11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

Internet Engineering Task Force SIP WG
INTERNET-DRAFT Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler
draft-ietf-sip-rfc2543bis-06.ps Various places
January 28, 2002
Expires: July 2002

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1lid-abstracts.txt
To view the list Internet-Draft Shadow Directories, $eg://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2002). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
telephone calls, multimedia distribution and multimedia conferences.

SIP invitations used to create sessions carry session descriptions which allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests to
the users current location, authenticate and authorize users for services, implement provider call routing
policies, and provide features to users. SIP also provides a registration function that allows them to
upload their current location for use by proxy servers. SIP runs ontop of several different transport

protocols.

Contents

1 Introduction 8
2 Overview of SIP Functionality 8
3 Terminology 9
4 Overview of Operation 9
5 Structure of the Protocol 15
6 Definitions 16
7 SIP Messages 20

7.1 Requests 21

7.2 RESPONSES o o e e e e e e 21

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002
34 7.3 HeaderFields e 22
35 7.3.1 HeaderFieldFormat 22
36 7.3.2 Header Field Classification 24
37 7.3.3 CompactForm e e e e 24
38 7.4 BodieS e 25
39 7.4.1 MessageBody Type e 25
40 7.4.2 MessageBodylLength 25
a 7.5 Framing SIPmMessages o 0 i i e e 25
22 8 General User Agent Behavior 25
a3 8.1 UACBehavior. e e e 26
a4 8.1.1 Generatingthe Request e 26
a5 8.1.2 Sendingthe Request 29
46 8.1.3 Loose Routing Policies 30
a7 8.1.4 Processing RESPONSES. i i i e e 31
a8 8.2 UASBehavior e 33
49 8.2.1 Method Inspection 33
50 8.2.2 HeaderInspection 33
51 8.2.3 ContentProcessing... e 35
52 8.2.4 Applying EXIENSIONS e 35
53 8.2.5 ProcessingtheRequest e 35
54 8.2.6 Generatingthe Response 35
55 8.2.7 Stateless UAS Behavior 36
56 8.3 Redirect Servers e 37
57 9 Canceling a Request 38
58 9.1 ClientBehavior e 38
59 9.2 ServerBehavior e 39
so 10 Registrations 39
61 10.1 OVEIVIEW o e e e e e e e e e 39
62 10.2 Constructing thREGISTERRequest 40
63 10.2.1 Adding Bindings 41
64 10.2.2 Removing Bindings e 42
65 10.2.3 Fetching Bindings e e 43
66 10.2.4 Refreshing Bindings 43
67 10.2.5 Settingthe Internal Clock 43
68 10.2.6 DiscoveringaRegistrar 43
69 10.2.7 Transmittinga Request. e 43
70 10.2.8 Error RESPONSES o i 44
7 10.3 ProcessinREGISTER Requests i 44
72 11 Querying for Capabilities 46
73 11.1 Construction 0DPTIONS Request e e e 46
74 11.2 Processing of OPTIONS Request it a7

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 2]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

75 12 Dialogs 48

76 12.1 CreationofaDialog. e 48
7 12.1.1 UASbehavior e 48
78 12.1.2 UAC behavior e 49
79 12.2 Requests withinaDialog 50
80 12.2.1 UACBehavior e 50
81 12.2.2 UASbehavior e 51
82 12.3 Terminationof aDialog e e 53
83 13 Initiating a Session 53

84 13.1 OVEIVIEW o e e e e e 53
85 13.2 Caller Processing o o v i i e e e e e e e e e e 53
86 13.2.1 Creatingthe InitidNVITE i 53

87 13.2.2 ProcessintNVITE RESPONSES o o e e e e e e 54
88 13.3 Callee Processing i e e e e e e e e 56
89 13.3.1 Processing of tHBIVITE 56

90 14 Modifying an Existing Session 58

91 14.1 UAC Behavior e e 58
92 14.2 UAS Behavior e 59
93 15 Terminating a Session 60

94 15.1 Terminating a Dialog withBYERequest 60
95 15.1.1 UACBehavior e 60
96 15.1.2 UASBehavior 61
o7 16 Proxy Behavior 61

98 16.1 OVEIVIEW o o o e e e e e e 61
99 16.2 Stateful Proxy o 62
100 16.3 Request Validation e 62
101 16.4 Making a Routing Decision 65
102 16.5 Request Processing. i e e e e e e e 67
103 16.6 Response ProCessSiNg. v v v v v v it e e e e 71
104 16.7 Processing TImerC e e e e e e e 76
105 16.8 Handling Transport Errors e e e e e e e e 76
106 16.9 CANCEL Processing. v v v i e e e e e e 76
107 16.10Stateless ProxXy o o e e e e e 77
108 16.11Record-Route Example 78
109 17 Transactions 79

110 17.1 Client Transaction e e e 80
111 17.1.1 INVITE Client Transaction et 81
112 17.1.2 nonNVITE Client Transaction 84
113 17.1.3 Matching Responses to Client Transactions 86
114 17.1.4 Handling Transport Errors e 87
115 17.2 Server Transaction 87

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 3]

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002
17.2.1 INVITE Server Transaction it i e 87
17.2.2 nonNVITE Server Transaction 89
17.2.3 Matching Requests to Server Transactions 89
17.2.4 Handling Transport Errors e e 91
17.3 RTTEStimation e e e e e e e e e 92
18 Reliability of Provisional Responses 92
18.1 UASBehavior e 93
18.2 UAC Behavior e 94
19 Transport 95
19.1 Clients e 95
19.1.1 Sending Requests e 95
19.1.2 Receiving RESpONSES. 96
19.2 SeIVers . . . o e 97
19.2.1 Receiving Requests... 97
19.2.2 Sending RESPONSES i i i e e e e e e 97
19.3 Framing o 98
19.4 ErrorHandling e e e e 98
20 Usage of HTTP Authentication 98
20.1 Framework e e 99
20.2 User-to-User Authentication e 100
20.3 Proxy to User Authentication e 101
20.4 The Digest Authentication Scheme 102
21 S/MIME 104
21.1 S/MIME Certificates. e 104
21.2 SIMIME Key Exchange 104
21.3 Securing MIME bodies 106
21.4 Tunneling SIPINMIME 106
21.4.1 Tunneling Integrity and Authentication 106
21.4.2 Tunneling Encryption. 108
22 Security Considerations 109
22.1 ThreatModels e 109
22.1.1 Registration Hijacking o 110
22.1.2 Impersonating a Server 110
22.1.3 Tampering with Message Bodies 110
22.1.4 TearingDown Sessions. 111
22.1.5 Denial of Service and Amplification 0oL 111
22.2 Security MechanisSms 112
22.2.1 Transport and Network Layer Security 112
22.2.2 HTTP Authentication e 113
22.2.3 SIMIME e 113
22.3 Implementing Security Mechanisms 0o 114

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 4]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

157 22.3.1 Requirements for Implementersof SIP. 114
158 22.3.2 Security Solutions e e 114
159 22.4 Limitations e e e 117
160 22.4.1 HTTPDIgest e e e e e 117
161 22.4.2 SIMIME e e 118
162 22.4.3 TLS . . e 119
163 225 Privacy 119
16a 23 Common Message Components 119
165 23.1 SIP Uniform Resource Indicators 119
166 23.1.1 SIPURICOmMPONENtS. o e 120
167 23.1.2 Character Escaping Requirements 122
168 23.1.3 Example SIPURIS e 123
169 23.1.4 SIPURICOMPAriSON o e e e e e 123
170 23.1.5 Forming RequestsfromaSIPURI 124
i 23.1.6 Relating SIPURIsandtelURLS 125
172 23.2 OptioN TagS . . .« v o e e e e e e e e e 126
173 233 TaQS e 127
174 24 Header Fields 127

175 24.1 ACCEPL . . . L e e e 130
176 24.2 Accept-Encoding 130
177 24.3 Accept-Language e e e e 131
178 24.4 Alert-Info L e 131
179 245 AlloW e e 131
180 24.6 Authentication-Info L 132
181 24.7 Authorization e e e 132
182 248 Call-ID 132
183 249 Call-Info e e 132
184 24.10C0NtACE L 133
185 24.11Content-DISpOoSition 133
186 24.1ontent-Encoding e e e e e 134
187 24.13ontent-Language e e 134
188 24.14Content-Length L 134
189 24.15C0Ntent-TYPE e e e e e e e e e 135
190 2416CSEQ . . v e 135
191 241TDAte e e 135
192 24.18rror-Info . . . L e e 135
193 24 1FEXPITES . o v v o e e e e e e e e 136
194 24.20FI0M . . L L e e e e e e 136
195 24.20N-Reply-TO o e e e e e 137
196 24.22Max-Forwards e e e 137
197 24.23VIIN-EXPIrES e e e e e e 137
198 24 2AMIME-VEISION o e e e e 137
199 24.250rganization L e e e e e e e 137

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 5]

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 6]

24.26PTI0NLY . . . L e e e e e 138
24.27Proxy-Authenticate L e 138
24.28Proxy-Authorization 138
24.2Proxy-Require e e e e e e 139
24.30RACK . . 139
24.31Record-Route e 139
243Reply-TO . . . o e 139
243REqUINE e e e e e 140
24 3MRetry-After 140
2435R0ULE 140
2430RSEQ . . . 141
24.3TSEIVEN . . o o e e 141
24.38Subject 141
24.395upported . .. 141
24.40TIMeStamp e e e e e e e 141
244070 e e 142
24.420nsupported L e e e e e 142
24.43Jser-Agent e 142
Y - 142
24.48BNarming e e e e e e 143
24 40NWW-Authenticate o e e e e 144
Response Codes 144
25.1 Provisional IXX e e 145
25.1.1 100 TrYiING . . o v o o e e 145
25.1.2 180RINGING e 145
25.1.3 181 CalllsBeing Forwarded 145
25.1.4 182 Queued e 145
25.1.5 183 SeSSioN Progress o 145
25.2 Successful 2xx 145
25.2.1 200 0K e e 145
25.3 Redirection 3XX e e 146
25.3.1 300 Multiple Choices 146
25.3.2 301 Moved Permanently 146
25.3.3 302 Moved Temporarily. e 146
25.3.4 305USeProxXy o i i e 146
25.3.5 380 Alternative Service L 147
25.4 Request Failure 4xXX o 147
25.4.1 400Bad Request e 147
25.4.2 401 Unauthorized e 147
25.4.3 402 PaymentRequired 147
25.4.4 403 Forbidden e 147
2545 404 NotFound e 147
25.4.6 405 Method Not Allowed 147
25.4.7 406 Not Acceptable... e 147

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.4.8 407 Proxy Authentication Required 148
25.4.9 408 Request Timeout i i e 148
25410410 GONE o e e e e e e 148
25.4.11 413 Request Entity TooLarge. 148
25.4.12414 Request-URI TooLong o ittt 148
25.4.13 415 Unsupported Media Type. e 148
25.4.14 416 Unsupported URI Scheme 148
25.4.15420 Bad EXtension 148
25.4.16 421 Extension Required 149
25.4.17 423 Registration TooBrief 149
25.4.18 480 Temporarily Unavailable 149
25.4.19 481 Call/Transaction Does NotExist. 149
25.4.20482 Loop Detected e 149
25421483 TooMany HOPS 0 e 149
25.4.22 484 Address Incomplete e 149
25.4.23485 Ambiguous L 150
25.4.24 486 Busy Here L 150
25.4.25487 Request Terminated 150
25.4.26 488 Not Acceptable Here. oo 150
25.4.27491 RequestPending 150
25.4.28493 Undecipherable 150
255 ServerFailure 5Xx e 151
25.5.1 500 Server Internal Error 151
25.5.2 501 NotImplemented 151
2553 502BadGateway 151
25.5.4 503 Service Unavailable oo 151
25.5.5 504 Server Time-out e e e 151
25.5.6 505 Version NotSupported e 151
25.5.7 513 Message TooLarge e 152
25.6 Global Failures 6XX e 152
25.6.1 600 Busy Everywhere 152
25.6.2 603 Decline 152
25.6.3 604 Does Not Exist Anywhere 152
25.6.4 606 Not Acceptable...o 152
26 Examples 153
26.1 Registration L e 153
26.2 SeSSION SetUP . ..o o . e e e 154
27 Augmented BNF for the SIP Protocol 159
27.1 BasicRules e 160
28 IANA Considerations 174
28.1 OptioN TagS o v o e 174
28.1.1 Registrationof 100rel. e 175

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 7]

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

28.2 Warn-Codes 175

28.3 Header Field Names 175

28.4 Method and Response Codes i e 176
29 Changes Made in Version 00 176
30 Changes Made in Version 01 181
31 Changes Made in Version 02 181
32 Changes Made in Version 03 183
33 Changes Made in Version 04 185
34 Changes Made in Version 05 186
35 Changes Made in Version 06 189
36 Acknowledgments 198
37 Authors’ Addresses 198

1 Introduction

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation
of these services is complicated by the practices of participants; users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia
session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling
Internet endpoints (called “user agents”) to discover one another and to agree on a characterization of a
session they would like to share. For locating prospective session participants, and for other functions, SIP
enables creation of an infrastructure of network hosts (called “proxy servers”) to which user agents can send
registrations, invitations to sessions and other requests. SIP is an agile, general-purpose tool for creating,
modifying and terminating sessions that works independently of underlying transport protocols and without
dependency on the type of session that is being established.

2 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify, and
terminate multimedia sessions (conferences) such as Internet telephony calls. SIP can also invite participants
to already existing sessions, such as multicast conferences. Media can be added to (and removed from)
an existing session. SIP transparently supports name mapping and redirection services, which supports
personal mobility{1, p. 44] - users can maintain a single externally visible identifier (SIP URI) regardless
of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 8]

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;
User capabilities: determination of the media and media parameters to be used,;

Session setup:“ringing”, establishment of session parameters at both called and calling party;

Session managementincluding transfer and termination of sessions, modifying session parameters, and
invoking services.

SIP is not a vertically integrated communications system. SIP is rather acomponent that can be used with
other IETF protocols to build a complete multimedia architecture. Typically, these architectures will include
protocols such as the real-time transport protocol (RTP) (RFC 1889 [2]) for transporting real-time data and
providing QoS feedback, the real-time streaming protocol (RTSP) (RFC 2326 [3]) for controlling delivery of
streaming media, the Media Gateway Control Protocol (MEGACO) (RFC 3015 [4]) for controlling gateways
to the Public Switched Telephone Network (PSTN), and the session description protocol (SDP) (RFC 2327
[5]) for describing multimedia sessions. Therefore, SIP should be used in conjunction with other protocols
in order to provide complete services to the users. However, the basic functionality and operation of SIP
does not depend on any of these protocols.

SIP does not provide services. SIP rather provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the parameters of a session
can be agreed between endpoints. If the same primitive is used to deliver a photo of the caller as well as
the session description, a "caller ID” service can be easily implemented. As this example shows, a single
primitive is typically used to provide several different services.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed. SIP can be used to initiate a session that uses some other conference control
protocol. Since SIP messages and the sessions they establish can pass through entirely different networks,
SIP cannot, and does not, provide any kind of network resource reservation capabilities.

The nature of the services provided by SIP make security particularly important. To that end, SIP
provides a suite of security services, which include denial-of-service prevention, authentication (both user
to user and proxy to user), integrity protection, and encryption and privacy services.

SIP works with both IPv4 and IPv6.

3 Terminology
In this document, the key words1UST”, “ MUST NOT”, “ REQUIRED', “ SHALL", “ SHALL NOT”, “ SHOULD",

“SHOULD NOT’, “RECOMMENDED’, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [6] and indicate requirement levels for compliant SIP implementations.

4 Overview of Operation

This section introduces the basic operations of SIP using simple examples. This section is tutorial in nature
and does not contain any normative statements.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 9]

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The first example shows the basic functions of SIP: location of an end point, signal of a desire to com-
municate, negotiation of session parameters to establish the session, and teardown of the session once es-
tablished.

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dashed lines in Figure 1.

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) called a SIP URI
and defined in Section 23.1. It has a similar form to an email address, typically containing a username and
a host name. In this case, it is sip:bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP service
provider (which can be an enterprise, retail provider, etc). Alice also has a SIP URI of sip:alice@atlanta.com.
Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink or an entry in an address book.

SIP is based on an HTTP-like request/response transacton model. Each transaction consists of a request
that invokes a particular “Method”, or function, on the server, and at least one response. In this example, the
transaction begins with Alice’s softphone sendingMXITE request addressed to Bob’s SIP URIVITE
is an example of a SIP method which specifies the action that the requestor (Alice) wants the server (Bob)
to take. ThelNVITE request contains a number of header fields. Header fields are named attributes that
provide additional information about a message. The ones presentNV#FRE include a unique identifier
for the call, the destination address, Alice’s address, and information about the type of session that Alice
wishes to establish with Bob. THRVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method neMEE). The lines that follow
are a list of header fields. This example contains a minimum required set. The headers are briefly described
below:

Via contains the address (pc33.atlanta.com) on which Alice is expecting to receive responses to this
request.lt also contains a branch parameter that contains an identifier for this transaction.

To contains a display name (Bob) and a SIP URI (sip:bob@biloxi.com) towards which the request was
originally directed. Display hames are described in RFC 2822 [7].

From also contains a display name (Alice) and a SIP URI (sip:alice@atlanta.com) that indicate the
originator of the request. This header field also haagaparameter containing a pseudorandom string
(1928301774) that was added to the URI by the softphone. It is used for identification purposes.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 10]

INTERNET-DRAFT

draft-ietf-sip-rfc2543bis-06.ps

January 28, 2002

Alice’s PC 'sP
F1 > Pe
i > F
| F
< >
< I £ i F
< ii F <
< ii F
F1 < :
§ Fi1 <«
AC FI
>
< P ei essi >
Fl1
<
Fl1
>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 11]

Figure 1: SIP session setup example with SIP trapezoid

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

436

437

438

439

440

441

442

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Call-ID contains a globally unique identifier for this call, generated by the combination of a pseudoran-
dom string and the softphone’s IP address. The combination dbtiferom, andCall-ID completely define
a peer-to-peer SIP relationship betwee Alice and Bob, and is referred to as a “dialog”.

CSeq or Command Sequence contains an integer and a method nameSéhgenumber is incremented
for each new request, and is a traditional sequence number.

Contact contains a SIP URI that represents a direct route to reach or contact Alice, usually composed
of a username at an FQDN. While a FQDN is preferred, many end systems do not have registered domain
names, so IP addresses are permitted. Whilévikeheader field tells other elements where to send the
response, th€ontact header field tells other elements where to send future requests for this dialog.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 24.

The details of the session, type of media, codec, sampling rate, etc. are not described using SIP. Rather,
the body of a SIP message contains a description of the session, encoded in some other protocol format.
One such format is Session Description Protocol (SDP) [5]. This SDP message (not shown in the example)
is carried by the SIP message in a way that is analogous to a document attachment being carried by an email
message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in the biloxi.com domain, the
softphone sends tHBIVITE to the SIP server that serves Alice’s domain, atlanta.com. The IP address of the
atlanta.com SIP server could have been configured in Alice’s softphone, or it could have been discovered by
DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives
SIP requests and forwards them on behalf of the requestor. In this example, the proxy server receives the
INVITE request and sends a 100 (Trying) response back to Alice’s softphone. The 100 (Trying) response
indicates that th&NVITE has been received and that the proxy is working on her behalf to roulfd WEE
to the destination. Responses in SIP use a three-digit code followed by a descriptive phrase. This response
contains the sam#®, From, Call-ID, andCSeq as theNVITE, which allows Alice’s softphone to correlate
this response to the seMIVITE. The atlanta.com proxy server locates the proxy server at biloxi.com,
possibly by performing a particular type of DNS (Domain Name Service) lookup to find the SIP server
that serves the biloxi.com domain. This is described in [8}s a result, it obtains the IP address of the
biloxi.com proxy server and forwards, or proxies, tN&/ITE request there. Before forwarding the request,
the atlanta.com proxy server adds an additidfialheader field that contains its own IP address (M TE
already contains Alice’s IP address in the fivéa). The biloxi.com proxy server receives theVITE and
responds with a 100 (Trying) response back to the Atlanta.com proxy server to indicate that it has received
theINVITE and is processing the request. The proxy server consults a database, generically called a location
service, that contains the current IP address of Bob. (We shall see in the next section how this database can
be populated.) The biloxi.com proxy server adds ancothatheader with its own IP address to the&VITE
and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives thHVITE and alerts Bob to the incoming call from Alice so that Bob can
decide whether or not to answer the call, i.e., Bob’s phone rings. Bob’s SIP phone sends an indication of
this in a 180 (Ringing) response, which is routed back through the two proxies in the reverse direction.
Each proxy uses theia header to determine where to send the response and removes its own address from
the top. As a result, although DNS and location service lookups were required to route théNIMtBE,
the 180 (Ringing) response can be returned to the caller without lookups or without state being maintained
in the proxies. This also has the desirable property that each proxy that séb®/tlm& will also see all

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 12]

443

444

445

446

447

448

449

450

451

452

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

a71

472

473

474

475

476

477

478

479

480

481

482

484

485

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

responses to th&NVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes this information to Alice, perhaps
using an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a
200 (OK) response to indicate that the call has been answered. The 200 (OK) contains a message body with
the SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages; Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model of
SDP exchange. If Bob did not wish to answer the call or was busy on another call, an error response would
have been sent instead of the 200 (OK), which would have resulted in no media session being established.
The complete list of SIP response codes is in Section 25. The 200 (OK) (message F9 in Figure 1) might
look like this as Bob sends it out:

SIP/2.0 200 OK

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9nG4bK77ef4c2312983.1
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.8>

Content-Type: application/sdp

Content-Length: 131

(Bob’'s SDP not shown)

The first line of the response contains the response code (200) and the reason phrase (OK). The remain-
ing lines contain header fields. Th&a header fieldsJo, From, Call- ID, andCSeq are all copied from
the INVITE request. (There are thrada headers - one added by Alice’s SIP phone, one added by the
atlanta.com proxy, and one added by the biloxi.com proxy.) Bob'’s SIP phone has addgpeaameter to
the To header field. This tag will be incorporated by both User Agents into the dialog and will be included
in all future requests and responses in this call. Thatact header field contains a URI at which Bob can
be directly reached at his SIP phone. Tentent-Type and Content-Length refer to the message body
(not shown) that contains Bob’s SDP media information.

In additon to DNS and location service lookups shown in this example, proxy servers can make flexible
“routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned a 486 (Busy
Here) response, the biloxi.com proxy server could proxylMMITE to Bob’s voicemail server. A proxy
server can also send #NVITE to a number of locations at the same time. This type of parallel search is
known as “forking”.

In this case, the 200 (OK) is routed back through the two proxies and is received by Alice’s softphone
which then stops the ringback tone and indicates that the call has been answered. Finally, an acknowledge-
ment messag@&\CK, is sent by Alice to Bob to confirm the reception of the final response (200 (OK)). In this
example, theACK is sent directly from Alice to Bob, bypassing the two proxies. This is because, through
the INVITE/200 (OK) exchange, the two SIP user agents have learned each other’s IP address through the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 13]

486

487

488

489

490

491

492

493

494

495

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Contact header fields, which was not known when the inithV/ITE was sent. The lookups performed by

the two proxies are no longer needed, so they drop out of the call flow. This complelis¥/th&/200/ACK

three-way handshake used to establish SIP sessions and is the end of the transaction. Full details on session
setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media packets using the format agreed to
in the exchange of SDP. In general, the end-to-end media packets take a different path from the SIP signaling
messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session.
This is accomplished by sending aliVITE containing a new media description. If the change is accepted
by the other party, a 200 (OK) is sent, which is itself responded to wih@K. This reiNVITE references
the existing dialog so the other party knows that it is to modify an existing session instead of establishing a
new session. If the change is not accepted, an error response, such as a 406 (Not Acceptable), is sent, which
also receives aACK. However, the failure of the riNVITE does not cause the existing call to fail - the
session continues using the previously negotiated characteristics. Full details on session modification are in
Section 14.

At the end of the call, Bob disconnects (hangs up) first, and gener&&¥&€anessage. ThiBYE is
routed directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt B¥tavith a
200 (OK) response, which terminates the session anBYtietransaction. NACK is sent - arACK is only
sent in response to a response tdMXITE request. The reasons for this special handling N/ ITE will
be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take for a ringing
phone to be answered, and forking. For this reason, request handling in SIP is often classified as either
INVITE or non-INVITE, referring to all other methods besid&VITE. Full details on session termination
are in Section 15.

Full details of all the messages shown in the example of Figure 1 are shown in Section 26.2.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between
the endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to remain
in the SIP messaging path beyond the inithV/ITE, it would add to thdNVITE a required routing header
field known asRecord-Route that contained a URI resolving to the proxy. This information would be
received by both Bob's SIP phone and (due to Rexord-Route header field being passed back in the
200 (OK)) Alice’s softphone and stored for the duration of the dialog. The biloxi.com proxy server would
then receive and proxy thCK, BYE, and 200 (OK) to thé&YE. Each proxy can independently decide to
receive subsequent messaging, and that messaging will go through all proxies that elect to receive it. This
capability is frequently used for proxies that are providing mid-call features.

Registration is another common operation in SIP. Registration is one way that the biloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in the biloxi.com domain known as a SIP registraRHGETER
messages associate Bob’s SIP URI (sip:bob@biloxi.com) with the machine he is currently logged in at
(conveyed as a SIP URI in ti@ontact header). The registrar writes this association, also called a binding,
to a database, called thacation servicewhere it can be used by the proxy in the biloxi.com domain. Often,

a registrar server for a domain is co-located with the proxy for that domain. It is an important concept that
the distinction between types of SIP servers is logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and
the one in the office could send registrations. This information is stored together in the location service and
allows a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be
registered on a single device at the same time.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 14]

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

5562

553

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The location service is just an abstract concept. It generally contains information that allows a proxy to
input a URI and get back a translated URI that tells the proxy where to send the request. Registrations are
one way to create this information, but not the only way. Arbitrary mapping functions can be programmed,
at the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and
has no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either
on a request-by-request, challenge/response mechanism, or using a lower layer scheme as discussed in
Section 22.

The complete set of SIP message details for this registration example is in Section 26.1.

Additional operations in SIP, such as querying for the capabilities of a SIP server or clientQRing
TIONS, canceling a pending request usiGANCEL, or supporting reliability of provisional responses
usingPRACK will be introduced in later sections.

5 Structure of the Protocol

SIP is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly
independent processing stages with only a loose coupling between each stage. The protocol is structured
into layers for the purpose of presentation and conciseness; it allows the grouping of functions common
across elements into a single place. It does not dictate an implementation in any way. When we say that an
element “contains” a layer, we mean it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified
by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its syntax and encoding. Its encoding is specified using a BNF. The complete
BNF is specified in Section 27. However, a basic overview of the structure of a SIP message can be found
in Section 7. This section provides enough understanding of the format of a SIP message to facilitate
understanding the remainder of the protocol.

The next higher layer is the transport layer. This layer defines how a client takes a request and physically
sends it over the network, and how a response is sent by a server and then received by a client. All SIP
elements contain a transport layer. The transport layer is described in Section 19.

The next higher layer is the transaction layer. Transactions are a fundamental component of SIP. A
transaction is a request, sent by a client transaction (using the transport layer), to a server transaction, along
with all responses to that request sent from the server transaction back to the client. The transaction layer
handles application layer retransmissions, matching of responses to requests, and application layer timeouts.
Any task that a UAC accomplishes takes place using a series of transactions. Discussion of transactions can
be found in Section 17. User agents contain a transaction layer, as do stateful proxies. Stateless proxies do
not contain a transaction layer.

The transaction layer has a client component (referred to as a client transaction), and a server component
(referred to as a server transaction), each of which are represented by an FSM that is constructed to process
a particular request. The layer on top of the transaction layer is called the transaction user (TU), of which
there are several types. When a TU wishes to send a request, it creates a client transaction instance and
passes it the request along with the destination IP address, port, and transport to which to send the request.

A TU which creates a client transaction can also cancel it. When a client cancels a transaction, it requests
that the server stop further processing, revert to the state that existed before the transaction was initiated,
and generate a specific error response to that transaction. This is done @#N@EL request, which

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 15]

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

constitutes its own transaction, but references the transaction to be cancelled. Cancellation is described in
Section 9.

There are several different types of transaction users. A UAC contains a UAC core, a UAS contains a
UAS core, and a proxy contains a proxy core. The behavior of the UAC and UAS cores depend largely on
the method. However, there are some common rules for all methods. These rules are captured in Section 8.
They primarily deal with construction of a request, in the case of a UAC, and processing of that request and
generation of a response, in the case of a UAS.

UAC and UAS core behavior for tHREGISTER method is described in Section 10. Registrations play
an important role in SIP. In fact, a UAS that handleRBGISTER is given a special hame - a registrar -
and it is described in that section.

UAC and UAS core behavior for tr@PTIONS method, used for determining the capabilities of a UA,
are described in Section 11.

Certain other requests are sent withidialog. A dialog is a peer-to-peer SIP relationship between two
user agents that persists for some time. The dialog facilitates sequencing of messages and proper routing
of requests between the user agents. W TE method is the only way defined in this specification to
establish a dialog. When a UAC sends a request that is within the context of a dialog, it follows the common
UAC rules as discussed in Section 8, but also the rules for mid-dialog requests. Section 12 discusses dialogs
and presents the procedures for their construction, and maintenance, in addition to construction of requests
within a dialog.

The UAS core can generate provisional responses to requests, which are responses that provide ad-
ditional information about the request processing but do not indicate completion. Normally, provisional
responses are not transmitted reliably. However, an optional mechanism exists for them to be transmitted
reliably. This mechanism makes use of a method ca##BACK, sent as a separate transaction within the
dialog between the UAC and UAS, which is used to acknowledge a reliable provisional response.

The most important method in SIP is tiéVITE method, which is used to establish a session between
participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are modified through the ub&\OT &request
within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core (Section 9
describes cancellation, which applies to both UA core and proxy core). Section 16 discusses the proxy
element, which facilitates routing of messages between user agents.

6 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The terms and generic syntax of URI and URL are defined in RFC 2396 [9]. The following terms have
special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it as an user agent server (UAS). In order to determine how the request should be
answered, it acts as an user agent client (UAC) and generates requests. Unlike a proxy server, it
maintains dialog state and must participate in all requests sent on the dialogs it has established. Since
it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behavior.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 16]

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Call: A callis an informal term that refers to a dialog between peers generally set up for the purposes of a
multimedia conversation.

Call leg: Another name for a dialog.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiatitVITE to the termi-
natingBYE request. A call stateful proxy is always stateful, but the converse is not true.

Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may or
may not interact directly with a human uskser agent clientandproxiesare clients.

Conference: A multimedia session (see below) that contains multiple participants.

Dialog: A dialog is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time.
A dialog is established by SIP messages, such as a 2xx responsé\dIaE request. A dialog is
identified by a call identifier, local address, and remote address. A dialog was formerly known as a
call leg in RFC 2543.

Downstream: A direction of message forwarding within a transaction that refers to the direction that re-
quests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposeg@rtwvigional responsé¢hat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Header: A header is a component of a sip message that conveys information about the message. It is
structured as a header name, followed by a colon, followed by its value.

Home Domain: The domain providing service to a SIP user. Typically, this is the domain present in the
URI in the address-of-record of a registration.

Informational Response: Same as a provisional response.

Initiator, calling party, caller: The party initiating a session (and dialog) withI&VITE request. A caller
retains this role from the time it sends the initiblVITE which established a dialog, until the termi-
nation of that dialog.

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives dNVITE request for the purposes of
establishing a new session. A callee retains this role from the time it receivéd\HEE until the
termination of the dialog established by thsi/ITE.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It contains a list of bindings of adress-of-record keys to zero or more
contact addresses. The bindings can be created and removed in many ways; this specification defines
aREGISTER method that updates the bindings.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, iRequest-URI is identical to the first time, and other headers that affect
proxy operation are unchanged, so that the proxy would make the same processing decision on the
request it made the first time around. Looped requests are errors, and the procedures for detecting
them and handling them are described by the protocol.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 17]

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Message: Data sent between SIP elements as part of the the protocol. SIP messages are either requests or
responses.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example method&Natid E andBYE.

Outbound proxy: A proxythat receives all requests from a client, even though it is not the server resolved
by the Request-URI. The outbound proxy sends these requests, after any local processing, to the
address indicated in thHeequest-URI, or to another outbound proxy. Typically, a UA is manually
configured with its outbound proxy, or can learn it through auto-configuration protocols.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as isagquential searcha parallel search issues requests without waiting for
the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are consigerétbrmally, provisional
responses are not sent reliably. A provisional response that is sent reliably is referredrétiaidea
provisional response

Proxy, proxy server: Anintermediary entity that acts as both a server and a client for the purpose of making
requests on behalf of other clients. A proxy server primarily plays the role of routing, which means
its job is to ensure that a request is passed on to another entity “closer” to the targeted user. Proxies
are also useful for enforcing policy (for example, making sure a user is allowed to make a call). A
proxy interprets, and, if necessary, rewrites specific parts of a request message before forwarding it.

Recursion: A client recurses on a 3xx response when it generates a new request to the URISonthet
headers in the response.

Redirect Server: Aredirect server is a server that generates 3xx responses to requests it receives, directing
the client to contact an alternate URI.

Registrar: A registrar is a server that accefREGISTER requests, and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other tIN&TE, ACK, or
CANCEL.

Reliable Provisional Response:A provisional response that is sent reliably from the UAS to UAC.
Request: A SIP message sent from a client to a server, for the purpose of invoking a particular operation.

Response:A SIP message sent from a server to a client, for indicating the status of a request sent from the
client to the server.

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 18]

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Route Refresh Request:A route refresh request sent within a dialog is defined as a request that can modify
theroute sebf the dialog.

Server: A server is a network element that receives requests in order to service them and sends back re-
sponses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential search:In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [5]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session.
If SDP is used, a session is defined by the concatenation afstiirenamesession igdnetwork type
address typeandaddresselements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client, and th&CK for the response in the case the response was a non-2xxAdKdor a
2XX response is a separate transaction.

Spiral: A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again at that
proxy, but this time, differs in a way that will result in a different processing decision than the original
request. Typically, this means that the requeRixjuest-URI differs from its previous arrival. A
spiral is not an error condition, unlike a loop. A typical cause for this is call forwarding. A user calls
joe@example.com. The example.com proxy forwards it to Joe’s PC, which in turn, forwards it to
bob@example.com. This request is proxied back to the example.com proxy. However, this is not a
loop. Since the request is targeted at a different user, it is considered a spiral, and is a valid condition.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request. Also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A stateful proxy is not the same as a call
stateful proxy.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction that refers to the direction that responses
flow from the user agent server to user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [10].

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 19]

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

757

758

759

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later on, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later on, it assumes the role of a user agent client
for the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that reside above the transaction and transport
layers.

User agent (UA): A logical entity that can act as both a user agent client and user agent server for the
duration of a dialog.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-
transaction basis. For example, the user agent initiating a call acts as a UAC when sending the initial
INVITE request and as a UAS when receivinBéE request from the callee. Similarly, the same software
can act as a proxy server for one request and as a redirect server for the next request.

Proxy, location, and registrar servers defined abovédogiieal entities; implementationsAy combine
them into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [11]).

A SIP message is either a request from a client to a server, or a response from a server to a client.

Both Request (section 7.1) andResponse (section 7.2) messages use the basic format of RFC 2822
[7], even though the syntax differs in character set and syntax specifics. (SIP allows header fields that would
not be valid RFC 2822 header fields, for exampl@&pth types of messages consist dftart-line, one or
more header fields (also known as “headers”), an empty line indicating the end of the header fields, and an
optionalmessage-body.

generic-message = start-line
*message-header
CRLF
[message-body]

The start-line, each message-header line, and the emptylise be terminated by a carriage-return
line-feed sequenceCRLF). Note that the empty lineusT be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is
identical to HTTP/1.1. Rather than repeating the syntax and semantics here, we use [HX.Y] to refer to
Section X.Y of the current HTTP/1.1 specification (RFC 2616 [12]).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 20]

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782
783

784

785

786

787

788

789

790

791

792

793

794

795

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

However, SIP is not an extension of HTTP.

7.1 Requests

SIP requests are distinguished by havinRequest-Line for a start-line. A Request-Line contains a
method name, &equest-URI, and the protocol version separated by a single spakg¢ ¢haracter. The
Request-Line ends withCRLF. No CR or LF are allowed except in the end-of-lifi@RLF sequence. No
LWS is allowed in any of the elements.

Method Request-URI SIP-Version

Method: This specification defines seven methoBEGISTER for registering contact informatioriN-
VITE, ACK, PRACK andCANCEL for setting up session8YE for terminating sessions ar@P-
TIONS for querying servers about their capabilities. SIP extensions, documented in standards track
RFCs, may define additional methods.

Request-URI: TheRequest-URIis a SIP URI as described in Section 23.1 or ageneral URI (RFC 2396 [9]).
It indicates the user or service to which this request is being addresseBeghnest-URI MUST NOT
contain unescaped spaces or control charactersasd NOT be enclosed in&>".

SIP elementsAy supportRequest-URIs with schemes other than “sip”, for example the “tel” URI
scheme of RFC 2806 [13]. SIP elememsay translate non-SIP URIs using any mechanism at their
disposal, resulting in either a SIP URI or some other scheme.

SIP-Version: Both request and response messages include the version of SIP in use, and follow [H3.1] (with
HTTP replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance
requirements, and upgrading of version numbers. To be compliant with this specification, applications
sending SIP messagesJsT include aSIP-Version of “SIP/2.0”. TheSIP-Version string is case-
insensitive, but implementatiomsusT send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP responses are distinguished from requests by havBigtas-Line as theirstart-line. A Status-Line
consists of the protocol version followed by a humetatus-Code and its associated textual phrase, with
each element separated by a sin§le character. No CR or LF is allowed except in the finaCRLF
sequence.

SIP-version Status-Code Reason-Phrase

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand
and satisfy a request. ThHeeason-Phrase is intended to give a short textual description of Status-
Code. The Status-Code is intended for use by automata, whereas Reason-Phrase is intended for
the human user. A client is not required to examine or displayRes@son-Phrase. While this specifica-
tion suggests specific wording for the reason phrase, implementatisnshoose other text, e.g., in the
language indicated in th&ccept-Language header field of the request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 21]

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The first digit of theStatus-Code defines the class of response. The last two digits do not have any
categorization role. For this reason, any response with a status code between 100 and 199 is referred to as
a “1xx response”, any response with a status code between 200 and 299 as a “2xx response”, and so on.
SIP/2.0 allows six values for the first digit:

1xx: Provisional — request received, continuing to process the request;

2xx: Success — the action was successfully received, understood, and accepted;

3xx: Redirection — further action needs to be taken in order to complete the request;
4xx: Client Error — the request contains bad syntax or cannot be fulfilled at this server;
5xx: Server Error — the server failed to fulfill an apparently valid request;

6xx: Global Failure — the request cannot be fulfilled at any server.

Section 25 defines these classes and describes the individual codes.

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax fanessage-header, the rules for extending header fields

over multiple lines, the use of multiple message-header fields with the same field-name, and the rules re-
garding ordering of header fields.

7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 2.2 of RFC 2822 [7]. Each
header field consists of a field name followed by a colon (") and the field value.

field-name: field-value

The formal grammar for anessage-header specified in Section 27 allows for an arbitrary amount of
whitespace on either side of the colon; however, implementations should avoid spaces between the field
name and the colon and use a single sp&Y petween the colon and thield-value. Thus,

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

are all valid and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at leS§t one
horizontal tab KIT). The line break and the whitespace at the beginning of the next line are treated as a
singleSP character. Thus, the following are equivalent:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 22]

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Subject: | know you're there, pick up the phone and talk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

The relative order of header fields with different field names is not significant. HoweveRHCioM-
MENDED that headers which are needed for proxy procesaiigy Route, Record-Route, Proxy-Require,
Max-Forwards, and Proxy-Authorization, for example) appear towards the top of the message, to facil-
itate rapid parsing. The relative order of header fields with the same field name is important. Multiple
header fields with the sanfield-name MAY be present in a message if and only if the entire field-value for
that header field is defined as a comma-separated list (thfveues)). It MusT be possible to combine
the multiple header fields into one “field-name: field-value” pair, without changing the semantics of the
message, by appending each subsediielntvalue to the first, each separated by a comma.

Implementations1usT be able to process multiple header fields with the same name in any combination
of the single-value-per-line or comma-separated value forms.

The following groups of header fields are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>, <sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It will always be either an opaque se-

guence of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings. Many

existing headers will adhere to the general form of a value followed by a semi-colon separated sequence of
parameter-name, parameter-value pairs:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 23]

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

field-name: field-value *(;parameter-name=parameter-value)

Even though an arbitrary number of parameter pairs may be attached to a header field value, any given
parameter-name MUST NOT appear more than once.

All new header fieldsausT follow this generic format unless they have been inherited from other RFC
2822-like specifications.

When comparing header fields, field names are always case-insensitive. Unless otherwise stated in
the definition of a particular header field, field values, parameter names, and parameter values are case-
insensitive. Tokens are always case-insensitive. Unless specified otherwise, values expressed as quoted
strings are case-sensitive.

For example,

Contact: <sip:alice@atlanta.com>;expires=3600

is equivalent to

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

and

Content-Disposition: session;handling=optional

is equivalent to

content-disposition: Session;HANDLING=OPTIONAL
The following two header fields are not equivalent:

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called request header fields and
response header fields, respectively. If a header appears in a message not matching its category (such as a
request header field in a responseMitsT be ignored. Section 24 defines the classification of each header

field.

7.3.3 Compact Form

SIP provides a mechanism to represent common header fields in an abbreviated form. This may be useful
when messages would otherwise become too large to be carried on the transport available to it (exceeding
the maximum transmission unit (MTU) when using UDP, for example). These compact forms are defined
in Section 24. A compact formAy be substituted for the longer form of a header name at any time without
changing the semantics of the message. The same type of headerAfrelabpear in both long and short

forms within the same message. ImplementationsT accept both the long and short forms of each header
name.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 24]

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

7.4 Bodies

Requests, including new requests defined in extensions to this specification;ontain message bodies
unless otherwise noted. The interpretation of the body depends on the request method.

For response messages, the request method and the response status code determine the type and inter-
pretation of any message body. All responses include a body.

7.4.1 Message Body Type

The Internet media type of the message brd\sT be given by theContent-Type header field. If the body
has undergone any encoding such as compression, themukis be indicated by th€ontent-Encoding
header field; otherwis€&ontent-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of tl@ontent-Type header-field value.

The "multipart” MIME type defined in RFC 2046 [14)1AY be used within the body of the message.
Implementations that send requests containing multipart message bugigssend a session description
as a non-multipart message body if the remote implementation requests this throhgteahheader field
that does not contaimultipart.

Note that SIP messages\y contain binary bodies or body parts.

7.4.2 Message Body Length

The body length in bytes is provided by tl@mntent-Length header field. Section 24.14 describes the
necessary contents of this header in detail.

The “chunked” transfer encoding of HTTP/IMMUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

7.5 Framing SIP messages

Unlike HTTP, SIP implementations can use UDP or other unreliable datagram protocols. Each such data-

gram carries one request or response. See Section 19 on constraints on usage of unreliable transports.
Likewise, implementations processing SIP messages over stream-oriented tramsygarignore any

CRLF appearing before thetart-line [H4.1]

8 General User Agent Behavior

A user agent represents an end system. It contains a User Agent Client (UAC), which generates requests,
and a User Agent Server (UAS) which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line), and processing a response.
A UAS is capable of receiving a request, and generating a response, based on user input, external stimulus,
the result of a program execution, or some other mechanism.

When a UAC sends a request, it will pass through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, whether the request or response is
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly
in Section 12; they represent a peer-to-peer relationship between user agents, and are established by specific
SIP methods, such d8VITE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 25]

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

In this section, we discuss the method independent rules for UAC and UAS behavior when processing
requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

Security procedures for requests and responses outside of a dialog are described in Section 22. Specif-
ically, mechanisms exist for the UAS and UAC to mutually authenticate. A limited set of privacy features
are also supported through encryption of bodies using S/MIME.

8.1 UAC Behavior

This section covers UAC behavior outside of a dialog.

8.1.1 Generating the Request

A valid SIP request formulated by a UAGUST at a minimum contain the following headerf, From,
CSeq, Call-ID, Max-Forwards, andVia; all of these headers are mandatory in all SIP messages. These
six headers are the fundamental building blocks of a SIP message, as they jointly provide for most of the
critical message routing services including the addressing of messages, the routing of responses, limiting
message propagatioordering of messages, and the unique identification of transactions. These headers are
in addition to the mandatory request line, which contains the meReguest-URI and SIP version.

Examples of requests sent outside of a dialog includéNatTE to establish a session (Section 13) and
anOPTIONS to query for capabilities (Section 11).

8.1.1.1 Request-URI The initial Request-URI of the messageHOULD be set to the value of the URI
in the To field. One notable exception is tIREGISTER method; behavior for setting tHiRequest-URI of
register is given in Section 10.

Another exception is the case of pre-existiRgute headers; in that case, the procedures of Sec-
tion 12.2.1.1 as they pertain to tRequest-URI are followed, even though there is no dialog. Pre-existing
Route headers are an ordered set of URIs that identify a chain of servers to which outgoing requests from a
UAC will be sent. Commonly, they are configured on the user agent by a user or service provider manually,
or through some non-SIP mechanism. They are most often used to identify a local outbound proxy server
through which a UAC will send all requests, which in turn allows service providers to maintain a common
point of policy enforcement for requests.

8.1.1.2 To TheTo general-header field first and foremost specifies the desired “logical” recipient of the
request, or the address of record of the user or resource that is the target of this request. This may or may
not be the ultimate recipient of the request. ThéheademAy contain a SIP URI, but it may also make use

of other URI schemes (the tel URL [13], for example) when appropriate. All SIP implementatioss

support the SIP URI. Th& header field allows for a display hame.

A UAC may learn how to populate th& header field for a particular request in a number of ways.
Usually the user will suggest theo header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book. Frequently, the user will not enter a complete URI,
but rather, a string of digits or letters (i.e., “bob”). Itis at the discretion of the UA to choose how to interpret
this input. Using it to form the user part of a SIP URL implies that the UA wishes the name to be resolved in
the domain the right hand side (RHS) of the at-sign in the SIP URI (i.e., sip:bob@example.com). The RHS
will frequently be the home domain of the user, which allows for the home domain to process the outgoing

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 26]

976

977

978

979

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

request. This is useful for features like “speed dial” which require interpretation of the user part in the home
domain. The tel URL is used when the UA does not wish to specify the domain that should interpret the
user input. Rather, each domain that the request passes through would be given that opportunity. As an
example, a user in an airport might log in, and send requests through an outbound proxy in the airport. If
they enter “411” (this is the phone number for local directory assistance in the United States), that needs to
be interpreted and processed by the outbound proxy in the airport, not the user's home domain. In this case,
tel:411 would be the right choice.

