Content-Length: 142

5777
5778 (Alice’s SDP not shown)

5779

ss0 F4 100 Trying biloxi.com proxy -> atlanta.com proxy

5781

5782 SIP/2.0 100 Trying

5783 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5784 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5785 To: Bob <sip:bob@biloxi.com>

5786 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5787 Call-ID: a84b4c76e66710

5788 CSeq: 314159 INVITE

5789 Content-Length: 0

5790

s7o1. F5 INVITE biloxi.com proxy -> Bob

5792

5793 INVITE SiprOb@192.0.2.4 SIP/2.0

5794 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hnG4bK4b43c2ff8.1
5795 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5796 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5797 To: Bob <sip:bob@biloxi.com>

5798 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5799 Call-ID: a84b4c76e66710

5800 CSeq: 314159 INVITE

5801 Contact: <sip:alice@pc33.atlanta.com>

5802 Max-Forwards: 68

5803 Content-Type: application/sdp

5804 Content-Length: 142

5805

5806 (Alice’s SDP not shown)

5807

ss8 F6 180 Ringing Bob -> biloxi.com proxy

5809

5810 SIP/2.0 180 Ringing

5811 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9nG4bK4b43c2ff8.1
5812 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5813 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5814 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5815 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5816 Call-ID: a84b4c76e66710

5817 CSeq: 314159 INVITE

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 159]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

5818 Content-Length: 0

5819

ss20 F7 180 Ringing biloxi.com proxy -> atlanta.com proxy

5821

5822 SIP/2.0 180 Ringing

5823 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5824 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5825 To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

5826 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5827 Call-ID: a84b4c76e66710

5828 CSeq: 314159 INVITE

5829 Content-Length: 0

5830

sss1. F8 180 Ringing atlanta.com proxy -> Alice

5832

5833 SIP/2.0 180 Ringing

5834 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5835 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5836 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5837 Call-ID: a84b4c76e66710

5838 CSeq: 314159 INVITE

5839 Content-Length: 0

5840

ssa1 F9 200 OK Bob -> biloxi.com proxy

5842

5843 SIP/2.0 200 OK

5844 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bK4b43c2ff8.1
5845 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5846 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5847 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5848 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5849 Call-ID: a84b4c76e66710

5850 CSeq: 314159 INVITE

5851 Contact: <sip:bob@192.0.2.4>

5852 Content-Type: application/sdp

5853 Content-Length: 131

5854

5855 (Bob’'s SDP not shown)

5856
sss7 F10 200 OK biloxi.com proxy -> atlanta.com proxy

5858

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 160]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

5859 SIP/2.0 200 OK

5860 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5861 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5862 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5863 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5864 Call-ID: a84b4c76e66710

5865 CSeq: 314159 INVITE

5866 Contact: <sip:bob@192.0.2.4>

5867 Content-Type: application/sdp

5868 Content-Length: 131

5869

5870 (Bob’'s SDP not shown)

5871

se2 F11 200 OK atlanta.com proxy -> Alice

5873

5874 SIP/2.0 200 OK

5875 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5876 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5877 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5878 Call-ID: a84b4c76e66710

5879 CSeq: 314159 INVITE

5880 Contact: <sip:bob@192.0.2.4>

5881 Content-Type: application/sdp

5882 Content-Length: 131

5883

5884 (Bob’s SDP not shown)

5885

sss6 F12 ACK Alice -> Bob

5887

5888 ACK sip:bob@192.0.2.4 SIP/2.0

5889 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds9
5890 To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

5891 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5892 Call-ID: a84b4c76e66710

5893 CSeq: 314159 ACK

5894 Max-Forwards: 70

5895 Content-Length: 0

5896 The media session between Alice and Bob is now established.

5897 Bob hangs up first. Note that Bob’s SIP phone maintains its ©8eq numbering space, which, in
sso8 this example, begins with 231. Since Bob is making the requestala@dFrom URIs and tags have been
see0 Swapped.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 161]

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

F13 BYE Bob -> Alice

BYE sip:alice@pc33.atlanta.com SIP/2.0

Via: SIP/2.0/lUDP 192.0.2.4;branch=z9hG4bKnashds10
From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 231 BYE

Max-Forwards: 70

Content-Length: 0

F14 200 OK Alice -> Bob

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKnashds10
From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 231 BYE

Content-Length: 0

The SIP Call Flows document [30] contains further examples of SIP messages.

27 Augmented BNF for the SIP Protocol

All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) defined in RFC 2234 [28]. Section 6.1 of RFC 2234 defines a set of core rules which are
used by this specification, and not repeated here. Implementors need to be familiar with the notation and
content of RFC 2234 in order to understand this specification. Certain basic rules are in uppercase, such as
SP, LWS, HTAB, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions to clarify the use

of rule names.

27.1 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-
ASCII coded character set is defined by ANSI X3.4-1986.

alphanum = ALPHA /DIGIT

Several rules are incorporated from RFC 2396 [13] but are updated to make them compliant with RFC
2234 [28]. These include:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 162]

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

reserved =)y)@) &N) =)
/ H$1! / 1!’1!

unreserved = alphanum / mark

mark = 1!_1! / H_H / 1!.1! / ”!1! / i il / 14N / mn
/7C/)

escaped = "%” HEXDIG HEXDIG

SIP header field values can be folded onto multiple lines if the continuation line begins with a space or
horizontal tab. All linear white space, including folding, has the same semantics as SP. A regipient
replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream. This is intended to behave exactly as HTTP 1.1 as described in RFC 2616 [15]. The SWS
construct is used when linear white space is optional, generally between tokens and separators.

LWS
SWS

[*WSP CRLF] 1*WSP ; linear whitespace
[LWS] ; sep whitespace

To separate the header name from the rest of value, a colon is used, which, by the above rule, allows
whitespace before, but no line break, and whitespace after, including a linebreak. The HCOLON defines
this construct.

HCOLON = *(SP/HTAB)"” SWS

The TEXT-UTF8 rule is only used for descriptive field contents and values that are not intended to be
interpreted by the message parser. Word$T&XT-UTF8 contain characters from the UTF-8 character
set (RFC 2279 [25]). Th@EXT-UTF8-TRIM rule is used for descriptive field contents that ao¢quoted
strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
uses the ISO 8859-1 character set.