A request outside of a dialagusT NOT contain a tag; the tag in thio field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on th&o header see Section 24.41.

The following is an example of validio header:

To: Carol <sip:carol@chicago.com>

8.1.1.3 From TheFrom general-header field indicates the logical identity of the initiator of the request,
possibly the user’s address of record. Like Tiwefield, it contains a URI and optionally a display name.

It is used by SIP elements to determine processing rules to apply to a request (for example, automatic call
rejection). As such, itis very important that thRemm URI not contain IP addresses or the FQDN of the host

the UA is running on, since these are not logical names.

The From header field allows for a display hame. A UASHOULD use the display name “Anony-
mous”, along with a syntactically correct, but otherwise meaningless URI (like sip:988776a@ahhs.aa), if
the identity of the client is to remain hidden.

Usually the value that populates tReom header field in requests generated by a particular user agent
is pre-provisioned by the user or by the administrators of the user’s local domain. If a particular user agent
is used by multiple users, it might have switchable profiles that include a URI corresponding to the identity
of the profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain
that they are who thelfrom header field claims they are (see Section 20 for more on authentication).

The From field MUST contain a newtag” parameter, chosen by the UAC. See Section 23.3 for details
on choosing a tag.

For further information on therom header see Section 24.20.

Examples:

From: "Bob" <sip:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

8.1.1.4 Call-ID TheCall-ID general-header field acts as a unique identifier to group together a series of
messages. MusT be the same for all requests and responses sent by either UA in a diadegput D be
the same in each registration from a UA.

In a new request created by a UAC outside of any dialogCalID heademusT be selected by the
UAC as a globally unique identifier over space and time unless overridden by method specific behavior.
All SIP user agents must have a means to guarantee th&ateD headers they produce will not be
inadvertently generated by any other user agent. Note that when requests are retried after certain failure
responses that solicit an amendment to a request (for example, a challenge for authentication), these retried
requests are not considered new requests, and therefore do not needllkEvheaders; see Section 8.1.4.6.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 27]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

1017

1018 Use of cryptographically random identifiers [15] in the generation of Call-IDREiSOMMENDED. Im-

1019 plementationsvAy use the form “localid@host”.Call-IDs are case-sensitive and are simply compared
1020 byte-by-byte.

1021 Using cryptographically random identifiers provides some protection against session hijacking and reduces the
1022 likelihood of unintentional Call-ID collisions.

1023 No provisioning or human interface is required for the selection ofxhk-1D header field value for a
1024 request.

1025 For further information on th€all-ID header see Section 24.8.

1026 Example:

1027 Call-ID: f81d4fae-7dec-11d0-a765-00a0c91eb6bf6@foo.bar.com

128 8.1.1.5 CSeq The Cseq header serves as a way to identify and order transactions. It consists of a
1029 Sequence number and a method. The methodT match that of the request. For requests outside of a
1030 dialog, the sequence number value is arbitrary, NbusT be expressible as a 32-bit unsigned integer and
1031 MUST be less than 2**31. As long as it follows the above guidelines, a client may use any mechanism it
1032 would like to selecCSeq header field values.

1033 Section 12.2.1.1 discusses construction of@lseq for requests within a dialog.

1034 Example:

1035 CSeq: 4711 INVITE

1036 8.1.1.6 Max-Forwards The Max-Forwards header serves to limit the number of hops a request can
1037 transit on the way to its destination. It consists of an integer that is decremented by one at each hop.
1038 If the Max-Forwards value reaches 0 before the request reaches its destination, it will be rejected with a
1039 483 Too Many Hops error response.

1040 A UAC MusT insert aMax-Forwards header field into each request it originates with a value of 70.

s 8.1.1.7 Via TheVia header is used to indicate the transport used for the transaction, and to identify the
1042 location where the response is to be sent.

1043 When the UAC creates a requestMit’ST insert aVia into that request. The protocol and version in

1042 the heademusT be SIP and 2.0, respectively. Th@a header it insertmusT contain a branch parameter.

145 This parameter is used to uniquely identify the transaction created by that request. This parameter is used
1046 by both the client, and the server.

1047 Thebranch parameter valu&usT be unique across time for all requests sent by the UA. The exception

1048 10 this rule iISCANCEL. As discussed below, @ANCEL request will have the same value of the branch

1049 parameter as the request it cancels.

1050 The uniqueness property of the branch ID parameter, to facilitate its use as a transaction 1D, was not part of RFC
1051 2543
1052 The branch ID inserted by an element compliant with this specificatioaT always begin with the

1053 Characters “z9hG4bK”. These 7 characters are used as a magic cookie (7 is deemed sufficient to ensure that
1054 an older RFC 2543 implementation would not pick such a value), so that servers receiving the request can

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 28]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

1055 determine that the branch ID was constructed in the fashion described by this specification (i.e., globally
106 Unique). Beyond this requirement, the precise format obtlaech token is implementation-defined.

1057 The Via heademaddr, ttl, andsent-by components will be set when the request is processed by the
1058 transport layer (Section 19).
1059 Via processing for proxies is described in Sections 3sgaproxy-response-processing-via.

0e0 8.1.1.8 Contact The Contact header provides a SIP URI that can be used to contact that specific in-
161 Stance of the user agent for subsequent requestsCohtact heademusT be present in any request that

1062 can result in the establishment of a dialog. For the methods defined in this specification, that includes only
1ws3 theINVITE request. For these requests, the scope ofthtact is the dialog. That is, th€ontact header

10ea refers to the URI at which the UA would like to receive requests, for requests that are part of that dialog
1065 Only. Only a single URMUST be present.

1066 For further information on th€ontact header, see Section 24.10.

ws7 8.1.1.9 Supported and Require If the UAC supports extensions to SIP that can be applied by the
1068 Server to the response, the USMBoULD include aSupported header in the request listing the option tags

1060 (Section 23.2) for those extensions. This includes support for reliability for provisional responses, which is
1070 an extension even though it is defined within this specification. The option tag for reliability of provisional
1071 responses i$00rel

1072 The option-tags listeahusT only refer to extensions defined in standards-track RFCs. This is to prevent
1073 servers from insisting that clients implement non-standard, vendor-defined features in order to receive ser-
1072 vice. Extensions defined by experimental and informational RFCs are explicitly excluded from usage with
1075 the Supported header in a request, since they too are often used to document vendor-defined extensions.
1076 If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request
1077 in order to process the requestMusT insert aRequire header into the request listing the option tag for

178 that extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are
1079 traversed understand that extensionmitsT insert aProxy-Require header into the request listing the

1080 Option tag for that extension.

1081 As with the Supported header, the option-tags in tiRequire heademusT only refer to extensions
1082 defined in standards-track RFCs.
1083 A Require header in a request with the option th@0rel means that the UAC wishes for all provi-

1084 Sional responses to this request to be transmitted reliably. This headarNOT be present in any requests
1085 exceptingINVITE, although extensions to SIP may allow its usage with other request methods.

186 8.1.1.10 Additional Message ComponentsAfter a new request has been created, and the headers de-

1087 Scribed above have been properly constructed, any additional optional headers are added, as are any headers
1088 Specific to the method.

1089 SIP requestsiAy contain a MIME-encoded message-body. Regardless of the type of body that a request

1000 CoONtains, certain headers must be formulated to characterize the contents of the body. For further information
1001 0N these headers see Sections 24.14, 24.15 and 24.12.

1092 8.1.2 Sending the Request

1003 The destination for the request is then computed. A loose-routing elem&ntise local policy to determine
1004 the IP address, port, and transport used to reach the destination. One example of such a policy is an element

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 29]

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105
1106
1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117
1118

1119
1120
1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

configured to send requests to a default outbound proxy. Section 8.1.3 discusses restrictions on loose-
routing policies. For other elements, the destination can be determined by applying the DNS proceedures
described in [8] to th&equest-URI. These procedures yield an ordered set of address, port, and transports
to attempt. The UAGHOoULD follow the procedures defined there for stateful elements, trying each address
until a server is contacted. Each try constitutes a new transaction, and therefore each carries a\d#ferent
header with a new branch parameter. Furthermore, the transport valueMiatheader is set to whatever
transport was determined for the target server.

8.1.3 Loose Routing Policies

An elementmAY apply a local loose-routing policy when preparing and sending a request. This pahcy
affect theRequest-URI and Route header field values in the request as well as where the request is sent,

and what transport mechanism is used to send it.
ElementssHouULD use the strict-routing policy of removing the topmost value from a route set, placing
it in the Request-URI and sending the request to the location indicated by that URI.

This is the behavior of elements implementing earlier strict versions of Route/Record-Route.

Where appropriate, elemensy deviate from the strict-routing policy as long as the following restric-
tions are met:

8.1.3.1 Modifying the Route header field A loose-routing elementiAy remove the topmodRoute
header field value. MusT remove the topmodRoute header field value if that value indicates a resource
this element is responsible for. The elementsT NOT modify or remove any subsequeRbute header
field values. The elememAy place additionaRoute header field values into tHeoute header field before
any existing values (effectivly pushing values onto the top of the Route set).

A loose-routing element may chose to not remove the Ratite header field value. For example, elements

configured to use default outbound proxies in liu of using the DNS resolution proceedures will leave the topmost
Route header field value in the message.

When the topmosRoute header field value indicates a resource this element is responsible for, the message
has reached the element indicated by the route, and that value must be removed fRoutthbeader field. This
assures thaRoute header field values are consumed when the destination they indicate has been reached.

8.1.3.2 Modifying the Request-URI If the Request-URI identifies a resource for which this element
is responsible, the loose-route polieiouLD include modifying theRequest-URI before sending the
request.

This restriction ensures thaiRequest-URI is modified once the resource it indicates has been reached.

8.1.3.3 Destination Choice A loose-routing policyMusT direct the request to or the resource indicated
in the firstRoute header field value, or to a proxy it trusts to ensure this property.

This restriction ensures the resource indicated by the topRmste header field value is actually visited.

8.1.3.4 Loop Avoidance TheRequest-URI of a request emitted by a loose-routing elemeusT differ
from the URI in the firsRoute header field value.

This restriction is necessary to avoid triggering false loop detections in older systems. The following
algorithm can be applied to ensure sufficient difference in otherwise mat&eguest-URIs and first
Route header field values.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 30]

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159
1160

1161
1162

1163

1164

1165

1166

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

For each of these items, D is the address of the next hop (which may or may not be equivalent to A).
If the topmost element in the received Route header field is jsip:a@A¢,, the outgoing request will contain

METHOD sip:a@A;maddr=D
Route: <sip:a@A>

If the topmost element in the received Route header field is jsip:a@A;maddr=D¢,, the outgoing request
will contain

METHOD sip:a@A
Route: <sip:a@A;maddr=D>

If the topmost element in the received Route header field is jsip:a@A;maddr=B¢, and D!=B, the outgoing
request will contain

METHOD sip:a@A;maddr=D
Route: <sip:a@A;maddr=B>

8.1.4 Processing Responses

Responses are first processed by the transport layer and then passed up to the transaction layer. The trans-
action layer performs its processing and then passes it up to the TU. The majority of response processing in
the TU is method specific. However, there are some general behaviors independent of the method.

8.1.4.1 Transaction Layer Errors In some cases, the response returned by the transaction layer will
not be a SIP message, but rather a transaction layer event. The only event that the TU will encounter is the
timeout event. When the timeout event is received from the transaction layersit be treated as if a 408
(Request Timeout) status code has been received.

8.1.4.2 Unrecognized ResponsesA UAC MUST treat any response it does not recognize as being equiv-
alent to the x00 response code of that class, mndT be able to process the x00 response code for all
classes. For example, if a UAC receives an unrecognized response code of 431, it can safely assume that
there was something wrong with its request and treat the response as if it had received a 400 (Bad Request)
response code.

8.1.4.3 Vias If more than onéVia header field is present in a response, the UMD ULD discard the
message.

The presence of addition®ia header fields that precede the originator of the request suggests that the message
was misrouted or possibly corrupted.

8.1.4.4 Processing Reliable 1xx Responses 1xx response that containsRequire header with the
option tag100rel is a reliable provisional response. The UA core follows the procedures in Section 18.2
to process the response, which will result in the generatiorPFiRACK request to acknowledge the reliable
provisional response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 31]

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

8.1.4.5 Processing 3xx responsedJpon receipt of a redirection response (for example, a 3xx response
status code), clientsHouLD use the URI(s) in th&Contact header field to formulate one or more new
requests based on the redirected request.

If more than one URI is present @ontact header fields within the 3xx response, the MAST deter-
mine an order in which these contact addresses should be processeslugAsonsult the " parameter
value of the Contact header fields (see Section 22.10) if available. Contact addressdse ordered from
highest gvalue to lowest. If no gqvalue is present, a contact address is considered to have a gvalue of 1.0.
Note that two or more contact addresses might have an equal gvalue - these URIs are eligible to be tried in
parallel.

Once an ordered list has been established, UACST try to contact each URI in the ordered list in turn
until a server responds. If there are contact addresses with an equal qvalue, theagAtecide randomly
on an order in which to process these addresses, kvt attempt to process contact addresses of equal
gvalue in parallel.

Note that for example, the UAC may effectively divide the ordered list into groups, processing the groups
serially and processing the destinations in each group in parallel.

If contacting an address in the list results in a failure, as defined in the next paragraph, the element moves
to the next address in the list, until the list is exhausted. If the list is exhausted, then the request has failed.

FailuressHouLD be detected through failure response codes (codes greater than 399) or network time-
outs. Client transaction will report any transport layer failures to the transaction user.

When a failure for a particular contact address is recieved, the ddieouLD try the next contact
address. This will involve creating a new client transaction to deliver a new request.

In order to create a request based on a contact address in a 3xx responseMa APy the entire
URI from theContact header into th&Request-URI, except for the thethod-param” and “header” URI
parameters (see Section 23.1.1 for a definition of these parameters). It usbedlder” parameters to
create headers for the new request, overwriting headers associated with the redirected request in accordance
with the guidelines in Section 23.1.5.

Note that in some instances, headers that have been communicated in the contact address may instead
append to existing request headers in the original redirected request. As a general rule, if the header can
accept a comma-separated list of values, then the new headematulge appended to any existing values
in the original redirected request. If the header does not accept multiple values, the value in the original
redirected requestAy be overwritten by the header value communicated in the contact address.

For example, if a contact address is returned with the following value:

sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

Then anySubject header in the original redirected request is overwritten, but the HTTP URL is merely
appended to any existingall-Info header field values.

Itis RECOMMENDEDthat the UAC reuse the sarie, From, andCall-ID used in the original redirected
request, but the UAGAY also choose to update for example @al-ID header field value for new requests.

Finally, once the new request has been constructed, it is sent using a new client transaction, and therefore
MUST have a new branch ID in the tdfia field as discussed in Section 8.1.1.7.

In all other respects, requests sent upon receipt of a redirect respeosa D re-use the headers and
bodies of the original request.

In some instance$;ontact header values may be cached at UAC temporarily or permanently depending
on the status code received and the presence of an expiration interval; see Sections 25.3.2 and 25.3.3.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 32]

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

8.1.4.6 Processing 4xx responsegCertain 4xx response codes require specific UA processing, indepen-
dent of the method.

If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, theH$AL D
follow the authorization procedures of Section 20.2 and Section 20.3 to retry the request with credentials.

If a 413 (Request Entity Too Large) response is received (Section 25.4.11), the request contained a body
that was longer than the UAS was willing to accept. If possible, the JAGULD retry the request, either
omitting the body or using one of a smaller length.

If a 415 (Unsupported Media Type) response is received (Section 25.4.13), the request contained media
types not supported by the UAS. The UABOULD retry sending the request, this time only using content
with types listed in thé\ccept header in the response, with encodings listed irAtteept-Encoding header
in the response, and with languages listed inAbeept-Language in the response.

If a 416 (Unsupported URI Scheme) response is received (Section 25.4.1Redest-URI used a
URI scheme not supported by the server. The clgbuLD retry the request, this time, using a SIP URI.

If a 420 (Bad Extension) response is received (Section 25.4.15), the request cont&aqdii@ or
Proxy-Require header listing an option-tag for a feature not supported by a proxy or UAS. The UAC
SHOULD retry the request, this time omitting any extensions listed inltheupported header in the re-
sponse.

In all of the above cases, the request is retried by creating a new request with the appropriate modifica-
tions. This new requestHoOULD have the same value of ti@all-1D, To, andFrom of the previous request,
but theCSeq should contain a new sequence number that is one higher than the previous.

With other 4xx responses, including those yet to be defimadtry may or may not be possible depend-
ing on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there is a set of processing rules which are
followed, independent of the method. Section 12 gives guidance on how a UAS can tell whether a request
is inside or outside of a dialog.

Note that request processing is atomic. If arequest is accepted, all state changes associated svith it
be performed. If it is rejected, all state changessT NOT be performed.

8.2.1 Method Inspection

Once a request is authenticated (or no authentication was desired), theWw#Snspect the method of the
request. If the UAS does not support the method of a requeststr generate a 405 (Method Not Allowed)
response. Procedures for generation of responses are described in Section 8.2.6. MestAa&o add
an Allow header to the 405 (Method Not Allowed) response. BHew header fieldwusT list the set of
methods supported by the UAS generating the message.

TheAllow header field is presented in Section 24.5.

If the method is one supported by the server, processing continues.

8.2.2 Header Inspection

If a UAS does not understand a header field in a request (that is, the header is not defined in this specification
or in any supported extension), the serversT ignore that header and continue processing the message. A
UAS sHouLD ignore any malformed headers that are not necessary for processing requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 33]

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265
1266
1267
1268

1269
1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

8.2.2.1 To and Request-URI TheTo header field identifies the original recipient of the request desig-
nated by the user identified in tikeom field. The original recipient may or may not be the UAS processing
the request, due to call forwarding or other proxy operations. A WAS apply any policy it wishes in
determination of whether to accept requests wherTthigeld is not the identity of the UAS. However, it is
RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (for example,
atel: URI) in the To header, or if thelo header field does not address a known or current user of this
UAS. If, on the other hand, the UAS decides to reject the requestduLD generate a response with a 403
(Forbidden) status code and pass it to the server transaction layer for transmission.

However, theRequest-URI identifies the UAS that is to process the request. IfRleguest-URI uses
a scheme not supported by the UASSHOULD reject the request with a 416 (Unsupported URI Scheme)
response. If the Request-URI does not identify an address that the UAS is willing to accept requests for,
it SHOULD reject the request with a 404 (Not Found) response. Typically, a UA that us&EBETER
method to bind its address of record to a specific contact address will see requestRefasst-URI
equals those contact addressess. Other potential sources of received Request-URIs in€Qatatiie
headers of requests and responses sent by the UA that establish or refresh dialogs.

8.2.2.2 Merged Requests If the request has no tag in tie, the TU checks ongoing transactions. If the
To, From, Call-ID, CSeq exactly match (including tags) those of any request received previously, but the
branch-ID in the topmosVia is different from those received previously, the BHoOULD generate a 482
(Loop Detected) response and pass it to the server transaction.

The same request has arrived at the UAS more than once, following different paths, most likely due to forking.
The UAS processes the first such request received and responds with a 482 (Loop Detected) to the rest of them.

8.2.2.3 Require Assuming the UAS decides that it is the proper element to process the request, it ex-
amines thdRequire header field, if present.

The Require general-header field is used by a UAC to tell a UAS about SIP extensions that the UAC
expects the UAS to support in order to process the request properly. Its format is described in Section 24.33.
If a UAS does not understand an option-tag listed Regjuire header field, imusT respond by generating a
response with status code 420 (Bad Extension). The MAST add anUnsupported header field, and list
in it those options it does not understand amongst those iRéggiire header of the request. Upon receipt
of the 420 (Bad Extension) the cliesHOULD retry the request, this time without using those extensions
listed in theUnsupported header field in the response.

Note thatRequire and Proxy-Require MUST NOT be used in a SIEANCEL request, or in al\CK
request sent for a non-2xx response. These headers should be ignored if they are present in these requests.

An ACK request for a 2xx respons@&JsT contain only thos&kequire andProxy-Require values that
were present in the initial request.

Example:

UAC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: 100rel

UAS->UAC: SIP/2.0 420 Bad Extension
Unsupported: 100rel

This is to make sure that the client-server interaction will proceed without delay when all options are understood

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 34]

1292
1293
1294
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

8.2.3 Content Processing

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
message, and the headers that describe it. If there are any bodies whose type (indicateddmyehte
Type), language (indicated by th@ontent-Language) or encoding (indicated by tHeéontent-Encoding)
are not understood, and that body part is not optional (as indicated Botitent-Disposition header), the
UAS MUST reject the request with a 415 (Unsupported Media Type) response. The respggiseontain
an Accept header listing the types of all bodies it understands, in the event the request contained bodies
of types not supported by the UAS. If the request contained content encodings not understood by the UAS,
the respons@usT contain anAccept-Encoding header listing the encodings understood by the UAS. If
the request contained content with languages not understood by the UAS, the regpemseontain an
Accept-Language header indicating the languages understood by the UAS.

Beyond these checks, body handling depends on the method and type.

For further information on the processing of Content-specific headers see Section 7.4 as well as Sec-
tion 24.11 through 24.15.

8.2.4 Applying Extensions

A UAS that wishes to apply some extension when generating the resparsseonly do so if support for

that extension is indicated in tl8upported header in the request. If the desired extension is not supported,

the serversHoOULD rely only on baseline SIP and any other extensions supported by the client. To ensure
that thesHouLD can be fulfilled, any specification of a new extensiensT include discussion of how

to return gracefully to baseline SIP when the extension is not present. In rare circumstances, where the
server cannot process the request without the extension, the setvesend a 421 (Extension Required)
response. This response indicates that the proper response cannot be generated without support of a specific
extension. The needed extensiongs)sT be included in &Require header in the response. This behavior

iSNOT RECOMMENDED, as it will generally break interoperability.

Any extensions applied to a non-421 respongesT be listed in aRequire header included in the
response. Of course, the senwewsT NOT apply extensions not listed in tHeupported header in the
request. As a result of this, tiRequire header in a response will only ever contain option tags defined in
standards-track RFCs.

8.2.5 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method-
specific. Section 10 covers tRREGISTER request, section 11 covers tRPTIONS request, section 13
covers thdNVITE request, and section 15 covers B¥E request.

8.2.6 Generating the Response

When a UAS wishes to construct a response to a request, it follows these procedures. Additional procedures
may be needed depending on the status code of the response and the circumstances of its construction. These

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 35]

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

additional procedures are documented elsewhere.

8.2.6.1 Sending a Provisional ResponseOne largely non-method-specific guideline for the generation
of responses is that UASSHOULD NOT issue a provisional response for a AdB/ITE request. Rather,
UASssSHOULD generate a final response to a AbMNVITE request as sooon as possible.

When a 100 (Trying) response is generated, @imgestamp header present in the requestST be
copied into this 100 (Trying) response.

8.2.6.2 Headers and Tags The From field of the responseusT equal theFrom field of the request.
TheCall-ID field of the responsgusT equal theCall-ID field of the request. ThE€seq field of the response
MUST equal theCseq field of the request. Th¥ia headers in the responsgsT equal theVia headers in
the request anslusT maintain the same ordering.

If a request contained® tag in the request, thio field in the responssusT equal that of the request.
However, if theTo field in the request did not contain a tag, the URI in Tioefield in the responseiusT
equal the URI in thelo field in the request; additionally, the UABUST add a tag to thdo field in the
response (with the exception of the 100 (Trying) response, in which mAagbe present). This serves to
identify the UAS that is responding, possibly resulting in a component of a dialog ID. The same $ag
be used for all responses to that request, both final and provisional (again excepting the 100 (Trying)).
Procedures for generation of tags are defined in Section 23.3.

8.2.7 Stateless UAS Behavior

A stateless UAS is a UAS that does not maintain transaction state. It replies to requests normally, but
discards any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless
UAS receives a retransmission of a request, it regenerates the response and resends it, just as if it were the
replying to the first instance of the request. Stateless UASs do not use a transaction layer; they receive
requests directly from the transport layer amd send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge
response is issued. If unauthenticated requests were handled statefully, then malicious floods of unauthenti-
cated requests could create massive amounts of transaction state that might slow or complete halt call pro-
cessing in a UAS, effectively creating a denial of service condition; for more information see Section 22.1.5.

The most important behaviors of a stateless UAS are the following:

e A stateless UAS1UST NOT send provisional (1xx) responses.

A stateless UASAUST NOT retransmit responses.

A stateless UASaUST ignore ACK requests.

A stateless UAS/1UST ignore CANCEL requests.

To header tagsUsT be generated for responses in a stateless manner - in a manner that will generate
the same tag for the same request consistently. For information on tag construction see Section 23.3.

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate
in either a stateful or stateless mode for each new request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 36]

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391
1392
1393
1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests, and improve signaling path robustness, by relying on redirection. Redirection allows
servers to push routing information for a request back in a response to the client, thereby taking themselves
out of the loop of further messaging for this transaction while still aiding in locating the target of the request.
When the originator of the request receives the redirection, it will send a new request based on the URI it has
received. By propagating URIs from the core of the network to its edges, redirection allows for considerable
network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has
access to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request otli@khan
CEL, the server gathers the list of alternative locations from the location service and either returns a final
response of class 3xx or it refuses the request. For well-fol@&NCEL requests, ilSHOULD return a
2xx response. This response ends the SIP transaction. The redirect server maintains transaction state for an
entire SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alterna-
tive locations intoContact headers. Anéxpires” parameter to th&ontact header may also be supplied
to indicate the lifetime of th€ontact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily) response
may also give the same location and username that was targeted by the initial request but specify additional
transport parameters such as a different server or multicast address to try, or a change of SIP transport from

UDP to TCP or vice versa.

However, redirect servergusT NOT redirect a request to a URI equal to the one inReguest-URI,
instead, provided that the URI does not point to itself, the redirect sereuLD proxy the request to the
destination URI.

If a client is using an outbound proxy, and that proxy actually redirects requests, a potential arises for infinite
redirection loops.

Note that theContact header fieldnAy also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special informational announcement
such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URIs for phones, fax, (@rthey were
defined) or anailto: (RFC 2368, [16]) URL.

The “expires” parameter of th&Contact header field indicates how long the URI is valid. The value of
the parameter is a number indicating seconds. If this parameter is not provided, the valu&xitbe
header field determines how long the URI is valid. Implementatioms treat values larger than 2**32-

1 (4294967295 seconds or 136 years) as equivalent to 2**32-1. Malformed values should be treated as
equivalent to 3600.

Redirect serversmusT ignore features that are not understood (including unrecognized he&ders,
quired extensions, or even method names) and proceed with the redirection of the session in question. If
a particular extension requires that intermediate devices support it, the extenssanbe tagged in the
Proxy-Require field as well (see Section 24.29).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 37]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

w2 9 Canceling a Request

1413 The previous section has discussed general UA behavior for generating requests, and processing responses,
1414 for requests of all methods. In this section, we discuss a general purpose method; ANIEEL .

1415 TheCANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specif-
1416 ically, it asks the UAS to cease processing the request and to generate an error response to that request.
117 CANCEL has no effect on a request to which a UAS has already responded. Because of this, it is most
1418 Useful toCANCEL requests to which can take a long time to respond. For this re€8NCEL is most

119 useful forINVITE requests, which can take a long time to generate a response. In that usage, a UAS that
1420 receives &ANCEL request for anNVITE, but has not yet sent a response, would “stop ringing”, and then

1421 respond to théNVITE with a specific error response (a 487).

1422 CANCEL requests can be constructed and sent by any type of client, including both proxies and user
1423 agent clients. Section 15 discusses under what conditions a UAC WAMCEL anINVITE request, and

1424 Section 16.9 discusses proxy usag€aiNCEL.

1425 Because a stateful proxy can generate its GAMNCEL, a stateful proxy also responds t€ANCEL,

1426 rather than simply forwarding a response it would receive from a downstream element. For that reason,
1427 CANCEL is referred to as a “hop-by-hop” request, since it is responded to at each stateful proxy hop.

s 9.1 Client Behavior

14290 A CANCEL requestsHOULD NOT be sent to cancel a request other tHeWITE.

1430 Since requests other th&VITE are responded to immediately, sendinQA&NCEL for a noniNVITE request
1431 would always create a race condition.

1432 The following procedures are used to constru@ANCEL request. ThdRequest-URI, Call-ID, To,

1433 the numeric part o€Seq andFrom header fields in th€ ANCEL requestMusT be identical to those in

1434 the request being cancelled, including tagsCANCEL constructed by a cliemiusT have only a single

1435 Via header, whose value matches the Y6a in the request being cancelled. Using the same values for
136 these headers allows tANCEL to be matched with the request it cancels (Section 9.2 indicates how such
1437 matching occurs). However, the method part of @s&q heademmusT have a value ofCANCEL. This

1238 allows it to be identified and processed as a transaction in its own right (See Section 17). If the request being
1439 cancelled containRoute header fields, th€ANCEL requestmusT include thesd&koute header fields.

1440 This is needed so that stateless proxies are able to @ANCEL requests properly.
1441 The CANCEL requestMusT NOT contain anyRequire or Proxy-Require header fields.
1442 Once theCANCEL is constructed, the cliemHouLD check whether any response (provisional or final)

1443 has been received for the request being cancelled (herein referred to as the "original reque SANTHEL

1444 requestMuUST NOT be sent if no provisional response has been received, rather, thenolismtwait for the

1445 arrival of a provisional response before sending the request. If the original request has generated a final
a6 response, th€ANCEL sHOULD NOT be sent, as it is an effective no-op, SiIfCANCEL has no effect

1447 ON requests that have already generated a final response. When the client decides toGANCHRE, it

148 Creates a client transaction for tBANCEL and passes it the ANCEL request along with the destination

1449 address, port, and transport. The destination address, port, and transporCfANBGE&L MmusT be identical

150 t0 those used to send the original request.

1451 If it was allowed to send th€ ANCEL before receiving a response for the previous request, the server could
1452 receive theaCANCEL before the original request.
1453 Note that both the transaction corresponding to the original request a@AREEL transaction will

14sa complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 38]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

1s5 Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a
1ss response. If there is no final response for the original request in 64*T1 seconds (T1 is defined in Section
1457 17.1.1.1), the cliensHOULD then consider the original transaction cancelled siduLD destroy the client

1ss transaction handling the original request.

use 9.2 Server Behavior

10 The CANCEL method requests that the TU at the server side cancel a pending transaction. The transaction
1461 10 be canceled is determined by taking tBANCEL request, and then assuming that the request method
162 Were anything buCANCEL, apply the transaction matching procedures of Section 17.2.3. The matching
1463 transaction is the one to be canceled.

1464 The processing of EBANCEL request at a server depends on the type of server. A stateless proxy will
14es forward it, a stateful proxy might respond to it and generate sGARCEL requests of its own, and a UAS

166 Will respond to it. See Section 16.9 for proxy treatmenCaNCEL.

1467 A UAS first processes th€ ANCEL request according to the general UAS processing described in
1468 Section 8.2. However, sinc@ANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be
1e9 Challenged by the server in order to get proper credentials Bwudmorization header field. Note also that

1270 CANCEL requests do not contaRequire header fields.

1471 If the CANCEL did not find a matching transaction according to the procedure abinesCANCEL

1472 SHOULD be responded to with a 481 (Call Leg/Transaction Does Not Exist). If the transaction for the
1473 Original request still exists, the behavior of the UAS on receivi@dNCEL request depends on whether it

1472 has already sent a final response for the original request. If it haS€ANCEL request has no effect on the

1475 processing of the original request, no effect on any session state, and no effect on the responses generated
1476 for the original request.If the UAS has not issued a final response for the original request, its behavior
1477 depends on the method of the original request. If the original request WVAhE, the UASSHOULD

1478 immediately respond to th&NVITE with a 487 (Request Terminated). The behavior upon reception of a
1479 CANCEL request for any other method defined in this specification is effectively no-op. Extensions to this
g0 Specification that define new methadssT define the behavior of a UAS upon reception @@ANCEL for

1481 those methods.

1482 Regardless of the method of the original request, as long aSAMNCEL matched an existing trans-

1483 action, theCANCEL request itself is answered with a 200 (OK) response. This response is constructed
1482 following the procedures described in Section 8.2.6 noting thaldhag of the response to tH@ANCEL

14ss and theTo tag in the response to the original requestuLD be the same. The responseGANCEL is

1486 passed to the server transaction for transmission.

w10 Registrations

uss 10.1 Overview

189 SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP must discover the
1290 current host(s) that the destination user is reachable at. This discovery process is accomplished by SIP proxy
1401 Servers, which are responsible for receiving a request, determining where to send it based on knowledge of
1492 the location of the user, and then sending it there. To do this, proxies consult an abstract service known as a
1493 location servicewhich provides address bindings for a particular domain. These address bindings map an
1294 incoming SIP URI sip:bob@Biloxi.com , for example, to one or more SIP URIs which are somehow

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 39]

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534
1535

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

“closer” to the desired usesjp:bob@engineering.Biloxi.com , for example. Ultimately, a proxy
will consult a location service which maps a received URI to the current host(s) that a user is logged in to.

Registration creates bindings in a location service for a particular domain that associate an address-of-
record URI with one or more contact addresses. This means that when a proxy for that domain receives a
request whose request URI matches the address-of-record, the proxy will forward the request to the contact
addresses registered to that address-of-record. Generally, it only makes sense to register an address-of-
record at a location service for a domain when requests for that address-of-record would be routed to that
domain. In most cases, this means that the domain of the registration will need to match the domain in the
URI of the address-of-record.

There are many ways by which the contents of the location service can be established. One way is
administratively. In the above example, Bob is known to be a member of the engineering department through
access to a corporate database. SIP provides a mechanism, however, for a user agent to explicitly create a
binding. This mechanism is known as registration.

Registration entails sendingREGISTER request to a special type of UAS known as a registrar. The
registrar acts as a front end to the location service for a domain, reading and writing mappings based on the
contents of thd(REGISTER requests. This location service will then be consulted by a proxy server that is
responsible for routing requests for that domain.

SIP does not mandate a particular mechanism for implementing the location service. The only require-
ment is that a registrar for some domaiwsT be able to read and write data to the location service, and
a proxy for that domaimusT be capable of reading that same data. A registrar be co-located with a
particular SIP proxy server for the same domain.

10.2 Constructing theREGISTER Request

REGISTER requests add, remove and query bindingsREBGISTER request may add a new binding
between an address-of-record and one or more contact addresses. Registration on behalf of a particular
address-of-record may be performed by a suitably authorized third party. A client may also remove previous
bindings, or query to determine which bindings are currently in place for an address-of-record.

Except as noted, the construction of tREGISTER request and the behavior of clients sending a
REGISTER request is identical to the general UAC behavior described in Section 8.1 and Section 17.1.
The following header fieldsiusT be included:

Request-URI: TheRequest-URI names the domain of the location service that the registration is meant
for (e.g., “sip:chicago.com”). The “userinfo” and “@” components of the SIP WBET NOT be
present.

To: TheTo header field contains the address of record whose registration is to be created, queried or mod-
ified. TheTo header field and thRequest-URI field typically differ, as the former contains a user
name. This address-of-recomUsT be a SIP URI.

From: TheFrom header field contains the address-of-record of the person responsible for the registration.
The value is the same as tfe header field unless the request is a third-party registration.

Call-ID: All registrations from a user agent clieaHouLD use the sam€all-ID header value for registra-
tions sent to a particular registrar.

If the same client were to use differeBall-ID values, a registrar could not detect whether a delayed
REGISTER request might have arrived out of order.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 40]

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

bob
+——t
| UA|
|1
+———t
I
[3)INVITE
| carol@chicago.com
chicago.com +————— + Vv
- + 2)Store|Location|4)Query +————— +
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
+—— + - +=======>+4———— +
A 5)Resp |
| I
| I
1)REGISTER]| |
| I
+———t |
| VA |<-——"rr————————— +
cube2214a| | 6)INVITE
+——t carol@cube2214a.chicago.com
carol

Figure 2:REGISTER example

CSeq: TheCSeq value guarantees proper orderingREGISTER requests. A UAMUST increment the
CSeq value by one for eacREGISTER request with the sam@all-ID.

Contact : REGISTER requests contain zero or ma@®ntact header fields, containing address bindings.

User agents1uST NOT send a new registration (i.e., containing n@antact header fields, as opposed
to a retransmission) until they have received a final response from the registrar for the previous one or the
previousREGISTER request has timed out.

The following Contact header parameters have a special meaniREGISTER requests:

action : The “action” parameter from RFC 2543 has been deprecated. USESULD NOT use the
“action” parameter.

expires : The “expires” parameter indicates how long the UA would like the binding to be valid. The value
is a number indicating seconds. If this parameter is not provided, the valueBfpires header field
is used instead. Implementatiomay treat values larger than 2**32-1 (4294967295 seconds or 136
years) as equivalent to 2**32-1. Malformed values should be treated as equivalent to 3600.

10.2.1 Adding Bindings

TheREGISTER request sent to a registrar includes contact addresses to which SIP requests for the address-
of-record should be forwarded. The address-of-record is included ifotheader field of th®ISTER

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 41]

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591
1592

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

request.

The Contact header fields of the request typically contain SIP URIs that identify particular SIP end-
points (for example, “sip:carol@cube2214a.chicago.com”), but threy use any URI scheme. A SIP UA
can choose to register telephone numbers (with the tel URL, [13]) or email addresses (with a mailto URL,
[16]) asContacts for an address-of-record.

For example, Carol, with address-of-record “sip:carol@chicago.com”, would register with the SIP reg-
istrar of the domain chicago.com. Her registrations would then be used by a proxy server in the chicago.com
domain to route requests for Carol’'s address-of-record to her SIP endpoint.

Once a client has established bindings at a registrarat send subsequent registrations containing
new bindings or modifications to existing bindings as necessary. The 2xx responseRE®STER
request will contain, irContact header fields, a complete list of bindings that have been registered for this
address-of-record at this registrar.

Registrations do not need to update all bindings. Typically, a UA only updates its own SIP URI as well
as any non-SIP URIs.

10.2.1.1 Setting the Expiration Interval of Contact Addresses When a client sends REGISTER
request, itMAY suggest an expiration interval that indicates how long the client would like the registration
to be valid. (As described in Section 10.3, the registrar selects the actual time interval based on its local
policy.)

There are two ways in which a client can suggest an expiration interval for a binding: through an
Expires header field, or anéxpires” Contact header parameter. The latter allows expiration intervals to
be suggested on a per-binding basis when more than one binding is given in aRHBIBTER request,
whereas the former suggests an expiration interval foCalhtact header fields that do not contain the
“expires” parameter.

If neither mechanism for expressing a suggested expiration time is preseREGESTER, a default
suggestion of one hour is assumed.

10.2.1.2 Preferences amon@ontact Addresses If more than oneContact is sent in aREGISTER
request, the registering UA intends to associate all of the URIs given in @asect headers with the
address-of-record present in the field. This list can be prioritized with theg® parameter in theContact
header fields. Thed” parameter indicates a relative preference for the particGlamtact header field
compared to other bindings present in tREGISTER message or existing within the location service of
the registrar. Section 16.5 describes how a proxy server uses this preference indication.

10.2.2 Removing Bindings

Registrations are soft state and expire unless refreshed, but can also be explicitly removed. A client can
attempt to influence the expiration interval selected by the registrar as described in Section 10.2.1. A user
agent requests the immediate removal of a binding by specifying an expiration interval of “0” for that
contact address in BEGISTER request. User agentsHoULD support this mechanism so that bindings
can be removed before their expiration interval has passed.

TheREGISTER-specificContact header field value of “*” applies to all registrations, butit ST only
be used when thExpires header field is present with a value of “0”.

Use of the “*” Contact header field value allows a registering user agent to remove all of its bindings without
knowing their precise values.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 42]

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624
1625

1626

1627

1628

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

If no Contact header fields are present iREGISTER request, the list of bindings is left unchanged.

10.2.3 Fetching Bindings

A success response to aREGISTER request contains the complete list of existing bindings, regardless of
whether the request containe€antact header field or not.

10.2.4 Refreshing Bindings

Each UA is responsible to refresh the bindings that it has previously established. sSAQALD NOTrefresh
bindings set up by other UAs.

The 200 (OK) response from the registrar contains a lis€oftact fields enumerating all current
bindings. The UA compares each contact address to see if it created the contact address, using. comparison
rules in Section 23.1.4. If so, it updates the expiration time interval according exflikes parameter or,
if absent, theexpires field value. The UA then issuesREGISTER request for each of its bindings before
the expiration interval has elapsedmiAy combine several updates into cREGISTER request.

A UA sHouLD use the sam€all-ID for all registrations during a single boot cycle. Registration re-
freshessHOULD be sent to the same network address as the original registration, unless redirected.

10.2.5 Setting the Internal Clock

If the response fOREGISTER request contains Rate header, the clientAy use this header field to learn
the current time in order to set any internal clocks.

10.2.6 Discovering a Registrar

UAs can use three ways to determine the address to send registrations to: by configuration, using the address-
of-record and multicast. A UA can be configured, in ways beyond the scope of this specification, with
a registrar address. |If there is no configured registrar address, theHOALD use the host part of the
address-of-record as thiequest-URI and address the request there, using the normal SIP server location
mechanisms [8]. For example, the UA for the user “sip:carol@chicago.com” addressiRE®ISTER
request to “chicago.com”.

Finally, a UA can be configured to use multicast. Multicast registrations are addressed to the well-known
“all SIP servers” multicast address “sip.mcast.net” (224.0.1.75 for IPv4). No well-known IPv6 multicast
address has been allocated; such an allocation will be documented separately when rndededquest
MUST be scoped to ensure it is not forwarded beyond the boundaries of the administrative system. This
MAY be done with either TTL or administrative scopes (see [17]), depending on what is implemented in the
network. SIP user agentsay listen to that address and use it to become aware of the location of other local
users (see [18]); however, they do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

10.2.7 Transmitting a Request

Once theREGISTER method has been constructed, and the destination of the message identified, UACs
should follow the procedures described in Section 8.1.2 to hand dRE@ISTER to the transaction layer.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 43]

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664
1665

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

If the transaction layer returns a timeout error becausdrRtB€ISTER vyielded no response, the UAC
SHOULD wait some reasonable time interval before re-attempting a registration to the same registrar; no
specific interval is mandated.

10.2.8 Error Responses

If a UA receives a 423 (Registration Too Brief) responsevidlr retry the registration after making the
expiration interval of all contact addresses in REGISTER request equal to or greater than the expiration
interval within theMin-Expires header of the 423 (Registration Too Brief) response.

10.3 ProcessinlREGISTER Requests

Aregistrar is a UAS that respondsREGISTER requests and maintains a list of bindings that are accessible
to proxy servers within its administrative domain. A registrar handles requests according to Section 8.2 and
Section 17.2, but it accepts oNBEGISTER requests. A registrar does not generate 6xx responses. If a
registrar listens at a multicast interfacemiby redirect multicasREGISTER requests to its own unicast
interface with a 302 (Moved Temporarily) response.

A REGISTER requestMUSsT NOT contain Record-Route or Route header fields; registramausT
ignore them if they appear.

A registrar must know (e.g., through configuration) the set of domain(s) for which it maintains bindings.
REGISTER requestaviusT be processed by a registrar in the order that they are receREGISTER
requestsvusT also be processed atomically, meaning REGISTER requests are either processed com-
pletely or not at all. EacREGISTER message must be processed independently of any other registration
or binding changes.

When receiving ®ISTER request, a registrar follows these steps:

1. The registrar inspects tiequest-URI to determine whether it has access to bindings for the domain
identified in theRequest-URI. If not and if the server also acts as a proxy server, the semeuLD
forward the request to the addressed domain, following the general behavior for proxying messages
described in Section 16.

2. To guarantee that the registrar supports any necessary extensions, the registrar pRezpsses
header fields as described for UASs in Section 8.2.2.

3. AregistrarsHoULD authenticate the UAC. Mechanisms for the authentication of SIP user agents are
described in Section 20; registration behavior in no way overrides the generic authentication frame-
work for SIP. If no authentication mechanism is available, the registrar take theFrom address as
the asserted identity of the originator of the request.

4. The registrasHouLD determine if the authenticated user is authorized to modify registrations for
this address-of-record. For example, a registrar might consult a authorization database that maps user
names to a list of addresses-of-record for which this identity is authorized to modify bindings. If not,
the registrar returns 403 (Forbidden) and skips the remaining steps.

In architectures that support third-party registration, one entity may be responsible for updating the regis-
trations associated with multiple addresses-of-record.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 44]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

1666 5. The registrar extracts the address-of-record fromTthéeader field of request. If the address-of-

1667 record is not valid for the domain in tiRequest-URI, the registrar sends a 404 (Not Found) response

1668 and skips the remaining steps. The WRIST then converted to a canonical form. To do that, all URI

1669 parameters are removed (including the user param), and any escaped characters are converted to their
1670 unescaped form. The result serves as an index into the list of bindings.

1671 6. The registrar checks whether the request contain€anyact header fields. If not, it skips to the last
1672 step.

1673 Next, the registrar checks if there is ofi®ntact field that contains the special value “*” and a

1674 Expires field. If the request has addition&@lontact fields or an expiration time other than zero, the

1675 request is invalid and the server returns 400 (Invalid Request) and skips the remaining steps. If not, the
1676 registrar checks whether ti@all-ID agrees with the value stored for each binding. If not, it removes

1677 the binding. If it does agree, it only removes the binding if @f&eq in the request is higher than the

1678 value stored for that binding and leaves the binding as is otherwise. It then skips to the last step.

1679 7. The registrar now processes each contact address@otitact header field in turn. For each address,

1680 it determines the expiration interval as follows:

1681 ¢ If the field value has angxpires” parameter, that value is used.

1682 e If there is no such parameter, but the request hd&&xires header field, that value is used.

1683 e If there is neither, a locally-configured default value is used.

1684 The registramAy shorten the expiration interval. If and only if the expiration interval is greater than
1685 zero AND smaller than one hour AND less than a registrar-configured minimum, the registrar

1686 reject the registration with a response of 423 (Registration Too Brief). This respaurssecontain a

1687 Min-Expires header field that states the minimum expiration interval the registrar is willing to honor.
1688 It then skips the remaining steps.

1689 Allowing the registrar to set the registration interval protects it against excessively frequent registration

1690 refreshes while limiting the state that it needs to maintain and decreasing the likelihood of registrations going

1691 stale. The expiration interval of a registration is frequently used in the creation of services. An example is a

1692 follow-me service, where the user may only be available at a terminal for a brief period. Therefore, registrars

1693 should accept brief registrations; a request should only be rejected if the interval is so short that the refreshes

1694 would degrade registrar performance.