TEXT-UTF8 = *(TEXT-UTF8char / LWS)
TEXT-UTF8-TRIM = *TEXT-UTF8char *(*LWS TEXT-UTF8char)
TEXT-UTF8char = %x21-7E / UTF8-NONASCII

UTF8-NONASCII %xCO0-DF 1UTF8-CONT
%XEO-EF 2UTF8-CONT
%xFO-F7 3UTF8-CONT
%xF8-Fb 4UTF8-CONT
%xFC-FD 5UTF8-CONT

%x80-BF

S~~~

UTF8-CONT

A CRLF is allowed in the definition oTEXT-UTF8 only as part of a header field continuation. It is
expected that the foldingWs will be replaced with a singl&P before interpretation of thEeEXT-UTF8
value.

Hexadecimal numeric characters are used in several protocol elements. Some elements (authentication)
force hex alphas to be lower case.

LHEX = DIGIT / %x61-66 ;lowercase a-f

Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise
stated, tokens are case-insensitive. These special chamactersbe in a quoted string to be used within a
parameter value. The word construct is used in Call-ID to allow most separators to be used.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 163]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1*(alphanum /™" /"2 /"1) 0") R
[

separators = "("/") /"< /) >S")T@")
N <>

AN Al

{"/"}" /] SP / HTAB

token

word = 1*@alphanum /"-" /"7 /"7) "%") *
/ nn ”+1! 7N / ”mn / biiadt]
C/y/ <>
N <>
H/” / [/] / H’)” /
WA
5962 When tokens are used or separators are used between elements, whitespace is often allowed before or

so63 after these characters:

MINUS = SWS """ SWS ; minus
DOT = SWS " SWS; period
PERCENT = SWS "%"” SWS ; percent
BANG = SWS "I” SWS ; exclamation
PLUS = SWS"+" SWS; plus
STAR = SWS ™ SWS; asterisk
SLASH = SWS /" SWS; slash
TILDE = SWS "™ SWS; tilde
EQUAL = SWS"="SWS; equal
LPAREN = SWS (" SWS; left parenthesis
RPAREN = SWS")" SWS; right parenthesis
LANGLE = SWS "<”" SWS; left angle bracket
RAQUOT = ">"SWS; right angle quote
LAQUOT = SWS "<"; left angle quote
RANGLE = SWS ">" SWS; right angle bracket
BAR = SWS”|” SWS; vertical bar
ATSIGN = SWS’"@" SWS; atsign
COMMA = SWS "’ SWS; comma
SEMI = SWS """ SWS ; semicolon
COLON = SWS """ SWS; colon
DQUOT = SWS <"> SWS ; double quotation mark
LDQUOT = SWS <">; open double quotation mark
RDQUOT = <"> SWS; close double quotation mark
LBRACK = SWS"{" SWS; left square bracket
5964 RBRACK = SWS"}” SWS; right square bracket
5965 Comments can be included in some SIP header fields by surrounding the comment text with parentheses.

see6 Comments are only allowed in fields containing “comment” as part of their field value definition. In all other
so67 fields, parentheses are considered part of the field value.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 164]

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

5980

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

comment
ctext

LPAREN *(ctext / quoted-pair / comment) RPAREN
%x21-27 / %x2A-5B / %x5D-7E / UTF8-NONASCII
/ LWS

ctext includes all chars except left and right parens and backslash. A string of text is parsed as a single
word if it is quoted using double-quote marks. In quoted strings, quotation marks (") and backsigshes (
need to be escaped.

quoted-string
gdtext

(SWS <”> *(qdtext / quoted-pair) <">)
LWS / %x21 / %x23-5B / %x5D-7E
/ UTF8-NONASCII

The backslash characteh{) MAY be used as a single-character quoting mechanism only within quoted-
string and comment constructs. Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this
mechanism to avoid conflict with line folding and header separation.

quoted-pair = "\" (%x00-09 / %x0A / %x0C
/ Y%x0E-7F)

SIP-URI = "sip:” [userinfo "@"”] hostport

url-parameters [headers]
userinfo = [user / telephone-subscriber [”:” password]]
user = *(unreserved / escaped / user-unreserved)
user-unreserved = & /"= /")))0
password = *(unreserved / escaped /

&= S
hostport = host["" port]
host = hostname / IPv4address / IPv6reference
hostname = *(domainlabel ") toplabel ["]
domainlabel = alphanum

/ alphanum *(alphanum / ”-") alphanum
toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum
IPv4address = 1*3DIGIT " 1*3DIGIT " 1*3DIGIT " 1*3DIGIT
IPvéreference = "[" IPv6address ™’
IPv6address = hexpart[™" IPv4address]
hexpart = hexseq / hexseq "::" [hexseq] / "::" [hexseq]
hexseq = hex4 *(""" hex4)
hex4 = 1*4HEXDIG
port = 1*DIGIT

The BNF for telephone-subscriber can be found in RFC 2806 [19]. Note, however, that any characters
allowed there which are not allowed in the user part of the SIP WE3T be escaped.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 165]

5981

5982

INTERNET-DRAFT

url-parameters
url-parameter

transport-param

other-transport
user-param
other-user
method-param
ttl-param
maddr-param
Ir-param
other-param
pname

pvalue
paramchar

param-unreserved

headers
header

hname

hvalue
hnv-unreserved

draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

*(™" url-parameter)

transport-param / user-param / method-param
/ ttl-param / maddr-param / Ir-param / other-param
"transport="

("udp” / "tcp” / "sctp” / "tls”

/ other-transport)

token

"user="("phone” / "ip” / other-user)

token

"method=" Method

"tl=" ttl

"maddr=""host

I

pname ["=" pvalue]

1*paramchar

1*paramchar

param-unreserved / unreserved / escaped

TR

"?” header *("&” header)

hname "=" hvalue

1*(hnv-unreserved / unreserved / escaped)
*(hnv-unreserved / unreserved / escaped)

T T

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 166]

5983

INTERNET-DRAFT

SIP-message
Request

Request-Line
Request-URI
absoluteURI
hier-part
net-path
abs-path
opaque-part
uric
uric-no-slash

path-segments
segment
param

pchar

scheme
authority
srvr
reg-name

query
SIP-Version

draft-ietf-sip-rfc2543bis-07.ps

Request / Response

Request-Line

*(message-header)