1695 For each address, it then searches the list of current bindings using the URI comparison rules. If
1696 the binding does not exist, it is tentatively added. If the binding does exist, the registrar checks the
1697 Call-ID value. If the existing binding has the safall-ID value differs from the request, the binding

1698 is removed if the expiration time is zero and updated otherwise. If they are the same, the registrar
1699 compares the€CSeq value. If the value is higher than that of the existing binding, it updates or
1700 removes the binding as above. If not, the update is aborted and the request fails.

1701 This algorithm ensures that out-of-order requests from the same UA are ignored.

1702 Each binding record records ti@all-ID andCSeq values from the request.

1703 The binding updates are committed (i.e., made visible to the proxy) if and only if all binding updates
1704 and additions succeed. If any one of them fails, the request fails with 500 (Server Error) response and
1705 all tentative binding updates are removed.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 45]

1706

1707

1708

1709

1710

1711

1712

1713

1714
1715
1716
1717
1718
1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

8. The registrar returns a 200 (OK) response. The respansg containContact header fields enu-
merating all current bindings. Ea€ontact valuemusT feature an &xpires” parameter indicating
its expiration interval chosen by the registrar. The respersauLD include aDate header field.

11 Querying for Capabilities

The SIP metho®PTIONS allows a UA to query another UA or a proxy server as to its capabilitielsis

allows a client to discover information about the methods, content types, extensions, codecs etc. supported
without actually "ringing” the other party. For example, before a client inseRgguire header field into

an INVITE listing an option that it is not certain the destination UAS supports, the client can query the

destination UAS with ail©®PTIONS to see if this option is returned inGupported header field.

The target of the@OPTIONS request is identified by thRequest-URI, which could identify another
User Agent or a SIP Server. If tHePTIONS is addressed to a proxy server, tRequest-URI is set
without a user part, similar to the wayRequest-URI is set for aREGISTER request. Alternatively, a
server receiving a@PTIONS request with dMax-Forwards header value of @Ay respond to the request
regardless of thRequest-URI.

This behavior is common with HTTP/1.1. This behavior can be used as a "traceroute” functionality to check the
capabilities of individual hop servers by sending a serie®®TIONS requests with incrementédax-Forwards
values.
As is the case for general UA behavior, the transaction layer can return a timeout errddPTHONS
yields no response. This may indicate that the target is unreachable and hence unavailable.
An OPTIONS requesMAY be sent as part of an established dialog to query the peer on capabilities that
may be utilized later in the dialog.

11.1 Construction ofOPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed Section 8.1.1.

A Contact header fielduAy be present in a@PTIONS.

An Accept header fieldsHoOULD be included to indicate the type of message body the UAC wishes to
receive in the response. Typically, this is set to a format that is used to describe the media capabilities of a
UA, such as SDP (application/sdp).

The response to a@PTIONS request is assumed to be scoped to Reguest-URI in the original
request. However, only when @PTIONS is sent as part of an established dialog is it guaranteed that
future requests will be received by the server which generate@ I ONS response.

ExampleOPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKhjhs8ass877
To: <sip:carol@chicago.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 63104 OPTIONS

Contact: <sip:alice@192.0.2.4>

Accept:. application/sdp

Content-Length: 0

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 46]

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

11.2 Processing of OPTIONS Request

The response to a@PTIONS is constructed using the standard rules for a SIP response as discussed in
Section 8.2.6. The response code chosen is the same that would have been chosen had the request been an
INVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy Here)
would be returned if the UAS is busy, etc. This allows@RTIONS request to be used to determine the
basic state of a UAS, which can be an indication of whether the UAC will accelpt\&iTE request.

An OPTIONS request received within a dialog generates a 200 (OK) response which is identical to
one constructed outside a dialog and does not have any impact on the didlbgs use ofOPTIONS
has limitations due the differences in proxy handlingD®TIONS andINVITE requests. While a forked
INVITE can result in multiple 200 (OK) responses being returned, a fotke@@lONS will only result in a
single 200 (OK) response, since it is treated by proxies using théNi@HFE handling. See Section 13.2.1
for the normative details.

If the response to a@PTIONS is generated by a proxy server, the proxy returns a 200 (OK) listing the
capabilities of the server. The response does not contain a message body.

Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fieldssHouULD be
present in a 200 (OK) response to @PTIONS request. If the response is generated by a proxy, the
Allow header fiellsHOULD be omitted as it is ambiguous since a proxy is method agnostic.

Contact header fieldsvuay be present in a 200 (OK) response and have the same semantics as in a
redirect. That is, they may list a set of alternative names and methods of reaching the user.

A Warning header fielduAy be present.

A message bodwAy be sent, the type of which is determined by aept header in th@©PTIONS
request (application/sdp if thieccept header was not present). If the types include one that can describe
media capabilities, the UAHoULD include a body in the response for that purpose. Details on construction
of such a body in the case of application/sdp are described in [19].

ExampleOPTIONS response generated by a UAS (corresponding to the request in Section 11.1):

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKhjhs8ass877
To: <sip:carol@chicago.com>;tag=93810874

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@100.1.3.3

CSeq: 63104 OPTIONS

Contact: <sip:carol@chicago.com>

Contact: <mailto:carol@chicago.com>

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Accept: application/sdp

Accept-Encoding: gzip

Accept-Language: en

Supported: foo

Content-Type: application/sdp

Content-Length: 274

(SDP not shown)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 47]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

e 12 Dialogs

1780 A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP relationship between
1790 @ two user agents that persists for some time. The dialog facilitates sequencing of messages between the
1791 USer agents and proper routing of requests between both of them. The dialog represents a context in which to
1792 interpret SIP messages. Section 8 discussed method- independent UA processing for requests and responses
1793 Outside of a dialog. This section discusses how those requests and responses are used to construct a dialog,
1792 and then how subsequent requests and responses are sent within a dialog.

1795 A dialog is identified at each UA with a dialog ID, which consists afall-ID value, a local URI and

1796 local tag (together called the local address), and a remote URI and remote tag (together called the remote
1797 address). The dialog ID at each UA involved in the dialog is not the same. Specifically, the local URI and
1798 local tag at one UA are identical to the remote URI and remote tag at the peer UA. The tags are opaque
1799 tokens that facilitate the generation of unique dialog IDs.

1800 A dialog ID is also associated with all responses and with any request that contains a tafpirfi¢ite:

1801 The rules for computing the dialog ID of a message depend on whether the entity is a UAC or UAS. For a
182 UAC, theCall-ID value of the dialog ID is set to theall-ID of the message, the remote address is set to the

1803 10 field of the message, and the local address is set tértma field of the message (these rules apply to

1804 both requests and responses). As one would expect, for a UAEallD value of the dialog ID is set to

1805 the Call-ID of the message, the remote address is set tBribva field of the message, and the local address

1806 IS Set to theTo field of the message.

1807 A dialog contains certain pieces of state needed for further message transmissions within the dialog.
1808 This state consists of the dialog ID, a local sequence number (used to order requests from the UA to its
1800 peer), a remote sequence number (used to order requests from its peer to the UA), and a route set, which is
180 an ordered list of URIs. Theroute setis the set of servers that need to be traversed to send a request to the
1811 peer. A dialog can also be in the “early” state, which occurs when it is created with a provisional response,
1812 and then transition to the “confirmed” state when the final response comes.

1z 12.1 Creation of a Dialog

1814 Dialogs are created through the generation of non-failure responses to requests with specific methods.
1815 Within this specification, only 2xx and 101-199 responses wiffodag to INVITE establish a dialog.

1816 A dialog established by a non-final response to a request is in the “early” state and it is called an early dia-
1817 log. ExtensionsiAy define other means for creating dialogs. Section 13 gives more details that are specific
1818 to theINVITE method. Here, we describe the process for creation of dialog state that is not dependent on
1819 the method.

1820 A dialog is identified by a dialog ID. A dialog ID consists of three components, namely a call identifier
1821 component, a local address component and a remote address componenrit &iAassign values to these

1822 components as described below.

1823 12.1.1 UAS behavior

1824 When a UAS responds to a request with a response that establishes a dialog (such adid\2k&) the

1,25 UAS MUST copy allRecord-Route headers from the request into the response (including the URIs, URI
1826 parameters, and ariyecord-Route header parameters, whether they are known or unknown to the UAS)
1827 andMuUST maintain the order of those headefBhe UASMUST add aContact header field to the response.

1828 The Contact header field contains an address where the UAS would like to be contacted for subsequent

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 48]

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840
1841

1842

1843
1844

1845

1846

1847

1848

1849
1850
1851
1852
1853
1854
1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

requests in the dialog (which includes tA€K for a 2xx response in the case of BMVITE). Generally,
the host portion of this URI is the IP address or FQDN of the host.The URI provided (ah&act header
field MmusT be a SIP URI and have global scope (i.e., the same SIP URI can be used outside this dialog to
contact the UAS). The same way, the scope of the SIP URI i€trgact header field of thé&NVITE is not
limited to this dialog either. It can therefore be used to contact the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This stateT be maintained for the duration of the
dialog. First, theroute setmusT be computed by following these steps:

1. The list of URIs in theRecord-Route headers in the request, if present, are taken, including any URI
parameters.

2. The URI in theContact header from the request if present, is taken, including any URI parameters.
The URI is appended to the bottom of the list of URIs from the previous step.

Contact was not mandatory in RFC 2543. Thus, if the UAS is communicating with an older UAC, the
UAC might not have inserted théontact header field.

3. The resulting list of URIs is called theute set

These rules clearly imply that a URusT be able to parse and procd?scord-Route header fields. This is a
change from RFC 2543, where all record-route and route processing was optional for user agents.

It is possible for theoute setto be empty. This will occur if neitheRecord-Route headers nor a
Contact header were present in the request. The WAST also remember whether the bottom-most entry
in theroute setwas constructed from @ontact header. This is effectively a boolean value, which we refer
to as CONTACTSET. From this value the UA can determine whether the bottom-most value can be updated

from subsequent requests; if it was constructed frdDoatact, it can be updated.

The remote sequence numbeusT be set to the value of the sequence number inbeq header of
the request. The local sequence numbeisT be empty. The call identifier component of the dialog 1D
MUST be set to the value of th@all-ID in the request. The local address component of the dialaguBT
be set to thdo field in the response to the request (which therefore includes the tag), and the remote address
component of the dialog IMUST be set to thd-rom field in the request. A UASAUST be prepared to
receive a request without a tag in theom field, in which case the tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mardae tags.

12.1.2 UAC behavior

When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state
MUST be maintained for the duration of the dialog. First, tbate setMmusT be computed by following
these steps:

1. The list of URIs present in tHeecord-Route headers in the response are taken, if present, including
all URI parameters, and their order is reversed.

2. The URI in theContact header from the response, if present, is taken, including all URI parameters,
and appended to the end of the list from the previous step.

3. The list of URIs resulting from the above two operations is referred to atite set

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 49]

1866

1867

1868

1869

1870
1871
1872
1873
1874
1875
1876
1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887
1888
1889
1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903
1904
1905
1906
1907

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

It is possible for theroute setto be empty. This will occur if neitheRecord-Route headers nor a
Contact header were present in the response. The WAGT also remember whether the bottom-most
entry in theroute setwas constructed from @ontact header. This is effectively a boolean value, which we
refer to as CONTACTSET. From this value the UA can determine whether the bottom-most value can be

updated from subsequent requests; if it was constructed fréongact, it can be updated.

The local sequence numbeUsT be set to the value of the sequence number irCtbeq header of the
request. The remote sequence numlesT be empty (it is established when the UA sends a request within
the dialog). The call identifier component of the dialogMD ST be set to the value of th&all-ID in the
request. The local address component of the dialogl3T be set to thd=rom field in the request, and
the remote address component of the dialogullsT be set to thdo field of the response. A UA®IUST
be prepared to receive a response without a tag iffaHeeld, in which case the tag is considered to have a
value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mantiatags.

12.2 Requests within a Dialog

Once a dialog has been established between two UAs, either oMhgnnitiate new transactions as needed
within the dialog. However, a dialog imposes some restrictions on the use of simultaneous transactions.

A TU MUST NOT initiate a new regular transaction within a dialog while a regular transaction is in
progress (in either direction) within that dialog. If there is a tWITE client or server transaction in
progress the TWiuST wait until this transaction enters the completed or the terminated state to initiate the
new transaction.

OPEN ISSUE #113: Should we relax the constraint on non-overlapping regular transactions?

A route refresh request sent within a dialog is defined as a request that can modibythesetof
the dialog. For dialogs that have been established wittNSAiTE, the only route refresh request defined
is redNVITE (see Section 14). Other extensions may define different route refresh requests for dialogs
established in other ways.

Note that arACK is NOT a route refresh request.

12.2.1 UAC Behavior

12.2.1.1 Generating the Request A request within a dialog is constructed by using many of the com-
ponents of the state stored as part of the dialog.

TheTo header field of the requestusT be set to the remote address, andRham header fieldwusT
be set to the local address (both including tags, assuming the tags are not null).

The Call-ID of the requestusT be set to theCall-ID of the dialog. Requests within a dialogusT
contain strictly monotonically increasing and contigu@Seq sequence numbers (increasing-by-one) in
each direction. Therefore, if the local sequence number is not empty, the value of the local sequence number
MUST be incremented by one, and this valuesT placed into theCseq header. If the local sequence
number is empty, an initial valueusT be chosen using the guidelines of Section 8.1.1.5. The method field
in the Cseq heademusT match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within
the same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence
number. A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial
sequence number.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 50]

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929
1930
1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941
1942
1943
1944

1945

1946

1947
1948
1949

1950

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

TheRequest-URI of requests is determined according to the following rules:

The UAC takes the list of URI in theoute set The top URIMUST be inserted into th&equest-URI
of the request, including all URI parameters. Any URI parameters not allowed Rafaest-URI MUST
then be stripped. Each of the remaining URIs (if any) from ih#e set including all URI parameters,

MUST be placed into &oute header field into the request, in order.

A TU sHouLD follow the rules just mentioned to build theequest-URI of the request, regardless of
whether the UA uses an outbound proxy server or not. However, in some instances, a UA may not be willing
or capable of sending the request to the top element irotite set One example is a UA that is not capable
of DNS, and therefore may not be able to follow those procedures. to use a loose-routing policy to send
the request to its outbound proxy server (see section 8.1.3). This palisy include placing the topmost
element in theoute setas the first value in the messag&sute header field as well as in tHeequest-

URI. The loop-detection avoidance algorithm described in section 8H03)LD be applied to the message
before sending.

A UAC sHouLD include aContact header in any route refresh requests within a dialog, and unless
there is a need to change it, the UslOuULD be the same as used in previous requests within the dialog. As
discussed in Section 12.2.2Cantact header in a route refresh request updatesdtige set This allows a
UA to provide a new contact address, should its address change during the duration of the dialog.

However, requests that are not route refresh requests do not affectitbesetfor the dialog.

Once the request has been constructed, the address of the server is computed and the request is sent,
using the same procedures for requests outside of a dialog (Section 8.1.1).

12.2.1.2 Processing the Response3he UAC will receive responses to the request from the transaction

layer. If the client transaction returns a timeout this is treated as a 408 (Request Timeout) response.
The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if
the request had been sent outside a dialog. This behavior is described in Section 13.2.2.

Note, however, that when the UAC tries alternative locations, it still usesttte seffor the dialog to build the
Route header of the request.

If a UAC has aroute seffor a dialog and receives a 2xx response to a route refresh it ser@ptitact
header field of the response is examined. If not presentptiie seremains unchanged. If the response had
a Contact header field, and the boolean variable CONTASHET is false, the URI in th€ontact header
field in the response is added to the bottom ofrthee setand CONTACTSET is set to true. If the route
refresh request response ha@entact header field, and CONTACSET is true, the URI in th€ontact
header field of the response to the route refresh request replaces the bottom valuelitetbet If a route
refresh request is responded with a non-2xx final responsmtite setremains unchanged as if no route

refresh request had been issued.

If the response for the a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408
(Request Timeout), the UAGHOULD terminate the dialog. A UAGHOULD also terminate a dialog if no
response at all is received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of sendiBY&.

12.2.2 UAS behavior

Requests sent within a dialog, as any other requests, are atomic. If a particular request is accepted by the
UAS, all the state changes associated with it are performed. If the request is rejemiedf the state
changes is performed.

Note that some requests such¥ITEs affect several pieces of state.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 51]

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979
1980
1981

1982
1983
1984
1985
1986
1987
1988
1989
1990

1991
1992
1993

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The UAS will receive the request from the transaction layer. If the request has a tagTio tieader
field, the UAS core computes the dialog identifier corresponding to the request and compares it with existing
dialogs. If there is a match, this is a mid-dialog request. In that case, the UAS applies the same processing
rules for requests outside of a dialog, discussed in Section 8.2.

If the request has a tag in tf@ header field, but the dialog identifier does not match any existing di-
alogs, the UAS may have crashed and restarted, or it may have received a request for a different (possibly
failed) UAS (the UASs can construct tiie tags so that a UAS can identify that the tag was for a UAS
for which it is providing recovery). Another possibility is that the incoming request has been simply mis-
srouted. Based on tHb tag, the UASMAY either accept or reject the request. Accepting the request for
acceptabl€elo tags provides robustness, so that dialogs can persist even through crashes. UAs wishing to
support this capability must take into consideration some issues such as choosing monotonically increasing
CSeq sequence numbers even across reboots, reconstructinguteeset and accepting out-of-range RTP
timestamps and sequence numbers.

If the UAS wishes to reject the request, because it does not wish to recreate the dialogft itespond
to the request with a 481 (Call/Transaction Does Not Exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (for
example, atOPTIONS request). They are processed as if they had been received outside the dialog.

Requests within a dialoglAy containRecord-Route and Contact header fields. However, requests
that are not route refresh requests do not updateotite setfor the dialog. This specification only defines
one route refresh request: IEVITE (see Section 14).

Special rules apply when updat&&cord-Route or Contact header fields are received inside a route
refresh request. If a UAS hasreute seffor a dialog and receives a route refresh for that dialog containing
Record-Route header fields, imusT copy those header fields into any 2xx response to that request. If the
boolean variable CONTACBET is true, theContact header field in the request (if present) replaces the
last entry in theoute set If the boolean variable CONTACSEET is false, the UASIUST add the URI in the
Contact header field in the route refresh request to the bottom afiliee setand then set CONTACBET
to true. If the request did not contairCantact header field, the route-set at the UAS remains unchanged.

Route refresh requests only update @entact of the route setand not the elements formed froRecord-
Route. Updating the latter would introduce severe backwards compatibility problems with RFC 2543-compliant
systems.

If the remote sequence number is emptyiisT be set to the value of the sequence number in the
Cseq header in the request. If the remote sequence number was not empty, but the sequence number of the
request is lower than the remote sequence number, the request is out of ordevsanbe rejected with
a 500 (Server Internal Error) response. If the remote sequence number was not empty, and the sequence
number of the request is greater than the remote sequence number, the request is in order. It is possible
for the CSeq header to be higher than the remote sequence number by more than one. This is not an error
condition, and a UASHOULD be prepared to receive and process requests @ftbg values more than
one higher than the previous received request. The MAST then set the remote sequence number to the
value of the sequence number in tiseq header in the request.

If a proxy challenges a request generated by the UAC, the UAC has to resubmit the request with credentials. The
resubmitted request will have a n&@geq number. The UAS will never see the first request, and thus, it will notice
a gap in theCseq number space. Such a gap does not represent any error condition.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 52]

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

12.3 Termination of a Dialog

Dialogs can end in several different ways, depending on the method. When a dialog is established with
INVITE, itis terminated with 8YE. No other means to terminate a dialog are described in this specification,
but extensions can define other ways.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates
anINVITE request. ThéNVITE request asks a server to establish a session. This request is forwarded by
proxies, eventually arriving at one or more UAS that can potentially accept the invitation. These UASs will
frequently need to query the user about whether to accept the invitation. After some time, those UAS can
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx, 4xx, 5xx or 6xx response is sent, depending on the reason for the rejection. Before
sending a final response, the UAS can also send a provisional response (1xx), either reliably or unreliably,
to advise the UAC of progress in contacting the called user.

After possibly receiving one or more provisional responses, the UA will get one or more 2xx responses or
one non-2xx final response. Because of the protracted amount of time it can take to receive final responses
to INVITE, the reliability mechanisms faiNVITE transactions differ from those of other requests (like
OPTIONS). Once it receives a final response, the UAC needs to seC#nfor every final response it
receives. The procedure for sending tASK depends on the type of response. For final responses between
300 and 699, th&CK processing is done in the transaction layer and follows one set of rules (See Section
17). For 2xx responses, teCK is generated by the UAC core.

A 2xx response to aiNVITE establishes a session, and it also creates a dialog between the UA that
issued théNVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are
received from different remote UAs (because IN¥ITE forked), each 2xx establishes a different dialog.

All these dialogs are part of the same call.
This section provides details on the establishment of a session INSHTE.

13.2 Caller Processing
13.2.1 Creating the Initial INVITE

Since the initialINVITE represents a request outside of a dialog, its construction follows the procedures of
Section 8.1.1. Additional processing is required for the specific caBe\aT E.

An Allow header field (Section 24.8H0ULD be present in théNVITE. It indicates what methods can
be invoked within a dialog, on the UA sending tiNVITE, for the duration of the dialog. For example, a
UA capable of receivingNFO requests within a dialog [20§HouLD include anAllow header listing the
INFO method.

A Supported header field (Section 24.3%HouULD be present in théNVITE. It enumerates all the
extensions understood by the UAC.

An Accept (Section 24.1) header fieMAy be present in theNVITE. It indicates which content-types
are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
dialogs established by tHhBVITE. The Accept header is especially useful for indicating support of various

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 53]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2033 Session description formats.

2034 The UAMAY add anExpires header field (Section 24.19) to limit the validity of the invitation. If the

2035 time indicated in th&xpires header field is reached and no final answer forlMéI TE has been received

2036 the UAC coresHOULD generate £ ANCEL request for the origindNVITE.

2037 A UAC mAY also find useful to add, among othe&ybject (Section 24.38)Qrganization (Section

208 24.25) andJser-Agent (Section 24.43) header fields. They all contain information related tONYETE.

2039 The UACMAY choose to add a message body toltH¥ITE. Section 8.1.1.10 deals with how to con-

2000 Struct the header fieldsGontent-Type among others — needed to describe the message body.

2041 There are special rules for message bodies that contain a session description - their corresponding
202 Content-Disposition is “session”. SIP uses an offer/answer model where one UA sends a session de-
2043 SCription, called the offer, which contains a proposed description of the session. The offer indicates the
204 desired communications means (audio, video, games), parameters of those means (such as codec types) and
2005 addresses for receiving media from the answerer. The other UA responds with another session description,
2046 Called the answer, which indicates which communications means are accepted, the parameters which apply
2047 10 those means, and addresses for receiving media from the offerer. The offer/answer model can be mapped
2048 iNto theINVITE transaction in two ways. The first, which is the most intuitive, is thaifh& TE contains

2009 the offer, the 2xx response contains the answer, and no session description is providediGK thie this

2050 model, the UAC is the offerer, and the UAS is the answerer. A second model is thMREE contains no

2051 Session description, the 2xx response contains the offer, akleontains the answer. In this model, the

202 UAS is the offerer, and the UAC is the answerer. The second model is useful for gateways from H.323v1
203 t0 SIP, where the H.323 media characteristics are not known until the call is established. This is also useful
204 for sessions that use third-party call control. As a result of these models, INYH&E contains a session

2055 description, theACK MUST NOT contain one. Conversely, if the caller chooses to omit the session descrip-
2056 tion in theINVITE, the ACK MUST contain one (if a 2xx response is received). 2xx responsesIt\dil E

2057 MUST always contain a session description. All user agents that supportE musT support both models.

2058 The Session Description Protocol (SDP) §8)sT be supported by all user agents as a means to describe
209 Sessions, and its usage for construction offers and ansmess follow the procedures defined in [19].
2060 The restrictions of the offer-answer model (session description only itNWETE OR in the ACK,

2060 but not in both) just described only apply to bodies wh@Gsmtent-Disposition header field is “session”.
2062 Therefore, itis possible that both tHéVITE and theACK contain a body message (e.g., INY/ITE carries

2063 @ photo Content-Disposition: render) and th&CK a session descriptiolfCpntent-Disposition: session)

2064

2065 If the Content-Disposition header field is missing, bodies 6bntent-Type application/sdp imply the
2066 disposition “session”, while other content types imply “render”.
2067 Once thdNVITE has been created, the UAC follows the procedures defined for sending requests outside

2068 Of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
2080 request and deliver responses to the UAC.

2070 13.2.2 ProcessingNVITE Responses

2011 Once thdNVITE has been passed to tidVITE client transaction, the UAC waits for responses forliite

2072 VITE. Responses are matched to their corresponidiMiTE because they have the sa@all-ID, the same
2073 From header field, the sami® header field, excluding the tag, and the sad$®q. Rules for comparisons
2072 Of these headers are described in Section 24. IINNETE client transaction returns a timeout rather than a
2075 response the TU acts as if a 408 (Request Timeout) response had been received.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 54]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2076 13.2.2.1 1xx responses Zero, one or multiple provisional responses may arrive before one or more
2077 final responses are received. Provisional responses fiM\AITE request can create “early dialogs”. If a

2078 provisional response has atag in ffeefield, and if the dialog ID of the response does not match an existing
2079 dialog, one is constructed using the procedures defined in Section 12.1.2.

2080 The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog be-
2081 fore the initialINVITE transaction completes. Header fields present in a provisional response are applicable
2082 as long as the dialog is in the early state (e.g.AHlow header field in a provisional response contains the
2083 methods that can be used in the dialog while this is in the early state).

2084 13.2.2.2 3xxresponses A 3xx response may containGontact header field providing new addresses
2085 Where the callee might be reachable. Depending on the status code of the 3xx response (see Section 25.3)
2086 the UACMAY choose to try those new addresses.

2087 13.2.2.3 4xx, 5xx and 6xx responses A single non-2xx final response may be received forlte

2088 VITE. 4xx, 5xx and 6xx responses may contai@@ntact header field indicating the location where addi-

2089 tional information about the error can be found.

2090 All early dialogs are considered terminated upon reception of the non-2xx final response.

2091 After having received the non-2xx final response the UAC core considers the INVITE transaction com-
2002 pleted. ThANVITE client transaction handles generationA@Ks for the response (see Section 17).

2003 13.2.2.4 2xx responses Multiple 2xx responses may arrive at the UAC for a sindl&/ITE request

2004 due to a forking proxy. Each response is distinguished byapearameter in thdo header field, and each

2005 represents a distinct dialog, with a distinct dialog identifier.

2096 If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
2007 MUST be transitioned to the “confirmed” state, and the route set for the dial®y be recomputed based

2008 ON the 2xx response using the procedures of Section 12.1.2. Otherwise, a new dialog in the “confirmed”
2000 State is constructed in the same fashion.

2100 The route set only is recomputed for backwards compatibility. RFC 2543 did not mandate mirrdRagatl-

2101 Route headers in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog

2102 requests may have been sent within the early call leg, modifying the sequence numbers, for example.

2103 The UAC coremusT generate a\CK request for each 2xx received from the transaction layer. The

2100 header fields of th&CK are constructed in the same way as for any request sent within a dialog (see Section
205 12) with the exception of th€Seq and the header fields related to authentication. The sequence number
206 Of the CSeq header fieldwusT be the same as tH&IVITE being acknowledged, but theSeq method

2107 MUST be ACK. TheACK MUST contain the same credentials as IN¥ITE. If the INVITE did not contain

2108 an offer, the 2xx will contain one, and therefore th€K MUST carry an answer in its body. If the offer in

2100 the 2xx response is not acceptable the UAC oousT generate a valid answer in tA€K and then send a

210 BYE immediately.

2111 Once theACK has been constructed, the procedures of [8] are used to determine the destination address,
2112 port and transportHowever, the request is passed to the transport layer directly for transmission, rather than
2113 A client transaction. This is because the UAC core handles retransmissionsA@fKhaot the transaction

214 layer. TheACK MUST be passed to the client transport every time a retransmission of the 2xx final response
215 that triggered thé\CK arrives.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 55]

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The UAC core considers th&VITE transaction completed 64*T1 seconds after the reception of the
first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are
terminated. Once theNVITE transaction is considered completed by the UAC core, no more new 2xx
responses are expected to arrive.

If, after acknowledging any 2xx response tol&lVITE, the caller does not want to continue with that
dialog, then the callemusT terminate the dialog by sendind®E request as described in Section 15.

13.3 Callee Processing
13.3.1 Processing of théNVITE

The UAS core will receivéNVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the
additional processing steps:

1. If the request is atNVITE that contains amExpires header field the UAS core inspects this header
field. If the INVITE has already expired a 487 (Request Terminated) resgiseLD be generated.
In any case, if thdNVITE expires before the UAS has generated a final response a 487 (Request
Terminated) responseHOULD be generated.

2. If the request is a mid-dialog request, the method-independent processing described in Section 12.2.2
is first applied. It might also modify the session; Section 14 provides details.

3. Ifthe request has a tag in tfie header field but the dialog identifier does not match any of the existing
dialogs, the UAS may have crashed and restarted, or may have received a request for a different
(possibly failed) UAS. Section 12.2.2 provides guidelines to achieve a robust behaviour under such a
situation.

Processing from here forward assumes thatRNETE is outside of a dialog, and is thus for the purposes
of establishing a new session.

ThelNVITE may contain a session description, in which case the UAS is being presented with an offer
for that session. It is possible that the user is already a participant in that session, even thaNyhTEe
is outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
other participants. If desired, the UA®AY use identifiers within the session description to detect this
duplication. For example, SDP contains a session id and version number in the oyifield. If the user
is already a member of the session, and the session parameters contained in the session description have
not changed, the UABIAY silently accept théNVITE (that is, send a 2xx response without prompting the
user).

The INVITE may not contain a session description at all, in which case the UAS is being asked to
participate in a session, but the UAC has asked that the UAS provide the offer of the session.

The callee can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formu-
lates a response using the procedures described in Section 8.2.6.

13.3.1.1 Progress The UAS may not be able to answer the invitation immediately, and might choose
to indicate some kind of progress to the caller (for example, an indication that a phone is ringing). This
is accomplished with a provisional response between 101 and 199. These provisional responses establish

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 56]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2155 early dialogs and therefore follow the procedures of Section 12.1.1 in addition to those of Section 8.2.6. A
256 UAS MAY send as many provisional responses as it likes. Each of thesg indicate the same dialog ID.

xus7 However, these will not be delivered reliably unless reliable provisional responses are used.

2158 If the UAS will require an extended period of time to answer IR ITE, it will need to ask for an

2159 “extension” in order to prevent proxies from cancelling the transaction. A proxy has the option of canceling
2160 @ transaction when there is a gap of 3 minutes between messages in a transaction. To prevent cancellation,
2x61 the UASMUST send a non-100 provisional response at least that often. This respaosa D be sent

262 reliably, if supported by the UAC. If not, the UASHOULD send provisional responses every minute, to

213 handle the possibility of lost provisional responses.

2164 An INVITE transaction can go on for extended durations when the user is placed on hold, or when interworking
2165 with PSTN systems which allow communications to take place without answering the call. The latter is common in
2166 Interactive Voice Response (IVR) systems.

x67 13.3.1.2 The INVITE is redirected If the UAS decides to redirect the call, a 3xx response is sent. A
2168 300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) resgonseLD contain

2160 @ Contact header field containing URIs of new addresses to be tried. The response is passéNWTEe

2170 Server transaction, which will deal with its retransmissions.

a1 13.3.1.3 The INVITE is rejected A common scenario occurs when the callee is currently not willing

2172 Or able to take additional calls at this end system. A 486 (Busy HerelLD be returned in such scenario.

a7z If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response
2174 SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
a175 this response will not usually be used. The response is passedIMMHIEE server transaction, which will

2176 deal with its retransmissions.

2177 A UAS rejecting an offer contained in dNVITE sHouLD return a 488 (Not Acceptable Here) response.

2178 Such a responseHoULD include awarning header field explaining why the offer was rejected.

a7 13.3.1.4 The INVITE is accepted The UAS core generates a 2xx response. This response establishes
2180 @ dialog, and therefore follows the procedures of Section 12.1.1 in addition to those of Section 8.2.6.

2181 A 2xx response to alNVITE sHouLD contain theAllow header field and th8upported header field,

2182 andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
2183 features and extensions supported by the UAS for the duration of the call, without probing.

2184 If the INVITE request contained an offer, the 2w sT contain an answer. If tH&lVITE did not contain
2185 an offer, the 2xxMUST contain an offer.
2186 Once the response has been constructed it is passedMMHEE server transaction.Note, however, that

2187 the INVITE server transaction will be destroyed as soon as it receives this final response. Therefore, it is
2188 hecessary to pass periodically the response to the transport usiCarrives. The 2xx response is passed

2189 to the transport with an interval that starts at T1 seconds and doubles for each retransmission until it reaches
290 T2 seconds (T1 and T2 are defined in Section RBsponse retransmissions cease wheG request is

201 received with the same dialog ID as the response. This is independent of whatever transport protocols are
2192 Used to send the response.

2193 Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC which are UDP. To ensure
2194 reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is
2195 reliable.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 57]

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206
2207
2208
2209
2210

2211
2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

If the server retransmits the 2xx response for 64*T1 seconds without receivilsGlanit considers the
dialog completed, the session terminated, and therefeteduLD send eBYE.

14 Modifying an Existing Session

A successfullNVITE request (see Section 13) establishes both a dialog between two user agents and a
session (using the offer/answer model). Section 12 explains how to modify an existing dialog using a route
refresh request (e.g., changing theate setof the dialog). This section describes how to modify the actual
session. This modification can involve changing addresses or ports, adding a media stream, deleting a media
stream, and so on. This is accomplished by sending alN&ATE request within the same dialog that
established the session. AVITE request sent within an existing dialog is known as NI TE.

Note that a single réNVITE can modify at the same time the dialog and the parameters of the session.

Either the caller or callee can modify an existing session.

The behaviour of a UA on detection of media failure is a matter of local policy. However, automated
generation of rdNVITE or BYE is NOT RECOMMENDED to avoid flooding the network with traffic when
there is congestion. In any case, if these messages are sent automaticalty duey be sent after some
randomized interval.

Note that the paragraph above refers to automatically geneBatéd and relNVITEs. If the user hangs up
upon media failure the UA would sendB¥ E request as usual.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptidN&/ITEs (Section 13.2.1) applies to
re-INVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that itNMITE request to its peer. It is important to note that the
full description of the session, not just the change, is sent. This maintains the idempotency of SIP, supports
stateless session processing in various elements, and supports failover and recovery capabilities. Of course,
a UACMAY send a rdNVITE with no session description, in which case the response to thfa-E will
contain the offer.

If the session description format has the capability for version numbers, the dffeoarLb indicate
that the version of the session description has changed.

The To, From, Call-ID, CSeq, andRequest-URI of a reINVITE are set following the same rules as
for regular requests within an existing dialog, described in Section 12.

A UAC mAY choose not to addlert-Info header fields or bodies witontent-Disposition "alert” to
re-INVITEs because UASs do not typically alert the user upon reception oiNME-E.

Note that, as opposed to inititNVITESs (see Section 13), iNVITES contain tags in th@o header
field and are sent using thieute setfor the dialog. Therefore, a single final (2xx or non-2xx) response is
received for reNVITEs.

Note that a UAQuUST NOT initiate a newINVITE transaction within a dialog while another transaction
(INVITE or nonINVITE) is in progress in either direction.

1. If there is an ongoingNVITE client transaction the TWusT wait until the transaction reaches the
completeddr terminatedstate before initiating the nelNVITE.

2. If there is an ongoing\NVITE server transaction the TMusST wait until the transaction reaches the
confirmedor terminatedstate before initiating the neliNVITE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 58]

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261
2262
2263
2264

2265

2266

2267

2268

2269

2270

2271

2272

2273
2274
2275
2276

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

3. Ifthere is an ongoing NnoMNVITE client or server transaction the TUST wait until the transaction
reaches theompletedr terminatedstate before initiating the neiMVITE.

However, a UAMAY initiate a regular transaction while aNVITE transaction is in progress.

If a reINVITE is responded with a non-2xx final response the session paranveisrsremain un-
changed, as if no riNVITE had been issued. Note that, as stated in Section 12.2.1.2, if the non-2xx final
response is a 481 (Call/Transaction Does Not Exist) or a 408 (Request Timeout) or no response at all is
received for the réNVITE (a timeout is returned by tH&VITE client transaction) the UAC will terminate
the dialog.

The rules for transmitting a rlNVITE and for generating aACK for a 2xx response to riNVITE are
the same as for aflNVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the steps to follow in order to distinguish incomingWid-Es from incoming
initial INVITEs. This Section describes the procedures to follow upon reception of NMIGE for an
existing dialog.

A UAS that receives a secorllVITE before it sent the final response to a fiNVITE with a lower
CSeq sequence number on the same dialags T return a 500 (Server Internal Error) response to the second
INVITE andMusT include aRetry-After header field with a randomly chosen value of between 0 and 10
seconds.

A UAS that receives aiNVITE on a dialog while adNVITE it had sent on that dialog is in progress
MUST return a 491 (Request Pending) response to the rec8iW@E and MusT include aRetry-After
header field with a value chosen as follows:

1. If the UAS is the owner of th€all-ID of the dialog ID theRetry-After header field has a randomly
chosen value of between 2.1 and 4 seconds in units of 10 ms.

2. Ifthe UAS isnotthe owner of theCall-ID of the dialog ID theRetry-After header field has a randomly
chosen value of between 0 and 2 seconds in units of 10 ms.

If a user agent receives a WVITE for an existing dialog imusT check any version identifiers in the
session description or, if there are no version identifiers, the content of the session description to see if it has
changed. If the session description has changed, the user agentvsesieadjust the session parameters
accordingly, possibly after asking the user for confirmation.

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media or change from a unicast to a multicast conference.

If the new session description is not acceptable the UAS can reject it by returning a 488 (Not Acceptable
Here) response for the I&IVITE. This responssHoULD include awarning header field.

If a UAS generates a 2xx response and never receiveC#n it SHOULD generate 8YE to terminate
the dialog.

A UAS mAY choose not to generate 180 (Ringing) responses forldVEFE because UACs do not
typically render this information to the user. For the same reason WxSschoose not to usAlert-Info

header fields or bodies witBontent-Disposition "alert” in responses to a riNVITE either.

A UAS providing an offer in a 2xx (because tHeVITE did not contain an offerMusT offer the same
session description as last provided to the peer, with the exception of being able to change the IP address/port
if so desired.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 59]

2277
2278
2279

2280

2281

2282

2283

2284

2285

2286
2287
2288

2289

2290

2291

2292
2293
2294
2295
2296
2297
2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312
2313
2314
2315

2316
2317
2318

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Under error conditions (e.g., the UAS has crashed and restarted) the session description in the 2xx response for
an empty relNVITE may be different than the one in use at that moment. If the new session description is not
acceptable for the UAC sHouLD then send 8YE (after ACKing the 2xx response).

15 Terminating a Session

This section describes the procedures to be followed in order to terminate a SIP dialog. For two-party
sessions that are otherwise unbound in time the termination of the dialog implies the termination of the
session. Other types of sessions such as multicast sessions are not terminated when a participant terminates
the SIP dialog that he used to join the session. However, the SIP diadlogLD be terminated even

though its termination does not imply the termination of the session. A UA joining a multicast segsion

terminate the SIP dialog immediately after iINVITE transaction used to join the session has completed.
Either the caller or callee may terminate a dialog for any reason. A caller terminates a dialog either with
BYE of CANCEL depending on the state of the dialog. A callee IBB¥E to terminate a confirmed dialog.

If the callee wants to terminate an early dialog it just returns a non-2xx final response FMITEE.

Sections 13 and 12 document some cases where dialog termination is normative behavior. As a general
rule, if a UA decides that the dialog is to be terminatedviitsT follow the procedures here to initiate

signaling action to convey that.

When a UAC sends alNVITE request to create a session, if a 1xx response with a tag ifotfield
is received, an early dialog is created. When a 2xx response is received, the dialog becomes confirmed. For
a confirmed dialog, if the UAC desires to terminate the session, the §A®@ULD follow the procedures
described in Section 15.1.1 to terminate the session. If the callee for a new session wishes to terminate the
dialog, it uses the procedures of Section 15.1.1MusT NOT do so until it has received aikCK or until
the server transaction times out.

This does not mean a user can’'t hang up right away; it just means that the software in their phone needs to
maintain state for a short while in order to properly clean up.

If the UAC desires to end the session before a confirmed dialog has been createdyitp send a
CANCEL for the INVITE request that requested establishment of the session that is to be termifated.
UAC constructs and sends t@ANCEL following the procedures described in Section 9. TBANCEL
will normally result in a 487 (Request Terminated) response to be returned RNWEE, indicating suc-
cessful cancellation. However, it is possible that@®&NCEL and a 2xx response to theVITE “pass on
the wire”. In this case, the UAC will receive a 2xx to tReVITE. It sSHOULD then terminate the call by
following the procedures described in Section 15.1.1.

A UAC can terminate a specific early dialog by following the procedures described in Section 15.1.1.
This would only terminate one particular early dialog.

15.1 Terminating a Dialog with aBYE Request

15.1.1 UAC Behavior

A user agent client usd®YE request, sent within a dialog, to indicate to the server that it wishes to terminate
the session. This will also terminate the dialogBXE requestMAY be issued by either caller or callee. A
BYE requestsHOULD NOT be sent before the creation of a dialog (either early or confirmed). In that case
the UAC sHouLD follow the procedures described in Section 9 instead.

Proxies ensure that @ANCEL request is routed in the same way as IN¥ITE was. However, a proxy
performing load balancing may routéB¥ E without aRoute header field in a different way than tHhéVITE, since
both requests have differe@Seq sequence numbers.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 60]

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331
2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The To, From, Call-ID, CSeq, andRequest-URI of a BYE are set following the same rules as for
regular requests sent within a dialog, described in Section 12.

Once theBYE is constructed, it creates a new niNVITE client transaction, and passes it tB¥E
request. The user agesHOULD stop sending media as soon as B¥E request is passed to the client
transaction. If the response for tBeYE is a a 481 (Call/Transaction Does Not Exist) or a 408 (Request
Timeout) or no response at all is received for B)E (a timeout is returned by the client transaction) the
UAC considers the dialog down anyway.

15.1.2 UAS Behavior

A UAS first processes thBYE request according to the general UAS processing described in Section 8.2.

A UAS core receiving 8YE request checks to see if it matches an existing dialog. IBW¥E does not
match an existing dialog, the UAS cagelouLD generate a 481 (Call/Transaction Does Not Exist) response
and pass that to the server transaction.

This rule means thatBYE sent without tags by a UAC will be rejected. This is a change from RFC 2543, which
allowedBYE without tags.

A UAS core receiving 8BYE request for an existing dialogusT follow the procedures of Section
12.2.2 to process the request. Once done, the MAST cease transmitting media streams for the session
being terminated. The UAS comeusT generate a 2xx response to B¥E, andMUST pass that to the
server transaction for transmission.

The UASMuUST still respond to any pending requests received for that dialog, (which can only be an
INVITE). It is RECOMMENDED that a 487 (Request Terminated) response is generated to those pending
requests.

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request arrives, an element that can play the
role of a proxy must first decide if it needs to respond to the request on its own. For instance, the request
could be malformed or the element may need credentials from the client before acting as a proxy. The
elementMAY respond with any appropriate error code. When responding directly to a request, the element
is playing the role of a UAS andlusT behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request. When stateless, a proxy
acts as a simple forwarding element. It forwards each request downstream to a single element determined
by making a routing decision based on the request. It simply forwards every response it receives upstream.
A stateless proxy discards information about a message once it has been forwarded.

On the other hand, a stateful proxy remembers information (specifically, transaction state) about each
incoming request and any requests it sends as a result of processing the incoming request. It uses this
information to affect the processing of future messages associated with that request. A statefuiAyroxy
chose to “fork” a request, routing it to multiple destinations. Any request that is forwarded to more than

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 61]

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

one locatiormusT be handled statefully. Any request processed using TCP (or any other mechanism that is
inherently stateful)MusT be handled statefully.

A stateful proxymAy transition to stateless operation at any time during the processing of a request,
so long as it did not do anything that would otherwise prevent it from being stateless initially (forking, for
example, or generation of a 100 response). When performing such a transition, all state is simply discarded.
The proxysHouLD NOTsend aCANCEL.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those
places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms
of the Server and Client Transactions defined in Section 17. A stateful proxy has a server transaction
associated with one or more client transactions by a higher layer proxy processing component (see figure 3),
known as a proxy core. An incoming request is processed by a server transaction. Requests from the server
transaction are passed to a proxy core. The proxy core determines where to route the request, choosing
one or more next-hop locations. An outgoing request for each next-hop location is processed by its own
associated client transaction. The proxy core collects the responses from the client transactions and uses
them to send responses to the server transaction.

A stateful proxy creates a new server transaction for each new request received. Any retransmissions of
the request will then be handled by that server transaction per Section 17.

This is a model of proxy behavior, not of software. An implementation is free to take any approach that
replicates the external behavior this model defines.

For all new requests, including any with unknown methods, an element intending to proxy the request
MUST:

1. Validate the request (Section 16.3)

2. Make a routing decision (Section 16.4)

3. Forward the request to each chosen destination (Section 16.5)
4

. Process all responses (Section 16.6)

16.3 Request Validation

Before an element can proxy a requesimiitsT verify the message’s validity. A valid message must pass
the following checks:

1. Reasonable Syntax

2. Max-Forwards

3. (Optional) Loop Detection
4

. Proxy-Require

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 62]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

client
transaction

proxy "higher"
layer

uonoesuen
JEINES
client

transaction

client
transaction

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 63]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2394 5. Proxy-Authorization

2395 If any of these checks fail, the elememtsT behave as a user agent server (see Section 8.2) and respond
2306 With an error code.
2397 Notice that a proxy is not required to detect merged requestsiasd NOT treat merged requests as an

2308 error condition. The endpoints receiving the requests will resolve the merge as described in Section 8.2.2.2.
2399

2400 1. Reasonable Syntax check

2401 The requestmusT be well-formed enough to be handled with a server transaction. Any components
2402 involved in the remainder of these Request Validation steps or the Request Processing/msexctiba

2403 well-formed. Any other components, well-formed or ne#ouLD be ignored and remain unchanged

2404 when the message is forwardedkor instance, an elemesHOULD NOT reject a request because of

2405 a malformedDate header field. Likewise, a proxyHOULD NOT remove a malforme@®ate header

2406 before forwarding a request.

2407 This protocol is designed to be extended. Future extensions may define new methods and header fields
2408 at any time. An elememiusT NOT refuse to proxy a request because it contains a method or header
2409 field it does not know about.

2410 2. Max-Forwards check

2411 The Max-Forwards header (Section 24.22) is used to limit the number of elements a SIP request can
2412 traverse.

2413 If the request does not containviax-Forwards header field, this check is passed.

2414 If the request contains Max-Forwards header field with a field value greater than zero, the check is
2415 passed.

2416 If the request containsMax-Forwards header field with a field value of zero (0), the elemenisT

2417 NoT forward the request. If the request was@PTIONS, the elementiAy act as the final recipient

2418 and respond per Section 11. Otherwise, the elemerstr return a 483 (Too many hops) response.

2419 3. Optional Loop Detection check

2420 An elementmAY check for forwarding loops before forwarding request. If the request contains a

2421 Via header field value with A sent-by value that equals a value placed into previous requests by the
2422 proxy, the request has been forwarded by this element before. The request has either looped or is
2423 legitimately spiraling through the element. To determine if the request has looped, the alexnent

2424 perform thebranch parameter calculatiordescribed in Step 3 of Section 16.5 on this message and
2425 compare it to the parameter received in thé field value. If the parameters match, the request

2426 has looped. If they differ, the request is spiraling, and processing continues. If a loop is detected, the
2427 elementmAY return a 484Loop Detected) response.

2428 In earlier versions of this memo, loop detection veQUIRED. This requirement has been relaxed in

2429 favor of theMax-Forwards mechanism.

2430 4. Proxy-Require check

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 64]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2431 Future extensions to this protocol may introduce features that require special handling by proxies.
2432 Endpoints will include &roxy-Require header in requests that use these features, telling the proxy
2433 it should not process the request unless the feature is understood.

2434 If the request contains Broxy-Require header (Section 24.29) with one or more option-tags this
2435 element does not understand, the elemessT return a 420 (Bad Extension) response. The response
2436 MUST include anUnsupported (Section 24.42) header field listing those option-tags the element did
2437 not understand.

2438 5. Proxy-Authorization check

2439 If an element requires credentials before forwarding a request, the raequestbe inspected as
2440 described in Section 20.3. That section also defines what the element must do if the inspection fails.

241 16.4 Making a Routing Decision

2442 At this point, the proxy must decide where to forward the request. This can be modeled as computing a set
2423 Of destinations for the request. This set will either be predetermined by the contents of the request or will
244 be obtained from an abstract location service. Each destination is represented as a URI and an optional IP
245 address, port and transport. This combination is referred to as a “next-hop location”.

2446 First, the proxy core checks the received requestRoute headers. If anyRoute header fields are

2447 present in the request, the promy sT choose a single next-hop location to place in the destination set. The
2448 PrOXy SHOULD choose to use a strict-routing policy, placing the URI (including all of its parameters) from
249 the topmost Route header field as the only next hop URI in the destination set, with no IP address, port
250 and transport set for that next hop. The proxgy choose to use a loose-routing policy, selecting a URI,

«s1 address, port and transport based on that policy. A loose-routing podicyuse any information in or about

252 the request in determining where to route it. Restrictions on the a loose-routing proxy’s policy are discussed
253 in Section 8.1.3.

2454 Once the single next-hop location is placed into the destination set, the set is complete, and the proxy
255 MUST proceed to the Request Processing of Section 16.5.
2456 The Route mechanism is used to affect the path a request takes through SIP elements. A strict-routing

257 policy results in behaviour much like strict IP source routing. Loose-routing policies will result in the
2458 specified URIs being reached, possibly visiting additional elements in the process. A UAC will insert
259 Route header fields (see Section 12), based on information provided by proxies tHRawgind-Route

260 header fields or by policy obtained through configuration. (see Step 6 of Section 16.5).

2461 Assuming there were ngoute headers in the received request, the proxy checkR#wiest-URI of

62 the received request. If tHRequest-URI has a URI whose scheme is not understood by the proxy, the
263 ProXy SHOULD reject the request with a 416 (Unsupported URI Scheme) respolfdbe Request-URI

264 CONtains anmaddr parameter, the proxyusT check to see if its value is in the set of addresses or domains
ue5 the proxy is configured to be responsible for. If tRequest-URI has an maddr parameter with a value

us6 the proxy is responsible for, and the request was received using the port and transport indicated (explicitly
267 Or by default) in theRequest-URI, the proxymusT strip the maddr and any non-default port or transport

ues parameter and continue processing as if those values had not been present in the request. Otherwise, if the
260 Request-URI contains armaddr parameter, th®equest-URI MUST be placed into the destination set as

270 the only next hop URI, with no IP address, port and transport set for that next hop, and thevjurexy

2471 proceed to Section 16.5.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 65]

2472
2473

2474

2475

2476

2477

2478
2479
2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509
2510

2511

2512

2513

2514

2515

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

A request may arrive with amaddr matching the proxy, but on a port or transport different from that indicated
in the URI. Such a request needs to be forwarded to the proxy using the indicated port and transport.

If the domain of theRequest-URI indicates a domain this element is not responsible ferduLD set
the next hop URI to th&®equest-URI, and leave the IP address, port and transport of the next hop empty.
That next hopMusT be placed into the destination set as the only next hop, and the elemasmtproceed
to the task of Request Processing (Section 16.5.
There are many circumstances in which a proxy might receive a request for a domain it is not responsible for.

A firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

If the destination set for the request has not been predetermined as described above, this implies that the
element is responsible for the domain in RRequest-URI, and the elememiiAy use whatever mechanism
it desires to determine where to send the request. Any of these mechanisms can be modeled as accessing an
abstract Location Service. This may consist of obtaining information from a location service created by a SIP
Registrar, reading a database, consulting a presence server, utilizing other protocols, or simply performing
an algorithmic substitution on thiRequest-URI. When accessing the location service constructed by the
registrar, theRequest-URI MUST first be canonicalized as described in Section 10.3 before being used as
an index. The output of these mechanisms is used to construct the destination set.

If the Request-URI does not provide sufficient information for the proxy to determine the destination
set, itSHOULD return a 485 (Ambiguous) response. This resp@seuLD contain aContact header field
containing URIs of new addresses to be tried. For exampl&y@ITE to sip:John.Smith@company.com
may be ambiguous at a proxy whose location service has multiple John Smiths listed. See Section 25.4.23
for details.

Any information in or about the request or the current environment of the elewrenbe used in the
construction of the destination set. For instance, different sets may be constructed depending on contents or
the presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential destinations are located through these services, their next hops are added to the destination
set. Next-hop locations may only be placed in the destination set once. If a next-hop location is already
present in the set (based on the definition of equality for the URI type and equality of the optional parame-
ters), itMUST NOT be added again.

If the recieved request contained Route headers,a proxyMAY continue to add destinations to the
set after beginning Request ProcessingmAlr use any information obtained during that processing to
determine new locations. For instance, a proxy may choose to incorporate contacts obtained in a redirect
response (3xx class) into the destination set. If a proxy uses a dynamic source of information while building
the destination set (for instance, if it consults a SIP Registra}{duLD monitor that source for the duration
of processing the request. New locati@souLD be added to the destination set as they become available.

As above, any given URWUST NOT be added to the set more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incor-
porating contacts from redirect requests prevents infinite recursion.

An example trivial location service is achieved by configuring an element with a default outbound des-
tination. All requests are forwarded to this location. TRequest-URI of the request is placed in the
destination set with the optional next-hop IP address, port and transport parameters set to the default out-
bound destination. The destination set is complete, contamihgthis URI, and the element proceeds to
the task of Request Processing.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 66]

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548
2549

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

If the Request-URI indicates a resource at this proxy that does not exist, the pnagr return a 404
(Not Found) response.

If the destination set remains empty after applying all of the above, the pnapgr return an error
response, whicsHOULD be the 480 (Temporarily Unavailable) response.

16.5 Request Processing

As soon as the destination set is non-empty, a pmxy begin forwarding the request. A stateful proxy
MAY process the set in any orderMay process multiple destinations serially, allowing each client transac-
tion to complete before starting the nextMlay start client transactions with every destination in parallel. It

alsoMAY arbitrarily divide the set into groups, processing the groups serially and processing the destinations

in each group in parallel.

A common ordering mechanism is to use the qvalue parameter of destinations obtained from Contact
header fields (see Section 24.10). Destinations are processed from highest gvalue to lowest. Destinations

with equal gvalues may be processed in parallel.

A stateful proxy must have a mechanism to maintain the destination set as responses are received and
associate the responses to each forwarded request with the original request. For the purposes of this model,

this mechanism is a “response context” created by the proxy layer before forwarding the first request.
For each destination, the proxy forwards the request following these steps:

Make a copy of the received request

Update the Request-URI

Add a Via header field value

Update the Max-Forwards field

Update the Route header field if present
Optionally add a Record-route header field value
Optionally add additional headers

send the new request

© © N o 0o M 0w NP

Set timer C
Each of these steps is detailed below:

1. Copy request
The proxy starts with a copy of the received request. The eopyT initially contain all of the header

fields from the received request. Only those fields detailed in the processing described below may be

removed. The copgHOULD maintain the ordering of the header fields as in the received request. The
proxy MUST NOT reorder field values with a common field name (See Section 7.3.1).

An actual implementation need not perform a copy; the primary requirement is that the processing of each
next hop begin with the same request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 67]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2550 2. Request-URI

2551 TheRequest-URI in the copy’s start linemusT be replaced with the URI for this destination. If the

2552 URI contains any parameters not allowed in a Request-URI, NheyT be removed.

2553 This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
2554 toward its destination.

2555 3. Via

2556 The proxyMusT insert aVia header field into the copy before the existi@g header fields. The

2557 construction of this header follows the same guidelines of Section 8.1.1.7. This implies that the proxy
2558 will compute its own branch parameter, which will be globally unique for that branch, and contain the
2559 requisite magic cookie.

2560 Proxies choosing to detect loops have an additional constraint in the value they use for construction of
2561 the branch parameter. A proxy choosing to detect I@pSULD create a branch parameter separable

2562 into two parts by the implementation. The first par ST satisfy the constraints of Section 8.1.1.7 as

2563 described above. The second is used to perform loop detection and distinguish loops from spirals.
2564 Loop detection is performed by verifying that, when a request returns to a proxy, those fields having an
2565 impact on the processing of the request have not changed. The value placed in this pastarfithe

2566 parametesHOULD reflect all of those fields (including amroxy-Require andProxy-Authorization

2567 headers). This is to ensure that if the request is routed back to the proxy and one of those fields
2568 changes, it is treated as a spiral and not a loop (Section 16.3 item 2) A common way to create this
2569 value is to compute a cryptographic hash of Tee From, Call-ID header fields, th&equest-URI

2570 of the request received (before translation) and the sequence number fr@8dheeader field, in

2571 addition to anyProxy-Require and Proxy-Authorization fields that may be present. The algorithm

2572 used to compute the hash is implementation-dependent, but MD5 [21], expressed in hexadecimal, is
2573 a reasonable choice. (Base64 is not permissible foken.)

2574 If a proxy wishes to detect loops, théranch” parameter it suppliemusT depend on all information

2575 affecting processing of a request, including the incomieguest-URI and any header values affecting the

2576 request’s admission or routing. This is necessary to distinguish looped requests from requests whose routing

2577 parameters have changed before returning to this server.

2578 The request methodusT NOT be included in the calculation of thanch parameter. In particular,

2579 CANCEL andACK requests (for non-2xx responses)sT have the sambranch value as the cor-

2580 responding request they cancel or acknowledge. brhach parameter is used in correlating those

2581 requests at the server handling them (see Section 17.2.3 and 9.2).

2582 4. Max-Forwards

2583 If the copy does not contain a Max-Forwards header field, the proxy must add one with a field value
2584 of 70.

2585 Some existing UAs will not provide Blax-Forwards header field in a request.

2586 If the copy contains Max-Forwards header field, the proxy must decrement its value by one (1).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 68]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2587 5. Route

2588 If the copy contains &oute header field, the proxy’s routing policy will determine whether that field

2589 should be modified. A proxy with a strict-routing polieyusT remove the first (topmostRoute

2590 header field value. (The strict-routing policy would have already placed that value into the Request-
2501 URI of this copy.) A proxy with a loose-routing polieyAY remove the topmost value. Restrictions on

2502 aloose-routing proxy’s policy with respect to the topmost Route header are described in Section 8.1.3.

2593

2594 6. Record-Route

2595 If this proxy wishes remain on the path of future requests in a dialog created by this requestT it

2596 insert aRecord-Route header value into the copy before any existRerord-Route header values,

2597 even if aRoute field is already present.

2598 Requests establishing a dialog may contain preloaded Route header fields.

2599 If this request is already part of a dialog, the preyouLD insert aRecord-Route header field value

2600 if it wishes to remain on the path of future requests in the dialog. In normal endpoint operation as
2601 described in Section 12 theBecord-Route header field values will not have any effect on the route

2602 sets used by the endpoints.

2603 The proxy will remain on the path if it choses to not inseRecord-Route header field value into requests

2604 that are already part of a dialog. However, it would be removed from the path when an endpoint that has failed

2605 reconstitutes the dialog.

2606 A proxy MAY insert aRecord-Route header value into any request. If the request does not initiate

2607 a dialog, the endpoints will ignore the value. See Section 12 for details on how endpoints use the
2608 Record-Route header field values to constrigbute header fields.

2609 Each proxy in the path of a request chooses whether to afdcard-Route header field value

2610 independently - the presence of a Record-Route header field in a request does not obligate this proxy
2611 to add a value.

2612 The URI placed in th&kecord-Route header valuaiusT be a SIP URI. This URMAY be different

2613 for each destination the request is forwarded to. The 8/RVULD NOT contain the transport param-

2614 eter unless the proxy has knowledge (such as in a private network) that the next downstream element
2615 that will be in the path of subsequent requests supports that transport.

2616 The URI this proxy provides will be used by some other element to make a routing decision. This proxy, in

2617 general, has no way to know what the capabilities of that element are, so it must restrict itself to the mandatory

2618 elements of a SIP implementation: SIP URIs and UDP transports.

2619 The URI placed in théRecord-Route header valueiusT resolve to this element when the server

2620 location procedures of [8] are applied to it. This ensures subsequent requests are routed back to this
2621 element.

2622 The URI placed in thé&kecord-Route header valuesHOULD be such that if a subsequent request is

2623 received with this URI in th&®equest-URI, the proxy’s normal request processing will cause it to be

2624 forwarded to one of the previous elements, including the originating client, traversed by the original

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 69]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2625 request. This improves robustness, ensuring thaRéguest-URI contains enough information to

2626 forward subsequent requests to a reasonable destination even in the abseogte dfeaders.

2627 The URI placed in th&Record-Route header valugusT vary with theRequest-URI in the received

2628 request. A request may legitimately pass through this proxy more than once on the way to its final
2629 destination (this is called a spiraling request). TRequest-URI will be different each time the

2630 request passes through. If this proxy places the same URI in the Record-Route header field each time,
2631 subsequent requests will be rejected as looped requests. It is insufficient to simply cBeygthesst-

2632 URI from each request into the Record-Route header. Some modification, such as adding an maddr
2633 parameter, is necessary.

2634 URIs satisfying the above paragraphs can be constructed in many ways. One way is to use a URI that
2635 is nearly the same as tl@ontact header in the initial request (if present, elsefhem field), but with

2636 the maddr and port set to resolve to the proxy, and with a transaction identifier added to the user part of
2637 the request-URI (in order to meet the requirement that the URI iR&eord-Route be different for

2638 each distincRequest-URI). A call stateful proxy could use a URI of the form sip:proxy.example.com

2639 and use information from the stored call state to meet the requirements.

2640 The proxyMmAY include Record-Route header parameters in the value it provides. These will be

2641 returned in some responses to the request (200 (OK) respondegITE for example) and may be

2642 useful for pushing state into the message.

2643 The Record-Route process is designed to work for any SIP request that initiates a dialog. The only
2644 such request in this specificationlSVITE. Extensions to the protocolAy define others, and the

2645 mechanisms described here will apply.

2646 If a proxy needs to be in the path of any type of dialog (such as one straddling a firewsifut_D

2647 add aRecord-Route header value to every request with a method it does not understand since that
2648 method may have dialog semantics.

2649 The URI a proxy places intoRecord-Route value is only valid for the lifetime of any dialog created

2650 by transaction in which it occurs. A dialog-stateful proxy, for exampigy refuse to accept future

2651 requests with that value in thRequest-URI after the dialog has terminated. Non-dialog-stateful

2652 proxies, of course, have no concept of when the dialog has terminated, bwmAkiegncode enough

2653 information in the value to compare it against the dialog identifier of future requestamandeject

2654 requests not matching that information. EndpomtssT NOT use a URI obtained from Record-

2655 Route header value outside the dialog in which it was provided. See Section 12 for more information
2656 on an endpoint’s use ®ecord-Route header values.

2657 Generally, the choice about whether to record-route or not is a tradeoff of features vs. performance.
2658 Faster request processing and higher scalability is achieved when proxies do not record route. How-
2659 ever, provision of certain services may require a proxy to observe all messages in a dialog. It is
2660 RECOMMENDED that proxies do not automatically record route. They should do so only if specifi-
2661 cally required.

2662 7. Adding Additional Headers
2663 The proxymAY add any other appropriate headers to the copy at this point.

2664 8. Forward Request

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 70]

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688
2689
2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

A stateful proxy creates a new client transaction for this request as described in Section 17.1. If
the next-hop location used in building this request contains the optional addressing parameters, the
transaction is instructed to send the request based on those parameters. Otherwise, the proxy uses
the procedures of Section [8] to compute an ordered set of addresses fr&teghest-URI, and

as described there, attempts to contact the first one by instructing the client transaction to send the
request there. If the client transaction reports failure to send the request or a timeout from its state
machine, the stateful proxy continues to the next address that ordered set. Each attempt is a new client
transaction, and therefore represents a new branch, so that the processing described above for each
branch would need to be repeated. This results in a requirement to use a different branch ID parameter
for each attempt. If the ordered set is exhausted, the request cannot be forwarded to this element in
the destination set. The proxy does not need to place anything in the response context, but otherwise
acts as if this element of the destination set returned a 408 (Request Timeout) final response.

. Settimer C

In order to handle the case where l&WITE request never generates a final response, a transaction
timeout value is used. This is accomplished through a timer, called timer C, whish set for each

client transaction when aiNVITE request is proxied. The timenusT be larger than 3 minutes.
Section 16.6 bullet 2 discusses how this timer is updated with provisional responses, and Section 16.7
discusses processing when it fires.

16.6 Response Processing

When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
ing the response. If none is found, the elemoisT process the response (even if it is an informational
response) as a stateless proxy (described below). If a match is found, the response is handed to the client
transaction.

Forwarding responses for which a client transaction (or more generally any knowledge of having sent an asso-
ciated request) is not found improves robustness. In particular, it ensures that “late” 2xx class respdhgasEto
requests are forwarded properly.

As client transactions pass responses to the proxy layer, the following processitgake place:

a » W Dok

Find the appropriate response context
Update timer C for provisional responses
Remove the topmost Via

Add the response to the response context

Check to see if this response should be forwarded

The following processingiusT be performed on each response that is forwarded. It is likely that more
than one response to each request will be forwarded: at least each provisional and one final response.

1.

2.

Aggregate authorization header fields if necessary;

forward the response;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 71]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2701 3. generate any necess@ANCEL requests.

2702 If no final response has been forwarded after every client transaction associated with the response context
2703 has been terminated, the proxy must choose and forward the “best” response from those it has seen so far.
2704 Each of the above steps are detailed below:

2705 1. Find Context

2706 The proxy locates the “response context” it created before forwarding the original request using the
2707 key described in Section 16.5. The remaining processing steps take place in this context.

2708 2. Update timer C for provisional responses

2709 For anINVITE transaction, if the response is a provisional response with status codes 101 to 199
2710 inclusive (i.e., anything but 100), the proxusT reset timer C for that client transaction. The timer

2711 MAY be reset to a different value, but this valmesT be greater than 3 minutes.

2712 3. Via

2713 The proxy removes the topmagia field value from the response.

2714 If no Via field values remain in the response, the response was meant for this elememt sind

2715 NOT be forwarded. The remainder of the processing described in this section is not performed on this
2716 message, the UAC processing rules described in Section 8.1.4 are followed instead (transport layer
2717 processing has already occurred).

2718 This will happen, for instance, when the element gener@®NCEL requests as described in Sec-

2719 tion 10.

2720 4. Add response to context ;

2721 Final responses received are stored in the response context until a final response is generated on the
2722 server transaction associated with this context. The response may be a candidate for the best final
2723 response to be returned on that server transaction. Information from this response may be needed in
2724 forming the best response even if this response is not chosen.

2725 If the proxy chooses to recurse on any contacts in a 3xx class response by adding them to the destina-
2726 tion set, itMusT remove them from the response before adding the response to the response context.
2727 If the proxy recurses on all of the contacts in a 3xx class response, the graxyLD NOT add the

2728 resulting contactless response to the response context.

2729 Removing the contact before adding the response to the response contact prevents the next element up-

2730 stream from retrying a location this proxy has already attempted.

2731 3xx class responses may contain a mixture of SIP and non-SIP URIs. A proxy may choose to recurse on

2732 the SIP URIs and place the remainder into the response context to be returned potentially in the final response.

2733 If a proxy receives a 416 (Unsupported URI Scheme) response to a request Rdupsest-URI

2734 scheme was not SIP, but the scheme in the original received request was SIP (that is, the proxy changed
2735 the scheme from SIP to something else when it proxied a request), thegmaxyLb add a new URI

2736 to the destination set. This URHouULD be a SIP URI version of the non-SIP URI that was just tried.

2737 In the case of the tel URL, this is accomplished by placing the telephone-subscriber part of the tel
2738 URL into the user part of the SIP URI, and setting the hostpart to the domain where the prior request
2739 was sent.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 72]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2740 As with a 3xx response, if a proxy “recurses” on the 416 by trying a SIP URI instead, the 416 response
2741 SHOULD NOT be added to the response context.

2742 5. Check response for forwarding

2743 Until a final response has been sent on the server transaction, the following respoisgedse for-

2744 warded immediately:

2745 e Any provisional response other than 100 (Trying)

2746 e Any 2xx response

2747 If a 6xx response is received, it is not immediately forwarded, but the stateful progyLD cancel

2748 all pending transactions as described in Section 10.

2749 This is a change from RFC 2543, which mandated that the proxy was to forward the 6xx response imme-

2750 diately. For anNVITE transaction, this approach had the problem that a 2xx response could arrive on another

2751 branch, in which case the proxy would have to forward the 2xx. The result was that the UAC could receive

2752 a 6xx response followed by a 2xx response, which should never be allowed to happen. Under the new rules,

2753 upon receiving a 6xx, a proxy will issueGANCEL request, which will generally result in 487 responses from

2754 all outstanding client transactions, and then at that point the 6xx is forwarded upstream.

2755 After a final response has been sent on the server transaction, the following respossdse for-

2756 warded immediately:

2757 e Any 2xx class response to @dNVITE request

2758 A stateful proxymusT NOT immediately forward any other responses. In particular, a stateful proxy
2759 MUST NOT forward any 100 (Trying) response. Those responses that are candidates for forwarding
2760 later as the “best” response have been gathered as described in step “Add Response to Context”.
2761 Any response chosen for immediate forwardimgsT be processed as described in steps “Aggregate
2762 authorization headers” through “Record-Route”.

2763 This step, combined with the next, ensures that a stateful proxy will forward exactly one final response
2764 to a noniNVITE request, and either exactly one non-2xx class response or one or more 2xx-class
2765 responses to alNVITE request.

2766 6. Choosing the best response

2767 A stateful proxyMusT send a final response to a response context’s server transaction if no final
2768 responses have been immediately forwarded by the above rules and all client transactions in this
2769 response context have been terminated.

2770 The stateful proxymusT choose the “best” final response among those received and stored in the
2171 response context.

2772 If there are no final responses in the context, the proxgT send a 408 (Request Timeout) response

2773 to the server transaction.

2774 Otherwise, the proxyusT forward one of the responses from the lowest response class stored in the
2775 response context. The proxjay select any response within that lowest class. The psxguLD

2776 give preference to responses that provide information affecting resubmission of this request, such as
2777 401, 407, 415, 420, and 484.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 73]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2778 A proxy which receives a 503 (Service Unavailable) respasiseuLd NOT forward it upstream

2779 unless it can determine that any subsequent requests it might proxy will also generate a 503. In other
2780 words, forwarding a 503 means that the proxy knows it cannot service any requests, not just the one
2781 for the Request-URI in the request which generated the 503.

2782 The forwarded responseusT be processed as described in steps “Aggregate authorization headers”
2783 through “Record-Route”.

2784 For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
2785 responses, it may choose to forward the 407 (Proxy Authentication Required) response.

2786 1xx and 2xx class responses may be involved in the establishment dialogs. When a request does not
2787 contain a To tag, the To tag in the response is used by the UAC to distinguish multiple responses to
2788 a dialog creating request. A proxusT NOT insert a tag into the To header of a 1xx or 2xx class

2789 response if the request did not contain one. A prxysT NOT modify the tag in the To header of a

2790 1xx or 2xx class response.

2791 Since a proxy may not insert a tag into the To header of a 1xx class response to a request that did
2792 not contain one, it cannot issue non-100 provisional responses on its own. However, it can branch the
2793 request to a UAS sharing the same element as the proxy. This UAS can return its own provisional
2794 responses, entering into an early dialog with the initator of the request. The UAS does not have to be
2795 a discreet process from the proxy. It could be a virtual UAS implemented in the same code space as
2796 the proxy.

2797 3-6xx class responses are delivered hop-hop. When issuing a 3-6xx class response, the element is
2798 effectivly acting as a UAS, issuing its own response, usually based on the responses received from
2799 downstream elements. An elemes#ouLD preserve the To tag when simply forwarding a 3-6xx

2800 class response to a request that did not contain a To tag.

2801 A proxy MusT NOT modify the To tag in any forwarded response to a request that contains a To tag.
2802 While it makes no difference to the upstream elements if the proxy replaced the To tag in a forwarded

2803 3-6xx class response, preserving the original tag may assist with debugging.

2804 When the proxy is aggregating information from several responses, choosing a To tag from among them

2805 is arbitrary, and generating a new To tag may make debugging easier. This happens, for instance, when

2806 combining 401 (Unauthorized) and 407 (Proxy Authentication Required) challenges, or combining Contact

2807 values from unencrypted and unauthenticated 3xx class responses.

2808 7. Aggregate authorization headers

2809 If the selected response is a 401 (Unauthorized) or 407 (Proxy Authentication Required), the proxy
2810 MUST collect anyWWW-Authenticate and Proxy-Authenticate header fields from all other 401

2811 (Unauthorized) and 407 (Proxy Authentication Required) responses received so far in this response
2812 context and add them to this response before forwarding. BASAV-Authenticate and Proxy-

2813 Authenticate header field added to the respongesT preserve that header field value. The result-

2814 ing 401 (Unauthorized) or 407 (Proxy Authenication Required) response may have S&EVevs

2815 Authenticate AND Proxy-Authenticate headers.

2816 This is necessary because any or all of the destinations the request was forwarded to may have re-
2817 guested credentials. The client must receive all of those challenges and supply credentials for each of
2818 them when it retries the request. Motivation for this behavior is provided in Section 22.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 74]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2819 8. Record-Route

2820 If the selected response contairRecord-Route header field value originally provided by this proxy,

2821 the proxyMAY chose to rewrite the value before forwarding the response. This allows the proxy to
2822 provide different URISs for itself to the next upstream and downstream elements. A proxy may choose
2823 to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

2824 The new URI provided by the proxyusT satisfy the same constraints on URIs place®katord-

2825 Route header fields in requests (see Step 6 of Section 16it) the following modifications:

2826 The URISHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
2827 upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
2828 that transport.

2829 The URI placed in thé&kecord-Route header valuesHOULD be such that if a subsequent request is

2830 received with this URI in théRequest-URI, the proxy’s normal request processing will cause it to

2631 be forwarded to the same next-hop element (as opposed to some previous element) as the originally
2832 forwarded request.

2833 When a proxy does decide to modify tRecord-Route header in the response, one of the operations

2834 it must perform is to locate thRecord-Route that it had inserted. If the request spiraled, and the

2835 proxy inserted eRecord-Route in each iteration of the spiral, locating the correct header in the

2636 response (which must be the proper iteration in the reverse direction) is tricky. The rules above dictate
2837 that a proxy insert a different URI into tHeecord-Route for each distincRequest-URI received.

2838 The two issues can be solved jointly. FECOMMENDED mechanism is for the proxy to append a

2839 piece of data to the user portion of the URI. This piece of data is a hash of the transaction key (those
2840 peices of data used to match a request against existing transactions as discussed in section 17.2.3)
2841 for the incoming request, concatenated with a unique identifier for the proxy instance. Since the
2842 transaction key either contaifequest-URI or depends on it (when the key is encoded in the branch

2843 parameter of the topmost Via header), this key will be unique for each diRegpiest-URI. When

2844 the response arrives, the proxy modifies the fstord-Route whose identifier matches the proxy

2845 instance. The modification results in a URI without this piece of data appended to the user portion of
2846 the URI. Upon the next iteration, the same algorithm (find the toprResbrd-Route header with

2847 the parameter) will correctly extract the nékécord-Route header inserted by that proxy.

2848 9. Forward response

2849 After performing the processing described in steps “Aggregate authorization headers” through “Record-
2850 Route”, the proxy may perform any feature specific manipulations on the selected response. Unless
2851 otherwise specified, the proxyusT NOT remove the message body or any header values other than
2852 theVia header value discussed in Section 3. In particular, the ppwgT NOT remove any “received”

2853 parameter it may have added to the néx header value while processing the request associated with

2854 this response. The proxyMUST pass the response to the server transaction associated with the re-
2855 sponse context. This will result in the response being sent to the location now indicated in the topmost
2856 Via field value. If the server transaction is no longer available to handle the transmission, the element
2857 MusT forward the response statelessly by sending it to the server transport. The server transaction
2858 may indicate failure to send the response or signal a timeout in its state machine. These errors should
2859 be logged for diagnostic purposes as appropriate, but the protocol requires no remedial action from
2860 the proxy.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 75]

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885
2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The proxymMusT maintain the response context until all of its associated transactions have been ter-
minated, even after forwarding a final response.

10. Generat€ ANCELs

OPEN ISSUE #7: IfCANCEL is restricted toINVITE only, this behavior must restrict itself to
INVITE requests.

If the forwarded response was a final response, the pyraxgT generate £ANCEL request for all

pending client transactions associated with this response context. A pHDXYLD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response and has not had an assod24@CEL generated for it. GeneratingANCEL

requests is described in Section 9.1.

The requirement t&€ ANCEL pending client transactions upon forwarding a final response does not
guarantee that an endpoint will not receive multiple 200 (OK) responses &\ARE. 200 (OK)
responses on more than one branch may be generated bef@&MNEEL requests can be sent and
processed. Further, it is reasonable to expect that a future extension may override this requirement to
issueCANCEL requests.

16.7 Processing Timer C

If timer C should fire, the proxyusT either reset the timer with any value it chooses, or gener&an-
CEL for that particular request.

16.8 Handling Transport Errors

If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 19.4), the
proxy MUST behave as if the forwarded request received a 400 (Bad Request) response.

If the proxy is notified of an error when forwarding a response, it drops the response. ThepmxyD
NOT cancel any outstanding client transactions associated with this response context due to this notification.

If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all
transactions to fail through its Via header field.

16.9 CANCEL Processing

A stateful proxy may generateGANCEL to any other request it has generated at any time (subject to receiv-
ing a provisional response to that request as described in section A.ga)oxy MUST cancel any pending
client transactions associated with a response context when it receives a m&t8NGEEL request.

A stateful proxymAY generateCANCEL requests for pendintNVITE client transactions based on the
period specified in thitNVITES Expires header field elapsing. However, this is generally unnecessary since
the endpoints involved will take care of signaling the end of the transaction.

While aCANCEL request is handled in a stateful proxy by its own server transaction, a new response
context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
transaction handling the request associated withGABICEL. If a matching response context is found, the
elementvusT immediately return a 200 (OK) response to @&NCEL request. In this case, the element is

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 76]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2808 acting as a user agent server as defined in Section 8.2. Furthermore, the elerseigienerateaCANCEL

2890 requests for all pending client transactions in the context as described in Section 10.

2900 If a response context is not found, the element does not have any knowledge of the request to apply
2001 the CANCEL to. It musT forward theCANCEL request (it may havestatelessly forwarded the associated

2002 request previously).

2003 16.10 Stateless Proxy

2004 When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
2005 acting statelessly is the same as when behaving statefully. The differences are detailed here.

2006 A stateless proxy does not have any notion of a transaction, or of the response context used to describe
2007 Stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly
2008 from the transport layer (See section 19). As a result, stateless proxies do not retransmit messages on their
2000 OWN. They do, however, forward all retransmission they receive (they do not have the ability to distinguish

200 @ retransmission from the original message). Furthermore, when handling a request statelessly, an element
2011 MUST NOT generate its own 100 (Trying) or any other provisional response.

2012 A stateless proxy must validate a request as described in Section 16.3

2013 A stateless proxy must make a routing decision as described in Section 16.4 with the following excep-
2014 tiON:

2015 e A stateless proxyusT choose one and only one destination from the destination set. This choice
2916 MUST only rely on fields in the message and time-invariant properties of the server. In particular, a
2017 retransmitted requestusT be forwarded to the same destination each time it is processed. Further-
2018 more, CANCEL and non-Routed\CK requestavusT generate the same choice as their associated

29019 INVITE.

2020 A stateless proxy must process the request before forwarding as described in Section 16.5 with the
2921 following exceptions:

2022 e The requirement for unique branch IDs across time applies to stateless proxies as well. However, a
2923 stateless proxy cannot simply use a random number generator to compute the first component of the
2024 branch ID, as described in Section 16.5 bullet 3. This is because retransmissions of a request need
2925 to have the same value, and a stateless proxy cannot tell a retransmission from the original request.
2026 Therefore, the component of the branch parameter that makes it uwiggrebe the same each time

2027 a retransmitted request is forwarded. Thus for a stateless proxyrameh parametemusT be

2028 computed as a combinatoric function of message parameters which are invariant on retransmission.
2929 e The stateless proxyAY use any technique it likes to guarantee uniqueness of its branch IDs across
2030 transactions. However, the following procedur&isCOMMENDED. The proxy examines the branch

2031 ID of the received request. If it begins with the magic cookie, the first component of the branch ID of
2032 the outgoing request is computed as a hash of the received branch ID. Otherwise, the first component
2933 of the branch ID is computed as a hash of the topmviat the To header, thd-rom header , the

2034 Call-ID header, th&€€Seq number (but not method), and tReequest-URI from the received request.

2935 One of these fields will always vary across two different transactions.

2936 e The request is sent directly to the transport layer instead of through a client transaction. If the next-
2037 hop destination parameters don't provide an explicit destination, the element applies the procedures
2938 of [8] to the Request-URI to determine where to send the request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 77]

2939
2940
2941
2942
2943
2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Since a stateless proxy must forward retransmitted requests to the same destination and add identical branch
parameters to each of them, it can only use information from the message itself and time-invariant configuration
data for those calculations. If the configuration state is not time-invariant (for example, if a routing table is updated)
any requests that could be affected by the change may not be forwarded statelessly during an interval equal to the
transaction timeout window before or after the change. The method of processing the affected requests in that
interval is an implementation decision. A common solution is to forward them transaction statefully.

Stateless proxiestusT NOT perform special processing f&@ANCEL requests. They are processed
by the above rules as any other requests. In particular, a stateless proxy applies the same Route header
processing t&€ANCEL requests that it applies to any other request.

Response processing as described in Section 16.6 does not apply to a proxy behaving statelessly. When
a response arrives at a stateless proxy, the proxy inspects the sent-by value in the first (Mdjantnastiler
value. If that address matches the proxy (it equals a value this proxy has inserted into previous requests)
the proxyMUsT remove that value from the response and forward the result to the location indicated in the
nextVia header value. Unless specified otherwise, the proxgT NOT remove any other header values or
the message body. If the address does not match the proxy, the messagke silently discarded.

16.11 Record-Route Example

This example demonstrates one viRgcord-Route header values can be constructed to satisfy the require-
ments described in section 16.5 item 6 and section 16.6 item 8.

Consider a proxy at serverl2.atlanta.com listening on port 5061 which receives the following request
(many headers are omitted for brevity):

INVITE sip:user@example.com SIP/2.0
Via: SIP/2.0/UDP callerspc.univ.edu
Contact: sip:caller@callerspc.univ.edu

The proxy forwards this request to a UAS @ip:;j _user@divll.example.com , and record-
routes:

INVITE sip:j_user@divll.example.com SIP/2.0

Via: SIP/2.0/UDP serverl?2.atlanta.com:5061

Via: SIP/2.0/UDP callerspc.univ.edu

Record-Route: <sip:caller.8jjs@callerspc.univ.edu:5061;
maddr=serverl2.atlanta.com>

Contact: sip:caller@callerspc.univ.edu

The 200 (OK) response received by the proxy will look like, in part:

SIP/2.0 200 OK

Via: SIP/2.0/UDP serverl2.atlanta.com:5061

Via: SIP/2.0/UDP callerspc.univ.edu

Record-Route: <sip:caller.8jjs@callerspc.univ.edu:5061;
maddr=serverl2.atlanta.com>

Contact: sip:j_user@host32.divll.example.com

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 78]

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990
2991
2992
2993
2994
2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The proxy modifies itfRecord-Route header in the response, resulting in the new response forwarded
upstream:

SIP/2.0 200 OK

Via: SIP/2.0/UDP callerspc.univ.edu

Record-Route: <sip:user@example.com:5061;maddr=serverl2.atlanta.com>
Contact: sip:j_user@host32.divll.example.com

The route set computed by the UAS is:

sip:caller.8jjs@callerspc.univ.edu:5061;maddr=serverl2.atlanta.com
sip:caller@callerspc.univ.edu

and the route set computed by the UAC is:

sip:j_user@example.com:5061;maddr=serverl2.atlanta.com
sip:j_user@host32.divll.example.com

17 Transactions

SIP is a transactional protocol: interactions between components take place in a series of independent
message exchanges. Specifically, a SIP transaction consists of a single request, and any responses to that
request (which include zero or more provisional responses and one or more final responses). In the case
of a transaction where the request wadM¥ITE (known as arINVITE transaction), the transaction also
includes theACK only if the final response was not a 2xx response. If the response was a 2RC khis

not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 (OK) responsésIYd B to
the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them, and the UAC
alone takes responsibility for acknowledging them wWibK. Since thisACK is retransmitted only by the UAC, it
is effectively considered its own transaction.

Transactions have a client side and a server side. The client side is known as a client transaction, and the
server side, as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example of
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a
server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn, sends
the request to a server transaction in the UAS. This is shown pictorially in Figure 4.

A stateless proxy does not contain a client or server transaction. The transaction exists between the
UA or stateful proxy on one side of the stateless proxy, and the UA or stateful proxy on the other side.
As far as SIP transactions are concerned, stateless proxies are effectively transparent. The purpose of the
client transaction is to receive a request from the element the client is embedded in (call this element the
“Transaction User” or TU; it can be a UA or a stateful proxy), and reliably deliver the request to that server
transaction. The client transaction is also responsible for receiving responses, and delivering them to the
TU, filtering out any retransmissions or disallowed responses (such as a respé&@€)tdn the case of

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 79]

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

+—— + +——— + +——— + +——— +
| +-+|Request |[+-+ +-+|Request |[+-+ +-+|Request |[+—+ |
| IC||=————~ >|IS| [Cl|=——=— >||S| [Cl|===——— >|IS| |
[l llel I llel I llel |
[il [l il [r] il 11—
| el [Iv] el [[v] Tell v |
| Inl| lle] [nl lle] Il llel |
[It vl 1] Il 1] Il |
[1l IR (1T T1I I
[[Tl [T [T1I [IT] [T1I 1|
[Il (] Irlf [l Irll 11—
| lall IEIEY llal lall llal |
| Inl| [In] | [Nl Il IInl |
| |s||Response||s| |s||Response||s| |s||Response||s| |
| +—t|<——————— [+—+ +—+|<————— [+—+ +—H|<—————— |[+—+
Fm——————— + Fm———————— + Fm———————— + Fm———————— +
UAC Outbound Inbound UAS
Proxy Proxy

Figure 4: Transaction relationships

anINVITE transaction, that includes generation of &€K request for any final response excepting a 2xx
response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer, and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU, and delivers them to the transport layer for transmission over the
network. In the case of aflNVITE transaction, it absorbs tHeCK request for any final response excepting
a 2xx response.

The 2xx response, and t#eCK for it, have special treatment. This response is retransmitted only by a
UAS, and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows
the entire set of users that have accepted the call. Because of this special handling, retransmissions of the
2xx response are handled by the UA core, not the transaction layer. Similarly, generatioACkier the
2xx is handled by the UA core. Each proxy along the path merely forwards each 2xx respt\s¢Tia,
and its correspondingCK.

A reliable provisional response, and tARACK for it, also have special treatment. Reliable provisional
responses are also only retransmitted by the UAS core, arRRAEK generated by the UAC core. Unlike
ACK, howeverPRACK is a normal norNVITE transaction, which means that it will generate its own final
response. The reason for this seemingly inexplicable difference beRR&GEK andACK is that reliability
of provisional responses was added on later as an extra feature, and therefore needed to be done within the
confines of SIP extensibility. SIP extensibility only allowed the additions of new methods which behaved
like any other nodNVITE method.

17.1 Client Transaction

The client transaction provides its functionality through the maintenance of a state machine.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 80]

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction, and passes it the SIP request to send, and an IP
address, port, and transport to send it to. The client transaction begins execution of its state machine. Valid
responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed
by the TU. One handles client transactions fdVITE request. This type of machine is referred to as an
INVITE client transaction. Another type handles client transactions for all requests éXd4pE and
ACK. This is referred to as a ndNVITE client transaction. There is no client transaction A@K. If the
TU wishes to send aACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Nor-
mally, human input is required in order to respond tadldWITE. The long delays expected for sending a
response argue for a three way handshake. Requests of other methods, on the other hand, are expected to
completely rapidly. In fact, because of its reliance on just a two way handshakesA&sLD respond
immediately to noriNVITE requests. Protocol extensions which require longer durations for generation of
aresponse (such as a new method that does require human interagtiorn)d instead use two transactions
- one to send the request, and another in the reverse direction to convey the result of the request.

17.1.1 INVITE Client Transaction

17.1.1.1 Overview ofNVITE Transaction ThelNVITE transaction consists of a three-way handshake.

The client transaction sends 8dVITE, the server transaction sends responses, and the client transaction
sends am\CK. For unreliable transports (such as UDP), the client transaction will retransmit requests at an
interval that starts at T1 seconds and doubles after every retransmission. T1 is an estimate of the RTT, and
it defaults to 500 ms. Nearly all of the transaction timers described here scale with T1, and changing T1 is
how their values are adjustedThe request is not retransmitted over reliable transports. After receiving a
1xx response, any retransmissions cease altogether, and the client waits for further responses. The server
transaction can send additional 1xx responses, which are not transmitted reliably by the server transaction.
If the provisional response needs to be sent reliably, this is handled by th&vdntually, the server trans-

action decides to send a final response. For unreliable transports, that response is retransmitted periodically,
and for reliable transports, its sent once. For each final response that is received at the client transaction, the
client transaction sends &CK, the purpose of which is to quench retransmissions of the response.

17.1.1.2 Formal Description The state machine for tHBIVITE client transaction is shown in Figure 5.
The initial state, “calling”MuUsT be entered when the TU initiates a hew client transaction wittNafiTE
request. The client transactiomusT pass the request to the transport layer for transmission (see Section
19). If an unreliable transport is being used, the client transadionuLD start timer A with a value

of T1, andsHouULD NOT start timer A when a reliable transport is being used (Timer A controls request
retransmissions). For any transport, the client transastiosT start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

When timer A fires, the client transacti@mouLD retransmit the request by passing it to the transport
layer, andsHOULD reset the timer with a value of 2*T1. The formal definition refransmitwithin the
context of the transaction layer, is to take the message previously sent to the transport layer, and pass it to
the transport layer once more.

When timer A fires 2*T1 seconds later, the requasbuLD be retransmitted again (assuming the client
transaction is still in this state). This processouLD continue, so that the request is retransmitted with

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 81]

3079

3080

3081

3082

3083

3084

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

[INVITE from TU
Timer A fires |INVITE sent

Reset A, \Y Timer B fires
INVITE sent +——————————— + or Transport Err.
- | |-——————— +inform TU
| | Calling | |
= >| |- >|
= + 2xX |
| | 2xxto TU |
| 1xx |
300-699 +——————————————— + |1xxto TU
ACK sent | | |
resp.to TU | 1xx \% |
| Ixxto TU ——————————— + |
R | |
| | |Proceeding |-———————————— >
|+ 5 l2x |
| = +2xxtoTU |
| 300-699 | |
| ACK sent, | |
| resp. to TU| |
| | | NOTE:
| 300-699 Vv |
| ACK sent +—————————— +Transport Err. | transitions
| +———————- | [Infform TU | labeled with
|] | Completed |-————————————~ >| the event
| +———— >| | | over the action
| F————— = + | to take
I o |
| | | Timer D fires |
+—— + |- |
| |
v I
- + |
I | I
| Terminated|<—————————————- +
I |
+——— +

Figure 5:INVITE client transaction

intervals that double after each transmission. These retransmissians.D only be done while the client
transaction is in the “calling” state.

The default value for T1 is 500 ms. T1 is an estimate of the RTT between the client and server transac-
tions. The optional RTT estimation procedure of Section 18 be followed, in which case the resulting
estimatemAy be used instead of 500 ms. If no RTT estimation is used, other veilede used in private
networks where it is known that RTT has a different value. On the public InternetaA¥ Ibe chosen larger,

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 82]

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

but sHouLD NOTbe smaller.

If the client transaction is still in the “calling”state when timer B fires, the client transasticmuLD
inform the TU that a timeout has occurred. The client transastioaT NOT generate aACK. The value of
64*T1 is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the "calling” state, it transitions to the
“proceeding” state. In the “proceeding” state, the client transactionuLD NOT retransmit the request any
longer. Furthermore, the provisional responsesT be passed to the TU. Any further provisional responses
MUST be passed up to the TU while in the “proceeding” state. Passing of all provisional responses is
necessary since the TU will handle reliability of these messages, and therefore even retransmissions of a
provisional response must be passed upwards.

When in either the "calling” or “proceeding” states, reception of a response with status code from 300-
699 MUST cause the client transaction to transition to “completed”. The client transagti®T pass the
received response up to the TU, and the client transastioaT generate arACK request, even if the
transport is reliable (guidelines for constructing @K from the response are given in Section 17.1.1.3)
and then pass th&CK to the transport layer for transmission. TREK MUST be sent to the same address,
port and transport that the original request was sent to. The client transagstior D start timer D when it
enters the “completed” state, with a value of at least 32 seconds for unreliable transports, and a value of zero
seconds for reliable transports. Timer D is a reflection of the amount of time that the server transaction can
remain in the “completed” state when unreliable transports are used. This is equal to Timer HNWRE
server transaction, whose default is 64*T1. However, the client transaction does not know the value of T1
in use by the server transaction, so an absolute minimum of 32s is used instead of basing Timer D on T1.