CRLF

[message-body |

Method SP Request-URI SP SIP-Version CRLF
SIP-URI / absoluteURI

scheme ™" (‘hier-part / opaque-part)

(net-path / abs-path) ["?” query]

"I[" authority [abs-path]

"I” path-segments

uric-no-slash *uric

reserved / unreserved / escaped
unreserved / escaped /”;" /"?" /") '@
[U8)

segment *(/" segment)

*pchar *(”;” param)

*pchar

unreserved / escaped /

@R =g
ALPHA *(ALPHA / DIGIT /"+" /7" /")
srvr / reg-name

[[userinfo "@"] hostport]
1*(unreserved / escaped / "$" /")
A A A

*uric

"SIP/2.0”

February 4, 2002

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 167]

5984

INTERNET-DRAFT

message-header

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 168]

T T

draft-ietf-sip-rfc2543bis-07.ps

(Accept
Accept-Encoding
Accept-Language
Alert-Info

Allow
Authentication-Info
Authorization
Call-ID

Call-Info

Contact
Content-Disposition
Content-Encoding
Content-Language
Content-Length
Content-Type
CSeq

Date

Error-Info

Expires

From

In-Reply-To
Max-Forwards
MIME-Version
Min-Expires
Organization
Priority
Proxy-Authenticate
Proxy-Authorization
Proxy-Require
RAck
Record-Route
Reply-To

Require
Retry-After

Route

RSeq

Server

Subject

Supported
Timestamp

To

Unsupported
User-Agent

Via

Warning
WWW-Authenticate
extension-header) CRLF

February 4, 2002

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

INVITEmM = %x49.4E.56.49.54.45 ; INVITE in caps

ACKm = %x41.43.4B ; ACK in caps

OPTIONSmM = %x4F.50.54.49.4F.4E.53 ; OPTIONS in caps
BYEm = %x42.59.45; BYE in caps

CANCELmM = %x43.41.4E.43.45.4C ; CANCEL in caps
REGISTERmM = 9%0x52.45.47.49.53.54.45.52 ; REGISTER in caps
PRACKm = 9%x50.52.41.43.4B ; PRACK in caps

Method = INVITEm / ACKm / OPTIONSmM / BYEm

/ CANCELm / REGISTERm / PRACKm
/ extension-method
extension-method = token
Response = Status-Line
*(message-header)
CRLF
5985 [message-body]

SIP-Version SP Status-Code SP Reason-Phrase CRLF
Informational
Redirection
Success
Client-Error
Server-Error
Global-Failure
extension-code
extension-code 3DIGIT
Reason-Phrase *(reserved / unreserved / escaped
5986 / UTF8-NONASCII / UTF8-CONT / SP / HTAB)

Status-Line
Status-Code

Informational = 7"100” ; Trying

/ "180" ; Ringing

/ "181" ; CallIs Being Forwarded
/ "182" ; Queued

5987 / 183" ; Session Progress
5988 Success = 7200 ;OK

Redirection = "300” ; Multiple Choices
"301” ; Moved Permanently
"302” ; Moved Temporarily
"305” ; Use Proxy

"380" ; Alternative Service

S~ T T T

5989

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 169]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Client-Error = "400" ; Bad Request
/ 401" ; Unauthorized
/ "402” ; Payment Required
/ 403" ; Forbidden
/ "404” ; Not Found
/ 405" ; Method Not Allowed
/ "406” ; Not Acceptable
/ "407" ; Proxy Authentication Required
/ 408" ; Request Timeout
/ "409” ; Conflict
/ 410" ; Gone
/ "413" ; Request Entity Too Large
/ 414" ; Request-URI Too Large
/ "415” ; Unsupported Media Type
/ 416" ; Unsupported URI Scheme
/ "420” ; Bad Extension
/ 423" ; Registration Too Brief
/ "480” ; Temporarily not available
/ 481" ; Call Leg/Transaction Does Not Exist
/ "482" ; Loop Detected
/ "483" ; Too Many Hops
/ 484" ; Address Incomplete
/ "485” ; Ambiguous
/ 486" ; Busy Here
/ "487" ; Request Terminated
/ 488" ; Not Acceptable Here
/ "491” ; Request Pending
5990 / "493” ; Undecipherable
Server-Error = "500” ; Internal Server Error

"501” ; Not Implemented

"502” ; Bad Gateway

"503” ; Service Unavailable

"504” ; Server Time-out

"505” ; SIP Version not supported

5991

~— T T T T

Global-Failure = 7"600" ; Busy Everywhere

/ "603" ; Decline

/ "604” ; Does not exist anywhere
/

"606” ; Not Acceptable

5992

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 170]

5993

5994

5995

5996

5997

INTERNET-DRAFT

Accept

accept-range
media-range

accept-params
accept-extension
ae-name
ae-value

Accept-Encoding

encoding
codings
content-coding
gvalue

Accept-Language

language
language-range

Alert-Info
alert-param
generic-param
gen-value

Allow =

"Allow”

draft-ietf-sip-rfc2543bis-07.ps

"Accept” HCOLON

(accept-range *(COMMA accept-range))
media-range [accept-params |

(" [

/ (m-type SWS /" ™" SWS)

/ (m-type SLASH m-subtype)

) *(SEMI m-parameter)

SEMI "q” EQUAL qvalue *(accept-extension)
SEMI ae-name [EQUAL ae-value |

token

token / quoted-string

"Accept-Encoding” HCOLON

(encoding *(COMMA encoding))
codings [SEMI "g” EQUAL qgvalue]
content-coding / ™"

token

("0"["” 0*3DIGIT])

/("1 0*3("07) 1)

"Accept-Language” HCOLON

(language *(COMMA language))
language-range [SEMI "g” EQUAL qvalue]
((1*8ALPHA *("-" 1*8ALPHA)) / ™)

"Alert-Info” HCOLON alert-param *(COMMA alert-param)
LAQUOT URI RAQUOT *(SEMI generic-param)

token [EQUAL gen-value]

token / host / quoted-string

HCOLON Method *(COMMA Method)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 171]

February 4, 2002

5998

5999

6000

6001

INTERNET-DRAFT

Authorization
credentials

digest-response
dig-resp

username
username-value
digest-uri
digest-uri-value
message-qop
chonce
chonce-value
nonce-count
nc-value
dresponse
request-digest
auth-param

auth-param-name

other-response

auth-scheme

Authentication-Info

ainfo

nextnonce
response-auth
response-digest

draft-ietf-sip-rfc2543bis-07.ps

"Authorization” HCOLON credentials
("Digest” LWS digest-response)