Any retransmissions of the final response that are received while in the “completedistaieD cause
the ACK to be re-passed to the transport layer for retransmission, but the newly received ragpsmse
NOT be passed up to the TU. A retransmission of the response is defined as any response which would match
the same client transaction, based on the rules of Section 17.1.3.

If timer D fires while the client transaction is in the “completed” state, the client transaegtisT move
to the terminated state, andvtusT inform the TU of the timeout.

When in either the “calling” or “proceeding” states, reception of a 2xx respmiser cause the client
transaction to enter the terminated state, and the respaonsg be passed up to the TU. The handling of
this response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation
of the ACK for this response, while a proxy core will always forward the 200 (OK) upstream. The differing
treatment of 200 (OK) between proxy and UAC is the reason that handling of it does not take place in the
transaction layer.

The client transactiomusT be destroyed the instant it enters the terminated state. This is actually nec-
essary to guarantee correct operation. The reason is that 2xx responsésVéTdhare treated differently;
each one is forwarded by proxies, and &@K handling in a UAC is different. Thus, each 2xx needs to be
passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No
transaction layer processing takes place. Whenever a response is received by the transport, if the transport
layer finds no matching client transaction (using the rules of Section 17.1.3), the response is passed directly
to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no
match and therefore be passed to the core.

17.1.1.3 Construction of theACK Request The ACK request constructed by the client transaction
MUST contain values for th&€all-ID, From, and Request-URI which are equal to the values of those
headers in the request passed to the transport by the client transaction (call this the “original request”). The

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 83]

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

To field in theACK MUsT equal theTo field in the response being acknowledged, and will therefore usually
differ from theTo field in the original request by the addition of the tag parameter. A MUST contain

a singleVia header, and thisiusT be equal to the tolia header of the original request. TAEK request

MUST contain the sam®oute headers as the request whose response it is acknowleddiing CSeq
header in theACK MUST contain the same value for the sequence number as was present in the original
request, but the method parameterst be equal to ACK”.

If the INVITE request whose response is being acknowledgedRioate headers, those headerssT
appear in théACK. This is to ensure that th®CK can be routed properly through any downstream stateless
proxies.

Although any requestiAy contain a body, a body in aACK is special since the request cannot be
rejected if the body is not understood. Therefore, placement of bodig€knhfor non-2xx iISNOT RECG
OMMENDED, but if done, the body types are restricted to any that appeared INYH&E, assuming that
that the response to thRVITE was not 415. If it was, the body in tH&CK MAY be any type listed in the
Accept header in the 415.

These rules for construction 8iCK only apply to the client transaction. A UAC core which generates
anACK for 2xx MUsT instead follow the rules described in Section 13.

For example, consider the following request:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x

Call-ID: 987asjd97y7atg

CSeq: 986759 INVITE

The ACK request for a non-2xx final response to this request would look like this:

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>;tag=99sa0xk

From: Alice <sip:alice@atlanta.com>;tag=88sja8x

Call-ID: 987asjd97y7atg

CSeq: 986759 ACK

17.1.2 noniNVITE Client Transaction

17.1.2.1 Overview of the noNNVITE Transaction Non{NVITE transactions do not make useA€K.
They are a simple request-response interaction. For unreliable transports, requests are retransmitted at an
interval which starts at T1, and doubles until it hits T2. If a provisional response is received, retransmis-
sions continue for unreliable transports, but at an interval of T2. The server transaction retransmits the last
response it sent (which can be a provisional or final response) only when a retransmission of the request is
received. This is why request retransmissions need to continue even after a provisional response, they are
what ensure reliable delivery of the final response.

Unlike anINVITE transaction, a notNVITE transaction has no special handling for the 2xx response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 84]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

sies The result is that only a single 2xx response to a WMWITE is ever delivered to a UAC.

|[Request from app
|send request

Timer E \%
send request +——————————— +

Fm———————— | |- +

| | Trying | TimerF |

e >| | or Transport Err.|

Fo—m + inform TU |

200-699 |] |
resp.to TU | |1xx |
o + |resp. to TU |

I I
Timer E \% Timer F |

| .
I
| sendreq +————————— + or Transport Err. |
| +————- | | inform TU |
| | |Proceeding |-————————————————— >|
|+ > |
Fo—— +	1xx
	[respto TU
200-699	A———————- +
resp.to TU	
I I	
I v I	
Fm—————————— +	
I I I	
	Completed
I I I	
Fm—————————— +	
I ~ I	
e + |- |
I I
v |
NOTE: o + |
I I I
transitions | Terminated|<—————————————————~ +
labeled with | |
the event o +
over the action

to take
Figure 6: nonINVITE client transaction

a0 17.1.2.2 Formal Description The state machine for the ndNVITE client transaction is shown in Fig-
a1i70 Ure 6. Itis very similar to the state machine fWITE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 85]

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The “Trying” state is entered when the TU initiates a new client transaction with a request. When
entering this state, the client transact®nouLD set timer F to fire in 64*T1 secondsThe requesMusT
be passed to the transport layer for transmission. If an unreliable transport is in use, the client transaction
MUST set timer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this
time with a value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This
process continues, so that retransmissions occur with an exponentially increasing inverval that caps at T2.
The default value of T2 is 4s, and it represents the amount of time dNMIT-E server transaction will take
to respond to a request, if it does not respond immediately. For the default values of T1 and T2, this results
inintervals of 500 ms, 1s,2s,4s,4s, 4s, etc.

If Timer F fires while the client transaction is still in the “Trying” state, the client transaionuLD
inform the TU about the timeout, and thersiouLD enter the “Terminated” state. If a provisional response
is received while in the “Trying” state, the respongesT be passed to the TU, and then the client transaction
SHOULD move to the “Proceeding” state. If a final response (status codes 200-699) is received while in the
“Trying” state, the responsRUST be passed to the TU, and the client transactirsT transition to the
“Completed” state.

If Timer E fires while in the “Proceeding” state, the requestsT be passed to the transport layer
for retransmission, and Timer BUST be reset with a value of T2 seconds. If timer F fires while in the
“Proceeding” state, the TMUST be informed of a timeout, and the client transactiomsT transition to the
terminated state. If a final response (status codes 200-699) is received while in the “Proceeding” state, the
responseMuUsT be passed to the TU, and the client transactiarsT transition to the “Completed” state.

Once the client transaction enters the “Completed” stateUgT set Timer K to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. The “Completed” state exists to buffer any
additional response retransmissions that may be received (which is why the client transaction remains there
only for unreliable transports). T4 represents the amount of time the network will take to clear messages
between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it
matches the same transaction, using the rules specified in Section 17.1.3. If Timer K fires while in this state,
the client transactiomusT transition to the “Terminated” state.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responsedNiI TE.

17.1.3 Matching Responses to Client Transactions

When the transport layer in the client receives a response, it has to figure out which client transaction will
handle the response, so that the processing of Sections 17.1.1 and 17.1.2 can take place.

The branch parameter in the tafia header is used for this purpose. A response matches a client
transaction under two conditions. First, if the response has the same value of the branch parameter in the top
Via header as the branch parameter in theMti@pheader of the request that created the transaction. Second,
if the method parameter in theSeq header matches the method of the request that created the transaction.
The method is needed sinc€ANCEL request constitutes a different transaction, but shares the same value
of the branch parameter.

A response which matches a transaction matched by a previous response is considered a retransmission
of that response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 86]

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

17.1.4 Handling Transport Errors

When the client transaction sends a request to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

The client transactiosHouLD inform the TU that a transport failure has occurred, and the client trans-
actionsHoULD transition directly to the terminated state.

17.2 Server Transaction

The server transaction is responsible for the delivery of requests to the TU, and the reliable transmission of
responses. It accomplishes this through a state machine. Server transactions are created by the core when a
request is received, and transaction handling is desired for that request (this won't always be the case).

As with the client transactions, the state machine depends on whether the received reqUeB iSEN
request or not.

17.2.1 INVITE Server Transaction

The state diagram for tH&lVITE server transaction is shown in Figure 7.

When a server transaction is constructed with a request, it enters the “Proceeding” state. The server
transactiormusT generate a 100 response (not any status code — the specific value of 100) unless it knows
that the TU will generate a provisional or final response withpin 200 ms, in which case igenerate a
100 (Trying) response. This provisional response is needed to rapidly quench request retransmissions in
order to avoid network congestion. The 100 response is constructed according to the procedures in Section
8.2.6, except that insertion of tags in thefield of the response (when none was present in the request), is
downgraded frommAY to SHOULD NOT. The requeskmusT be passed to the TU.

The TU passes any number of provisional responses to the server transaction. So long as the server
transaction is in the “Proceeding” state, each of thegseT be passed to the transport layer for transmission.
They are not sent reliably by the transaction layer (they are not retransmitted by it), and do not cause a
change in the state of the server transaction. When provisional responses need to be delivered reliably,
it is handled by the TU, which will retransmit the provisional responses itself, and pass downwards each
retransmission to the server transactioli.a request retransmission is received while in the “Proceeding”
state, the most recent provisional response that was received from thiwJItUbe passed to the transport
layer for retransmission. A request is a retransmission if it matches the same server transaction based on the
rules of Section 17.2.3.

If, while in the “proceeding” state, the TU passes a 2xx Response to the server transaction, the server
transactionMUST pass this response to the transport layer for transmission. It is not retransmitted by the
server transaction; retransmissions of 2xx responses are handled by the TU. The server transaation
then transition to the “terminated” state.

While in the “Proceeding” state, if the TU passes a response with status code from 300 to 699 to the
server transaction, the responsesT be passed to the transport layer for transmission, and the state machine
MUST enter the “Completed” state. For unreliable transports, timer G is set to fire in T1 seconds, and is not
set to fire for reliable transports.

This is a change from RFC 2543, where responses were always retransmitted, even over reliable transports.

When the “Completed” state is entered, timemHST be set to fire in 64*T1 seconds, for all transports.
Timer H determines when the server transaction gives up retransmitting the response. Its value is chosen to

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 87]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

[INVITE
|[pass INV to TU
INVITE V send 100 if TU won't in 200ms
send response+——————————-— +
F———— | |-—————— +101-199 from TU
| | Proceeding| |send response
F————— >| |[<=—————— +
| | Transport Err.
| | Inform TU
| |- >+
Fm—————————e— + [
300-699 from TU | |2xx from TU |
send response | |send response |
| +~-—— >+
| I
INVITE \% Timer G fires |
send response+——————————— + send response |
A I |==—=—~ +
| | Completed | | |
- >| |[<=—————— + |
+—— + [
|| I
ACK| | |
- +-—— >+

| Timer H fires |
\Y; or Transport Err.|
PR + InformTU |

Rosenberg,Schulzrinne,Camarillbidahan3tiN\ATE sevespeaksadtodley, Schooler Expires July 2002 [Page 88]

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G
fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in
MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again for
transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it
is reset with the value of T2. This is identical to the retransmit behavior for requests in the “Trying” state of
the non-INVITE client transaction. Furthermore, while in the “completed” state, if a request retransmission

is received, the serveyHOULD pass the response to the transport for retransmission.

If an ACK is received while the server transaction is in the “Completed” state, the server transaction
MUST transition to the “confirmed” state. As Timer G is ignored in this state, any retransmissions of the
response will cease.

If timer H fires while in the “Completed” state, it implies that tA€K was never received. In this case,
the server transactionusT transition to the terminated state, andsT indicate to the TU that a transaction
failure has occurred.

The purpose of the “confirmed” state is to absorb any additid@ messages that arrive, triggered
from retransmissions of the final response. When this state is entered, timer | is set to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. Once timer | fires, thevseyvéransition
to the “Terminated” state.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responseNidITE.

17.2.2 noniNVITE Server Transaction

The state machine for the ndNVITE server transaction is shown in Figure 8.

The state machine is initialized in the “Trying” state, and is passed a request othdNWAIE or
ACK when initialized. This request is passed up to the TU. Once in the “Trying” state, any further request
retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using
the rules specified in Section 17.2.3.

While in the “Trying” state, if the TU passes a provisional response to the server transaction, the server
transactionMusT enter the “Proceeding” state. The resporsesT be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the “Proceeding”
stateMUST be passed to the transport layer for transmission. If a retransmission of the request is received
while in the “Proceeding” state, the most recently sent provisional response be passed to the transport
layer for retransmission. If the TU passes a final response (status codes 200-699) to the server while in the
“Proceeding” state, the transacti®usT enter the “Completed” state, and the responseT be passed to
the transport layer for transmission.

When the server transaction enters the “Completed” state)$tr set Timer J to fire in 64*T1 seconds
for unreliable transports, and zero seconds for reliable transp@ftsle in the “Completed” state, the server
transactiorMusT pass the final response to the transport layer for retransmission whenever a retransmission
of the request is received. Any other final responses passed by the TU to the server transastidoe
discarded while in the “Completed” state. The server transaction remains in this state until Timer J fires, at
which point itMUST transition to the “Terminated” state.

The server transactionusT be destroyed the instant it enters the “Terminated” state.

17.2.3 Matching Requests to Server Transactions

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 89]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

|Request received

|[passto TU
\Y
+——— +
I I
| Trying |-——————————- +
I I I
Fm———————— + |200-699 from TU
| |send response
|1xx from TU |
|send response |
I |
Request \Y 1xx from TU |
send response+——————————-— +send response|
o I — +
| | Proceeding| | |
+———— >| |[<=—————— + |
B I | I
|Trnsprt Err +—————————— + |
|Inform TU | |

I I |
| |200-699 from TU |

| |send response |

| Request vV |
| send response+-—————————— +
| | | |
| | | Completed |-————-——--——- .
| +——— >| |
+l———— | |
|Trnsprt Err +——————————- +
|Inform TU |
I |Timer J fires
I |-
| |
I \Y;
| F—————— +
| I I
N >| Terminated|
I I
e ——————— +

Rosenberg,Schulzrinne, CamaFiguie @ sioniRei@isceSpatksnidactiey, Schooler Expires July 2002 [Page 90]

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302
3303
3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

When a request is received from the network by the server, it has to be matched to an existing transaction.
This is accomplished in the following manner.

The branch parameter in the topm&§a header the request is examined. If it is present, and begins
with the magic cookie “z9hG4bK”, the request was generated by a client transaction compliant to this
specification. Therefore, the branch parameter will be unique across all transactions sent by that client. The
request matches a transaction if the branch parameter in the request is equal to the one iithiecager
of the request that created the transaction, the source address and port of the request are the same as the
source address and port of the the request that created the transaction, and in the Cad¢@ER request,
the method of the request that created the transaction wa€ANEEL. This matching rule applies to both
INVITE and noniNVITE transactions alike.

Source address and port are used as part of the matching process because there could be duplication of branch pa-
rameters from different clients; uniqueness in time is mandated for construction of the parameter, but not uniqueness
in space.

If the branch parameter in the tdfia header is not present, or does not contain the magic cookie, the
following procedures are used. These exist to handle backwards compatibility with RFC 2543 compliant
implementations.

The INVITE request matches a transaction if tRequest-URI, To, From, Call-ID, CSeq, and top
Via header match those of thRVITE request which created the transaction. In this caselNR&TE is
a retransmission of the original one that created the transaction ACKerequest matches a transaction
if the Request-URI, From, Call-ID, CSeq number (not the method), and t&a header match those of
the INVITE request which created the transaction, andTibdield of the ACK matches thélo field of
the response sent by the server transaction (which then includes the Megkhing is done based on the
matching rules defined for each of those headers. The usage of the taglmftell helps disambiguate
ACK for 2xx from ACK for other responses at a proxy which may have forwarded both responses (which can
occur in unusual conditions). AACK request that matches 84VITE transaction matched by a previous
ACK is considered a retransmission of that previe@K.

For all other request methods, a request is matched to a transactionRetheest-URI, To, From,

Call-ID and Cseq (including the method) and togia header match those of the request which created

the transaction. Matching is done based on the matching rules defined for each of those headers. When a
nondNVITE request matches an existing transaction, it is a retransmission of the request which created that
transaction.

Because the matching rules include Bequest-URI, the server cannot match a response to a transac-
tion. When the TU passes a response to the server transaction, it must pass it to the specific server transaction
for which the response is targeted.

17.2.4 Handling Transport Errors

When the server transaction sends a response to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

First, the procedures in [8] are followed, which attempt to deliver the response to a backup. If those
should all fail, such that all elements generate ICMP errors, or no SRV records are present, the server
transactionsHouLD inform the TU that a failure has occurred, asdouLD transition to the terminated
state.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 91]

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

17.3 RTT Estimation

Most of the timeouts used in the transaction state machines derive from T1, which is an estimate of the RTT
between the client and server transactions. This subsection defines optional procedures that a client can use
to build up estimates of the RTT to a particular IP address. To perform this procedure, thevclEnt
maintain a table of variables for each destination IP address to which an RTT estimate is being made.

If a client wishes to measure RTT for a particular IP addressy&T include aTimestamp header into a
request containing the time when the request is initially created and passed to a new client transaction, which
transmits the request. If a 100 (Trying) response (not any 1xx, only the 100 (Trying) response) is received
before the client transaction generates a retransmission, an RTT estimate is made. This is consistent with
the RFC 2988 requirements on TCP for using Karn’s algorithm in RTT estimation.

The estimate, called R, is made by computing the difference between the current time and the value of
Timestamp header in the 100 response. The value of R is applied to the estimation of RTO as described
in Section 2 of RFC 2988 [22], with the following differences. First, the initial value of RTO is 500 ms for
SIP, not 3 s as is used for TCP. Second, there is no minimum value for the RTO, as there is for TCP, if SIP
is being run on a private network. When run on the public Internet, the minimum is 500 ms, as opposed to
1 s for TCP. This difference is because of the expected usage of SIP in private networks where rapid call
setup times are service critical. Once RTO is computed, the timer T1 is set to the value of RTO, and all other
timers scale proportionally as described above.

This value of T1 would be used for scaling all of the client and server transaction timers described above,
when a request or response, respectively, is sent to that IP address.

If the IP address is that of a stateless proxy, the actual round trip time that is measured will be the average
to all transaction stateful proxies or UAs that are reached through the stateless proxy. This estimate may
therefore be too low or too high for a specific transactional element being communicated with through the
stateless proxy.

18 Reliability of Provisional Responses

Normally, provisional responses are not transmitted reliably. The TU generates a single provisional re-
sponse, and passes it to the server transaction, which sends it once. RFC 2543 provided no means for
reliable transmission of these messages.

It was later observed that reliability was important in several cases, including interoperability scenarios
with the PSTN. Therefore, an optional capability was added in this specification to support reliable trans-
mission of provisional responses.

The reliability mechanism works by mirroring the current reliability mechanisms for 2xx final responses
to INVITE. Those requests are transmitted periodically by the TU, until a separate transaidnjs
received, that indicates reception of the 2xx by the UAC. The reliability for the 2XXYOTE and ACK
messages are end-to-end. In order to achieve reliability for provisional responses, we do nearly the same
thing. Reliable provisional responses are retransmitted by the TU with an exponential backoff. Those
retransmisions cease wherPRACK message is received. TIRRACK request plays the same role as
ACK, but for provisional responses. There is an important difference, howB¥®ACK is a normal SIP
message, likBYE. As such, its own reliability is ensured hop-by-hop through each stateful proxy. Similarly,
PRACK has its own response. If this were not the case PRACK message could not traverse existing
proxy servers.

Each provisional response is given a sequence number, carried RSibg header in the response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 92]

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389
3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408
3409

3410

3411

3412

3413

3414

3415

3416

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The PRACK messages contain &Ack header, which indicates the sequence number of the provisional
response which is being acknowledged. The acknowledgements are not cumulative, and the specifications
recommend a single outstanding provisional response at a time, for purposes of congestion control.

18.1 UAS Behavior

A UAS MAY send any non-100 provisional respons&NWITE reliably, so long as the initidNVITE request
(the request whose provisional response is being sent reliably) contafhaoparted header with the op-
tion tag100rel . While this specification does not allow reliable provisional responses for any method but
INVITE, extensions that define new methods which can establish dialogs may make use of the mechanism.
The UASMUST send any non-100 provisional response reliably if the initial request contaRedudre
header with the option tatO0rel . If the UAS is unwilling to do so, iMusT reject the initial request with
a 420 (Bad Extension) and includdJasupported header containing the option ta@0rel
A UAS MuUST NOT attempt to send a 100 (Trying) response reliably. Only provisional responses num-
bered 101 to 199 may be sent reliably. If the request did not include eitBepported or Require header
indicating this feature, the UABUST NOT send the provisional response reliably.

100 (Trying) responses are hop-by-hop only. For this reason, the reliability mechanisms described here, which
are end-to-end, cannot be used.

An element which can act as a proxy can also send reliable provisional responses; in that case, it acts as
a UAS for purposes of that transaction. HowevemitsT NOT attempt to do so for any request that contains
atag in theTo field. That is, a proxy cannot generate reliable provisional responses to requests sent within
the context of a dialog. Of course, unlike a UAS, when the proxy element receRRa@K that does not
match any outstanding reliable provisional responsePRACK MUST be proxied.

The rest of this discussion assumes that the initial request contaiBagported or Require header
listing 100rel , and that there is a provisional response to be sent reliably.

The provisional response to be sent reliably is constructed by the UAS core according to the procedures
of Section 8.2.6 and Section 12. Specifically, the provisional respmiser establish a dialog if one
is not yet created. In addition, MusTcontain Require header containing the option td@®0rel , and
MusTinclude anRSeq header. The value of the header for the first reliable provisional response in a
transactionMusT be between 1 and 2**31 - 1. It BECOMMENDED that it be chosen uniformly in this
range. ThéRSeq numbering space is within a single transaction. This means that provisional responses for
different requestsAy use the same values for tRSeq number.

The reliable provisional response is passed to the transaction layer periodically with an interval that
starts at T1 seconds and doubles for each retransmission (T1 is defined in Section 17). Once passed to the
server transaction, it is added to an internal list of unacknowledged reliable provisional responses.

This differs from retransmissions of 2xx responses, which cap at T2 seconds. This is because retransmissions of
ACK are triggered on receipt of a 2xx, but retransmissiorRRACK take place independently of reception of 1xx.

Retransmissions cease when a matcfRACK is received PRACK is like any other request within a
dialog, and the UAS core processes it according to the procedures of Sections 8.2 and 12.2.2. A matching
PRACK is defined as one within the same dialog as the response, and whose method, CSeg-num, and
response-num in thRAck header match, respectively, the method and sequence number fraDSéue
and sequence number from tR&eq of the reliable provisional response.

If a PRACK request is received that does not match any unacknowledged reliable provisional response,
the UASMUST respond to th€RACK with a 481 response. If tieRACK does match an unacknowledged

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 93]

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

reliable provisional response, MUST be responded to with a 2xx response. The UAS can be certain at
this point that the provisional response has been received in ordefoliLD cease retransmissions of the
reliable provisional response, amaST remove it from the list of unacknowledged provisional responses.

If a reliable provisional response is retransmitted for 64*T1 seconds without reception of a correspond-
ing PRACK, the UASsHOULD reject the original request with a 5xx response.

If the PRACK contained a body, the body is treated in the same way a bodyAC#ns treated.

After the first reliable provisional response for a request has been acknowledged, theAyAsend
additional reliable provisional responses. The UWASST NOT send a second reliable provisional response
until the first is acknowledged. After the first, it RECOMMENDED that the UAS not send an additional
reliable provisional response until the previous is acknowledged. The first reliable provisional response
receives special treatment because it conveys the intitial sequence number. If additional reliable provisional
responses were sent before the first was acknowledged, the UAS could not be certain these were received in
order.

The value of theRSeq in each subsequent reliable provisional response for the same requesie
greater by exactly ond&RSeq numbersvusT NOT wrap around. Because the initial one is chosen to be less
than 2**31 - 1, but the maximum is 2**32 - 1, there can be up to 2**31 reliable provisional responses per
request, which is more than sufficient.

Note that the UASMAY send a final response to the initial request before having recBiR&LCKSs for
all unacknowledged reliable provisional responses. In that casepitLD NOT continue to retransmit the
unacknowledged reliable provisional responses, buuisT be prepared to proce$RACK requests for
those outstanding responses. A UNMSST NOT send new reliable provisional responses (as opposed to
retransmissions of unacknowledged ones) after sending a final response to a request.

18.2 UAC Behavior

If a provisional response is received for the initial request, and that response conRégliage header
containing the option tag0Orel , the response is to be sent reliably. If the response is a 100 (Trying) (as
opposed to 101 to 199), this option teg ST be ignored, and the procedures belawsT NOT be used.

Assuming the response is to be transmitted reliably, the WAGT create a new request with method
PRACK. This request is sent within the dialog associated with the provisional response (indeed, the provi-
sional response may have created the dialBfACK requestavAy contain bodies, which are interpreted
according to their type and disposition.

Note that thePRACK is like any other noiNVITE request within a dialog. In particular, a UAC
SHOULD NoOT retransmit thd®?RACK request when it receives a retransmission of the provisional response
being acknowledged, although doing so does not create a protocol error.

Once a reliable provisional response is received, retransmissions of that resp@see discarded.

A response is a retransmission when its dialog@i3eq andRSeq match the original response. The UAC
MUST maintain a sequence number which indicates the most recently received in-order reliable provisional
response for the initial request. This sequence numbeT be maintained until a final response is received

for the initial request. Its valueusT be initialized to theRSeq header in the first reliable provisional
response received for the initial request.

Handling of subsequent reliable provisional responses for the same initial request follows the same rules
as above, with the following difference. Reliable provisional responses are guaranteed to be in order. As
a result, if the UAC receives another reliable provisional response to the same requestRSehitmlue
isn’t one higher than the value of the sequence number, that resparsseNOT be acknowledged with a

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 94]

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486
3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499
3500

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

PRACK, andMuUsT NOT be processed further by the TU. An implementatioxy discard the response, or
MAY cache the response in the hopes of receiving the missing responses.

The UAC MAY acknowledge reliable provisional responses received after the final responsey or
discard them.

19 Transport

The transport layer is responsible for the actual transmission of requests and responses over network trans-
ports. This includes determination of the connection to use for a request or response, in the case of connec-
tion oriented transports.

The transport layer is responsible for managing any persistent connections (for transports like TCP, TLS
and SCTP) including ones it opened, as well as ones opened to it. This includes connections opened by
the client or server transports, so that connections are shared between client and server transport functions.
These connections are indexed by the [address, port, transport] at the far end of the connection. When a
connection is opened by the transport layer, this index is set to the destination IP, port and transport. When
the connection is accepted by the transport layer, this index is set to the source IP, port and transport. Note
that, because the source port is often ephemeral, connections accepted by the transport layer will frequently
not be reused. The result is that two proxies in a “peering” relationship using a connection oriented transport
will frequently have two connections in use, one for transactions initiated in each direction.

It is RECOMMENDED that connections be kept open for some implementation defined duration after the
last message was sent or received over that connection. This dusatiwD at least equal the longest
amount of time the element would need in order to bring a transaction from instantiation to the terminated
state. This is to insure that transactions complete over the same connection they are initiated on (i.e., re-
quest, response, and in the caséN¥ITE, ACK for non-2xx responses)). This usually means at least the
maximum of T3 and 64*T1. However, it could be larger in an element that has a TU that is using a large
value for timer C, for example.

All SIP elementsvwusT implement UDP and TCP. Other transpavtay be implemented by any entity.

Making TCP mandatory for UA is a substantial change from RFC 2543. It has arisen out of the need to handle

larger messages, whiehusT use TCP, as discussed below. Thus, even if an element never sends large messages, it
may receive one, and needs to be able to do that.

19.1 Clients
19.1.1 Sending Requests

The client side of the transport layer is responsible for sending the request and receiving responses. The
user of the transport layer passes the client transport the request, an IP address, port, transport, and possibly
TTL for multicast destinations.

If a request is within 500 bytes of the path MTU, or if it is larger than 1000 bytes when the path MTU is
unknown, itMUsT be sent using TCP. This is to prevent fragmentation of messages over UDP, and to provide
congestion control for larger messages. However, implementatioss be able to handle messages up to
the maximum datagram packet size. For UDP, this size is 65,535 bytes, including headers.

The 500 byte “buffer” between the message size and the MTU accomodates the fact that the response in SIP can
be larger than the request. This happens due to the additiReadrd-Route headers to the responsed/ITE,

for example. With the extra buffer, the response can be 500 bytes larger than the request, and still not be fragmented.
1000 is chosen when path MTU is not known, based on the assumption of a 1500 byte ethernet MTU

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 95]

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

A client that sends a request to a multicast addrassT add the addr” parameter to itd/ia header
field, andsHoOULD add the ttl” parameter. (In that case, tmeaddr parameteisHOULD contain the des-
tination multicast address, although under exceptional circumstaneesyitcontain a unicast address.)
Requests sent to multicast groupsouLD be scoped to ensure that they are not forwarded beyond the
administrative domain to which they were targeted. This scopifg be done with either TTL or adminis-
trative scopes [17], depending on what is implemented in the network.

It is important to note that the layers above the transport layer do not operate differently for multicast
as opposed to unicast requests. This means that SIP treats multicast more like anycast, assuming that there
is a single recipient generating responses to requests. If this is not the case, the first response will end
up “winning”, based on the client transaction rules. Any other responses from different UA will appear
as retransmissions and be discarded. This limits the utility of multicast to cases where an anycast type of
function is desired, such as registrations.

Before a request is sent, the client transpausT insert a value of the sent-by field into thiéa header.

This field contains an IP address or host name, and port. The usage of an FRPBLISIMENDED. This
field is used for sending responses under certain conditions.

For reliable transports, the response is normally sent on the connection the request was received on.
Therefore, the client transportusT be prepared to receive the response on the same connection used to
send the request. Under error conditions, the server may attempt to open a new connection to send the
response. To handle this case, the transport leyesT also be prepared to receive an incoming connection
on the source IP address that the request was sent from, and port number in the sent-by fieldhusalso
be prepared to receiving incoming connections on any address and port which would be selected by a server
based on the procedures described in Section 5 of [8].

For unreliable unicast transports, the client transpassT be prepared to receive responses on the
source IP address that the request is sent from (as responses are sent back to the source address), but the port
number in the sent-by field. Furthermore, as with reliable transports, in certain cases the response will be
sent elsewhere. The cliemtusT be prepared to receive responses on any address and port which would be
selected by a server based on the procedures described in Section 5 of [8].

For multicast, the client transpavtusT be prepared to receive responses on the same multicast group
and port that the request is sent to (e.g., it needs to be a member of the multicast group it sent the request
to.)

If a request is destined to an IP address, port, and transport to which an existing connection is open, it
is RECOMMENDED that this connection be used to send the request, but another connestidre opened
and used.

If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the transport
user. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided by
the transport user.

19.1.2 Receiving Responses

When a response is received, the client transport examines théadpader. If the value of the sent-by
parameter in that header does not correspond to a value that the client transport is configured to insert into
requests, the respons®iST be rejected.

If there are any client transactions in existence, the client transport uses the matching procedures of Sec-
tion 17.1.3 to attempt to match the response to an existing transaction. If there is a match, the resgonse
be passed to that transaction. Otherwise, the respouse be passed to the core (whether it be stateless

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 96]

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

proxy, stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on
the core (a stateless proxy will forward all responses, for example).

19.2 Servers
19.2.1 Receiving Requests

When the server transport receives a request over any transpetsit examine the value of the sent-by
parameter in the tol/ia header field. If the host portion of the sent-by parameter contains a domain name,
or if it contains an IP address that differs from the packet source address, thensesreadd a ‘feceived”
attribute to thawia header field. This attribut@usT contain the source address that the packet was received
from. This is to assist the server transport layer in sending the response, since it must be sent to the source
IP address that the request came from.

Consider a request received by the server transport which looks like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 1.2.3.4. Before passing the request up, the transport
would add a received parameter, so that the request would look like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;received=1.2.3.4

Next, the server transport attempts to match the request to the server transadtioioes so using
the matching rules described in Section 17.2.3. If a matching server transaction is found, the request is
passed to that transaction for processing. If no match is found, the request is passed to the core, which
may decide to construct a new server transaction for that request. Note that when a UAS core sends a 2xx
response tdNVITE, the server transaction is destroyed. This means that whekGHKearrives, there will
be no matching server transaction, and based on this rul&Gkeis passed to the UAS core, where it is
processed.

19.2.2 Sending Responses

The server transport uses the value of the top Via header in order to determine where to send a response. It
musT follow the following process:

¢ If the “sent-protocol” is a reliable transport protocol such as TCP, TLS or SCTP, the response
be sent using the existing connection to the source of the original request that created the transaction, if
that connection is still open. This does require the server transport to maintain an association between
server transactions and transport connections. If that connection is no longer open, thserver
open a connection to the IP address inndeeived parameter, if present, using the port in geant-
by value, or the default port for that transport, if no port is specified (5060 for UDP and TCP, 5061
for TLS and SSL). If that connection attempt fails, the serseouLD use the procedures in [8] for
servers in order to determine the IP address and port to open the connection and send the response to.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 97]

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

e Otherwise, if theVia header field contains arfaddr” parameter, forward the response to the address
listed there, using the port indicated iseht-by”, or port 5060 if none is present. If the address is
a multicast address, the resporsseULD be sent using the TTL indicated in th&l® parameter, or
with a TTL of 1 if that parameter is not present.

e Otherwise (for unreliable unicast transports), if the ¥ip has areceived parameter, send the re-
sponse to the address in thec€eived” parameter, using the port indicated in theetht-by” value, or
using port 5060 if none is specified explicitly. If this fails, e.g., elicits an ICMP “port unreachable”
response, send the response to the address instrg-by” parameter. The address to send to is
determined by following the procedures defined in Section 5 of [8].

e Otherwise, if it is not receiver-tagged, send the response to the address indicated sgnthiey”
value, using the procedures in Section 5 of [8].

19.3 Framing

In the case of message oriented transports (such as UDP), if the messadeodsrd-Length header, the
message body is assumed to contain that many bytes. If there are additional bytes in the transport packet
below the end of the body, theyusT be discarded. If the transport packet ends before the end of the
message body, this is considered an error. If the message is a respomgsy ibe discarded. If its a
request, the elemesHoULD generate a 400 class response. If the message @sntent-Length header,
the message body is assumed to end at the end of the transport packet.

In the case of stream oriented transports (such as TCPLdh&nt-Length header indicates the size
of the body. TheContent-Length heademusT be used with stream oriented transports.

19.4 Error Handling

Error handling is independent of whether the message was a request or response.

If the transport user asks for a message to be sent over an unreliable transport, and the result is an ICMP
error, the behavior depends on the type of ICMP error. A host, network, port or protocol unreachable errors,
or parameter problem erros10ULD cause the transport layer to inform the transport user of a failure in
sending. Source quench and TTL exceeded ICMP egersuLD be ignored.

If the transport user asks for a request to be sent over a reliable transport, and the result is a connection
failure, the transport layesHouLD inform the transport user of a failure in sending.

20 Usage of HTTP Authentication

SIP provides a stateless challenged-based mechanism for authentication that is based on authentication in
HTTP. Any time that a proxy server or user agent receives a request (with the exceptions given in Sec-
tion 20.1), it MAY challenge the initiator of the request to provide assurance of its identity. Once the
originator has been identified, the recipient of the regeestuLD ascertain whether or not this user is au-
thorized to make the request in question. No authorization systems are recommended or discussed in this
document.

The “Digest” authentication mechanism described in this section provides message authentication and
replay protectiononly, without message integrity or confidentiality. Protective measures above and beyond

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 98]

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

those provided by Digesheed to be taken to prevent active attackers from modifying SIP requests and
responses.

Note that due to its weak security, the usage of “Basic” authentication has been deprecated. Servers
MUST NOT accept credentials using the “Basic” authorization scheme, and serveksssaNOT challenge
with “Basic”. This is a change from RFC 2543.

20.1 Framework

The framework for SIP authentication closely parallels that of HTTP (RFC 2617 [23]). In particular,
the BNF forauth- scheme, auth-param, challenge, realm, realm-value, andcredentials is identical
(although the usage of “Basic” as a scheme is not permittedihe 401 (Unauthorized) response is used

by user agent servers in SIP to challenge the identity of a user agent client. Additionally, registrars and
redirect serversAy make use of 401 (Unauthorized) responses for authentication, but prox&EsSNOT,

and insteadvAy use the 407 (Proxy Authentication Required) response. The requirements for inclusion of
the Proxy-Authenticate, Proxy- Authorization, WWW-Authenticate, and Authorization in the various
messages are identical to those described in RFC 2617 [23].

Since SIP does not have the concept of a canonical root URL, the notion of protection spaces is in-
terpreted differently in SIP. The realm string alone defines the protection domain. This is a change from
RFC 2543, in which thRequest-URI and the realm together defined the protection domain; this definition
gave rise to some amount of confusion since Reguest-URI sent by the UAC and th&equest-URI
received by the server issuing a challenge might be different, and indeed the final fornReftthest-URI
might not be known to the UAC. Also, the previous definition depended on the presence of a SIP URI in the
Request-URI, and seemed to rule out alternative URI schemes (like for example the tel URL).

Operators of user agents or proxy servers that will authenticate received requestadhere to the
following guidelines for creation of a realm string for their server:

e Realm stringsvusT be globally unique. It iIRECOMMENDED that a realm string contain a hostname
or domain name, following the recommendation in Section 3.2.1 of RFC 2617 [[23]].

e Realm stringssHoOULD present a human-readable identifier that can be rendered to a user.

For example:

INVITE sip:bob@biloxi.com SIP/2.0
WWW-Authenticate: Digest realm="biloxi.com", <...>

Generally, SIP authentication is meaningful for a specific realm, a protection domain. Thus, for Digest
authentication, each such protection domain has its own set of user names and secrets. If a server does not
care about authenticating individual users, it may make sense to establish a “global” user name and secret
for its realm as a default challenge if a particuRequest-URI does not have its own realm or set of user
names, For example, aNVITE to 'sip:100.3.6.6". Similarly, UACs representing many users, such as PSTN
gatewaysMAY have their own device-specific credentials for particular realms.

While a server can legitimately challenge most SIP requests, there are two requests defined by the SIP
standard today that require special handling for authenticafi@i< andCANCEL.

Complications of theACK method arise because it requires no response. Under an authentication
scheme that uses responses to carry values used to compute nonces (such as Digest), some problems come

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires July 2002 [Page 99]

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

up for any requests that take no response (includiGg). For this reason any credentials in t(hR&/ITE that
were accepted by a servieausT be accepted by that server for tAEK. UACs creating alACK message
should duplicate all of th&uthorization andProxy-Authorization headers that appeared in thNVITE to
which theACK corresponds. ServersusT NOT attempt to challenge aaCK.

Although theCANCEL method does take a response (a 2xx), semnversT NOT attempt to challenge
CANCEL requests since these requests cannot be resubmitted. Gene€ANGEL requestSHOULD be
accepted by a server if it comes from the same host that sent the request being cancelled (provided that some
sort of transport or network layer security association, as described in Section 22.2.1, is in place).

When a challenge is received by a UACsi#oOULD render to the user the contents of thredim”
parameter in the challenge (which appears in eithéVEW-Authenticate header oProxy-Authenticate
header) if the UAC device does not already know of a credential for the realm in question. A service
provider that pre-configures UAs with credentials for its realm should be aware that users will not have the
opportunity to present their own credentials for this realm when challenged at a pre-configured device.

Finally, note that even if a UAC can locate credentials that are associated with the proper realm, there is
always a potential that these credentials may no longer be valid, or that for whatever reason the challenging
server will not accept these credentials. In this instance a server will commonly repeat its challenge. A
UAC MUST NOT reattempt requests with the credentials that have just been rejected (unless the request was
rejected because of a stale nonce).

20.2 User-to-User Authentication

When a UAS receives a request from a UAC, the UA& authenticate the originator before the request

is processed. If no credentials (in tA&ithorization header field) are provided in the request, the UAS

can challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status
code.

TheWWW-Authenticate response-header fieldusT be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to tRequest-URI. See [H14.47] for a definition of the syntax.

An example of theVWW-Authenticate header field in a 401 challenge is:

WWW-Authenticate: Digest
realm="biloxi.com",
gop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebafof0171e9517f40e41"

When the originating UAC receives the 401 (Unauthorized¥HibuULD, if it is able, re-originate the
request with the proper credentials. The UAC may require input from the originating user before proceeding.
Once authentication credentials have been supplied (either directly by the user, or discovered in an internal
keyring), user agentsHoULD cache the credentials for a given value of ffieheader andrealm” and
attempt to re-use these values on the next request for that destinationmAYAsache credentials in any
way they would like.

Once credentials have been locatasy user agent that wishes to authenticate itself with a UAS or reg-
istrar — usually, but not necessarily, after receiving a 401 (Unauthorized) respemsedo so by including
an Authorization header field with the request. TReithorization field value consists of credentials con-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 100]

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725
3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

taining the authentication information of the user agent for the realm of the resource being requested as well
as parameters required in support of authentication and replay protection.
An example of théAuthorization header is:

Authorization: Digest username="bob",
realm="biloxi.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri=sip:alice@atlanta.com,
gop=auth,
nc=00000001,
chonce="0a4f113b",
response="6629fae49393a05397450978507c4efl",
opague="5ccc069c403ebafof0171e9517f40e41"

When a UAC resubmits a request with its credentials after receiving a 401 (Unauthorized) or 407 (Proxy
Authentication Required) responseMUST increment theCSeq header field as it would normally when
sending an updated request.

20.3 Proxy to User Authentication

Similarly, when a UAC sends a request to a proxy server, the proxy semerauthenticate the originator
before the request is processed. If no credentials (irPtiogy-Authorization header field) are provided
in the request, the UAS can challenge the originator to provide credentials by rejecting the request with a
407 (Proxy Authentication Required) status code. The proxgT populate the 407 (Proxy Authentication
Required) message withRroxy- Authenticate header applicable to the proxy for the requested resource.

The use of theProxy-Authentication and Proxy-Authorization parallel that described in [23, Sec-
tion 3.6], with one difference. ProxiesusT NOT add theProxy-Authorization header. 407 (Proxy Au-
thentication Required) responses sT be forwarded upstream towards the UAC following the procedures
for any other response. It is the client’s responsibility to addRhexy-Authorization header containing
credentials for the realm of the proxy which has asked for authentication.

If a proxy were to resubmit a request withPaoxy-Authorization header field, it would need to increment the

CSeq in the new request. However, this would mean that the UAC which submitted the original request would
discard a response from the UAS, as @eq value would be different.

When the originating UAC receives the 407 (Proxy Authentication RequiresjduLD, if it is able,
re-originate the request with the proper credentials. It should follow the same procedures for the display
of the “realm” parameter that are given above for responding to 401. The WAGULD also cache the
credentials used in the re-originated request.

The following rule isSRECOMMENDED for proxy credential caching:

If a UA receives &@roxy-Authenticate header in a 401/407 response to a request with a partiCalir
ID, it should incorporate credentials for that realm in all subsequent requests that contain ti@zadaibe
These credential®usT NOT be cached across dialogs; however, if a UA is configured with the realm of its
local outbound proxy, when one exists, then the MAY cache credentials for that realm across dialogs.
Note that this does mean a future requests in a dialog could contain credentials that are not needed by any
proxy along theRoute header path.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 101]

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763
3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Any user agent that wishes to authenticate itself to a proxy server — usually, but not necessarily, after
receiving a 407 (Proxy Authentication Required) respongey-do so by including #roxy-Authorization
header field with the request. TiRroxy-Authorization request-header field allows the client to identify
itself (or its user) to a proxy which requires authentication. Phexy-Authorization header field value
consists of credentials containing the authentication information of the user agent for the proxy and/or realm
of the resource being requested.

A Proxy-Authorization header field applies only to the proxy whose realm is identifier in thaltn”
parameter (this proxy may previously have demanded authentication usiRgakeAuthenticate field).

When multiple proxies are used in a chain, Brexy-Authorization header fieldvusT NOT be consumed
by any proxy whose realm does not match tihealm” parameter specified in thBroxy-Authorization
header.

Note that if an authentication scheme is used inRhexy- Authorization that does not support realms,

a proxy servemusT attempt to parse alProxy-Authorization headers to determine whether or not one

of them has what it considers to be valid credentials. Because this is potentially very time consuming in
large networks, proxy servesHOULD use an authentication scheme that supports realms iRritwey-
Authorization header.

If a request is forked (as described in Section 16.6, various proxy servers and/or user agents may wish
to challenge the UAC. In this case the forking proxy server is responsible for aggregating these challenges
into a single response. EaWWW-Authenticate and Proxy-Authenticate received in responses to the
forked requestusT be placed into the single response that is sent by the forking proxy to the user agent;
the ordering of these headers is not significant.

When a proxy server issues a challenge in response to a request, it will not proxy the request until the UAC has
provided valid credentials. A forking proxy may forward a request simultaneously to multiple proxy servers that
require authentication, each of which in turn will not forward the request until the originating UAC has authenticated
itself in their respective realm. If the UAC does not provide credentials for each of these challenges, then the proxy

servers that issued the challenges will not forward requests to user agents where the destination user might be
located, and therefore, the virtues of forking are largely lost.

If at least one UAS responds to a forked request with a challenge, than a 401 (Unauthatizadde
sent as the aggregated response by the forking proxy to the UAC; otherwise, if only proxy servers respond,
a 407mMUST be used.

When resubmitting its request in response to a 401 (Unauthorized) or 407 (Proxy Authentication Re-
quired) that contains multiple challenges, a UR&Y include anAuthorization for eachWWW-Authenticate
andProxy-Authorization for eachProxy-Authenticate for which the UAC wishes to supply a credential.

As noted above, multiple credentials in a requesbuLD be differentiated by theréalm” parameter.

It is possible for multiple challenges associated with the same realm to appear in the same 401 (Unautho-
rized) or 407 (Proxy Authentication Required). This can occur, for example, when multiple proxies within
the same administrative domain, which use a common realm, are reached by a forking request.

See [H14.34] for a definition of the syntax Bfoxy- Authentication andProxy-Authorization.

20.4 The Digest Authentication Scheme

This section describes the modifications and clarifications required to apply the HTTP Digest authentication
scheme to SIP. The SIP scheme usage is almost completely identical to that for HTTPS28}e RFC

2543 is based on HTTP Digest as defined in RFC 2069 [24], SIP servers supporting RFE@UZG1&nsure

they are backwards compatible with RFC 2069. Procedures for this backwards compatibility are specified
in RFC 2617. Note however that serversST NOT accept or request Basic authentication.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 102]

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

20.4.0.1 HTTP Digest The rules for Digest authentication follow those defined in [23, Section 3], with
“HTTP 1.1" replaced by “SIP/2.0” in addition to the following differences:

1. The URI included in the challenge has the following BNF:
URI = SIP-URI

2. The BNF in RFC 2617 has an error in that the 'uri’ parameter ofindorization header for HTTP
Digest authentication is not enclosed in quotation marks. (The example in Section 3.5 of RFC 2617
is correct.) For SIP, the 'uriMusT be enclosed in quotation marks.

3. The BNF fordigest-uri-value is:

digest-uri-value = Request-URI ; as defined in Section 27
4. The example procedure for choosing a nonce baséttamndoes not work for SIP.
5. The text in RFC 2617 [23] regarding cache operation does not apply to SIP.

6. RFC 2617 [23] requires that a server check that the URI in the request line, and the URI included in
the Authorization header, point to the same resource. In a SIP context, these two URI's may actually
refer to different users, due to forwarding at some proxy. Therefore, in SIP, a sesavecheck
that theRequest-URI in the Authorization header corresponds to a user for whom that the server is
willing to accept forwarded or direct requests.

7. As a clarification to the calculation of the A2 value for message integrity assurance in the Digest
authentication scheme, implementers should assume, when the entity-body is empty (i.e. when SIP
messages have no body) that the hash of the entity-body resolves to the MD5 hash of an empty string,
or:

H(entity-body) = MD5(") = "d41d8cd98f00b204e9800998eci8427¢”

8. RFC 2617 notes that a cnonce valuesT NOT be sent in authorization (and by extensioRroxy-
Authorization) header if no qop directive as been sent. Therefore, any algorithms that have a de-
pendency on the cnonce (including “MD5-Sess”) require that the qop directive be sent. Use of the
“gop” parameter is optional in RFC 2617 for the purposes of backwards compatibility with RFC 2069;
since RFC 2543 was based on RFC 2069, the “qop” parameter must unfortunately remain optional
for clients and servers to receive. However, serweysT always send a “gop” parameter \MWW-
Authenticate andProxy-Authenticate headers. If a client receives a “gop” parameter in a challenge
header, iMUST send the “qop” parameter in any resulting authorization header.

RFC 2543 did not allow usage of tiaithentication-Info header (it effectively used RFC 2069). How-
ever, we now allow usage of this header, since it provides integrity checks over the bodies and provides
mutual authentication. RFC 2617 [23] defines mechanisms for backwards compatibility using the qop at-
tribute in the request. These mechanigmssT be used by a server to determine if the client supports the
new mechanisms in RFC 2617 that were not specified in RFC 2069.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 103]

3816

3817
3818
3819
3820
3821
3822

3823

3824
3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

21 S/MIME

SIP messages carry MIME bodies and the MIME standard includes mechanisms for securing MIME con-
tents to ensure both integrity and confidentiality (including the 'multipart/signed/’ and "application/pkcs7-
mime’ MIME types, see RFC 1847 [25], RFC 2630 [26] and RFC 2633 [2Tiplementers should note,
however, that there may be rare network intermediaries (not typical proxy servers) that rely on viewing or
modifying the bodies of SIP messages (especially SDP), and that secure MIME may prevent these sorts of
intermediaries from functioning.

This applies particularly to certain types of firewalls.

Note that the PGP mechanism for encrypting the headers and bodies of SIP messages described in RFC 2543
has been deprecated.

21.1 S/MIME Certificates

The certificates that are used to identify an end-user for the purposes of S/IMIME differ from those used
by servers in one important respect - rather than asserting that the identity of the holder corresponds to
a particular hostname, these certificates assert that the holder is identified by an end-user address - this
address is composed of the concatenation of tisefinfo” “@” and “domainname” portions of a SIP

URI (in other words, an email address of the form “bob@biloxi.com”), most commonly corresponding to a
user’s address of record.

These certificates are used to sign or encrypt bodies of SIP messages. Bodies are signed with the pri-
vate key of the sender (who may include their public key with the message as appropriate), but bodies are
encrypted with the public key of the intended recipient. Obviously, senders must have foreknowledge of the
public key of recipients in order to encrypt message bodies. Public keys can be stored within a user agent
on a virtual keyring.

Each user agent that supports SIMIMID ST contain a keyring specifically for end-users certificates.

This keyring should map between addresses of record and corresponding certificates, including any associ-
ated with the owner or operator of the user agent, when appropriate. Over timesusensd use the same
certificate when they populate the originating URI of signaling §rem header) with the same address of
record.

Any mechanisms that depend on the existence of end-user certificates, however, have a serious limitation
in that there is virtually no consolidated authority today that provides certificates for end-user applications.
But if at all possible, usersHouLD acquire certificates from known public certificate authorities. As an al-
ternative, usersiAy create self-signed certificates. The implications of self-signed certificates are explored
further in Section 22.4.2.

Above and beyond the problem of acquiring an end-user certificate, there are few well-known central-
ized directories that distribute end-user certificates. However, the holder of a cert#ficata. b publish
their certificate in any public directories as appropriate. Similarly, UABeULD support a mechanism
for importing (manually or automatically) certificates discovered in public directories corresponding to the
target URIs of SIP requests.

21.2 S/MIME Key Exchange

SIP itself can also be used as a means to distribute public keys in the following manner.
Whenever the CMS SignedData message is used in S/IMIME for SiR)Str contain the certificate
bearing the public key necessary to verify the signature.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 104]

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

When a UAC sends a request containing an S/MIME body that initiates a dialog, or sends a non-
INVITE request outside the context of a dialog, the U@ uLD structure the body as an S/MIME 'mul-
tipart/signed’ CMS SignedData body; if the desired CMS service is EnvelopedData, the UAC should send
the EnvelopedData message encapsulated within a SignedData message.

When a UAS receives a request containing an SIMIME CMS body which includes a certificate, the UAS
SHoULD first verify the certificate, if possible, with any available certificate authority. The WASULD
also determine the subject of the certificate and compare this value Fsahefield of the request. If the
certificate cannot be verified, because it is self-signed, or signed by no known authority, theHdASD
notify the user of the status of the certificate (including the subject of the certificate, its signator, and any key
fingerprint information) and request explicit permission before proceeding. If the certificate was successfully
verified and the subject of the certificate corresponds td-tben header field of the SIP request, or if the
user (after naotification) explicitly authorizes the use of the certificate, the &ASJLD add this certificate
to a local keyring, indexed by the address of record of the holder of the certificate.

When a UAS sends a response containing an S/MIME body that answers the first request in a dialog, or
a response to a ndNVITE request outside the context of a dialog, the Us«8uULD structure the body
as a S/IMIME 'multipart/signed’ CMS SignedData body; if the desired CMS service is EnvelopedData, the
UAS sHouLD send the EnvelopedData message encapsulated within a SignedData message. If the SIMIME
body received by the UAS was encrypted with a public key recognized by the UM&yitopt not to sign
its response when appropriate.

When a UAC receives a response containing an S/IMIME CMS body which includes a certificate, the
UAC sHouLD first verify the certificate, if possible, with any available certificate authority. The UAC
SHOULD also determine the subject of the certificate and compare this value To fledd of the response;
although the two may very well be different, and this is not necessarily indicative of a security breach.
If the certificate cannot be verified, because it is self-signed, or signed by no known authority, the UAC
SHoULD notify the user of the status of the certificate (including the subject of the certificate, its signator,
and any key fingerprint information) and request explicit permission before proceeding. If the certificate was
successfully verified and the subject of the certificate corresponds 1o theader in the response, or if the
user (after natification) explicitly authorizes the use of the certificate, the BIAQULD add this certificate
to a local keyring, indexed by the address of record of the holder of the certificate. If the UAC had not
transmitted its own certificate to the UAS in any previous transactioshi@uLD use a CMS SignedData
body for its next request or response.

On future occasions, when the UA receives requests or responses that coRtam aeader field
corresponding to a value in its keyring, the WNouLD compare the certificate offered in these messages
with the existing certificate in its keyring. If there is a discrepancy, thedd®uLD notify the user of a
change of the certificate (preferably in terms that indicate that this is a potential security breach) and acquire
the user’s permission before continuing to process the signaling. If the user authorizes this certificate, it
MUST be added to the keyring alongside any previous value(s) for this address of record.

Note well however, that this key exchange mechanism does not guarantee the secure exchange of keys
when self-signed certificates, or certificates signed by an obscure authority, are used - it is vulnerable to
well-known attacks. In the opinion of the authors, however, the security it provides is proverbially better
than nothing; it is in fact comparable to the widely used SSH application. These limitations are explored in
greater detail in Section 22.4.2.

If a user agent receives an S/IMIME body that has been encrypted with a public key unknown to the
recipient, itMUsT reject the request with a 493 (Undecipherable) response. This respi@ose D contain
a valid certificate for the respondent (corresponding, if possible, to any address of record givefidn the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 105]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

3002 header of the rejected request) within a MIME body. A 493 (Undecipherable) sent without any certificate
3003 indicates that the respondent cannot or will not utilize S/IMIME.

3904 Finally, if during the course of a dialog a user agent receives a certificate in a CMS SignedData message
3005 that does not correspond with the certificates previously exchanged during a dialog, the userusgent

s006 Notify its user of the change, preferably in terms that indicate that this is a potential security breach.

w07 21.3 Securing MIME bodies

908 There are two types of secure MIME bodies that are of interest to SIP: 'multipart/signed’ and "application/pkcs7-
3900 mMime’. The procedures for the use of these bodies should follow the S/IMIME specification ([27]) with a
3010 few variations.

3911 e ‘'multipart/signed’MusT be used only with CMS detached signatures.

3912 This allows backwards compatibility with non-S/MIME-compliant recipients.

3013 e If a UAC has no certificate on its keyring associated with the address of record to which it wants to
3914 send a request, it cannot send an encrypted 'application/pkcs7-mime’ MIME message.MARACSs

3015 send an initial request such as @PTIONS message with a CMS detached signature in order to
3916 solicit the certificate of the remote side (the signatsire®ULD be over a 'message/sip’ body of the

3017 type described in Section 21.4).

3018 e Senders of S/IMIME bodiesHouLD use the 'SMIMECapabilities’ (see Section 2.5.2 of [27]) attribute

3919 to express their capabilities and preferences for further communications. Note especially that senders
3920 MAY use the 'preferSignedData’ capability to encourage receivers to respond with CMS SignedData
3921 messages (for example, when sending@&TIONS request as described above).

3922 e S/MIME implementationswusT at a minimum support SHA1 as a digital signature algorithm, and
3923 3DES as an encryption algorithm; all other signature and encryption algorittaimsbe supported.

3924 Implementations can negotiate support for these algorithms with the 'SMIMECapabilities’ attribute.

ss 21.4 Tunneling SIP in MIME

3926 As a means of providing some degree of end-to-end authentication, integrity or confidentiality for SIP head-
3027 ers, SIMIME can encapsulate entire SIP messages within MIME bodies of type “message/sip” and then
s2s apply MIME security to these bodies in the same manner employed for typical SIP bodies.

3929 Note that these “message/sip” bodies can be sent as a part of a MIME “multipart/mixed” body if another

3930 MIME types (such as SDP) should also be used in the request.

sar 21.4.1 Tunneling Integrity and Authentication

sz Tunneling SIP messages within S/IMIME bodies can provide integrity for SIP headers if the headers which
3033 the sender wishes to secure are replicated in a “message/sip” MIME body signed with a CMS detached
3934 Sighature.

3935 Provided that the “message/sip” body contains at least the fundamental dialog identdieFsam,

s936 Call-ID, CSeq), then a signed MIME body can provide limited authentication. At the very least, if the

3037 certificate used to sign the body is unknown to the recipient and cannot be verified, the signature can be used

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 106]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

3033 {0 ascertain that a later request in a dialog was transmitted by the same certificate-holder that initiated the
3039 dialog. If the recipient of the signed MIME body has some stronger incentive to trust the certificate (they
340 Were able to verify it, acquire it from a trusted repository, or they've used it frequently) then the signature
sa1 Can be taken as a stronger assertion of the identity of the subject of the certificate.

3942 In order to eliminate possible confusions about the addition or subtraction of entire headers, senders
343 SHOULD replicate all headers from the request within the signed body. Any message bodies that require
3044 iNtegrity protectionsHOULD be attached to the “inner” message.

3945 Upon receipt of a SIP message with a signed “message/sip” body, recipients may compare headers in
sus the “outer” message with headers in the “inner” message. At the discretion of the recipient, if significant
3047 discrepancies between the two exist, the message be rejected with a 403 (Forbidden) response if it

348 IS @ request, or any existing dialagay be terminated if a security violation has occurred. User agents

s.a9 SHOULD notify users of this circumstance and request explicit guidance on how to proceed. Provided that
se50 the signature is valid for the “inner” message, headers in the inner message D be preferred to headers

3951 in the “outer” message.

3952 Many SIP headers are altered of necessity as messages are routed through proxy servers. These include,
3953 but are not necessarily limited to, tlRequest-URI, Via headersRecord-Route andRoute headers, the

ssa Max-Forwards header, and thBroxy-Authorization header; note that extensions to SIP, or nonstandard

355 (X-) headers, may also result in headers that are added or subtracted from messages as they traverse the
356 hetwork. A variation in these headesslouLD NOT be interpreted as a breach of integrity by the recipient

3957 Of a signed message.

3958 The following is an example of the use of a tunneled “message/sip” body:
3959 INVITE sip:bob@biloxi.com SIP/2.0

3960 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
3961 To: Bob <bob@biloxi.com>

3962 From: Alice <alice@atlanta.com>;tag=1928301774

3963 Call-ID: a84b4c76e66710

3964 CSeq: 314159 INVITE

3965 Contact: <sip:alice@pc33.atlanta.com>

3966 Content-Type: multipart/signed,;

3967 protocol="application/pkcs7-signature"”;

3968 micalg=shal; boundary=boundary42

3969

3970 --boundary42

3971 Content-Type: message/sip

3972

3073 INVITE sip:bob@biloxi.com SIP/2.0

3974 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
3075 To: Bob <bob@biloxi.com>

3076 From: Alice <alice@atlanta.com>;tag=1928301774

3977 Call-ID: a84b4c76e66710

3978 CSeq: 314159 INVITE

3979 Contact: <sip:alice@pc33.atlanta.com>

3980 Content-Type: application/sdp

3981 Content-Length: 147

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 107]

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

v=0

o=UserA 2890844526 2890844526 IN IP4 here.com
s=Session SDP

c=IN IP4 pc33.atlanta.com

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

--boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUUjhJhjH77n8HHG Trivbnj756tbBOHG4VQpfyF467GhIGFHIY T6
AVQpfyF467GhIGHFY T6jH77n8HHGghyHhHUUjhJh756tbBOHG Trivbnj
N8HHG TrfvhJhjH776tbBOHG4AVQbNj7567GhIGIHFY T6ghyHhHUUjpfyF4
7GhIGFHfY T64VQbnj756

--boundary42-

21.4.2 Tunneling Encryption

It may also be desirable to use this mechanism to encrypt a “message/sip” MIME body within a CMS
EnvelopedData message S/IMIME body, but in practice, most headers are of at least some use to the network;
the general use of encryption with S/IMIME is to secure message bodies like SDP rather than message
headers. Some informational headers, such aStigect or Organization could perhaps warrant end-to-

end security. Headers defined by future SIP applications might also require obfuscation.

Another possible application of encrypting headers is selective anonymity. A request could be con-
structed with &rom header field that contains no personal information (e.g., sip:anonymous@anonymizer.com).
However, a secon&irom header field containing the genuine address of record of the originator could be
encrypted within a “message/sip” MIME body where it will only be visible to the endpoints of a dialog.

In the following example, the text boxed in asterisks (“*") is encrypted:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

To: Bob <bob@biloxi.com>

From: Alice <alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 108]

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

kkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

* Content-Type: application/sdp *

* *
* yv=0 *
* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com *

* g=- *
*t=0 0 *
* ¢=IN IP4 pc33.atlanta.com *

* m=audio 3456 RTP/AVP 0 1 3 99 *
* a=rtpmap:0 PCMU/8000 *

kkkkkkkkkkkkkkkkkkkhhkkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkk

22 Security Considerations

SIP is not an easy protocol to secure. Its use of intermediaries, its multi-faceted trust relationships, its
expected usage between elements with no trust at all, and its user-to-user operation make security far from
trivial. Security solutions are needed that are deployable today, without extensive coordination, in a wide
variety of environments and usages. In order to meet these diverse needs, several distinct mechanisms
applicable to different aspects and usages of SIP will be required.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert
with SIP such as RTP, or with the security implications of any specific bodies SIP might carry (although
MIME security plays a substantial role in securing SIP). Any media associated with a session can be en-
crypted end-to-end independently of any associated SIP signaling. Media encryption is outside the scope of
this document.

The considerations that follow first examine a set of classic threat models which broadly identify the
security needs of the SIP protocol. The set of security services required to address these threats is then
detailed, followed by an explanation of several security mechanisms that can be used to provide these ser-
vices. Next, the requirements for implementers of SIP are enumerated, along with exemplary deployments
in which these security mechanisms could be used to improve the security of SIP. Some notes on privacy
conclude this section.

22.1 Threat Models

This section details some threats that should be common to most deployments of SIP. These threats have
been chosen specifically to illustrate each of the security services that SIP requires.

The following examples by no means provide an exhaustive list of the threats against the SIP proto-
col; rather, these are "classic” threats that demonstrate the need for particular security services which can
potentially prevent whole categories of threats.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 109]

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

22.1.1 Registration Hijacking

The SIP registration mechanism allows a user agent to identify itself to a registrar as a device at which a user
(designated by an address of record) is located. A registrar assesses the identity asserkdrim tleader

field of aREGISTER message to determine whether or not this request can modify the contact addresses
associated with the address of record in Toéheader field; while these two fields are frequently the same,
there are many valid deployments in which a third-party may register contacts on a user’s behalf.

The From header of a SIP request, however, can essentially be modified arbitrarily by the owner of a
user agent, and this opens the door to malicious registrations. An attacker that successfully impersonates a
party authorized to change contacts associated with an address of record could, for example, de-register all
existing contacts for a URI and then register their own device as the appropriate contact address, thereby
directing all requests for the affected user to the attacker’s device.

This threat belongs to a family of threats that rely on the absence of cryptographic assurance of a re-
quest’s originator. Any SIP UAS that represents a valuable service (a gateway that interworks SIP requests
with traditional telephone calls, for example) might want to control access to its resources by authenticating
requests that it receives. Even end-user UAs, for example SIP phones, have an interest in ascertaining the
identities of originators of requests.

This threat demonstrates the need for security services that enable SIP entities to authenticate the origi-
nators of requests.

22.1.2 Impersonating a Server

The domain to which a request is destined is generally specified Rabaest-URI; user agents commonly

contact a server in this domain directly in order to deliver a request. However, there is always a possibility
that an attacker could impersonate the remote server, and that the user agent’s request could be intercepted
by some other party.

For example, consider a case in which a redirect server at one domain, chicago.com, impersonates a
redirect server at another domain, biloxi.com. A user agent sends a request to biloxi.com, but the redirect
server at chicago.com answers with a forged response that has appropriate SIP headers for a response from
biloxi.com. The forged contact addresses in the redirection response could direct the originating user agent
to inappropriate or insecure resources, or simply prevent requests for biloxi.com from succeeding.

This family of threats has a vast membership, many of which are critical. As a converse to the registration
hijacking threat, consider the case in which a registration sent to biloxi.com is intercepted by chicago.com,
which replies to the intercepted registration with a forged 301 (Moved Permanently) response. This response
might seem to come from biloxi.com yet designate chicago.com as the appropriate registrar. All future
REGISTER requests from the originating user agent would then go to chicago.com.

Prevention of this threat requires a means by which user agents can authenticate the servers to whom
they send requests.

22.1.3 Tampering with Message Bodies

As a matter of course, SIP user agents route requests through trusted proxy servers. Regardless of how that
trust is established (authentication of proxies is discussed elsewhere in this section), a user agent may trust
a proxy server to route a request, but not to inspect or possibly modify the bodies contained in that request.
Consider a UA that is using SIP message bodies to communicate session encryption keys for a media
session. Although it trusts the proxy server of the domain it is contacting to deliver signaling properly, it

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 110]

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

may not be desirable for the administrators of that domain to be capable of decrypting any subsequent media
session. Worse yet, if the proxy server were actively malicious, it could modify the session key, either acting
as a man-in-the-middle, or perhaps changing the security characteristics requested by the originating user
agent.

This family of threats applies not only to session keys, but to most conceivable forms of content car-
ried end-to-end in SIP. These might include MIME bodies that should be rendered to the user, SDP, or
encapsulated telephony signals among others.

Also note that some headers in SIP are meaningful end-to-end, for exampByljest. User agents
might be protective of these headers as well as bodies (a malicious intermediary changbupjée
header might make an important request appear to be spam, for example). However, since many headers are
legitimately inspected or altered by proxy servers as a request is routed, not all headers should be secured
end-to-end.

For these reasons, the UA might want to secure SIP message bodies, and in some limited cases headers,
end-to-end. The security services required for bodies include confidentiality, integrity, and authentication.
These end-to-end services should be independent of the means used to secure interactions with intermedi-
aries such as proxy servers.

22.1.4 Tearing Down Sessions

Once a dialog has been established by initial messaging, subsequent requests can be sent that modify the
state of the dialog and/or session. It is critical that principals in a session can be certain that such requests
are not forged by attackers.

Consider a case in which a third-party attacker captures some initial messages in a dialog shared by
two parties in order to learn the parameters of the ses3mnom, and so forth) and then insert8XE
request into the session. The attacker could opt to forge the request such that it seemed to come from either
participant. Once thBYE is received by its target, the session will be torn down prematurely.

Similar mid-session threats include the transmission of forgeNY#TES that alter the session (possibly
to reduce session security or redirect media streams as part of a wiretapping attack).

The most effective countermeasure to this threat is the authentication of the sendeBdfEhein
this instance, the recipient needs only know thatBi¥& came from the same party with whom the corre-
sponding dialog was established (as opposed to ascertaining the absolute identity of the sender). Also, if the
attacker is unable to learn the parameters of the session due to confidentiality, it would not be possible to
forge theBYE; however, some intermediaries (like proxy servers) will need to inspect those parameters as
the session is established.

22.1.5 Denial of Service and Amplification

Denial of service attacks focus on rendering a particular network element unavailable, usually by directing
an excessive amount of network traffic at its interfaces. A distributed denial of service attack allows one
network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures SIP proxy servers face the public Internet in order to accept requests from world-
wide IP endpoints. SIP creates a number of potential opportunities for distributed denial of service attacks
that must be recognized and addressed by the implementers and operators of SIP systems.

Attackers can create bogus requests that contain a falsified source IP address and a correég@onding
header field which identify a targeted host as the originator of the request and then send this request to a large

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 111]

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

number of SIP network elements, thereby using hapless SIP UAs or proxies to generate denial of service
traffic aimed at the target.

Similarly, attackers might use falsifid®Rloute headers in a request that identify the target host and then
send such messages to forking proxies that will amplify messaging sent to the Regetd-Route could
be used to similar effect when the attacker is certain that the SIP dialog initiated by the request will result in
numerous transactions originating in the backwards direction.

A number of denial of service attacks open UREGISTER requests are not properly authenticated
and authorized by registrars. Attackers could de-register some or all users in an administrative domain,
thereby preventing these users from being invited to new sessions. An attacker could also register a large
number of contacts designating the same host for a given address of record in order to use the registrar and
any associated proxy servers as amplifiers in a denial of service attack. Attackers might also attempt to
deplete available memory and disk resources of a registrar by registering huge numbers of bindings.

The use of multicast to transmit SIP requests can greatly increase the potential for denial of service
attacks.

These problems demonstrate a general need to define architectures that minimize the risks of denial of
service, and the need to be mindful in recommendations for security mechanisms of this class of attacks.

22.2 Security Mechanisms

From the threats described above, we gather that the fundamental security services required for the SIP
protocol are: preserving the confidentiality and integrity of messaging, preventing replay attacks or message
spoofing, providing for the authentication and privacy of the participants in a session, and preventing denial
of service attacks. Bodies within SIP messages separately require the security services of: confidentiality,
integrity, and authentication.

Rather than defining new security mechanisms specific to SIP, SIP reuses wherever possible existing
security models derived from the HTTP and SMTP space.

Full encryption of messages provides the best means to preserve the confidentiality of signaling - it can
also guarantee that messages are not modified by any malicious intermediaries. However, SIP requests and
responses cannot be naively encrypted end-to-end in their entirety because, in most network architectures,
message fields such as tRequest-URI, Route andVia need to be visible to proxies so that SIP requests
are routed correctly. Note that proxy servers need to modify some features of messages as well (such as
addingVia headers) in order for SIP to function. Proxy servers must therefore be trusted, to some degree,
by SIP user agents. To this purpose, low layer security mechanisms for SIP are recommended, which encrypt
the entire SIP requests or responses on the wire on a hop-by-hop basis, and which allow endpoints to verify
the identity of proxy servers to whom they send requests.

SIP entities also have a need to identify one another in a secure fashion. When a SIP endpoint asserts the
identity of its user to a peer user agent or to a proxy server, that identity should in some way be verifiable.
A cryptographic authentication mechanism is provided in SIP to address this requirement.

An independent security mechanism for SIP message bodies supplies an alternative means of end-to-end
mutual authentication, as well as providing a limit on the degree to which user agents must trust intermedi-
aries.

22.2.1 Transport and Network Layer Security

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and in-
tegrity (note however that the originator and recipient of a session may be deducible by observers performing

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 112]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

asa @ network traffic analysis). The certificates used to encrypt traffic can also be used to provide a means of
a1ss authentication in many architectures.

4186 Two popular alternatives for providing security at the transport and network layer are, respectively, TLS
as7 [28] and IPSec [29].
4188 IPSec is a set of network-layer protocol tools that can collectively be asea secure replacement for

as9 traditional IP (Internet Protocol). IPSec is most suited to architectures in which a set of SIP hosts (mingled
4100 USEr agents and proxy servers) or bridged administrative domains (possibly using security gateways) have
4101 @n existing trust relationship with one another, although IPSec can also be used on a per-hop basis.

4192 IPSec is generally implemented at an operating-system level within a host, and in many architectures
4103 it does not require integration with SIP applications. Any deployment of IPSec for SIP would require an
a9 IPSec profile describing the protocols tools that would be required to secure SIP and the modes in which
4195 they would operate. No such profile is given in this document.

4196 TLS provides transport-layer security over connection-oriented protocols (for the purposes of this doc-
a97 ument, TCP); “tIs” (signifying TLS over TCP) can bspecified as the desired transport protocol within a

a8 Via header field or a SIP-URI. TLS is most suited to architectures in which a chain of trust joins together a
a99 Set of hosts. For example, Alice trusts her local proxy server, which in turn trust Bob’s local proxy server,
4200 Which Bob trusts, hence Bob and Alice can communicate securely.

4201 TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on a
4202 hop-by-hop basis in SIP, and that in some deployments TLS might be used for only certain portions of the
2203 Signaling path.

4204 When TLS is used in a SIP application, implementets T minimally support the TLSRRSAWITH_AES_128 CBC_SH
4205 Ciphersuite. For purposes of backwards compatibility, proxy servers, redirect servers and rexisitars

a206 Support TLSRSAWITH_3DESEDE CBC_SHA. ImplementersiAY also support any other ciphersuite.

w07 22.2.2 HTTP Authentication

4208 SIP provides a challenge capability, based on HTTP authentication, that relies on the 401 and 407 response
200 codes as well as headers for carrying challenges and credentials. Without significant modification, the reuse
420 Of the HTTP Digest authentication scheme in SIP allows for replay protection and one-way authentication.
a211 The usage of Digest authentication in SIP is detailed in Section 20.

212 22.2.3 S/MIME

az13 Asis discussed above, encrypting entire SIP messages end-to-end for the purpose of confidentiality is not ap-
4214 propriate because network intermediaries (like proxy servers) need to view certain headers in order to route
4215 messages correctly, and if these intermediaries are excluded from security associations then SIP messages
4216 Will essentially be unroutable.

4217 However, S/IMIME allows SIP user agents to encrypt MIME bodies within SIP, securing these bodies
a8 end-to-end without affecting message headers. S/IMIME can provide end-to-end confidentiality and integrity
4219 for message bodies, as well as mutual authentication. It is also possible to use S/MIME to provide a form of
a220 integrity and confidentiality for SIP headers through SIP message tunneling.

4221 The usage of S/IMIME in SIP is detailed in Section 21.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 113]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

w22 22.3 Implementing Security Mechanisms
a3 22.3.1 Requirements for Implementers of SIP

4224 Proxy servers, redirect servers, and registrwsT implement TLS, andMusT support both mutual and

4225 One-way authentication. It is stronggECOMMENDED that user agents be capable initiating TLS; user
4226 agentaviAy also be capable of acting as a TLS server. Proxy servers, redirect servers, and regisicans

4227 POSSESS a site certificate whose subject corresponds to their hostname. Usenagdrdase certificates of

4228 their own for mutual authentication with TLS, but no provisions are set forth in this document for their use.
a9 User agentmusT support a mechanism for verifying certificates they receive during TLS negotiation.

4230 Proxy servers, redirect servers, registrars and user agentsalso implement IPSec, or other lower-
4231 layer security protocols.
4232 When a user agent attempts to contact a proxy server, redirect server or registrar, treH08®»

4233 initiate a TLS connection over which it will send SIP messages. In some architecturesnu&Q=ceive

a23a requests over such TLS connections as well.

4235 Proxy servers, redirect servers, registrars and user agersts implement Digest Authorization. Proxy
a3 Servers, redirect servers and regists#®ULD be configured with at least one Digest realm, and at least one
4237 “realm” string supported by a given serveHOULD corresponds to the server’s hostname or domainname.

4238 Proxy servers, redirect servers, registrars and user agemtslso implement enhancements to Digest
4239 Or alternate header-level security mechanisms.
4240 User agentsHOULD support S/IMIME encryption and signing of SIP message MIME bodies.

21 22.3.2 Security Solutions

242 The operation of these security mechanisms in concert can follow, to some degree, the existing web and
4223 email security models. At a high level, user agents authenticate themselves to servers (proxy servers, redirect
a4 Servers and registrars) with a Digest username and password; servers authenticate themselves to user agents,
4225 and to one another, with a site certificate delivered by TLS.

4246 On a peer-to-peer level, user agents ordinarily transitively trust the network to authenticate one another;
2247 however, S/IMIME can also be used to provide direct authentication when the network does not or if the
4228 network itself is not trusted.

4249 The following is an illustrative example in which these security mechanisms are used by various user
4250 agents and servers to prevent the sorts of threats described in Section 22.1. While implementers and network
4251 administratorsmAy follow the normative guidelines given in the remainder of this section, these are provided

4252 only as example implementations.

w53 22.3.2.1 Registration When a user agent comes on line and registers with its local administrative do-
4254 Main, itSHOULD establish a TLS connection with its registrar (the means by which the user agent determines
4255 how to reach its registrar are described in Section 10). The reg@t@uLD offer a certificate to the user

4256 agent, and the site identified by the certificsitesT correspond with the domain in which the user agent in-

4257 tends to register; for example, if the user agent intends to register the address of record "alice@atlanta.com’,
4253 the site certificate must identify a host within the atlanta.com domain (such as 'sip.atlanta.com’). When
4259 it receives the TLS Certificate message, the user agieouLD verify the certificate and inspect the site

a0 identified by the certificate. If the certificate is invalid, revoked, or if it does not identify the appropriate
w261 party, the user agemusTNOT send thd(REGISTER message and otherwise proceed with the registration.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 114]

4262
4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274
4275
4276
4277

4278

4279

4280

4281

4282
4283
4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299
4300
4301
4302

4303

4304

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

When a valid certificate has been provided by the registrar, the user agent knows that the registrar is not an
attacker who might redirect the user agent, steal passwords, or attempt any similar attacks.

The user agent then createsREGISTER request whichsHouLD be addressed to Request-URI
corresponding to the site certificate received from the registrar. WhdREBESTER request is sent by the
user agent over the existing TLS connection, the registraruLD challenge the request with a 407 (Proxy
Authentication Required) response; the “realm” parameter withinPifoy-Authenticate header of the
responsesHOULD correspond to the domain previously given by the site certificate. When the UAC receives
the challenge, isHouULD either prompt the user for credentials or take an appropriate credential from a
keyring corresponding to the “realm” parameter in the challenge. The username of this cresientiab
correspond with the “userinfo” portion of the URI in tHe header of thd(REGISTER request. Once the
Digest credentials have been inserted into an appropHetgy-Authorization header, th(REGISTER
should be resubmitted to the registrar.

Since the registrar requires the user agent to authenticate itself, it would be difficult for an attacker to forge
REGISTER requests for the user’s address of record. Also note that sinEBG4STER is sent over a confidential
TLS connection, attackers will not be able to interceptREGISTER to record credentials for any possible replay
attack.

Once the registration has been accepted by the registrar, the usesageni leave this TLS connec-
tion open provided that the registrar also acts as the proxy server to which requests are sent for users in this
administrative domain. The existing TLS connection will be reused to deliver incoming requests to the user
agent that has just completed registration.

Because the user agent has already authenticated the server on the other side of the TLS connection, all requests
that come over this connection are known to have passed through the proxy server - attackers cannot create spoofed
requests that appear to have been sent through that proxy server.

22.3.2.2 Requests and Transitive Trust Now let’s say that Alice’s user agent would like to initiate a
session with a user in a remote administrative domain, namely 'bob@biloxi.com’. We'll also say that the
local administrative domain (‘atlanta.com’) has a local outbound proxy.

The proxy server that handles inbound requests for an administrative domairalso act as a local
outbound proxy; for simplicity’s sake we’ll assume this to be the case for 'atlanta.com’ (otherwise the user
agent would initiate a new TLS connection to a separate server at this point). Assuming that the client has
completed the registration process described in the preceding seciei@utD reuse the TLS connection
to the local proxy server when it wishes to sendM¥YITE request to another user. The user agefduLD
reuse cached credentials in iNVITE to avoid prompting the user unnecessarily.

When the local outbound proxy server has validated the credentials presented by the user agent in the
INVITE, it sHoULD inspect theRequest-URI to determine how the message should be routed (see [8]).

If the “domainname” portion of th&®equest-URI had corresponded to the local domain (‘atlanta.com’),
rather the “biloxi.com”, then the proxy server would have consulted its location service to determine how
best to reach the requested user.

Had ’alice@atlanta.com’ been attempting to contact, say, 'alex@atlanta.com’, the local proxy would have prox-
ied to the request to the TLS connection Alex had established with the register when he registered. Since Alex would
receive this request over his authenticated channel, he would be assured that Alice’s request had been authorized by
the proxy server of the local administrative domain.

However, in this instance thRequest-URI designates a remote domain. The local outbound proxy
server at 'atlanta.comsHouULD therefore establish a TLS connection with the remote proxy server at

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 115]

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319
4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334
4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

'biloxi.com’. Since both of the participants in this TLS connection are servers that possess site certifi-
cates, mutual TLS authenticati@HouLD occur. Each side of the connectisriouLD verify and inspect

the certificate of the other, noting the domain name that appears in the certificate for comparison with the
headers of SIP messages. The 'atlanta.com’ proxy server, for exasmae,LD verify at this stage that the
certificate received from the remote side corresponds with the 'biloxi.com’ domain. Once it has done so,
and TLS negotiation has completed, resulting in a secure channel between the two proxies, the 'atlanta.com’
proxy can forward théNVITE request to 'biloxi.com’.

The proxy server at 'biloxi.comSHOULD in turn inspect the certificate of the proxy server at 'at-
lanta.com’ and compare the domain asserted by the certificate with the “domainname” portiofrafithe
header in théNVITE request. The biloxi proxy can thereby ascertain whether or not it should consider Alice
to be transitively authenticated. The biloxi proxyy have a strict security policy that requires it to reject
requests that do not match the administrative domain from which they have been proxied, or perhaps even
more strictly, requests that originate from administrative domains that do not have some policy agreement
with biloxi.

Such security policies could be instituted to prevent the SIP equivalent of SMTP 'open relays’ which are fre-
guently exploited to generate spam.

Once thdNVITE has been approved by the biloxi proxy, the proxy sesrepuLD identify the existing
TLS channel, if any, associated with the user targeted by this request (in this case 'bob@biloxi.com’). The
INVITE should be proxied through this channel to Bob; since the request is received over a TLS connection
which had previously been authenticated as the biloxi proxy, Bob transitively trusts the identity asserted in
the From header.

Before they forward the request, both proxy sengieouLD addRecord-Route headers to the request
so that all future requests in this dialog will pass through the proxy servers. The proxy servers can thereby
continue to provide transitive authentication, confidentiality, replay protection, and so forth for lifetime of
this dialog. If the proxy servers do not add themselves toRbeord-Route, future messages will pass
directly end-to-end between Alice and Bob without any security services (unless the two parties agree on
some independent end-to-end security).

An attacker preying on this architecture would, for example, be unable to fddd&Eaequest and insert it into
the signaling stream between Bob and Alice because the attacker has no way of ascertaining the parameters of the

session because of the use of confidentiality, and moreover because the integrity mechanism transitively protects the
traffic all the way from Alice to Bob.

22.3.2.3 Peerto Peer RequestsAlternatively, consider a user agent asserting the identity 'carol@chicago.com’
that has no local outbound proxy. When Carol wishes to sendN|iiTrE to 'bob@biloxi.com’, her user
agentsHOULD initiate a TLS connection with the biloxi proxy directly (using the mechanism described in
[8] to determine how to best to reach the giveaquest-URI). When her user agent receives a certificate
from the biloxi proxy, itSHOULD be verified normally before she passes INVITE across the TLS con-
nection. However, 'carol@chicago.com’ has no means of proving her identity to the biloxi proxy; but she
does have a CMS detached signature over a “message/sip” bodyINMHEE. It is unlikely in this instance
that Carol would have any credentials in the 'biloxi.com’ realm, since she has no formal association with
biloxi.com. The biloxi proxyMAY also have a strict policy that precludes it from even bothering to challenge
requests that do not have ’biloxi.com’ in the “domainname” portion oRtoen header - it treats these users
as unauthenticated.

The biloxi proxy has a policy for Bob that all non-authenticated requests should be redirected to the
appropriate contact address registered against 'bob@biloxi.com’, namely jsip:bob@192.0.2.4¢,. Carol re-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 116]

4349

4350

4351

4352

4353

4354

4355

4356

4357
4358
4359
4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373
4374
4375
4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

ceives the redirection response over the TLS connection she established with the biloxi proxy, so she trusts
the veracity of the contact address.

CarolsHouLD then established a TCP connection with the designated address and sentNd/ i
with a Request-URI containing the received contact address (recomputing the signature in the body as
the request is readied). Bob receives tN&/ITE on an insecure interface, but his user agent inspects
and in this instance recognizes thm header of the request and subsequently matches a locally cached
certificate with the one presented in the signature of the body dNMETE. He replies in similar fashion,
authenticating himself to Carol, and a secure dialog begins.

Sometimes firewalls or NATs in an administrative domain could preclude the establishment of a direct TCP
connection to a user agent. In these cases, proxy servers could also potentially relay requests to user agents in a way
that has no trust implications (for example, forgoing an existing TLS connection and forwarding the request over
cleartext TCP) as local policy dictates.

22.3.2.4 DoS Protection In order to minimize the risk of a denial of service attack against architectures
using these security solutions, implementers should take note of the following guidelines.

When the host on which a SIP proxy server is operating is routable from the public Inteswebut.D
be deployed in an administrative domain with secure routing policies (blocking source-routed traffic, prefer-
ably filtering ping traffic). Both TLS and IPSec can also make use of bastion hosts at the edges of ad-
ministrative domains that participate in the security associations to aggregate secure tunnels and sockets.
These bastion hosts can also take the brunt of denial of service attacks, ensuring that SIP hosts within the
administrative domain are not encumbered with superfluous messaging.

No matter what security solutions are deployed, floods of messages directed at proxy servers can lock up
proxy server resources and prevent desirable traffic from reaching its destination. There is a computational
expense associated with processing a SIP transaction at a proxy server, and that expense is greater for
stateful proxy servers than it is for stateless proxy servers. Therefore stateful proxies are more susceptible

to flooding than stateless proxy servers.

User agents and proxy servessouLD challenge questionable requests with onkiregle401 (Unau-
thorized) or 407 (Proxy Authentication Required), forgoing the normal response retransmission algorithm,
and behaving statelessly towards unauthenticated requests.

Retransmitting the 401 (Unauthorized) or 407 (Proxy Authentication Required) status response amplifies the
problem of an attacker using a falsified header (suctiasto direct traffic to a third party.

With either TCP or UDP, a denial of service attack exists by a rogue proxy sending 6xx responses.
Although a clientsHouLD choose to ignore such responses if it requested authentication, a proxy cannot do
so. Itis obliged to forward the 6xx response back to the client. The client can then ignore the response, but
if it repeats the request it will probably reach the same rogue proxy again, and the process will repeat.

22.4 Limitations

Although these security mechanisms, when applied in a judicious manner, can thwart many threats, there are
limitations in the scope of the mechanisms that must be understood by implementers and network operators.
22.4.1 HTTP Digest

One of the primary limitations of using HTTP Digest in SIP is that the integrity mechanisms in Digest do
not work very well for SIP. Specifically, they offer protection of tRequest-URI and the method of a
message, but not for any of the headers that user agents would most likely wish to secure.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 117]

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The existing replay protection mechanisms described in RFC 2617 also have some limitations for SIP.
The next-nonce mechanism, for example, does not support pipelined requests. The nonce-count mechanism
should be used for replay protection.

Another limitation of HTTP Digest is the scope of realms. Digest is valuable when a user wants to
authenticate themselves to a resource with which they have a pre-existing association, like a service provider
of which the user is a customer. Consider that by contrast, the scope of TLS is global, since certificates are
globally verifiable regardless of any pre-existing association between the user agent and the server.

Future enhancements to HTTP Digest could conceivably resolve some or all of these limitations.

22.4.2 S/MIME

The largest outstanding defect with the S/MIME mechanism is the lack of prevalent public key infrastructure
for end users. If self-signed certificates (or certificates that cannot be verified by one of the participants in
a dialog) are used, the SIP-based key exchange mechanism described in Section 21.2 is susceptible to a
man-in-the-middle attack with which an attacker can potentially inspect and modify S/IMIME bodies. The
attacker needs to intercept the first exchange of keys between the two parties in a dialog, remove the existing
CMS detached signatures from the request and response, and insert a different CMS detached signature
containing a certificate supplied by the attacker (but which seems to be a certificate for the proper address
of record). Each party will think they have exchanged keys with the other, when in fact each has the public
key of the attacker.

It is important to note that the attacker can only leverage this vulnerability on the first exchange of keys
between two parties - on subsequent occasions, the alteration of the key would be noticeable to user agents.
It would also be difficult for the attacker to remain in the path of all future dialogs between the two parties
over time (as potentially days, weeks, or years pass).

SSH is susceptible to the same man-in-the-middle attack on the first exchange of keys; however, it is
widely acknowledged that while SSH is not perfect, it does improve the security of connections. The use of
key fingerprints could provide some assistance to SIP, just as it does for SSH. For example, if two parties use
SIP to establish a voice communications session, each could read off the fingerprint of the key they received
from the other, which could be compared against the original; it would certainly be more difficult for the
man-in-the-middle to emulate the voices of the participants than their signaling.

The S/IMIME mechanism allows user agents to send encrypted requests without preamble if they possess
a certificate for the destination address of record on their keyring. However, it is also possible that a device
which does not hold certificates, or at least not that particular certificate, will be currently registered as
the sole contact address for that address of record, and it will therefore be unable to properly process the
encrypted request, which could lead to some avoidable error signaling. This is especially likely when an
encrypted request is forked.

The keys associated with S/IMIME are most useful when associated with a particular user (an address
of record) rather than a device (a user agent). When users move between devices, it may be difficult to
transport private keys securely between user agents; how such keys might be acquired by a device is outside
the scope of this document.

Another, more prosaic difficulty with the SIMIME mechanism is that it can result in very large messages,
especially when the SIP tunneling mechanism described in Section 21.4 is used. For that reason, it is
RECOMMENDEDthat TCP should be used as a transport protocol when S/IMIME tunneling is employed.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 118]

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2243 TLS

The most commonly voiced concern about TLS is that it cannot run over UDP; TLS requires a connection-
oriented underlying transport protocol, which for the purposes of this document means TCP. Even running
TCP, regardless of any additional overhead incurred by TLS, is argued to be too intensive for some embedded
devices.

It may also be arduous for a local outbound proxy server and/or registrar to maintain many simultane-
ous long-lived TLS connections with numerous user agents might. This introduces some valid scalability
concerns, especially for intensive ciphersuites. Maintaining redundancy of long-lived TLS connections,
especially when a user agent is solely responsible for their establishment, could also be cumbersome.

TLS only allows SIP entities to authenticate servers to which they are adjacent; TLS offers strictly
hop-by-hop security. Neither TLS, nor any other mechanism specified in this document, allows clients to
authenticate proxy servers to whom they cannot form a direct TCP connection.

22.5 Privacy

SIP messages frequently contain sensitive information about their senders - not just what they have to
say, but with whom they communicate, when they communicate and for how long, and from where they
participate in sessions. Many applications and their users require that this sort of private information be
hidden from any parties that do not need to know it.

Note that there are also less direct ways in which private information can be divulged. If a user or service
chooses to be reachable at an address that is guessable from the person’s name and organizational affiliation
(which describes most addresses of record), the traditional method of ensuring privacy by having an unlisted
“phone number” is compromised. A user location service can infringe on the privacy of the recipient of a
session invitation by divulging their specific whereabouts to the caller; an implementation consequently
SHOULD be able to restrict, on a per-user basis, what kind of location and availability information is given
out to certain classes of callers.

23 Common Message Components

There are certain components of SIP messages that appear in various places within SIP messages (and
sometimes, outside of them), which merit separate discussion.

23.1 SIP Uniform Resource Indicators

A SIP URI identifies a communications resource. Like all URIs, SIP URIs may be placed in web pages,
email messages or printed literature. They contain sufficient information to initiate and maintain a commu-
nication session with the resource.

Examples of communications resources include

a user of an online service;

an appearance on a multiline phone;

a mailbox on a messaging system

a PSTN number at a gateway service;

a group (such as “sales” or “helpdesk”) in an organization.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 119]

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

23.1.1 SIP URI Components

The “sip:” scheme follows the guidelines in RFC 2396 [9]. It uses a form similar tartagto URL,
allowing the specification of SIRequest-header fields and the Slifhessage-body. This makes it possible

to specify the subject, media type, or urgency of sessions initiated by using a URI on a web page or in an
email message. The formal syntax for a SIP URI is presented in Section 27. Its general form is

sip:user:password@host:port;url-parameters?headers

These tokens, and some of the tokens in their expansion, have the following meaning.

user: The identifier of a particular resource at the host being addressed. Note that “host” as used here
may, and frequently does, refer to a domain. The “userpart” of a URI consists of this user field, the
password field and the @ sign following them. The userpart of a URI is optionahancbe absent
when the destination host does not have a notion of users or when the host itself is the resource being
identified. If the @ sign is present in a SIP URI, the user fieldsT NOT be empty.