/ other-response

dig-resp *(COMMA dig-resp)
username / realm / nonce / digest-uri
/ dresponse / [algorithm] / [cnonce]
/ [opaque] / [message-qop]

/ [nonce-count] / [auth-param]
"username” EQUAL username-value
guoted-string

"uri” EQUAL digest-uri-value
rquest-uri ; Equal to request-uri as specified by HTTP/1.1
"qop” EQUAL qop-value

"cnonce” EQUAL cnonce-value
nonce-value

"nc” EQUAL nc-value

8LHEX

"response” EQUAL request-digest
LDQUOT 32LHEX RDQUOT
auth-param-name EQUAL

(token / quoted-string)

token

auth-scheme LWS auth-param
*(COMMA auth-param)

token

"Authentication-Info” HCOLON ainfo
*(COMMA ainfo)

[nextnonce] / [message-qop]

/ [response-auth] / [cnonce]

/ [nonce-count]

"nextnonce” EQUAL nonce-value
"rspauth” EQUAL response-digest
LDQUOT *LHEX RDQUOT

February 4, 2002

Cal-ID = ("Call-ID"/"i”) HCOLON callid

callid = word ["@" word]

Call-Info = "Call-Info” HCOLON info *(COMMA info)
info = LAQUOT URI RAQUOT *(SEMI info-param)
info-param = ("purpose” EQUAL ("icon” / "info”

/ "card” / token)) / generic-param

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 172]

6002

6003

6004

6005

6006

6007

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

("Contact” / "'m”) HCOLON

STAR / (contact-param *(COMMA contact-param))
(name-addr / addr-spec) *(SEMI contact-params)
[display-name] LAQUOT addr-spec RAQUOT
SIP-URI / URI

*(token LWS)/ quoted-string

Contact

contact-param
name-addr
addr-spec
display-name

contact-params c-p-g / c-p-expires

/ contact-extension

"q” EQUAL gvalue

"expires” EQUAL delta-seconds
generic-param

1*DIGIT

c-p-q _
c-p-expires
contact-extension
delta-seconds

Content-Disposition "Content-Disposition” HCOLON

disp-type *(SEMI disp-param)

disp-type = ’render” / "session” / "icon” / "alert”
/ disp-extension-token
disp-param = handling-param / generic-param

"handling” EQUAL
("optional” / "required”
/ other-handling)

handling-param

other-handling = token
disp-extension-token = token
Content-Encoding = ("Content-Encoding” / "e”) HCOLON

content-coding *(COMMA content-coding)

Content-Language = "Content-Language” HCOLON
language-tag *(COMMA language-tag)

language-tag primary-tag *("-” subtag)

primary-tag = 1*8ALPHA
subtag = 1*8ALPHA
Content-Length = ("Content-Length” / "I”) HCOLON 1*DIGIT

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 173]

6008

6009

INTERNET-DRAFT

Content-Type
media-type
m-type
discrete-type

composite-type
extension-token

draft-ietf-sip-rfc2543bis-07.ps

= ("Content-Type” / "c”) HCOLON media-type
= m-type SLASH m-subtype *(SEMI m-parameter)
= discrete-type / composite-type
= ’text” /"image” / "audio” / "video”
/ "application” / extension-token
"message” / "multipart” / extension-token
= jetf-token / x-token

ietf-token = token

x-token = "Xx-" token

m-subtype = extension-token / iana-token
iana-token = token

m-parameter = me-attribute EQUAL m-value
m-attribute = token

m-value = token / quoted-string

CSeq = "CSeq”HCOLON 1*DIGIT LWS Method
Date = "Date” HCOLON SIP-date
SIP-date = rfcll23-date

rfc1123-date
datel

wkday ")” datel SP time SP "GMT"
2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)

February 4, 2002

time = 2DIGIT ™" 2DIGIT ™" 2DIGIT
; 00:00:00 - 23:59:59
wkday = "Mon” / "Tue” / "Wed"
/ HThu” / HFriH / ”Sat” / HSun”
month = "Jan” / "Feb” / "Mar” / "Apr”
/ HMay” / HJunH / ”JUIH / HAug”
6010 / "Sep” / "Oct” / "Nov” / "Dec”
Error-Info = "Error-Info” HCOLON error-uri *(COMMA error-uri)
6011 error-uri - = LAQUOT URI RAQUOT *(SEMI generic-param)
Expires = "Expires” HCOLON delta-seconds
From = ("From” / "f”) HCOLON from-spec
from-spec = (\name-addr / addr-spec)
*(SEMI from-param)
from-param = tag-param / generic-param
6012 tag-param = "tag” EQUAL token
6013 In-Reply-To = "In-Reply-To” HCOLON callid *(COMMA callid)
6014 Max-Forwards = "Max-Forwards” HCOLON 1*DIGIT
6015 MIME-Version = "MIME-Version” HCOLON 1*DIGIT " 1*DIGIT

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 174]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

6016 Min-Expires = "Min-Expires” HCOLON delta-seconds
6017 Organization = "Organization” HCOLON TEXT-UTF8-TRIM
Priority = "Priority” HCOLON priority-value

"emergency” / "urgent” / "normal”
/ "non-urgent” / other-priority

priority-value

6018 other-priority = token
Proxy-Authenticate = "Proxy-Authenticate” HCOLON challenge
challenge = ("Digest” LWS digest-cIn *(COMMA digest-cIn))

/ other-challenge
auth-scheme LWS auth-param
*(COMMA auth-param)
digest-cin = realm /[domain] / nonce
/ [opaque] /[stale] /[algorithm]
/ [qop-options] / [auth-param]

other-challenge

realm = "realm” EQUAL realm-value
realm-value = quoted-string
domain = "domain” EQUAL LDQUOT URI
*(1*SP URI) RDQUOT
URI = absoluteURI / abs-path
nonce = "nonce” EQUAL nonce-value
nonce-value = quoted-string
opaque = "opaque” EQUAL quoted-string
stale = ’stale” EQUAL ("true” / "false”)
algorithm = "algorithm” EQUAL ("MD5” / "MD5-sess”
/ token)
gop-options = "qop” EQUAL LDQUOT gop-value
*(")” qop-value) RDQUOT
6019 gop-value = auth” / "auth-int” / token
6020 Proxy-Authorization = "Proxy-Authorization” HCOLON credentials
Proxy-Require = "Proxy-Require” HCOLON option-tag
*(COMMA option-tag)
6021 option-tag = token
RAck = "RAck” HCOLON response-num LWS CSeqg-num LWS Method
response-num = 1*DIGIT
6022 CSeg-num = 1*DIGIT
Record-Route = "Record-Route” HCOLON rec-route *(COMMA rec-route)
rec-route = name-addr *(SEMI rr-param)
6023 rr-param = generic-param