If the host being addressed is capable of processing telephone numbers, an Internet telephony gateway
for instance, delephone-subscriber field defined in RFC 2806 [13)1AY be used to populate the

user field. There are special escaping rules for encodétgphone-subscriber fields in SIP URIs
described in Section 23.1.2.

password : A password associated with the user. While the SIP URI syntax allows this field to be present,
its use iSNOT RECOMMENDED, because the passing of authentication information in clear text (such
as URIs) has proven to be a security risk in almost every case where it has been used. For instance,
transporting a PIN number in this field exposes the PIN. Note that the password field is just an exten-
sion of user portion. Implementations not wishing to give special significance to the password portion
of the fieldMAY simply treat “user:password” as a single string.

host: The entity hosting the SIP resource. Tiast part contains either a fully-qualified domain name
or numeric IPv4 or IPv6 address. Using the fully-qualified domain name forRE{SOMMENDED
whenever possible.

port: The port number where the request is to be sent.

URI parameters: Parameters affecting a request constructed from the URI.

URI parameters are added after thestport component and are separated by semi-colons. URI
parameters take the form:

parameter-name "=" parameter-value

Even though an arbitrary number of URI parameters may be included in a URI, any given parameter-
namemMUST NOT appear more than once.

This extensible mechanism includes thensport, maddr, ttl, user, andmethod parameters.

Thetransport parameter determines the transport mechanism to be used for sending SIP messages,
as specified in [8]. SIP can use any network transport protocol. Parameter names are defined for
UDP [30], TCP [31], TLS [28] (note that this is specifically TLS over TCP), and SCTP [32].

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 120]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

4504 Themaddr parameter indicates the server address to be contacted for this user, overriding any address
4505 derived from théhost field. When amaddr parameter is present, thert andtransport components

4506 of the URI apply to the address indicated in timaddr parameter value. [8] describes the proper

4507 interpretation of thdransport, maddr andhostport in order to obtain the destination address, port

4508 and transport for sending a request.

4509 Themaddr field can be used as a simple form of loose source routing. It allows a URI to specify a specific

4510 proxy that must be traversed en-route to the destination. This capability is useful for a roaming user that

4511 is forced to use an outbound proxy, but wishes to force requests through their home proxy. Alternatively,

4512 preloaded Route values can be used to provide this capability (see item 8.1.1.1 in section 8.1.1).

4513 Thettl parameter determines the time-to-live value of the UDP multicast packetiasd only be

4514 used ifmaddr is a multicast address and the transport protocol is UDP. For example, to specify to call
4515 alice@atlanta.com using multicast to 239.255.255.1 with a ttl of 15, the following URI would

4516 be used:

4517 sip:alice@atlanta.com;maddr=239.255.255.1;ttl=15

4518 The set of validtelephone-subscriber strings is a subset of validser strings. Theuser URI pa-

4519 rameter exists to distinguish telephone numbers from user names that happen to look like telephone
4520 numbers. If the user string contains a telephone number formattetetephone-subscriber, the

4521 user parameter valuephone” sHoOULD be present. Even without this parameter, recipients of SIP
4522 URIs MAY interpret the pre-@ part as a telephone number if local restrictions on the name space for
4523 user name allow it.

4524 The method of the SIP request constructed from the URI can be specified witlethed parameter.

4525 Since the url-parameter mechanism is extensible, SIP elemestssilently ignore any url-parameters

4526 that they do not understand.

ss27 Headers: Headers to be included in a request constructed from the URI. Headers fields in the SIP request

4528 can be specified with the “?” mechanism within a SIP URI. The header names and values are en-
4529 coded in ampersand separatethme = hvalue pairs. The specidiname “body” indicates that the

4530 associatedhvalue is themessage-body of the SIP request.

4531 Table 1 summarizes the use of SIP URI components based on the context in which the URI appears. The

ss32 - external column describes URIs appearing anywhere outside of a SIP message, for instance on a web page
4533 OF business card. Entries marked “m” are mandatory, those marked “0” are optional, and those marked “-”
ss3a - are not allowed. Elements processing URKOULD ignore any disallowed components if they are present.

435 The second column indicates the default value of an optional element if it is not present. “—” indicates that
ss36 the element is either not optional, or has no default value.
4537 SIP URIs inContact header fields have different restrictions depending on the context in which the

ss3s header field appears. One set applies to messages that establish and maintainldldgsgnd its 200
as39 (OK) response). The other applies to registration and redirection mesREESHITER, its 200 (OK)
540 response, and 3xx class responses to any method).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 121]

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

dialog
reg./redir. Contact/
default Req.-URI To From Contact R-R/Route external

user - 0 o] 0 o] o] 0
password - 0 o] 0 0 0 o]
host - m m m m m m
port 5060 o] - - o] o] o]
user-param ip o] 0 o} 0 0 o]
method INVITE - - - - - o]
maddr-param — 0 - - o} o] 0
ttl-param 1 0 - - o] - o]
transp.-param udp o] - - o] o] o}
other-param — 0 o] 0 o] o] 0
headers - - - - o] - o]

Table 1: Use and default values of URI components for SIP heaetgjest-URI and references

23.1.2 Character Escaping Requirements

SIP follows the requirements and guidelines of RFC 2396 [9] when defining the set of characters that must
be escaped in a SIP URI, and uses its “"%” HEX HEX” mechanism for escaping. From RFC 2396:

The set of characters actually reserved within any given URI component is defined by that com-
ponent. In general, a character is reserved if the semantics of the URI changes if the character
is replaced with its escaped US-ASCII encoding. [9].

Excluded US-ASCII characters [9, Sec. 2.4.3], such as space and control characters and characters used as
URI delimiters, alsavusT be escaped. URIBUST NOT contain unescaped space and control characters.

For each component, the set of valid BNF expansions defines exactly which characters may appear
unescaped. All other charactens/ST be escaped.

For example, “@” is not in the set of characters in the user component, so the user “j@s0n” must have
at least the @ sign encoded, as in “j%40s0n”.

Expanding the&nname andhvalue tokens in Section 27 show that all URI reserved characters in header
names and valuegusT be escaped.

Thetelephone-subscriber subset of theiser component has special escaping considerations. The set
of characters not reserved in the RFC 2806 [13] descriptiaelephone-subscriber contains a number
of characters in various syntax elements that need to be escaped when used in SIP URIs. Any characters
occurring in aelephone-subscriber that do not appear in an expansion of the BNF fortker rule MusT
be escaped.

Note that character escaping is not allowed in the host component of a SIP URI (the % character is not
valid in its expansion). This is likely to change in the future as requirements for Internationalized Domain
Names are finalized. Current implementationssT NOT attempt to improve robustness by treating received
escaped characters in the host component as literally equivalent to their unescaped counterpart. The behavior
required to meet the requirements of IDN may be significantly different.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 122]

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

23.1.3 Example SIP URIs

sip:alice@atlanta.com
sip:alice:secretword@atlanta.com;transport=tcp
sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com

sip:alice@192.0.2.4
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com
sip:alice;day=tuesday@atlanta.com

The last example URI above hasiser field value of “alice;day=tuesday”. The escaping rules defined
above allow a semicolon to appear unescaped in this field. Note, however, that for the purposes of this
protocol, the field is opaque. The apparent structure in that value is only useful to the entity responsible for
the resource.

23.1.4 SIP URI Comparison

SIP URIs are compared for equality according to the following rules:

e Comparison of the userpart of sip URIs is case-sensitive. This includes userparts containing pass-
words or formatted as telephone-subscribers. Comparison of all other components of the URI is
case-insensitive unless explicitly defined otherwise.

The ordering of parameters and headers is not significant in comparing SIP URIs.

Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [9]) are equivalent to
their “"%" HEX HEX” encoding.

An IP address that is the result of a DNS lookup of a host namemiatanatch that host name.

For two URIs to be equal, theser, password, host, andport components must match. A URI
omitting the optional port component will match a URI explicitly declaring port 5060. A URI omitting
the user component witlot match a URI that includes one. A URI omitting the password component
will not match a URI that includes one.

URI uri-parameter components are compared as follows
— Any uri-parameter appearing in both URIs must match.

— A user, transport, ttl, or methodrl-parameter appearing in only one URI must contain its
default value or the URIs do not match.

A URI that includes an maddr parameter witit match a URI that contains no maddr parameter.

— All other url-parameters appearing in only one URI are ignored when comparing the URIs.

¢ URI header components are never ignored. Any preseeader componentMusT be present in
both URIs and match for the URIs to match. The matching rules are defined for each header in
Section sec:header-fields.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 123]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

4601 The URIs within each of the following sets are equivalent:

02 Sip:%61lice@atlanta.com:5060
s03 Sip:alice@AtLanTa.CoM;Transport=udp

04 Sip:carol@chicago.com
4605 Sip:carol@chicago.com;newparam=5
as06 Sip:carol@chicago.com;security=on

ac07 Sip:biloxi.com;transport=tcp;method=REGISTER?to=sip:bob%40biloxi.com
08 Sip:biloxi.com;method=REGISTER;transport=tcp?to=sip:bob%40biloxi.com

600 Sip:alice@atlanta.com?subject=project%20x&priority=urgent
s10 Sip:alice@atlanta.com?priority=urgent&subject=project%20x

a611 The URIs within each of the following sets amet equivalent:

s612 SIP:ALICE@AtLanTa.CoM;Transport=udp (different usernames)
w613 Sip:alice@AtLanTa.CoM;Transport=UDP

s614 Sip:bob@biloxi.com (different port and transport)
s615 Sip:bob@biloxi.com:6000;transport=tcp

s616 Sip:carol@chicago.com (different header component)
s617 Sip:carol@chicago.com?Subject=next%20meeting

s618 Sip:bob@phone21.boxesbybob.com (even though that's what

619 Sip:bob@192.0.2.4 phone21.boxesbybob.com resolves to)
4620 Note that equality is not transitive:

4621 sip:carol@chicago.com and sip:carol@chicago.com;security=on are equivalent

w22 and sip:carol@chicago.com and sip:carol@chicago.com;security=off are equivalent

a23 But sip:carol@chicago.com;security=on and sip:carol@chicago.com;security=ofbtagquivalent

4624 Comparing URIs is a major part of comparing several SIP headers (see Section 24).

a25 23.1.5 Forming Requests from a SIP URI

a626 An implementation must take care when forming requests directly from a URI. URIs from business cards,
a627 Web pages, and even from sources inside the protocol such as registered contacts may contain inappropriate
as28 header fields or body parts.

4629 An implementatiormusT include any providedtransport, maddr, ttl, oruser parameter in the Request-

s30 URI of the formed request. If the URI containgreethod parameter, its valuRusT be used as the method

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 124]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

s31 Of the request. Thmethod parametemusT NOT be placed in the Request-URI. Unknown URI parameters
4632 MUST be placed in the message’s Request-URI.

4633 An implementationrsHOULD treat the presence of any headers or body parts in the URI as a request to
s34 include them in the message, and choose to honor the request on an per-component basis.

4635 AnimplementatiorsHOULD NOThonor these obviously dangerous header fidhdsm, Call-ID, CSeq,

436 Via, andRecord-Route.

4637 An implementationsHOULD take special care in honoring any requedimlite header field values in

4633 Order to not be used as an unwitting agent in malicious attacks.

4639 An implementatiorsHOULD NOThonor requests to include headers that may cause it to falsely advertise

asa0 its location or capabilities. These includ&ccept, Accept-Encoding, Accept-Language, Allow, Contact

sea1 (i its dialog usage)prganization, Supported, andUser-Agent.

4642 An implementatiorsHOULD verify the accuracy of any requested descriptive headers, incluGioigtent-

a2z Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Date, Mime-

asaa Version, andTimestamp.

4645 If the request formed from constructing a message from a given URI is not a valid SIP request, the URI
aess IS invalid. An implementatiomusT NOT proceed with transmitting the request. It should instead pursue
asa7 the course of action due an invalid URI in the context it occurs.

4648 The constructed request can be invalid in many ways. These include, but are not limited to, syntax error in
4649 header fields, invalid combinations of URI parameters, or an incorrect description of the message body.
4650 Sending a request formed from a given URI may require capabilities unavailable to the implementation.

ss1 The URI might indicate use of an unimplemented transport or extension for example. An implementation
4652 SHOULD refuse to send these requests rather than modifying them to match their capabilities. An imple-
s653 MentationMusT NOT send a request requiring an extension that it does not support.

4654 For example, such a request can be formed through the presence of a headerRequire header parameter or a
4655 method URI parameter with an unknown or explicitly unsupported value.

sws6 23.1.6 Relating SIP URIs and tel URLs

ss7 When a tel URL [13] is converted to a SIP URI, the entire telephone-subscriber portion of the tel URL,
ass8 including any paramters,is placed into the userpart of the SIP URI.
4659 Thus, tel:+358-555-1234567;postd=pp22 becomes

4660 Sip:+358-555-1234567;postd=pp22@foo.com
461 NOt
4662 Sip:+358-555-1234567 @foo.com;postd=pp22

4663 In general, equivalent “tel” URLs converted to SIP URIs in this fashion may not produce equivalent SIP
a6« URIS. The userpart of SIP URIs is compared as a case-sensitive string. Variance in case-insensitive portions
ase5 Of tel URLs and reordering of tel URL parameters does not affect tel URL equivalence, but does affect the
as66 equivalence of SIP URIs formed from them.

4667 For example,

4668 tel:+358-555-1234567;postd=pp22

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 125]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

4669 tel:+358-555-1234567;POSTD=PP22
s670 are equivalent, while

4671 sip:+358-555-1234567;postd=pp22 @foo.com
4672 Sip:+358-555-1234567;POSTD=PP22@foo.com

4673 are not.
4674 Likewise,

4675 tel:+358-555-1234567;postd=pp22;isub=1411
4676 tel:+358-555-1234567;isub=1411;postd=pp22

4677 are equivalent, while

4678 Sip:+358-555-1234567;postd=pp22;isub=1411@foo.com
4679 Sip:+358-555-1234567;isub=1411;postd=pp22@foo.com

4680 are not.

4681 To mitigatate this problem, elements constructing telephone-subscriber fields to place in the userpart of
ss2 @ SIP URIsHOULD fold any case-insensitive portion of telephone-subscriber to lower case, and order the
s83 telephone-subscriber parameters lexically by parameter name. (All components of a tel URL except for
assa future-extension parameters are defined to be compared case-insensitive.)

4685 Following this suggestion, both

4686 tel:+358-555-1234567;postd=pp22
4687 tel:+358-555-1234567;POSTD=PP22

s688 become
4689 Sip:+358-555-1234567;postd=pp22@foo.com
as00 and both

4601 tel:+358-555-1234567;postd=pp22;isub=1411
4692 tel:+358-555-1234567;isub=1411;postd=pp22

a93 become

4694 Sip:+358-555-1234567;isub=1411;postd=pp22

wos 23.2 Option Tags

a0 Option tags are unique identifiers used to designate new options (extensions) in SIP. These tags are used in
a607 Require (Section 24.33)Proxy-Require (Section 24.29Supported (Section 24.39) antUnsupported
a08 (Section 24.42) header fields. Note that these options appear as parameters in those headptoim-tay

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 126]

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

=token form (see Section 27 for the definition twken).

The creator of a new SIP optiomusT either prefix the option with their reverse domain name or register
the new option with the Internet Assigned Numbers Authority (IANA) (See Section 28).

An example of a reverse-domain-name option is “com.foo.mynewfeature”, whose inventor can be reached
at “foo.com”. For these features, individual organizations are responsible for ensuring that option names do
not collide within the same domain. The host name part of the opticsr use lower-case; the option name
is case-insensitive.

Options registered with IANA do not contain periods and are globally unique. IANA option tags are
case-insensitive.

23.3 Tags

The “tag” parameter is used in thEo andFrom fields of SIP messages. It serves as a general mechanism
to identify a particular instance of a user agent for a particular SIP URI.

As proxies can fork requests, the same request can reach multiple instances of a user (mobile and home
phones, for example). Since each can respond, there needs to be a means for the originator of a session to
distinguish the responses. Tag fields in Teeand From disambiguate these multiple instances of the same
user.

This situation also arises with multicast requests.

When a tag is generated by a UA for insertion into a request or responsesit be globally unique
and cryptographically random with at least 32 bits of randomness. A property of this selection requirement
is that a UA will place a different tag into therom header of ariNVITE as it would place into thdo
header of the response to the saM¥ITE. This is needed in order for a UA to invite itself to a session, a
common case for “hairpinning” of calls in PSTN gateways. Similarly, tNWITEs for different calls will
have different-rom tags.

Besides the requirement for global uniqueness, the algorithm for generating a tag is implementation
specific. Tags are helpful in fault tolerant systems, where a dialog is to be recovered on an alternate server
after a failure. A UAS can select the tag in such a way that a backup can recognize a request as part of a
dialog on the failed server, and therefore determine that it should attempt to recover the dialog and any other
state associated with it.

24 Header Fields

The general syntax for header fields is covered in Section 7.3. This section lists the full set of header fields
along with notes on syntax, meaning, and usage. Throughout this section, we use [HX.Y] to refer to Section
X.Y of the current HTTP/1.1 specification RFC 2616 [12]. Examples of each header field are given.
Information about header fields in relation to methods and proxy processing is summarized in Tables 2
and 3.
The “where” column describes the request and response types in which the header field can be used.
Values in this column are:

R: header fields may only appear in requests;

r: header field may only appear in responses;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 127]

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

2xX, 4xx, etc.: A numerical value or range indicates response codes with which the header field can be
used;

c: header field is copied from the request to the response.

An empty entry in the “where” column indicates that the header may be present in all requests and re-
sponses.

The “proxy” column describes the operations a proxy may perform on a header:

c. A proxy can add (concatenate) comma-separated elements to the header.

m: A proxy can modify the header.

a: A proxy can add the header if not present.

r: A proxy must be be able to read the header and thus this header cannot be encrypted.
The next six columns relate to the presence of a header field in a method:

0: The header field is optional.

m: The header field is mandatory.

m*. The header fieldHOULD be sent, but servers need to be prepared to receive messages without that
header field.

t: The header fieldHouULD be sent, but servers need to be prepared to receive messages without that header
field. If TCP is used as transport, then the header firigT be sent.

*. The header field is required if the message body is not empty. See sections 24.14, 24.15 and 7.4 for
details.

- The header field is ignored.

c. Conditional; the header field is either mandatory or optional, depending on the presence of a route set or
the response code.

“Optional” means that a UAAY include the header field in a request or response, and mAYAignore
the header field if present in the request or response (The exception to this rul®ecghiee header field
discussed in 24.33). A “mandatory” header fieldsT be present in a request, anad)ST be understood
by the UAS receiving the request. A mandatory response heademfigdd be present in the response,
and the header fieldusT be understood by the UAC processing the response. “Not applicable” means that
the header fieldiusT NOT be present in a request. If one is placed in a request by mistake,sit be
ignored by the UAS receiving the request. Similarly, a header field labeled “not applicable” for a response
means that the UABIUST NOT place the header in the response, and the WAGT ignore the header in
the response. A UAHOULD ignore extension header parameters that are not understood.

A compact form of some common header fields is also defined for use when overall message size is an
issue.

The Contact, From, andTo header fields contain a URI. If the URI contains a comma, question mark
or semicolon, the URMUST be enclosed in angle brackets &nd>). Any URI parameters are contained
within these brackets. If the URI is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URI parameters.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 128]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Header field where proxy ACK BYE CAN INV OPT REG PRA
Accept R - o] - m* m* o] o]
Accept 2XX - - - m* m* o] -
Accept 415 - o] - 0 o] o] o]
Accept-Encoding R - o] - m* 0 o] o]
Accept-Encoding 2XX - - - m* m* o] -
Accept-Encoding 415 - o] - (o] o] (o] (o]
Accept-Language R - 0] - m* o] o] o]
Accept-Language 2XX - - - m* m* o] -
Accept-Language 415 - o] - o] 0] o] o]
Alert-Info R am - - - o] - - -
Alert-Info 180 am - - - o] - - -
Allow R 0 0 o] o] 0] o] o]
Allow 2XX - o] o] m* m* 0 o]
Allow r - 0 o] o] o] o] o]
Allow 405 - m m m m m m
Authentication-Info 2XX - o] - 0 0 0 0
Authorization R o] 0 o] o] o] o] o]
Call-ID c r m m m m m m m
Call-Info am - - - o] o] o] -
Contact R o] - - m 0 o] -
Contact Ixx - - - 0 o] - -
Contact 2XX - - - m o] o] -
Contact 3xx - o] - o] o] o] o]
Contact 485 - o] - o] o] o] o]
Content-Disposition o] o] - o] o] 0 0
Content-Encoding o] o] - o] o] (o] o]
Content-Language o] o] - o] o] 0 0
Content-Length r t t t t t t t
Content-Type * * - * * * *
CSeq c r m m m m m m m
Date a o] o] 0] (o] 0] (o] o]
Error-Info 300-699 - o] o] o] o] o] o]
Expires - - - o] - 0 -
From c r m m m m m m m
In-Reply-To R - - - 0 - - -
Max-Forwards R amr m m m m m m m
Min-Expires 423 - - - - - m -
MIME-Version o] o] o] o] o] o] o]
Organization am - - - o] o] o] -

Table 2: Summary of header fields, A-O

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 129]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Header field where proxy ACK BYE CAN INV OPT REG PRA
Priority R a - - - (o] - - -
Proxy-Authenticate 407 - m m m m m m
Proxy-Authorization R r o] o] o] o] 0 0 0
Proxy-Require R r - 0 - 0 o] o] o]
RAck R - - - - - - m
Record-Route R amr o] o] o] o] o] - o]
Record-Route 2xx,401,484 - o] o] o] - o]
Reply-To - - - 0 - - -
Require acr - 0 - o] 0 0 0
Retry-After 404,413,480,486 - 0 0 0 0 o] o]
500,503 - 0 o] 0 o] o] o]
600,603 - 0 o] 0 o] o] o]
Route R r c c c c c - c
RSeq Ixx - o] - 0 o] o] -
Server r - o] o] o] o] o] o]
Subject R - - o] - - -
Supported R - 0 0 o] o] o] o]
Supported 2XX - 0 0 o] m* o] o]
Timestamp 0 0 0 0 o] o] o]
To c(1) r m m m m m m m
Unsupported 420 - o] o] o] 0] o] 0]
User-Agent o] o] o] o] o] o] o]
Via c acmr m m m m m m m
Warning r - o] o] o] o] o] o]
WWW-Authenticate 401 - m m m m m m

Table 3: Summary of header fields, P-Z; (1): copied with possible addition of tag

ae 241 Acce pt

4775 The Accept header follows the syntax defined in [H14.1]. The semantics are also identical, with the excep-
a776 tion that if noAccept header is present, the sergrouLD assume a default value application/sdp

4771 An emptyAccept header means that no formats are acceptable.

4778 Example:

4779 Accept: application/sdp;level=1, application/x-private, text/html

a0 24.2 Accept-Encoding

431 The Accept-Encoding header field is similar té\ccept, but restricts the content-codings [H3.5] that are

4732 acceptable in the response. See [H14.3]. The syntax of this header is defined in [H14.3]. The semantics in
a3 SIP are identical to those defined in [H14.3].

4784 An empty Accept-Encoding header field is permissible, even though the syntax in [H14.3] does not
a7es provide for it. It is equivalent té\ccept-Encoding: identity, that is, only the identity encoding, meaning

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 130]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

4786 N0 encoding, is permissible. If meccept-Encoding header is present, the sergrouLD assume a default
a7s7 value ofidentity. This differs slightly from the HTTP definition, which indicates that when not present,
478 any encoding can be used, but the identity encoding is preferred.

4789 Example:

4790 Accept-Encoding: gzip

a1 24.3 Acce pt- Language

4792 The Accept-Language header is used in requests to indicate the preferred languages for reason phrases,
4793 Session descriptions, or status responses carried as message bodies in the respohseeptii@nguage

a79a header is present, the sen@iouLD assume all languages are acceptable to the cliefithe Accept-

a79s Language header follows the syntax defined in [H14.4]. The rules for ordering the languages based on the
a796 Q" parameter apply to SIP as well.

4797 Example:

4798 Accept-Language: da, en-gb;q=0.8, en;q=0.7

a9 24.4 Alert-Info

ss00 When present in alNVITE request, thélert-Info header field specifies an alternative ring tone to the UAS.
ss00 When present in a 180 (Ringing) response, Alert-Info header field specifies an alternative ringback tone
4802 1o the UAC. A typical usage is for a proxy to insert this header to provide a distinctive ring feature.

4803 The Alert-Info header can introduce security risks. These risks and the ways to handle them are dis-
as04 cussed in Section 24.9, which discussesGh#-Info header since the risks are identical.

4805 In addition, a usesHOULD be able to disable this feature selectively.

4806 This helps prevent disruptions that could result from the use of this header by untrusted elements.

4807 Example:

as08 Alert-Info: <http://wwww.example.com/sounds/moo.wav>

w00 24.5 Allow

a0 TheAllow header field lists the set of methods supported by the UA generating the message.

4811 All methods, includingACK and CANCEL, understood by the UMUST be included in the list of

a2 methods in thAllow header, when present. The absence oAbow heademusT NOT be interpreted to

4813 mean that the UA sending the message supports no methods. Rather, it implies that the UA is not providing
as14 any information on what methods it supports.

4815 Supplying anAllow header in responses to methods other B&TIONS reduces the number of mes-
as16 Sages needed.
4817 Example:

4818 Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 131]

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

24.6 Authentication-Info

TheAuthentication-Info header provides for mutual authentication with HTTP Digest. A WAS include
this header in a 2xx response to a request that was successfully authenticated using digest based on the
Authorization header.

Syntax and semantics follow those specified in RFC 2617 [23].

Example:

Authentication-Info: nextnonce="47364c23432d2e131a5fh210812¢"

24.7 Authorization

The Authorization header field contains authentication credentials of a UA. Section 20.2 overviews the use
of the Authorization header field, and Section 20.4 describes the syntax and semantics when used with
HTTP authentication. This header field, along witRroxy-Authorization, breaks the general rules about
multiple header fields. Although not a comma-separated list, this header field may be present multiple times,
andMUST NOT be combined into a single header using the usual rules described in Section 7.3.

In the example below, there are no quotes around the Digest parameter:

Authorization: Digest username="Alice", realm="Bob’s Friends",
nonce="84a4cc6f3082121f32b42a2187831a9e",
response="7587245234h3434cc3412213e5f113a5432"

24.8 Call-ID

The Call-ID header field uniquely identifies a particular invitation or all registrations of a particular client.
A single multimedia conference can give rise to several calls with diffaCafitiDs, for example, if a user
invites a single individual several times to the same (long-running) confer@atklDs are case- sensitive
and are simply compared byte-by-byte.

The compact form of th€all-ID header field is.

Examples:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@biloxi.com
i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6@192.0.2.4

24.9 Call-Info

The Call-Info header field provides additional information about the caller or callee, depending on whether
it is found in a request or response. The purpose of the URI is described bpuhgose” parameter.
The “icon” parameter designates an image suitable as an iconic representation of the caller or callee. The
“info” parameter describes the caller or callee in general, for example, through a web pageaittie “
parameter provides a business card, for example, in vCard [33] or LDIF [34] formats. Additonal tokens can
be registered using IANA and the procedures in Section 28.

Use of theCall-Info header field can pose a security risk. If a callee fetches the URIs provided by a
malicious caller, the callee may be at risk for displaying inappropriate or offensive content, dangerous or
illegal content, and so on. Therefore, itRECOMMENDED that a UA only render the information in the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 132]

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875
4876

4877

4878

4879

4880

4881

4882

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Call-Info header if it can verify the authenticity of the element that originated the header and trusts that
element. This need not be the peer UA; a proxy can insert this header into requests.
Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg> ;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

24.10 Contact

The Contact header field provides a URI whose meaning depends on the the type of request or response it
isin.

A Contact header field can contain a display name, a URI with URI parameters, and header parameters.

This document defines theontact parameters " and “expires”. These parameters are only used
when theContact is present in ®ISTER request or response, or in a 3xx response. Additional param-
eters may be defined in other specifications.

When the header field contains a display name, the URI including all URI parameters is enclosed in
“<"and “>". If no “ <” and “>" are present, all parameters after the URI are header parameters, not URI
parameters. The display name can be tokens, or a quoted string, if a larger character set is Hesinet.
the “display-name” is empty, the ‘hame-addr” form MusT be used if the &ddr-spec” contains a comma,
semicolon, or question mark. There may or may not be LWS betwealigplay-name and the <”. These
rules for parsing a display name, URI and URI parameters, and header parameters also apply for the header
fields To andFrom.

The Contact header has a role similar to thecation header field in HTTP. However, the HTTP header field
only allows one address, unquoted. Since URIs can contain commas and semicolons as reserved characters, they
can be mistaken for header or parameter delimiters, respectively.

The compact form of th€ontact header field isn (for "moved”).
The second example below show€antact header field containing both a URI parametearfsport)
and a header parametexpires).

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
;g=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

m: <sip:bob@192.0.2.4;transport=tcp>;expires=60

24.11 Content-Disposition

The Content-Disposition header field describes how the message body or, for multipart messages, a mes-
sage body part is to be interpreted by the UAC or UAS. This SIP header field extends the GiiiM&nt-
Type (RFC 1806 [35]).

The value $ession” indicates that the body part describes a session, for either calls or early (pre-call)
media. The valuerender” indicates that the body part should be displayed or otherwise rendered to the
user. For backward-compatibility, if tf@ontent-Disposition header is missing, the sen@iouLD assume
bodies ofContent-Type application/sdp are the dispositionsession”, while other content types are
“render”.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 133]

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924
4925
4926
4927
4928
4929

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The disposition typeiton” indicates that the body part contains an image suitable as an iconic repre-
sentation of the caller or callee. The valert” indicates that the body part contains information, such as
an audio clip, that should be rendered instead of ring tone.

The handling parametenandling-parm, describes how the UAS should react if it receives a message
body whose content type or disposition type it does not understand. The parameter has defined values
of “optional” and “required”. If the handling parameter is missing, the valueduired” sHoOULD be
assumed.If this header field is missing, the MIME type determines the default content disposition. If there
is none, fender” is assumed.

Example:

Content-Disposition: session

24.12 Content-Encoding

The Content-Encoding header field is used as a modifier to theedia-type”. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanismsiUusT be applied in order to obtain the media-type referenced byCthwtent-Type header
field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of
its underlying media type.

If multiple encodings have been applied to an entity, the content codings be listed in the order in
which they were applied.

All content-coding values are case-insensitive. IANA acts as a registry for content-coding value tokens.
See [H3.5] for a definition of the syntax foontent-coding.

ClientsMAY apply content encodings to the body in requests. A sener apply content encodings to
the bodies in responses. The semversT only use encodings listed in theccept-Encoding header in the
request.

The compact form of th€ontent-Encoding header field i®. Examples:

Content-Encoding: gzip
e: tar

24.13 Content-Language
See [H14.12]. Example:

Content-Language: fr

24.14 Content-Length

The Content-Length header field indicates the size of the message-body, in decimal number of octets, sent

to the recipient.

ApplicationssHouLD use this field to indicate the size of the message-body to be transferred, regardless
of the media type of the entity. If TCP is used as transport, the headewniisdat be used. The size of the
message-body doemt include the CRLF separating headers and body. Bagptent-Length greater than
or equal to zero is a valid value. If no body is present in a message, th€@otitent-Length header field
MUST be set to zero.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 134]

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

4951

4952

4953

4954

4955

4956

4957
4958

4959

4960

4961

4962

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate re-
sponses.

The compact form of the headerlis
Examples:

Content-Length: 349
l: 173

24.15 Content-Type

The Content-Type header field indicates the media type of the message-body sent to the recipient. The
“media-type” element is defined in [H3.7]. Th€ontent-Type heademusT be present if the body is not
empty. If the body is empty, and@ontent-Type header is present, it indicates that the body of the specific
type has zero length (for example, an empty audio file).

The compact form of the headerds

Examples:

Content-Type: application/sdp
c: text/html; charset=1S0O-8859-4

24.16 CSeq

A CSeq header field in a request contains a single decimal sequence number and the request method. The
sequence numberusT be expressible as a 32-bit unsigned integer. C8eq header serves to order trans-
actions within a dialog, to provide a means to uniquely identify transactions, and to differentiate between
new requests and request retransmissions.

Example:

CSeq: 4711 INVITE

24.17 Date

The Date header field contains an RFC 1123 date (see [H14.18]). Unlike HTTP/1.1, SIP only supports
the most recent RFC 1123 [36] format for dates. As in [H3.3], SIP restricts the timez@i€-date to
“GMT”, while RFC 1123 allows any timezonefc1123-date is case-sensitive.

TheDate header field reflects the time when the request or response is first sent.

The Date header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time. However, in its GMT form, it requires clients to know their offset from GMT.

Example:

Date: Sat, 13 Nov 2010 23:29:00 GMT

24.18 Error-Info

TheError-Info header field provides a pointer to additional information about the error status response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 135]

4963
4964
4965
4966
4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

SIP UACs have user interface capabilities ranging from pop-up windows and audio on PC softclients to audio-
only on "black” phones or endpoints connected via gateways. Rather than forcing a server generating an error to
choose between sending an error status code with a detailed reason phrase and playing an audio recording, the
Error-Info header field allows both to be sent. The UAC then has the choice of which error indicator to render to the
caller.

A UAC MAY treat a SIP URI in arError-Info header field as if it were €ontact in a redirect and
generate a neWNVITE, resulting in a recorded announcement session being established. A non-SIP URI
MAY be rendered to the user.

Examples:

SIP/2.0 404 The number you have dialed is not in service
Error-Info: <sip:not-in-service-recording@atlanta.com>

24.19 Expires

The Expires header field gives the relative time after which the message (or content) expinesprecise
meaning of this is method dependent.

The expiration time in adNVITE doesnot affect the duration of the actual session that may result
from the invitation. Session description protocols may offer the ability to express time limits on the session
duration, however.

The value of this field is an integer number of seconds (in decimal), measured from the receipt of the
request.

Examples:

Expires: 5

24.20 From

The From header field indicates the initiator of the request. This may be different from the initiator of the
dialog. Requests sent by the callee to the caller use the callee’s addresEriorthieeader field.

The optional tisplay-name” is meant to be rendered by a human user interface. A systenwLD use
the display name “Anonymous” if the identity of the client is to remain hidden. Even ifdlsplay-name”
is empty, the hame-addr” form MusT be used if the &ddr-spec” contains a comma, question mark, or
semicolon. Syntax issues are discussed in Section 7.3.1.

Section 12 describes hotwrom header fields are compared for the purpose of matching requests to
dialogs. See Section 24.10 for the rules for parsing a display name, URI and URI parameters, and header
parameters.

The compact form of the headerfis

Examples:

From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s

From: sip:+12125551212@server.phone2net.com;tag=887s
f: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 136]

4999

5000

5001

5002
5003
5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

24.21 In-Reply-To

The In-Reply-To header field enumerates tlall-IDs that this call references or returns. Th&sdl-IDs
may have been cached by the client then included in this header in a return call.

This allows automatic call distribution systems to route return calls to the originator of the first call. This also
allows callees to filter calls, so that only return calls for calls they originated will be accepted. This field is not a
substitute for request authentication.

Example:

In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

24.22 Max-Forwards

The Max-Forwards header field must be used with any SIP methodimit the number of proxies or
gateways that can forward the request to the next downstream server. This can also be useful when the client
is attempting to trace a request chain that appears to be failing or looping in mid-chain.

The Max-Forwards value is a decimal integer indicating the remaining number of times this request
message is allowed to be forwarded. This count is decremented by each server that forwards the request.

This header field should be inserted by elements that can not otherwise guarantee loop detection. For
example, a B2BUA should insertMax-Forwards header field.

Example:

Max-Forwards: 6

24.23 Min-Expires

The Min-Expires header field conveys the minimum registration expiration interval to a registrar. The
header field contains a decimal integer number of seconds. The use of the header field in a 423 (Registration
Too Brief) response is described in Sections 10.2.8, 10.3, and 25.4.17.

Example:

Min-Expires: 60

24.24 MIME-Version

See [H19.4.1].
Example:

MIME-Version: 1.0

24.25 Organization

The Organization header field conveys the name of the organization to which the entity issuing the request
or response belongs.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 137]

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The fieldmAY be used by client software to filter calls.

Example:

Organization: Boxes by Bob

24.26 Priority

ThePriority header field indicates the urgency of the request as perceived by the cliefridtiey header

field describes the priority that the SIP request should have to the receiving human or its agent. For example,
it may be factored into decisions about call routing and acceptance. It does not influence the use of com-
munications resources such as packet forwarding priority in routers or access to circuits in PSTN gateways.
The header field can have the values “non-urgent”, “normal”, “urgent”, and “emergency”, but additional
values can be defined elsewheré.is RECOMMENDED that the value of “emergency” only be used when

life, limb, or property are in imminent danger. Otherwise, there are no semantics defined for this header
field.

These are the values of RFC 2076 [37], with the addition of “emergency”.

Examples:

Subject: A tornado is heading our way!
Priority: emergency

or

Subject: Weekend plans
Priority: non-urgent

24.27 Proxy-Authenticate

TheProxy-Authenticate header field contains an authentication challengjbe syntax for this header and
its use is defined in [H14.33]. See 20.3 for further details on its usage.
Example:

Proxy-Authenticate: Digest realm="Carrier SIP",
domain="sip:ssl.carrier.com",
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

24.28 Proxy-Authorization

TheProxy-Authorization header field allows the client to identify itself (or its user) to a proxy that requires
authentication. Th&roxy-Authorization field value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the resource being requested.

See [H14.34] for a definition of the syntax, and section 20.3 for a discussion of its usage.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 138]

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

This header field, along witAuthorization, breaks the general rules about multiple header fields. Al-
though not a comma-separated list, this header field may be present multiple timesysndvoT be
combined into a single header using the usual rules described in Section 7.3.1.

Example:

Proxy-Authorization: Digest username="Alice", realm="Atlanta ISP",
nonce="c60f3082ee1212b402a21831ae",
response="245f23415f11432b3434341c022"

24.29 Proxy-Require

The Proxy-Require header field is used to indicate proxy-sensitive features that must be supported by the
proxy. See Section 24.33 for more details on the mechanics of this message and a usage example.
Example:

Proxy-Require: foo

24.30 RAck

TheRAck header is sent inBRACK request to support reliability of provisional responses. It contains two
numbers and a method tag. The first number is the value frolR8e®| header in the provisional response
that is being acknowledged. The next number, and the method, are copied fr@8diydn the response
that is being acknowledged. The method name irRAek header is case sensitive.

Example:

RAck: 776656 1 INVITE

24.31 Record-Route

The Record-Route is inserted by proxies in a request to force future requests in the session to be routed
through the proxy.

Details of its use with th&®oute header field are described in Section 16.4.

Example:

Record-Route: <sip:bob@biloxi.com;maddr=192.0.2.4>,
<sip:bob@biloxi.com;maddr=192.0.6.1>

24.32 Reply-To

TheReply-To header field contains a logical return URI which may be different fronirtben header field.
For example, the URWAY be used to return missed calls or unestablished sessions.

If the user wished to remain anonymous, the header $igloluLD either be omitted from the request or
populated in such as way that does not reveal any private information.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 139]

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Even if the ‘display-name” is empty, the ‘hame-addr” form MuUsT be used if the &ddr-spec” con-
tains a comma, question mark, or semicolon. Syntax issues are discussed in Section 7.3.1.
Example:

Reply-To: Bob <sip:bob@biloxi.com>

24.33 Require

The Require header field is used by UACs to tell UASs about options that the UAC expects the UAS to
support in order to process the request. Although an optional headðere MusT NOT be ignored if
it is present.

The Require header contains a list of option tags, described in Section 23.2. Each option tag defines
a SIP extension thatusT be understood to process the request. Frequently, this is used to indicate that a
specific set of extension headers need to be understood. A UAC compliant to this specificagmonly
include option tags corresponding to standards-track RFCs.

Example:

Require: 100rel

24.34 Retry-After

The Retry-After header field can be used with a 503 (Service Unavailable) response to indicate how long
the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 600 (Busy), or
603 (Decline) response to indicate when the called party anticipates being available again. The value of this
field is a positive integer number of seconds (in decimal) after the time of the response.

An optional comment can be used to indicate additional information about the time of callback. An
optional “duration” parameter indicates how long the called party will be reachable starting at the initial
time of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

Examples:

Retry-After: 18000;duration=3600
Retry-After: 120 (I'm in a meeting)

24.35 Route

TheRoute is used to force routing for a request through the listed set of proxies. Details of its use with the
Record-Route header field are described in Section 13.
Example:

Route: <sip:bob@biloxi.com;maddr=192.0.2.4>, <sip:bob@pc33.atlanta.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 140]

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

24.36 RSeq

The RSeq header is used in provisional responses in order to transmit them reliably. It contains a single
numeric value from 1 to 2**32 - 1. For details on its usage, see Section 18.1.
Example:

RSeq: 988789

24.37 Server

The Server header field contains information about the software used by the UAS to handle the request.
The syntax for this field is defined in [H14.38].

Revealing the specific software version of the server might allow the server to become more vulnerable
to attacks against software that is known to contain security holes. Implemsniota. D make theServer
header field a configurable option.

Example:

Server. HomeProxy v2

24.38 Subject

The Subject header field provides a summary or indicates the nature of the call, allowing call filtering
without having to parse the session description. The session description does not have to use the same
subject indication as the invitation.

The compact form of the headerds

Example:

Subject: Need more boxes
s: Tech Support

24.39 Supported

The Supported header field enumerates all the extensions supported by the UAC or UAS.

The Supported header contains a list of option tags, described in Section 23.2, that are understood by
the UAC or UAS. A UA compliant to this specificationusT only include option tags corresponding to
standards-track RFCs. If empty, it means that no extensions are supported.

Example:

Supported: 100rel

24.40 Timestamp

The Timestamp header field describes when the UAC sent the request to the UAS. See Section 8.2.6 for
details on how to generate a response to a request that contains the header field, and Section 17.3 for usage
in RTT estimation.

Example:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 141]

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

5189

5190

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Timestamp: 54

2441 To

The To header field specifies the logical recipient of the request.
The optional tisplay-name” is meant to be rendered by a human-user interface. Td@' ‘parameter
serves as a general mechanism to distinguish multiple instances of a user identified by a single SIP URI.
See Section 13 for details of th&ay” parameter.
Section 12 describes hovo andFrom header fields are compared for the purpose of matching requests
to dialogs. See Section 24.10 for the rules for parsing a display name, URI and URI parameters, and header
parameters.
The compact form of the headertis
The following are examples of valitb headers:

To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
t. sip:+12125551212@server.phone2net.com

24.42 Unsupported

TheUnsupported header field lists the features not supported by the UAS. See Section 24.33 for motivation.
Example:

Unsupported: foo

24.43 User-Agent

The User-Agent header field contains information about the UAC originating the request. The syntax and
semantics are defined in [H14.43].

Revealing the specific software version of the user agent might allow the user agent to become more
vulnerable to attacks against software that is known to contain security holes. ImplensansdD make
theUser-Agent header field a configurable option.

Example:

User-Agent: Softphone Betal.5

24.44 Via

The Via field indicates the path taken by the request so far and indicates the path that should be followed in
routing responses. The branch ID parameter inttaeheader serves as a transaction identifier, and is used
by proxies to detect loops.

TheVia header field contains the transport protocol used to send the message, the client’s host name or
network address and, if not the default port number, the port number at which it wishes to receive responses.
TheVia header field can also contain parameters suchmasitr”, “ttl”, “ received”, and “branch”, whose
meaning and use are described in other sections.

Transport protocols defined here atdDP”, “TCP”, “TLS”, and “SCTP”. “TLS” means TLS over

TCP.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 142]

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

The host or network address and port number are not required to follow the SIP URI syntax. Specifically,
LWS on either side of the “:” or /" is allowed, as shown in the second example below.

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060;branch=z9hG4bK87asdks7
Via: SIP/2.0/UDP 128.59.16.1:5060 ;received=128.59.19.3;branch=z9hG4bK77asjd

The compact form of the headenis

In this example, the message originated from a multi-homed host with two addresses, 128.59.16.1
and 128.59.19.3. The sender guessed wrong as to which network interface would be used. Erlang.bell-
telephone.com noticed the mismatch and added a parameter to the previougihdygader field, contain-
ing the address that the packet actually came from.

Another example:

Via: SIP / 2.0 / UDP first.example.com: 4000;ttl=16
:maddr=224.2.0.1 :branch=z9hG4bKa7c6a8dlze.1

Even though this specification mandates that the branch parameter be present in all requests, the BNF
for the header indicates that it is optional. This allows interoperation with RFC 2543 elements, which did
not have to insert the branch parameter.

24.45 Warning

TheWarning header field is used to carry additional information about the status of a resjWaseing
headers are sent with responses and contain a three-digit warning code, host name, and warning text.

The “warn-text” should be in a natural language that is most likely to be intelligible to the human user
receiving the response. This decision can be based on any available knowledge, such as the location of the
user, theAccept-Language field in a request, or th€ontent-Language field in a response. The default
language is i-default [38].

The currently-definedwarn-code”s are listed below, with a recommendern-text in English and a
description of their meaning. These warnings describe failures induced by the session description. The first
digit of warning codes beginning with “3” indicates warnings specific to SIP. Warnings 300 through 329 are
reserved for indicating problems with keywords in the session description, 330 through 339 are warnings
related to basic network services requested in the session description, 370 through 379 are warnings related
to quantitative QoS parameters requested in the session description, and 390 through 399 are miscellaneous
warnings that do not fall into one of the above categories.

300 Incompatible network protocol: One or more network protocols contained in the session description
are not available.

301 Incompatible network address formats: One or more network address formats contained in the ses-
sion description are not available.

302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
tion are not available.

303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
description were not understood.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 143]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

s228 304 Media type not available: One or more media types contained in the session description are not avail-
5229 able.

s230 305 Incompatible media format: One or more media formats contained in the session description are not
5231 available.

s232 - 306 Attribute not understood: One or more of the media attributes in the session description are not sup-
5233 ported.

s23a 307 Session description parameter not understoodA parameter other than those listed above was not
5235 understood.

s236 - 330 Multicast not available: The site where the user is located does not support multicast.

s237 - 331 Unicast not available: The site where the user is located does not support unicast communication (usu-
5238 ally due to the presence of a firewall).

s239 370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
5240 exceeds that known to be available.

s221 - 399 Miscellaneous warning: The warning text can include arbitrary information to be presented to a hu-

5242 man user or logged. A system receiving this warmngsT NOT take any automated action.
5243 1xx and 2xx have been taken by HTTP/1.1.