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 175]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Reply-To
rplyto-spec

"Reply-To” HCOLON rplyto-spec
(name-addr / addr-spec)
*(SEMI rplyto-param)
rplyto-param generic-param
6024 Require = "Require” HCOLON option-tag *(COMMA option-tag)

Retry-After "Retry-After” HCOLON delta-seconds
[comment]| *(SEMI retry-param)

("duration” EQUAL delta-seconds)

retry-param

6025 / generic-param

Route = "Route” HCOLON route-param *(COMMA route-param)
6026 route-param = name-addr *(SEMI rr-param)
6027 RSeq = "RSeq’ HCOLON response-num

Server = "Server” HCOLON 1*(product / comment)

product = token [SLASH product-version]
6028 product-version = token
6029 Subject = ("Subject” /"s”) HCOLON TEXT-UTF8-TRIM

Supported = ("Supported” /"k”) HCOLON
6030 option-tag *(COMMA option-tag)

Timestamp = "Timestamp” HCOLON 1*(DIGIT)

["”*(DIGIT)] [delay]

6031 delay = *DIGIT) [*(DIGIT)]

To = ("To” /"t") HCOLON (name-addr

/ addr-spec) *(SEMI to-param)

6032 to-param = tag-param / generic-param
6033 Unsupported = "Unsupported” HCOLON option-tag *(COMMA option-tag)
6034 User-Agent = "User-Agent” HCOLON 1*(product / comment)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 176]

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044
6045

6046

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Via = ("Via" / "v") HCOLON via-parm *(COMMA via-parm)
via-parm = sent-protocol LWS sent-by *(SEMI via-params)
via-params = via-ttl / via-maddr

/ via-received / via-branch
/ via-extension

via-ttl = "tt” EQUAL ttl
via-maddr = "maddr” EQUAL host
via-received = ’received” EQUAL (IPv4address / IPv6address)
via-branch = "pbranch” EQUAL token
via-extension = generic-param
sent-protocol = protocol-name SLASH protocol-version
SLASH transport
protocol-name = "SIP” / token

protocol-version = token
transport = "UDP” /"TCP” /"TLS” / "SCTP”
/ other-transport

sent-by = host [COLON port]
ttl = 1*3DIGIT ; 0 to 255
Warning = "Warning” HCOLON warning-value *(COMMA warning-value)
warning-value = warn-code SP warn-agent SP warn-text
warn-code = 3DIGIT
warn-agent = hostport / pseudonym

; the name or pseudonym of the server adding

; the Warning header, for use in debugging
warn-text = quoted-string
pseudonym = token
WWW-Authenticate = "WWW-Authenticate” HCOLON challenge
extension-header = header-name HCOLON header-value
header-name = token

header-value *(TEXT-UTF8CHAR / UTF8-CONT / LWS)

message-body = *OCTET

28 |IANA Considerations

All new or experimental method names, header field names, and status codes used in SIP applications
SHOULD be registered with IANA in order to prevent potential naming conflicts. RESOMMENDED that
new “option- tag”s and ‘warn-code’s also be registered. Before IANA registration, new protcol elements

SHOULD be described in an Internet-Draft or, preferably, an RFC.
For Internet-Drafts, IANA is requested to make the draft available as part of the registration database.

By the time an RFC is published, colliding names may have already been implemented.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 177]

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

When a registration for either a new header field, new method, or new status code is created based on
an Internet-Draft, and that Internet-Draft becomes an RFC, the person that performed the registration
notify IANA to change the registration to point to the RFC instead of the Internet-Draft.

Registrations should be sentitma@iana.org
28.1 Option Tags

Option tags are used in header fields sucRegquire, Supported, Proxy-Require, andUnsupported in

support of SIP compatibility mechanisms for extensions (Section 23.2). The option tag itself is a string that

is associated with a particular SIP option (that is, an extension). It identifies the option to SIP endpoints.
When registering a new SIP option with IANA, the following informatimosT be provided:

e Name and description of option. The namey be of any length, busHouLD be no more than
twenty characters long. The nam@sT consist ofalphanum (Section 27) characters only.

e A listing of any new SIP header fields, header parameter fields, or parameter values defined by this
option. A SIP optiormusT NOT redefine header fields or parameters defined in either RFC 2543, any
standards-track extensions to RFC 2543, or other extensions registered through IANA.

¢ Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium, or a particular company or group of companies).

¢ A reference to a further description if available, for example (in order of preference) an RFC, a pub-
lished paper, a patent filing, a technical report, documented source code, or a computer manual.

e Contact information (postal and email address).

This procedure has been borrowed from RTSP [35] and the RTP AVP [33].

28.1.1 Registration of 100rel
This specification registers a single option tag, “100rel”. The required information is:
Name: “100rel”

Description: This option tag is for reliability of provisional responses. When present Supported
header, it indicates that the UA can send or receive reliable provisional responses. When present in a
Require header in a request, it indicates that the UASST send all provisional responses reliably.
When present in Require header in a reliable provisional response, it indicates that the response is
to be sent reliably.

New Headers: TheRSeq andRAck header fieds are defined by this optio.
Change Control: IETF.
Reference: RFCXXXX [Note to IANA: Fill in with the RFC number of this specification.

Contact Information: Jonathan Rosenberg, jdrosen@jdrosen.net. 72 Eagle Rock Avenue, First Floor, East
Hanover, NJ, 07936, USA.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 178]

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

6102

6103

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

28.2 Warn-Codes

Warning codes provide information supplemental to the status code in SIP response messages when the
failure of the transaction results from a Session Description Protocol (SDP, [11]). Wawm-tode” values
can be registered with IANA as they arise.

The “warn-code” consists of three digits. A first digit of “3” indicates warnings specific to SIP.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

1xx and 2xx have been taken by HTTP/1.1.

28.3 Header Field Names

Header field names do not require working group or working group chair review prior to IANA registration,
but sHouLD be documented in an RFC or Internet-Draft before IANA is consulted.
The following information needs to be provided to IANA in order to register a new header field name:

e The name and email address of the individual performing the registration;
¢ the name of the header field being registered,;

e a compact form version for that header field, if one is defined,;

e the name of the draft or RFC where the header field is defined;

e a copy of the draft or RFC where the header field is defined.

Header fieldssHOULD NOT use theX- prefix notation andmusT NOT duplicate the names of header
fields used by SMTP or HTTP unless the syntax is a compatible superset and the semantics are similar.
Some common and widely used header fialds be assigned one-letter compact forms (Section 7.3.3).
Compact forms can only be assigned after SIP working group review. In the absence of this working group,
a designated expert reviews the request.

28.4 Method and Response Codes

Because the status code space is limited, they do require working group or working group chair review, and
MUST be documented in an RFC or Internet draft. The same procedures apply to new method names.

The following information needs to be provided to IANA in order to register a new response code or
method:

e The name and email address of the individual performing the registration;

the number of the response code or name of the method being registered;

the default reason phrase for that status code, if applicable;

e the name of the draft or RFC where the method or status code is defined;

a copy of the draft or RFC where the method or status code is defined.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 179]

6114

6115

6116

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

6147

6148

6149

6150

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

29 Changes From RFC 2543

This RFC revises RFC 2543. It is mostly backwards compatible with RFC 2543. The changes described
here fix many errors discovered in RFC 2543 and provide information on scenarios not detailed in RFC
2543. The protocol has been presented in a more cleanly layered model here.

We break the differences into functional behavior that is a substantial change from RFC 2543, which has
impact on interoperability or correct operation in some cases, and functional behavior that is different from
RFC 2543 but not a potential source of interoperability problems. There have been countless clarifications
as well, which are not documented here.

29.1 Major Functional Changes

¢ When a UAC wishes to terminate a call before it has been answered, itGAMNISEL. If the original
INVITE still returns a 2xx, the UAC then sen@YE. BYE can only be sent on an existing call leg
(now called a dialog in this RFC), whereas it could be sent at any time in RFC 2543.

e The SIP BNF was converted to be RFC 2234 compliant.

e SIP URL BNF was made more general, allowing a greater set of characters in the user part. Fur-
thermore, comparison rules were simplified to be primarily case insensitive, and detailed handling of
comparison in the presence of parameters was described.

¢ RemovedVia hiding. It had serious trust issues, since it relied on the next hop to perform the obfus-
cation process. Insteadfja hiding can be done as a local implementation choice in stateful proxies,
and thus is no longer documented.

e In RFC 2543 CANCEL andINVITE transactions were intermingled. THey are separated now. When
a user sends aMNVITE, and then & ANCEL, the INVITE transaction still terminates normally. A
UAS needs to respond to the originBIVITE request with a 487 response.

e Similarly, CANCEL andBYE transactions were intermingled; RFC 2543 allowed the UAS not to
send a response tNVITE when aBYE was received. That is disallowed here. The origiNVITE
needs to be responded to.

e In RFC 2543, UAs needed to only support UDP. In this RFC, UAs need to support both UDP and
TCP.

e In RFC 2543, a forking proxy only passed up one challenge from downstream elements in the event
of multiple challenges. In this RFC, proxies are supposed to collect all challenges and place them into
the forwarded response.

¢ In Digest credentials the URI needs to be quoted; this is unclear from RFC 2617 and RFC 2069 which
are both inconsistent on it.

e SDP processing has been split off into a separate specification [1], and more fully specified as a
formal offer/answer exchange process that is effectively tunnelled through SIP. SDP is allowed in
INVITE/200 or 200/ACK for baseline SIP implementations; RFC 2543 alluded to the ability to use it
in INVITE, 200 and ACK in a single transaction, but this was not well specified. More complex SDP
usages are allowed in extensions.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 180]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

6151 e Added full support for IPv6 in URIs and in théa header.

6152 e DNS SRV procedure is now documented in a separate specification [2]. This procedure uses both SRV
6153 and NAPTR resource records, and no longer combines data from across SRV records as described in
6154 RFC 2543.

6155 ¢ Loop detection has been made optional, supplanted by a mandatory uddige-6brwards. The

6156 loop detection procedure in RFC 2543 had a serious bug which would report “spirals” as an error
6157 condition when it was not. The optional loop detection procedure is more fully and correctly specified
6158 here.

6159 e Usage of tags is now mandatory (they were optional in RFC 2543), as they are now the fundamental
6160 building blocks of dialog identification.

6161 ¢ Added theSupported header, allowing for clients to indicate what extensions are supported to a
6162 server, which can apply those extensions to the response, and indicate their usagRenyjthira in

6163 the response.

6164 e Extension parameters were missing from the BNF for several headers, and they have been added.
6165 ¢ Handling ofRoute andRecord-Route construction was very underspecified in RFC 2543, and also
6166 not the right approach. It has been substantially reworked in this specification (and vastly simpler),
6167 and this is arguably the largest change. Backwards compatibility is still provided for deployments that
6168 do not use “pre-loaded routes”, where the initial request has a s&iwk headers obtained in some

6169 way outside oRecord-Route. In those situations, the new mechanism is not interoperable.

6170 e In RFC 2543, lines in a message could be terminated with CR, LF, or CRLF. This specification only
6171 allows CRLF.

6172 e Comments (expressed with rounded brackets) have been removed from the grammar of SIP.

6173 e Usage ofRoute in CANCEL andACK was not well defined in RFC 2543. It is now well specified;

6174 if a request hadRoute headers, itSCANCEL or ACK for a non-2xx response to the request need

6175 to carry the sam®oute headers.ACK for 2xx responses use thoute headers learned from the

6176 Record-Route of the 2xx responses.

6177 e RFC 2543 allowed multiple requests in a single UDP packet. This usage has been removed.

6178 e Usage of absolute time in tHexpires header and parameter has been removed. It caused interoper-
6179 ability problems in elements that were not time synchronized, a common occurence. Relative times
6180 are used instead.

6181 e The branch parameter of tMéa header is now mandatory for all elements to use. It now plays the role
6182 of a unigue transaction identifier. This avoids the complex and bug-laden transaction identification
6183 rules from RFC 2543. A magic cookie is used in ¥ia header to determine if the previous hop has

6184 made the parameter globally unique, and comparison falls back to the old rules when it is not present.
6185 Thus, interoperability is assured.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 181]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

6186 e In RFC 2543, closure of a TCP connection was made equivalentGANMCEL. This was nearly

6187 impossible to implement (and wrong) for TCP connections between proxies. This has been eliminated,
6188 so that there is no coupling between TCP connection state and SIP processing.

6189 e RFC 2543 was silent on whether a UA could initiate a new transaction to a peer while another was in
6190 progress. That is now specified here. It is allowed for MW TE requests, disallowed foaNVITE.

6191 ¢ PGP was removed. It was not sufficiently specified, and not compatible with the more complete PGP
6192 MIME. It was replaced with SIMIME.

6193 e Additional security features were added with TLS, and these are described in a much larger and
6194 complete security considerations section.

6195 e In RFC 2543, a proxy was not required to forward provisional responses from 101 to 199 upstream.
6196 This was changed tausT. This is important, since many subsequent features depend on delivery of
6197 all provisional responses from 101 to 199.

6198 e Little was said about the 503 response code in RFC 2543. It has since found substantial use in indicat-
6199 ing failure or overload conditions in proxies. This requires somewhat special treatment. Specifically,
6200 receipt of a 503 should trigger an attempt to contact the next element in the result of a DNS SRV
6201 lookup. Also, 503 response is only forwarded upstream by a proxy under certain conditions.

6202 e RFC 2543 defined, but did no sufficiently specify, a mechanism for UA authentication of a server.
6203 That has been removed. Instead, the mutual authentication procedures of RFC 2617 are allowed.

6204 e A UA cannot send 8YE for a call until its gotten a\CK for the initital INVITE. This was allowed

6205 in RFC 2543 but leads to a potential race condition.

6206 e A UA or proxy cannot sendCANCEL for a transaction until it gets a provisional response for the

6207 request. This was allowed in RFC 2543 but leads to potential race conditions.

6208 e The action parameter in registrations has been deprecated. It was insufficent for any useful services,
6209 and caused conflicts when application processing was applied in proxies.

6210 ¢ RFC 2543 had a number of special cases for multicast. For example, certain responses were supressed,
6211 timers were adjusted, and so on. Multicast now plays a more limited role, and the protocol operation
6212 is unaffected by usage of multicast as opposed to unicast. The limitations as a result of that are
6213 documented.

6214 ¢ Basic authentication has been removed entirely and its usage forbidden.

6215 e Proxies no longer forward a 6xx immediately on receiving it. Instead, they CANCEL pending
6216 branches immediately. This avoids a potential race condition that would result in a UAC getting a
6217 6xx followed by a 2xx. In all cases except this race condition, the result will be the same - the 6xx is
6218 forwarded upstream.

6219 ¢ Reliability of provisional responses was developed as an extension so SIP, and has been folded into
6220 this specification.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 182]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

6221 e RFC 2543 did not address the problem of request merging. This occurs when a request forks at a
6222 proxy, and later rejoins at an element. Handling of merging is done only at a UA, and procedures are
6223 defined for rejecting all but the first request.

s22 29.2 Minor Functional Changes
6225 ¢ Added theAlert-Info, Error-Info andCall-Info headers for optional content presentation to users.

6226 e Added theContent-Language, Content-Disposition andMIME-Version headers.

6227 e Added a “glare handling” mechanism to deal with the case where both parties send each other a
6228 redNVITE simultaneously. It uses the new 491 (Request Pending) error code.

6229 ¢ Added theln-Reply-To andReply-To headers for supporting the return of missed calls or messages
6230 at a later time.

6231 e Added TLS and SCTP as valid SIP transports.

6232 e There were a variety of mechanisms described for handling failures at any time during a call; those
6233 are now generally unifiedYE is sent to terminate.

6234 e RFC 2543 mandating retransmission IBVITE responses over TCP, but noted it was really only
6235 needed for 2xx. That was an artifact of insufficient protocol layering. With a more coherent transaction
6236 layer defined here, that is no longer needed. Only the 2xx respols¥IfbE is transmitted over TCP.

6237 e Formally specified an RTT estimation procedure udiirgestamp. Its usage was mentioned in RFC

6238 2543, but no details provided.

6239 ¢ Client and server transaction machines are now driven based on timeouts rather than retransmit counts.
6240 This allows the state machines to be properly specified for TCP and UDP.

6241 e TheDate header is used IREGISTER responses to provide a simple means for auto-configuration
6242 of dates in user agents.

6243 e Allowed a registrar to reject registrations with expirations that are too short in duration. Defined the
6244 423 response code and tln-Expires for this purpose.

s 30 Acknowledgments

s26 We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions.
s2a7 Detailed comments were provided by Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan, Keith
s228 Drage, @&dric Fluckiger, Yaron Goland, John Hearty, Berniendisen, Jo Hornsby, Phil Hoffer, Christian

s220 Huitema, Jean Jervis, Gadi Karmi, Peter Kjellerstedt, Anders Kristensen, Jonathan Lennox, Gethin Liddell,
250 Allison Mankin, William Marshall, Keith Moore, Vern Paxson, Moshe J. Sambol, Chip Sharp, Igor Slepchin,
e2s1 Eric Tremblay., and Rick Workman.

6252 Brian Rosen provided the compiled BNF.

6253 This work is based, inter alia, on [41, 42].

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 183]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

oss 31 Authors’ Addresses

e2s5 Authors addresses are listed alphabetically for the editors, the writers, and then the original authors of RFC
e2s6 2543. All listed authors actively contributed large amounts of text to this document.

s2s7 Jonathan Rosenberg

s2s8 dynamicsoft

e2s9 72 Eagle Rock Ave

6260 East Hanover, NJ 07936

6261 USA

s262 €electronic mail;jdrosen@dynamicsoft.com

s263 Henning Schulzrinne

s« Dept. of Computer Science

s26s Columbia University

e266 1214 Amsterdam Avenue

s267 New York, NY 10027

6268 USA

s260 electronic mail:schulzrinne@cs.columbia.edu

s270 Gonzalo Camarillo

e271 Ericsson

sz Advanced Signalling Research Lab.

e273 FIN-02420 Jorvas

6274 Finland

6275 electronic mail:Gonzalo.Camarillo@ericsson.com

s276 Alan Johnston

6277 WorldCom

s278 100 South 4th Street

6279 St. Louis, MO 63102

s280 USA

s281 electronic mail:alan.johnston@wcom.com

s282 Jon Peterson

s283 NeuStar, Inc

e284 1800 Sutter Street, Suite 570

e28s Concord, CA 94520

6286 USA

s287 €lectronic mail;jon.peterson@neustar.com

s288 Robert Sparks

s280 dynamicsoft, Inc.

s200 5100 Tennyson Parkway

s201 Suite 1200

s202 Plano, Texas 75024

6203 USA

s20a €lectronic mail:rsparks@dynamicsoft.com

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 184]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

s20s Mark Handley
s206 ACIRI
207 €lectronic mail:mjh@aciri.org

s208 EVve Schooler

6200 Computer Science Department 256-80
e300 California Institute of Technology

e301 Pasadena, CA 91125

6302 USA

6303 electronic mail:schooler@cs.caltech.edu

woa 32 Normative References

ss0s [1] J. Rosenberg and H. Schulzrinne, “An offer/answer model with SDP,” Internet Draft, Internet Engi-
6306 neering Task Force, Jan. 2002. Work in progress.

s07 [2] H. Schulzrinne and J. Rosenberg, “SIP: Session initiation protocol — locating SIP servers,” Internet
6308 Dratft, Internet Engineering Task Force, Mar. 2001. Work in progress.

e300 [3] R. Braden, “Requirements for internet hosts - application and support,” Request for Comments 1123,
6310 Internet Engineering Task Force, Oct. 1989.

ss11 [4] T.Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),” Request for Com-
6312 ments 1738, Internet Engineering Task Force, Dec. 1994.

ea13 [D] D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” Request for
6314 Comments 1750, Internet Engineering Task Force, Dec. 1994.

sai5 [6] R.Troostand S. Dorner, “Communicating presentation information in internet messages: The content-
6316 disposition header,” Request for Comments 1806, Internet Engineering Task Force, June 1995.

sz [7] J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Security multiparts for MIME: multipart/signed and
6318 multipart/encrypted,” Request for Comments 1847, Internet Engineering Task Force, Oct. 1995.

s3a19 [8] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
6320 Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

ez [9] T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
6322 neering Task Force, Jan. 1999.

s323 [10] H. Alvestrand, “IETF policy on character sets and languages,” Request for Comments 2277, Internet
6324 Engineering Task Force, Jan. 1998.

szs [11] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Inter-
6326 net Engineering Task Force, Apr. 1998.

s327 [12] D. Meyer, “Administratively scoped IP multicast,” Request for Comments 2365, Internet Engineering
6328 Task Force, July 1998.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 185]

6329

6330

6331

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

6360

6361

6362

6363

6364

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”
Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

S. Kent and R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 2401,
Internet Engineering Task Force, Nov. 1998.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol — HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
neering Task Force, June 1999.

R. Housley, “Cryptographic message syntax,” Request for Comments 2630, Internet Engineering Task
Force, June 1999.

B. Ramsdell and Ed, “S/MIME version 3 message specification,” Request for Comments 2633, Internet
Engineering Task Force, June 1999.

A. Vaha-Sipila, “URLSs for telephone calls,” Request for Comments 2806, Internet Engineering Task
Force, Apr. 2000.

P. Resnick and Editor, “Internet message format,” Request for Comments 2822, Internet Engineering
Task Force, Apr. 2001.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson, “Stream control transmission protocol,” Request for Comments 2960, Internet Engi-
neering Task Force, Oct. 2000.

J. Postel, “DoD standard transmission control protocol,” Request for Comments 761, Internet Engi-
neering Task Force, Jan. 1980.

J. Postel, “User datagram protocol,” Request for Comments 768, Internet Engineering Task Force,
Aug. 1980.

S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Request for Comments 2279, Internet
Engineering Task Force, Jan. 1998.

V. Paxson and M. Allman, “Computing TCP’s retransmission timer,” Request for Comments 2988,
Internet Engineering Task Force, Nov. 2000.

J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An exten-
sion to HTTP : Digest access authentication,” Request for Comments 2069, Internet Engineering Task
Force, Jan. 1997.

D. Crocker, Ed., and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for
Comments 2234, Internet Engineering Task Force, Nov. 1997.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 186]

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

6389

6390

6391

6392

6393

6394

6395

6396

6397

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

33 Non-Normative References

[29] R. Pandya, “Emerging mobile and personal communication systems,” Vol. 33, pp. 44-52, June 1995.

[30] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Willis, J. Rosenberg, K. Summers, and
H. Schulzrinne, “SIP telephony call flow examples,” Internet Draft, Internet Engineering Task Force,
Apr. 2001. Work in progress.

[31] R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet Engineering
Task Force, Apr. 1992.

[32] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.

[33] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for
Comments 1890, Internet Engineering Task Force, Jan. 1996.

[34] J. Palme, “Common internet message headers,” Request for Comments 2076, Internet Engineering
Task Force, Feb. 1997.

[35] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request for Com-
ments 2326, Internet Engineering Task Force, Apr. 1998.

[36] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Comments 2368,
Internet Engineering Task Force, July 1998.

[37] F. Dawson and T. Howes, “vcard MIME directory profile,” Request for Comments 2426, Internet
Engineering Task Force, Sept. 1998.

[38] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” Request for Com-
ments 2849, Internet Engineering Task Force, June 2000.

[39] S. Donovan, “The SIP INFO method,” Request for Comments 2976, Internet Engineering Task Force,
Oct. 2000.

[40] E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

[41] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experigndel. 4, pp. 99-120, June 1993. ISI
reprint series ISI/RS-93-359.

[42] H. Schulzrinne, “Personal mobility for multimedia services in the InternetZuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDNERrlin, Germany), Mar. 1996.

[43] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J. Segers, “Megaco protocol version
1.0,” Request for Comments 3015, Internet Engineering Task Force, Nov. 2000.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 187]

6398

6399

6400

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
itS successors or assigns.

This document and the information contained herein is provided on an "AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The IETF
has been notified of intellectual property rights claimed in regard to some or all of the specification contained
in this document. For more information consult the online list of claimed rights.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires Aug 2002[Page 188]