5244 Additional “warn-code”s, as in the example below, can be defined through IANA.

5245 Examples:

5246 Warning: 307 isi.edu "Session parameter 'foo’ not understood"
5247 Warning: 301 isi.edu "Incompatible network address type 'E.164™
s 24.46 WWW-Authenticate

s220 The WWW-Authenticate header field contains an authentication challengéhe syntax for this header
s2s0 field and use is defined in [H14.47]. See 20.2 for further details on its usage.
5251 Example:

5252 WWW-Authenticate: Digest realm="Bob’s Friends",

5253 domain="sip:boxesbybob.com",
5254 nonce="f84flcec4le6cbe5aea9c8e88d359",
5255 opaque="", stale=FALSE, algorithm=MD5

=6 25 Response Codes

s257 The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
s258 codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
5259 SHOULD NOT be used. Response codes not defined by HTTP/1.1 have codes x80 upwards to avoid clashes
s260 With future HTTP response codes. Also, SIP defines a new class, 6xx.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 144]

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.1 Provisional 1xx

Provisional responses, also known as informational responses, indicate that the server or proxy contacted is
performing some further action and does not yet have a definitive response. A server typically sends a 1xx
response if it expects to take more than 200 ms to obtain a final response. Note that 1xx responses are not
transmitted reliably, that is, they do not cause the client to serdlGiq Provisional (1xx) responsesay

contain message bodies, including session descriptions.

25.1.1 100 Trying

This response indicates that the request has been received by the next hop server and that some unspecified
action is being taken on behalf of this call (e.g., a database is being consulted). This response, like all other
provisional responses, stops retransmissions tfl&iTE by a UAC. The 100 (Trying) response is different

from other provisional responses, in that it is never forwarded upstream by a stateful proxy.

25.1.2 180 Ringing

The user agent receiving thVITE is trying to alert the user. This respongay be used to initiate local
ringback.

25.1.3 181 Call Is Being Forwarded

A proxy serverMAY use this status code to indicate that the call is being forwarded to a different set of
destinations.

25.1.4 182 Queued

The called party is temporarily unavailable, but the callee has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, e.g., “5 calls queued; expected waiting time is 15
minutes”. The servemAy issue several 182 (Queued) responses to update the caller about the status of the
queued call.

25.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call which is
not otherwise classified. THReason-Phrase, header fields, or message boalyy be used to convey more
details about the call progress.

25.2 Successful 2xx

The request was successful.

25.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 145]

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306
5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322
5323

5324

5325

5326

5327

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.3 Redirection 3xx

3xx responses give information about the user's new location, or about alternative services that might be
able to satisfy the call.

25.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
user agent) can select a preferred communication end point and redirect its request to that location.

The respons@AY include a message body containing a list of resource characteristics and location(s)
from which the user or user agent can choose the one most appropriate, if allowedAncépd request
header. However, no MIME types have been defined for this message body.

The choicessHOULD also be listed a€ontact fields (Section 24.10). Unlike HTTP, the SIP response
MAY contain severalContact fields or a list of addresses in@ontact field. User agentsAy use the
Contact header field value for automatic redirectionnoxy ask the user to confirm a choice. However, this
specification does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot
or prefers not to proxy the request.

25.3.2 301 Moved Permanently

The user can no longer be found at the address iRdwest-URI and the requesting cliesHouLD retry

at the new address given by tl®ntact header field (Section 24.10). The requesaOuLD update any

local directories, address books and user location caches with this new value and redirect future requests to
the address(es) listed.

25.3.3 302 Moved Temporarily

The requesting cliensHOULD retry the request at the new address(es) given byCihetact header field
(Section 24.10). ThRequest-URI of the new request uses the value of @entact header in the response.
The duration of the validity of th€ontact URI can be indicated through dExpires (Section 24.19)
header field or aexpires parameter in th&€€ontact header field. Both proxies and UAsAY cache this
URI for the duration of the expiration time. If there is no explicit expiration time, the address is only valid
once for recursing, anddusT NOT be cached for future transactions.
If the URI cached from th€ontact header field fails, th&®equest-URI from the redirected request
MAY be tried again a single time.

The temporary URI may have become out of date sooner than the expiration time, and a new temporary URI
may be available.

25.3.4 305 Use Proxy

The requested resoureruST be accessed through the proxy given by@wntact field. TheContact field
gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 (Use
Proxy) responsemuUsT only be generated by user agent servers.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 146]

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.3.5 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response. Formats for such bodies are not defined here, and may be the subject of
future standardization.

25.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. Theseleutd NOT retry the

same request without modification (e.g., adding appropriate authorization). However, the same request to a
different server might be successful.

25.4.1 400 Bad Request

The request could not be understood due to malformed syntaxR&hson-Phrase sHoOuULD identify the

syntax problem in more detail, e.g., “Missing Call-ID header”.

25.4.2 401 Unauthorized

The request requires user authentication. This response is issued by user agent servers and registrars, while
407 (Proxy Authentication Required) is used by proxy servers.

25.4.3 402 Payment Required

Reserved for future use.

25.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
SHOULD NOT be repeated.

25.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specifiedReytrest-
URI. This status is also returned if the domain in Request-URI does not match any of the domains
handled by the recipient of the request.

25.4.6 405 Method Not Allowed

The method specified in tfiRequest-Line is understood, but not allowed for the address identified by the
Request-URI. The responseiusT include anAllow header field containing a list of valid methods for the
indicated address.

25.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 147]

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the cliergtT first authenticate itself with
the proxy. SIP access authentication is explained in section 22 and 20.3.

This status code can be used for applications where access to the communication channel (e.g., a tele-
phony gateway) rather than the callee requires authentication.

25.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, if it could not
determine the location of the user in time. The clismty repeat the request without modifications at any
later time.

25.4.10 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not Fedpd)LD be used instead.

25.4.11 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server is willing or
able to process. The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the serveHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clienhy try again.

25.4.12 414 Request-URI Too Long
The server is refusing to service the request becaudedtjaest-URI is longer than the server is willing to
interpret.

25.4.13 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not sup-
ported by the server for the requested method. The sereULD return a list of acceptable formats using

the Accept, Accept-Encoding and Accept-Language header fields. UAC processing of this response is
described in Section 8.1.4.6.

25.4.14 416 Unsupported URI Scheme

The server cannot process the request because the scheme of the URRagtest-URI is unknown to
the server. Client processing of this response is described in Section 8.1.4.6.

25.4.15 420 Bad Extension

The server did not understand the protocol extension specifietPinxy-Require (Section 24.29) oRe-
quire (Section 24.33) header field. The serggrouLD include a list of the unsupported extensions in an
Unsupported header in the response. UAC processing of this response is described in Section 8.1.4.6.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 148]

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421
5422

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.4.16 421 Extension Required

The UAS needs a particular extension to process the request, but this extension is not liSagpored
header in the request. Responses with this status moda contain aRequire header field listing the
required extensions.

A UAS sHouULD NOT use this response unless it truly cannot provide any useful service to the client.
Instead, if a desirable extension is not listed in 8wpported header field, serversHouLD process the
request using baseline SIP capabilities and any extensions supported by the client.

25.4.17 423 Registration Too Brief

The registrar is rejecting a registration request beca@msact header field expiration time was too small.
The use of this response and the relatid-Expires header field are described in Sections 10.2.8, 10.3,
and 24.23.

25.4.18 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (e.qg., is not logged
in, logged in in such a manner as to preclude communication with the callee or has activated the “do not
disturb” feature). The responseny indicate a better time to call in tHeetry-After header. The user could
also be available elsewhere (unbeknownst to this host). The reason pR@geD indicate a more precise
cause as to why the callee is unavailable. This valieuLD be setable by the user agent. Status 486 (Busy
Here)MAY be used to more precisely indicate a particular reason for the call failure.

This status is also returned by a redirect or proxy server that recognizesidbe identified by the
Request-URI, but does not currently have a valid forwarding location for that user.

25.4.19 481 Call/Transaction Does Not Exist

This status indicates that the UAS received a request that does not match any existing dialog or transaction.

25.4.20 482 Loop Detected

The server has detected a loop (Section 2).

25.4.21 483 Too Many Hops

The server received a request that contaiMaa-Forwards (Section 24.22) header with the value zero.

25.4.22 484 Address Incomplete

The server received a request witliRaquest-URI that was incomplete. Additional informatidHoOULD
be provided in the reason phrase.

This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the
dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 (Address Incomplete) status response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 149]

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433
5434
5435
5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

25.4.23 485 Ambiguous

TheRequest-URI was ambiguous. The respongey contain a listing of possible unambiguous addresses
in Contact header fields. Revealing alternatives can infringe on privacy of the user or the organization. It
MUST be possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of
possible choices for ambiguotequest-URIs.

Example response to a request with Request-URI sip:lee@example.com

485 Ambiguous SIP/2.0

Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>
Contact: Lee M. Foote <sip:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices
provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 (Ambiguous) response.

25.4.24 486 Busy Here

The callee’s end system was contacted successfully but the callee is currently not willing or able to take
additional calls at this end system. The respomse indicate a better time to call in thRetry-After

header. The user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere)sHOULD be used if the client knows that no other end system will be able to accept this call.

25.4.25 487 Request Terminated
The request was terminated bBIE or CANCEL request. This response is never returned fGANCEL
request itself.

25.4.26 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific entity addressed
by theRequest-URI and the request may succeed elsewhere. A message body containing a description of
media capabilitiesmAy be present in the response, which is formatted according tAdbept header field

in the INVITE (or application/sdp if not present), the same as a message body in a 200 (OK) response to
anOPTIONS request.

25.4.27 491 Request Pending

The request was received by a UAS which had a pending request within the same dialog. Section 14.2
describes how such “glare” situations are resolved.

25.4.28 493 Undecipherable

The request was received by a UAS which contained an encrypted MIME body for which the recipient
does not possess or will not provide an appropriate decryption key. This regpandeave a single body

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 150]

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

containing an appropriate public key that should be used to encrypt MIME bodies sent to this user agent.
Details of the usage of this response codecan be found in Section 21.2.

25.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred.

25.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. Thexlient
display the specific error condition, andhy retry the request after several seconds.

If the condition is temporary, the serveny indicate when the client may retry the request using the
Retry-After header.

25.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response

when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.) Note that a 405 (Method Not Allowed) is sent when the server

recognizes the request method, but that method is not allowed or supported.

25.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

25.5.4 503 Service Unavailable

The server is temporarily unable to process the request due to a temporary overloading or maintenance of
the server. The servefAy indicate when the client should retry the request Redry-After header. If no
Retry-After is given, the clienMusT act as if it had received a 500 (Server Internal Error) response.

A client (proxy or UAC) receiving a 503 (Service Unavailabf)ouLD attempt to forward the request
to an alternate server. $tHouLD NOT forward any other requests to that server for the duration specified in
the Retry-After header field, if present.

ServeravAy refuse the connection or drop the request instead of responding with 503 (Service Unavail-
able).

25.5.5 504 Server Time-out

The server did not receive a timely response from an external server it accessed in attempting to process the
request. 408 (Request Timeout) should be used instead if there was no response within the period specified
in the Expires header field from the upstream server.

25.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request. The
server is indicating that it is unable or unwilling to complete the request using the same major version as the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 151]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

sa0 Client, other than with this error message.

sa01 25.5.7 513 Message Too Large

sa92 The server was unable to process the request since the message length exceeded its capabilities.

sa3 25.6 Global Failures 6xx

sa04 BXX responses indicate that a server has definitive information about a particular user, not just the particular
s495 iNstance indicated in thRequest-URI.

sa6 25.6.1 600 Busy Everywhere

sa97 The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
sa08 At this time. The responseay indicate a better time to call in thRetry-After header. If the callee does

sa99 NOt wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead. This
sso0 Status response is returned only if the client knows that no other end point (such as a voice mail system) will
sso1 - answer the request. Otherwise, 486 (Busy Here) should be returned.

ss02 25.6.2 603 Decline

ss03 The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partic-
sso4 ipate. The respons@Ay indicate a better time to call in thHRetry-After header. This status response is
sso5 returned only if the client knows that no other end point will answer the request.

sso6 25.6.3 604 Does Not Exist Anywhere

sso7 - The server has authoritative information that the user indicated Reljeest-URI does not exist anywhere.

sso8 25.6.4 606 Not Acceptable

ss00 The user's agent was contacted successfully but some aspects of the session description such as the requested
ssi0 - media, bandwidth, or addressing style were not acceptable.

5511 A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately
ss12 - support the session described. The 606 (Not Acceptable) respanseontain a list of reasons in\&arn-

ss13 iNg header field describing why the session described cannot be supported. A message body containing a
ss14 - description of media capabilitiegAy be present in the response, which is formatted according tédhe

ssi5 - cept header field in théNVITE (or application/sdp if not present), the same as a message body in a 200

ssi6 (OK) response to a@PTIONS request. Reasons are listed in Section 24.45. 1t is hoped that negotiation

ss17 - Will not frequently be needed, and when a new user is being invited to join an already existing conference,
ss18 - hegotiation may not be possible. It is up to the invitation initiator to decide whether or not to act on a 606
ssi9 (Not Acceptable) response. This status response is returned only if the client knows that no other end point
ss20 Will answer the request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 152]

5521

55622

5523

5524

55625

5526

5527

5528

5529

5530

5531

5632

5533

5534

5535

5536

55637

5538

5539

5540

5541

5542

5543

5544

5545

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

26 Examples

In the following examples, we often omit the message body and the correspaddinignt-Length and
Content-Type headers for brevity.

26.1 Registration

Bob registers on start-up. The message flow is shown in Figure 9.

- a

biloxi.com Bob's SIP
Registrar Phone

REGISTER F1 ‘
200 OK F2

Figure 9: SIP Registration Example

F1 REGISTER Bob -> Registrar

REGISTER sip:registrar.biloxi.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4:5060;branch=z9hG4bKnashds7
To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>

Expires: 7200

Content-Length: 0

The registration expires after two hours. The registrar responds with a 200 OK:

F2 200 OK Registrar -> Bob

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.4:5060;branch=z9hG4bKnashds7
To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 153]

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Call-ID: 843817637684230@998sdasdh09
CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>

Expires: 7200

Content-Length: 0

26.2 Session Setup

This example contains the full details of the example session setup in Section 4. The message flow is shown
in Figure 1.

F1 INVITE Alice -> atlanta.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

F2 100 Trying atlanta.com proxy -> Alice

SIP/2.0 100 Trying

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Content-Length: 0

F3 INVITE atlanta.com proxy -> biloxi.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 154]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

5583 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5584 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5585 To: Bob <sip:bob@biloxi.com>

5586 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5587 Call-ID: a84b4c76e66710

5588 CSeq: 314159 INVITE

5589 Contact: <sip:alice@pc33.atlanta.com>

5590 Content-Type: application/sdp

5591 Content-Length: 142

5592

5593 (Alice’s SDP not shown)

5594

sses F4 100 Trying biloxi.com proxy -> atlanta.com proxy

5596

5507 SIP/2.0 100 Trying

5508 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5599 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5600 To: Bob <sip:bob@biloxi.com>

5601 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5602 Call-ID: a84b4c76e66710

5603 CSeq: 314159 INVITE

5604 Content-Length: 0

5605

seos F5 INVITE biloxi.com proxy -> Bob

5607

5608 INVITE SiprOb@192.0.2.4 SIP/2.0

5609 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bK4b43c2ff8.1
5610 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9nG4bK77ef4c2312983.1
5611 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5612 To: Bob <sip:bob@biloxi.com>

5613 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5614 Call-ID: a84b4c76e66710

5615 CSeq: 314159 INVITE

5616 Contact: <sip:alice@pc33.atlanta.com>

5617 Content-Type: application/sdp

5618 Content-Length: 142

5619

5620 (Alice’s SDP not shown)

5621

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 155]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

se22 F6 180 Ringing Bob -> biloxi.com proxy

5623

5624 SIP/2.0 180 Ringing

5625 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bK4b43c2ff8.1
5626 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5627 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

5628 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5629 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5630 Call-ID: a84b4c76e66710

5631 CSeq: 314159 INVITE

5632 Content-Length: 0

5633

sesa F7 180 Ringing biloxi.com proxy -> atlanta.com proxy

5635

5636 SIP/2.0 180 Ringing

5637 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5638 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5639 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5640 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5641 Call-ID: a84b4c76e66710

5642 CSeq: 314159 INVITE

5643 Content-Length: 0

5644

seas F8 180 Ringing atlanta.com proxy -> Alice

5646

5647 SIP/2.0 180 Ringing

5648 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5649 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5650 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5651 Call-ID: a84b4c76e66710

5652 CSeq: 314159 INVITE

5653 Content-Length: 0

5654

sess F9 200 OK Bob -> biloxi.com proxy

5656

5657 SIP/2.0 200 OK

5658 Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bK4b43c2ff8.1

5659 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5660 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 156]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

5661 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5662 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5663 Call-ID: a84b4c76e66710

5664 CSeq: 314159 INVITE

5665 Contact: <sip:bob@192.0.2.4>

5666 Content-Type: application/sdp

5667 Content-Length: 131

5668

5669 (Bob’s SDP not shown)

5670

se1 F10 200 OK biloxi.com proxy -> atlanta.com proxy

5672

5673 SIP/2.0 200 OK

5674 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
5675 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5676 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5677 From: Alice <sip:alice@atlanta.com>;tag=1928301774

5678 Call-ID: a84b4c76e66710

5679 CSeq: 314159 INVITE

5680 Contact: <sip:bob@192.0.2.4>

5681 Content-Type: application/sdp

5682 Content-Length: 131

5683

5684 (Bob’s SDP not shown)

5685

sess F11 200 OK atlanta.com proxy -> Alice

5687

5688 SIP/2.0 200 OK

5689 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
5690 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

5691 From: Alice <sip:alice@atlanta.com>;tag=1928301774
5692 Call-ID: a84b4c76e66710

5693 CSeq: 314159 INVITE

5694 Contact: <sip:bob@192.0.2.4>

5695 Content-Type: application/sdp

5696 Content-Length: 131

5697

5698 (Bob’s SDP not shown)

5699

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 157]

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709

5710

5711

5712

5713

5714

5715

5716

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

F12 ACK Alice -> Bob

ACK sip:bob@192.0.2.4 SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds9
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 ACK

Content-Length: 0

The media session between Alice and Bob is now established.

Bob hangs up first. Note that Bob’s SIP phone maintains its 68eq numbering space, which, in
this example, begins with 231. Since Bob is making the requestala@dFrom URIs and tags have been
swapped.

F13 BYE Bob -> Alice

BYE sip:alice@pc33.atlanta.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKnashds10
From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 231 BYE

Content-Length: 0

F14 200 OK Alice -> Bob

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKnashds10
From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 231 BYE

Content-Length: 0

The SIP Call Flows document [39] contains further examples of SIP messages.
;; This buffer is for notes you don’t want to save, and for Lisp evaluation. ;; If you want to create a file,
first visit that file with C-x C-f, ;; then enter the text in that file’s own buffer.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 158]

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

27 Augmented BNF for the SIP Protocol

All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) similar to that used by RFC 2234 [40]. Implementors need to be familiar with the notation
in order to understand this specification. The augmented BNF includes the following constructs:

name = definition

The name of a rule is simply the name itself (without any enclositidnd “>") and is separated from
its definition by the equal “=" character. White space is only significant in that the indentation of continua-
tion lines indicates a rule definition that spans more than one line. Certain basic rules are in uppercase, such
as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions to clarify the use
of rule names.
"literal"
Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.
rulel | rule2
Elements separated by a baf’(’are alternatives, that is, “ygdsn0” will accept yes or no.

(rulel rule2)

Elements enclosed in parentheses are treated as a single element. Thus, “(eldrarjffetem)” allows the
token sequences “elem foo elem” and “elem bar elem”.

*rule

The character "*” preceding an element indicates repetition. The full formxisy” >*< m >element”
indicating at leask n > and at mosk m > occurrences of element. Default values are 0 and infinity so
that "*(element)” allows any number, including zero; "1*element” requires at least one; and "1*2element
allows one or two.

[rule]

Square brackets enclose optional elements; "[foo bar]” is equivalent to ™1 (foo bar)”.

N rule

Specific repetition: <n>(element)” is equivalent to<n>*<n>(element)”; that is, exactly:n> occur-
rences of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic charac-

ters.

: comment

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 159]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

s7es A semi-colon, set off some distance to the right of rule text, starts a comment that continues to the end of
sze6 line. This is a simple way of including useful notes in parallel with the specifications.
se7 27.1 Basic Rules

sz8 The following rules are used throughout this specification to describe basic parsing constructs. The US-
sze0 ASCII coded character set is defined by ANSI X3.4-1986.

OCTET = %x00-ff ; any 8-bit sequence of data
CHAR = %x00-7f ; any US-ASCII character (octets O - 127)
upalpha = A" |"B"|"C”|"D"|"E” | F" | "G | H” | I
"3 | KL M N[O [P QT | R |
ST U VY WX | TYT | 2
lowalpha = "a”|”"b”|"c”|"d"|"e” | "f"|"g” | "h" | "I" |
KT "m” | 'n e | pt | Mg |
SV WX Y|
alpha = lowalpha | upalpha
DIGIT = "0"|"1"| 27| "3" | 4" | 5" | 6" | T |
ng | g7
alphanum = alpha | DIGIT
CTL = %Xx00-1f | %x7f ; (octets 0 — 31) an®EL (127)
CR = %0d13; US-ASCII CR, carriage return character
LF = 09%0d10 ; US-ASCII LF, line feed character
SP = %0d32; US-ASCII SP, space character
HT = 9%0:d09 ; US-ASCII HT, horizontal tab character
5770 CRLF = CRLF; typically the end of a line

5771 The following are defined in RFC 2396 [9] for the SIP URI:

n.n ” ” FLEE]

reserved = ";H 'H/H H?" : "@" H+1l
| 1!$H | H,H
unreserved = alphanum | mark
mark = 1!_1! | H_H ‘ 1!.1! | 1!!” ‘ "~ | %N | mn
5772 escaped = "%” hex hex
5773 SIP header field values can be folded onto multiple lines if the continuation line begins with a space or

s774 horizontal tab. All linear white space, including folding, has the same semantics as SP. A ragipient

s775 - replace any linear white space with a single SP before interpreting the field value or forwarding the message
s76 - downstream. This is intended to behave exactly as HTTP 1.1 as described in RFC2615 [12]. The SWS
s777 - construct is similar to LWS but allows zero instances of space or tab

LWS = *(SP|HT)[CRLF]1*(SP | HT) ; linear whitespace
5778 SWS = *(SP|HT)[CRLF]*(SP |HT); sep whitespace
5779 To separate the header name from the rest of value, a colon is used, which, by the above rule, allows

s7s0 Whitespace before, but no line break, and whitespace after, including a linebreak. The HCOLON defines
s781 this construct.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 160]

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

HCOLON = *(SP|HT)"” SWS

The TEXT-UTFS8 rule is only used for descriptive field contents and values that are not intended to be
interpreted by the message parser. Word$T@&XT-UTF8 contain characters from the UTF-8 character
set (RFC 2279 [11]). Th&@ EXT-UTF8-TRIM rule is used for descriptive field contents that aotquoted
strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
uses the ISO 8859-1 character set.

TEXT-UTF8 *(TEXT-UTF8char | LWS)
TEXT-UTF8-TRIM = *TEXT-UTF8char *(*LWS TEXT-UTF8char)
TEXT-UTF8char %x21-7e | UTF8-NONASCII
UTF8-NONASCII = %xc0-df LJUTF8-CONT

| %xe0-ef 2UTF8-CONT

| %xfO-f7 3UTF8-CONT

| %xf8-fb AUTF8-CONT
|

%xfc-fd SUTF8-CONT

UTF8-CONT %x80-bf

A CRLF is allowed in the definition oTEXT-UTF8 only as part of a header field continuation. It is
expected that the foldingwWsS will be replaced with a singl&P before interpretation of theEXT-UTF8
value.

Hexadecimal numeric characters are used in several protocol elements. Some elements (authentication)
force hex alphas to be lower case.

LH EX e dlglt | ”aﬂ Hb” | ”CH Hd” ‘ ”eﬂ Hfﬂ
Others allow mixed upper and lower case
heX e LHEX ‘ HAH | HBH ‘ HCH ‘ HDH ‘ HEH | HFH

Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise
stated, tokens are case-insensitive. These special chanactersbe in a quoted string to be used within a
parameter value. The word construct is used in Call-ID to allow most separators to be used.

token - 1*(a|phanum n_n | 1!.1! | u!n | 1!%” ‘ [N ‘ u_n | 1!+u ‘ 769 | 719 | u~u)
SeparatOFS - u(n n)n u<n n>n u@n

u,u | 1!;” | u:n | u\n | <1!> |

u/n | u[n | u]n | n?u | n_n |

u{n u}n SP ‘ HT
WOfd - 1*(a|phanum | n_n | ".” | u!n | n%u | [N

n_u u+n | mn |

u(u | 1!)1! | u<1! | 1!>u

u:n u\n <n> ’

u/n | u[n | u]n | n?u |

u{n u}n SP ‘ HT)

When tokens are used or separators are used between elements, whitespace is often allowed before or
after these characters:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 161]

5803

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

MINUS = SWS "-" SWS ; minus

DOT = SWS"” SWS; period

PERCENT = SWS "%” SWS ; percent

BANG = SWS "I” SWS ; exclamation

PLUS = SWS"+" SWS; plus

STAR = SWS ™ SWS; asterisk

SLASH = SWS /" SWS; slash

TILDE = SWS "™ SWS; tilde

EQUAL = SWS"=" SWS; equal

LPAREN = SWS (" SWS; left parenthesis
RPAREN = SWS)" SWS; right parenthesis
LANGLE = SWS "<”" SWS; left angle bracket
RAQUOT = ">" SWS; right angle quote

LAQUOT = SWS "<” left angle quote

RANGLE = SWS ">" SWS; right angle bracket
BAR = SWS"|” SWS; vertical bar

ATSIGN = SWS’@” SWS ; atsign

COMMA = SWS "’ SWS; comma

SEMI = SWS """ SWS ; semicolon

COLON = SWS """ SWS; colon

DQUOT = SWS <”> SWS ; double quotation mark
LDQUOT = SWS <">; open double quotation mark
RDQUOT = <"> SWS; close double quotation mark
LBRACK = SWS"{" SWS; left square bracket
RBRACK = SWS"}” SWS; right square bracket

Comments can be included in some SIP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing “comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = LPAREN *(ctext | quoted-pai
; ctext includes all chars except left and right parens and backslash
ctext = %x21-27 | %x2a-5b | %x5d-’

| LWS

A string of text is parsed as a single word if it is quoted using double-quote marks. In quoted strings,
quotation marks (") and backslashe$ feed to be escaped.

quoted-string
gdtext

(SWS <”> *(qdtext | quoted-pair) <">)
LWS | %x21 | %x23-5b | %x5d-7e
\ UTF8-NONASCII

The backslash characteh{) MAY be used as a single-character quoting mechanism only within quoted-
string and comment constructs. Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this
mechanism to avoid conflict with line folding and header separation.

quoted-pair = "\" (%x00 - %x09 | %x0b | %x0c
| %0x0e - %XT7f)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 162]

5815

5816

INTERNET-DRAFT

SIP-URI

userinfo
user
user-unreserved

telephone-subscriber

password

hostport
host
hostname
domainlabel

toplabel

IPv4address
IPv6reference
IPv6address
hexpart
hexseq

hex4

port

url-parameters
url-parameter

draft-ietf-sip-rfc2543bis-06.ps

= "sip:” [userinfo "@”] hostport
url-parameters [headers]

= [user | telephone-subscriber [”:” password]]

= *(unreserved | escaped | user-unreserved)

SR I B S R T I D A
- 1!+”] 1*(DIGIT | H_H ‘ H'H)
= *(unreserved | escaped |

H&” | 1!:!5 | H+” | H$” | ”’”)

= host[™" port]
= hostname | IPv4address | IPv6reference
= *(domainlabel ") toplabel ["]
= alphanum

| alphanum *(alphanum | ”-") alphanum
= alpha | alpha *(alphanum | ”-”) alphanum

1*3DIGIT " 1*3DIGIT " 1*3DIGIT ".” 1*3DIGIT
"[" IPv6address "]"
hexpart [”:” IPv4address]

hexseq | hexseq "::" [hexseq] | "::" [hexseq]
hex4 *(" hex4)

1*4AHEX

1*DIGIT

*(™" url-parameter)
transport-param | user-param | method-param
|ttl-param | maddr-param | other-param

January 28, 2002

transport-param = “transport="
("udp” | "tcp” | "sctp” | "tls”
| other-transport)
other-transport = token
user-param = user=" ("phone” | "ip” | other-user)
other-user = token
method-param = "method=" Method
ttl-param = "tt="tl
maddr-param = "maddr=" host
other-param = pname ["=" pvalue]
pname = 1*paramchar
pvalue = 1*paramchar
paramchar = param-unreserved | unreserved | escaped
5817 param-unreserved = [" |77 ||| &7 | T+
headers = "?" header *(” " header)
header = hname "=" hvalue
hname = 1*(hnv-unreserved | unreserved | escaped)
hvalue = *(hnv-unreserved | unreserved | escaped)
5818 hnv-unreserved = "["|"" || "?" | "7 | "+ | 'S

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 163]

5819

INTERNET-DRAFT

SIP-message
Request

Request-Line
Request-URI
absoluteURI
hier-part
net-path
abs-path
opaque-part
uric
uric-no-slash

path-segments
segment
param

pchar

scheme
authority
server
reg-name

query
SIP-Version

draft-ietf-sip-rfc2543bis-06.ps

Request | Response

Request-Line

*(message-header)

CRLF

[message-body |

Method SP Request-URI SP SIP-Version CRLF

SIP-URI | absoluteURI

scheme COLON (hier-part | opaque-part)

(net-path | abs-path) ["?” query]

"II" authority [abs-path]

"I" path-segments

uric-no-slash *uric

reserved — unreserved — escaped

unreserved | escaped s

e = s

segment *(/" segment)

*pchar *(SEMI param)

*pchar

unreserved | escaped |

T @

alpha *(alpha | digit | "+”

server | reg-name

[[userinfo "@"] hostport]

1*(unreserved | escaped | "$" | ")’
@ | & | =" |

n.n
)

!1@!1

)

*uric
"SIP/2.0”

January 28, 2002

1l+!l ‘ !l$1l

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 164]

5820

INTERNET-DRAFT

message-header

WWW
Rosenberg,SchuIzrinne,Camalillo,\]ohnston,Peterson,Sparks,Handley,SchooIerExpires July 2002[Page 165]

draft-ietf-sip-rfc2543bis-06.ps

Accept

Accept-Encoding

Accept-Language

Alert-Info

Allow

Authentication-Info

Authorization

Call-ID

Call-Info

Contact

Content-Disposition

Content-Encoding

Content-Language

Content-Length

Content-Type

CSeq

Date

Error-Info

Expires

From

In-Reply-To

Max-Forwards

MIME-Version

Min-Expires

Organization

Priority

Proxy-Authenticate

Proxy-Authorization

Proxy-Require

RAck

Record-Route

Reply-To

Require

Retry-After

Route

RSeq

Server

Subject

Supported

Timestamp

To

Unsupported

User-Agent

Via

Warning
-Authenticate

January 28, 2002

5821

5822

5823

5824

5825

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Method = INVITE” | "ACK” | "OPTIONS” | "BYE"
| "CANCEL | "REGISTER” | "PRACK”
| extension-method

extension-method = token
option-tag = token
Response
= Status-Line
*(message-header)
CRLF
[message-body]
Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF
Status-Code
Informational
Redirection
Success

Server-Error
Global-Failure

\
\
| Client-Error
\
\
| extension-code

extension-code 3DIGIT
Reason-Phrase = *(reserved — unreserved — escaped — SP — HT)
Informational
= 7100" ; Trying
| 7"180” ; Ringing
| "181” ; Callls Being Forwarded
| 7"182" ; Queued
| 183" ; Session Progress
Success = "200" ;OK
Redirection "300” ; Multiple Choices

| 301" ; Moved Permanently
| "302” ; Moved Temporarily
| 305" ; Use Proxy

| "380” ; Alternative Service

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 166]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Client-Error = "400" ; Bad Request
| "401" ; Unauthorized
| 7402” ; Payment Required
| "403" ; Forbidden
| 404" ; Not Found
| "405" ; Method Not Allowed
| 406" ; Not Acceptable
| "407" ; Proxy Authentication Required
| "408” ; Request Timeout
| 409" ; Conflict
| 7"410" ; Gone
| 7413” ; Request Entity Too Large
| "414” ; Request-URI Too Large
| 7"415” ; Unsupported Media Type
| "416” ; Unsupported URI Scheme
| 7420” ; Bad Extension
| "423" ; Registration Too Brief
| 480" ; Temporarily not available
| "481" ; Call Leg/Transaction Does Not Exist
| 7482" ; Loop Detected
| 7483” ; Too Many Hops
| "484”" ; Address Incomplete
| 485" ; Ambiguous
| "486”" ; Busy Here
| 487" ; Request Terminated
| "488" ; Not Acceptable Here
| 7"491” ; Request Pending
5826 | "493" ; Undecipherable
Server-Error = "500” ; Internal Server Error
| "501" ; NotImplemented
| 7"502" ; Bad Gateway
| 503" ; Service Unavailable
| "504" ; Server Time-out
5827 | "505” ; SIP Version not supported
Global-Failure "600” ; Busy Everywhere
"603" ; Decline
"604” ; Does not exist anywhere
"606” ; Not Acceptable

5828

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 167]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Accept
accept-range
media-range

"Accept” HCOLON (accept-range *(COMMA accept-range))
media-range [accept-params |

("k [0

| (m-type SWS /" "™*” SWS)

| (m-type SLASH m-subtype)

) *(SEMI parameter)

SEMI "q" EQUAL gvalue *(accept-extension)

SEMI ae-name [EQUAL ae-value |

accept-params
accept-extension

ae-name token
5629 ae-value = token | quoted-string
Accept-Encoding = "Accept-Encoding” HCOLON (encoding *(COMMA encoding))
encoding = codings [SEMI "q” EQUAL qvalue]
codings = content-coding | ™"
content-coding = token
gvalue = ("0"["0*3DIGIT])
("1 77 0%3(07)])
Accept-Language = "Accept-Language” HCOLON (language *(COMMA language))
language = language-range [SEMI "q” EQUAL gvalue]
5831 language-range = ((1*8ALPHA *(MINUS 1*8ALPHA)) | ™)
Alert-Info = "Alert-Info” HCOLON alert-param *(COMMA alert-param)
alert-param = LAQUOT URI RAQUOT *(SEMI generic-param)
generic-param = token [EQUAL gen-value]
5832 gen-value = token | host | quoted-string
5833 Allow = "Allow” HCOLON Method *(COMMA Method)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 168]

5834

5835

INTERNET-DRAFT

Authorization

draft-ietf-sip-rfc2543bis-06.ps

"Authorization” HCOLON credentials

credentials = ("Digest” digest-response) | (token gen-resp))
digest-response = dig-resp *(COMMA dig-resp)
dig-resp = username | realm | nonce | digest-uri

| dresponse | [algorithm] | [cnonce]

| [opaque] | [message-qop]

| [nonce-count] | [auth-param]
username = "username” EQUAL username-value
username-value = quoted-string
digest-uri = "uri” EQUAL digest-uri-value

digest-uri-value
message-qop
cnonce

request-uri ; As specified by HTTP/1.1
"gop” EQUAL qop-value
"cnonce” EQUAL cnonce-value

chonce-value = nonce-value

nonce-count = "nc” EQUAL nc-value

nc-value = B8LHEX

dresponse = "response” EQUAL request-digest

request-digest = LDQUOT 32LHEX RDQUOT

auth-param = auth-param-name EQUAL (token | quoted-string)

auth-param-name
gen-resp

AuthenticationInfo
ainfo

nextnonce
response-auth
response-digest

token
*token *((COMMA *token) | (EQUAL
(*token | quoted-string))

"Authentication-Info” COLON ainfo *(COMMA ainfo)
nextnonce | [message-qop]

| [response-auth] | [cnonce]

| [nonce-count]

"nextnonce” EQUAL nonce-value

"rspauth” EQUAL response-digest

LDQUOT *LHEX RDQUOT

January 28, 2002

Cal-ID = ("Call-ID"|"i") HCOLON callid

5836 callid = word ["@" word]
Call-Info = "Call-Info” HCOLON info *(COMMA info)
info = LAQUOT URI RAQUOT *(SEMI info-param)
info-param = “purpose” EQUAL ("icon” | "info”

5837 | "card” | token) | generic-param
Contact = ("Contact” | "m”) HCOLON

(STAR | contact-param *(COMMA contact-param))
name-addr | addr-spec *(SEMI contact-params)

contact-param

name-addr = [display-name] LAQUOT addr-spec RAQUOT
addr-spec = SIP-URI | URI
5838 display-name = *(token LWS)| quoted-string)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 169]

5839

5840

5841

5842

5843

5844

5845

INTERNET-DRAFT

contact-params

c-p-q
c-p-expires

contact-extension

gvalue

delta-seconds

Content-Disposition

disposition-type

disposition-param

other-handling

disp-extension-token

Content-Encoding

Content-Language

language-tag
primary-tag
subtag

Content-Length

Content-Type
media-type
m-type
discrete-type

composite-type
extension-token
ietf-token
x-token
m-subtype
iana-token
m-parameter
m-attribute
m-value

draft-ietf-sip-rfc2543bis-06.ps

= c-p-q | c-p-expires
| contact-extension
= " EQUAL gvalue
= "expires” EQUAL delta-seconds
= (generic-param
= ("0"[""0*3DIGIT])
("1 [770°3(07)])

1*DIGIT

= "Content-Disposition” HCOLON
disposition-type *(SEMI disposition-param)
"render” | "session” | "icon” | "alert”

| disp-extension-token

"handling” EQUAL

("optional” | "required”

| other-handling) | generic-param
= token
= token

= ("Content-Encoding” | "e”) HCOLON
content-coding *(COMMA content-coding)

"Content-Language” HCOLON
language-tag *(COMMA language-tag)
primary-tag *(MINUS subtag)
1*8ALPHA

1*8ALPHA

("Content-Length”

"I”) HCOLON 1*DIGIT

("Content-Type” | "c”) HCOLON media-type
m-type SLASH m-subtype *(SEMI m-parameter)
discrete-type | composite-type

"text” | "image” | "audio” | "video”

"application” | extension-token

"message” | "multipart” | extension-token
ietf-token | x-token

token

("X" | "x") "-" token
extension-token | iana-token
token

m-attribute EQUAL m-value
token

token | quoted-string

January 28, 2002

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 170]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

5846 CSeq = "CSeq”HCOLON 1*DIGIT LWS Method
Date = "Date” HCOLON SIP-date
SIP-date = rfc1123-date
rfc1123-date = wkday COMMA datel SP time SP "GMT”
datel = 2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)
time = 2DIGIT ™" 2DIGIT ™" 2DIGIT
; 00:00:00 - 23:59:59
wkday = "Mon” | "Tue” | "Wed"
"Thu” | "Fri” | "Sat” | "Sun”
month - I1Jan1! | HFeb” HMar” ‘ ”Apr”
"May” | "Jun” | "Jul” | "Aug”
5847 ‘ HSep” ‘ HOCtH ‘ HNOVH | HDeCH
Error-Info = "Error-Info” HCOLON error-uri *(COMMA error-uri)
5848 error-uri - = LAQUOT URI RAQUOT *(SEMI generic-param)
Expires = "Expires” HCOLON delta-seconds
¢From = ("From” | "f”) HCOLON from-spec
from-spec = (\name-addr | addr-spec)
*(SEMI from-param)
from-param = tag-param | generic-param
5849 tag-param = "tag” EQUAL token
5850 In-Reply-To = ’"In-Reply-To” HCOLON called *(COMMA called)
5851 Max-Forwards = "Max-Forwards” HCOLON 1*DIGIT
5852 MIME-Version = "MIME-Version” HCOLON 1*DIGIT "." 1*DIGIT
5853 Min-Expires = "Min-Expires” HCOLON delta-seconds
5854 Organization = "Organization” HCOLON TEXT-UTF8-TRIM
Priority = "Priority” HCOLON priority-value

priority-value "emergency” | "urgent” | "normal”
| "non-urgent”

token

other-priority

5855 other-priority

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 171]

5856

5857

5858

5859

5860

5861

5862

5863

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Proxy-Authenticate "Proxy-Authenticate” HCOLON
challenge *(COMMA challenge)
challenge = "Digest” digest-challenge

digest-challenge digest-ching *(COMMA digest-ching)

digest-ching = realm | [domain] | nonce
| [opaque] | [stale]| [algorithm]
| [gqop-options] | [auth-param]
realm = "realm” EQUALS realm-value
realm-value = quoted-string
domain = "domain” EQUAL LDQUOT URI
(1*SP URI') RDQUOT
URI = absoluteURI | abs_path
nonce = "nonce” EQUAL nonce-value
nonce-value = quoted-string
opaque = "opaque” EQUAL quoted-string
stale = "stale” EQUAL ("true” | "false”)
algorithm = "algorithm” EQUAL ("MD5” | "MD5-sess”
| token')
gop-options = "gop” EQUAL LDQUOT qop-value *(COMMA qop-value) RDQUOT
gop-value = Tauth” | "auth-int” | token
Proxy-Authorization = "Proxy-Authorization” HCOLON credentials

"Proxy-Require” HCOLON option-tag *(COMMA option-tag)

Proxy-Require

RAck = "RAck” HCOLON response-num LWS CSeqg-num LWS Method
response-num = 1*DIGIT

CSeg-num = 1*DIGIT

response-num = 1*DIGIT

Record-Route = "Record-Route” HCOLON rec-route *(COMMA rec-route)
rec-route = name-addr *(SEMI rr-param)

rr-param = generic-param

Reply-To = ("Reply-To” | "f”) HCOLON rplyto-spec

rplyto-spec = (.name-addr | addr-spec)

*(SEMI rplyto-param)
generic-param
"Require” HCOLON option-tag *(COMMA option-tag)

rplyto-param
Require

Retry-After "Retry-After’” HCOLON delta-seconds
[comment | *(SEMI retry-param)
"duration” EQUAL delta-seconds

| generic-param

retry-param

Route = "Route” HCOLON route=param *(COMMA route-param)
route-param = name-addr *(SEMI rr-param)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 172]

5864

5865

5866

5867

5868

5869

5870

5871

5872

INTERNET-DRAFT

draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

RSeq = "RSeq’ HCOLON response-num

Server = "Server” HCOLON 1*(product | comment)
product = token [SLASH product-version]
product-version = token

Subject = ("Subject”|"s”) HCOLON TEXT-UTF8-TRIM

Supported = ("Supported” | "k”) HCOLON

Timestamp
delay

To =
to-param =
Unsupported
User-Agent
Via

via-parm
via-params

via-ttl
via-maddr
via-received
via-branch
via-extension
sent-protocol

(option-tag *(COMMA option-tag)

= "Timestamp” HCOLON 1*(DIGIT)
[”” *(DIGIT)] [delay]
*DIGIT) [*(DIGIT)]

("To” | "t”) HCOLON (name-addr
| addr-spec) *(SEMI to-param)
tag-param | generic-param

= "Unsupported” HCOLON option-tag *(COMMA option-tag)
= "User-Agent” HCOLON 1*(product | comment)

= ("Via” | "v") HCOLON via-parm *(COMMA via-parm)
= sent-protocol sent-by *(SEMI via-params)
= via-ttl | via-maddr
| via-received | via-branch
| via-extension
= "ttl” EQUAL til
= "maddr’ EQUAL host
= "received” EQUAL (IPv4address | IPv6address)
= "branch” EQUAL token
= generic-param
= protocol-name SLASH protocol-version
SLASH transport

protocol-name = "SIP” | token
protocol-version = token
transport = "UDP”|"TCP”|"TLS” | "SCTP”
| other-transport
sent-by = host [COLON port]
ttl = 1*3DIGIT ; 0 to 255

Rosenberg,Schulzrinne,

Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 173]

5873

5874

5875

5876

5877

5878

5879

5880
5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Warning = "Warning” HCOLON warning-value *(COMMA warning-value)
warning-value = warn-code SP warn-agent SP warn-text
warn-code = 3DIGIT
warn-agent = (host[COLON port]) | pseudonym
; the name or pseudonym of the server adding
; the Warning header, for use in debugging
warn-text = quoted-string
pseudonym = token
WWW-Authenticate = "WWW-Authenticate” HCOLON challenge

message-body = *OCTET

28 |IANA Considerations

All new or experimental method names, header field names, and status codes used in SIP applications
SHOULD be registered with IANA in order to prevent potential naming conflicts. RESOMMENDED that
new “option- tag”s and “warn-code”s also be registered. Before IANA registration, new protcol elements

SHOULD be described in an Internet-Draft or, preferably, an RFC.
For Internet-Drafts, IANA is requested to make the draft available as part of the registration database.

By the time an RFC is published, colliding names may have already been implemented.
When a registration for either a new header field, new method, or new status code is created based on
an Internet-Draft, and that Internet-Draft becomes an RFC, the person that performed the registration
notify IANA to change the registration to point to the RFC instead of the Internet-Dratft.
Registrations should be sentitma@iana.org

28.1 Option Tags

Option tags are used in header fields sucReguire, Supported, Proxy-Require, andUnsupported in

support of SIP compatibility mechanisms for extensions (Section 23.2). The option tag itself is a string that

is associated with a particular SIP option (that is, an extension). It identifies the option to SIP endpoints.
When registering a new SIP option with IANA, the following informatimosT be provided:

e Name and description of option. The namey be of any length, busHouLD be no more than
twenty characters long. The nam@sT consist ofalphanum (Section 27) characters only.

¢ A listing of any new SIP header fields, header parameter fields, or parameter values defined by this
option. A SIP optiormusT NOT redefine header fields or parameters defined in either RFC 2543, any
standards-track extensions to RFC 2543, or other extensions registered through IANA.

¢ Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium, or a particular company or group of companies).

e A reference to a further description if available, for example (in order of preference) an RFC, a pub-
lished paper, a patent filing, a technical report, documented source code, or a computer manual.

e Contact information (postal and email address).
This procedure has been borrowed from RTSP [3] and the RTP AVP [41].

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 174]

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

28.1.1 Registration of 100rel

This specification registers a single option tag, “100rel”. The required information is:

Name: “100rel”

Description: This option tag is for reliability of provisional responses. When present $ugported
header, it indicates that the UA can send or receive reliable provisional responses. When present in a
Require header in a request, it indicates that the UWASST send all provisional responses reliably.
When present in Require header in a reliable provisional response, it indicates that the response is
to be sent reliably.

New Headers: TheRSeq andRAck header fieds are defined by this optio.
Change Control: IETF.
Reference: RFCXXXX [Note to IANA: Fill in with the RFC number of this specification.

Contact Information: Jonathan Rosenberg, jdrosen@jdrosen.net. 72 Eagle Rock Avenue, First Floor, East
Hanover, NJ, 07936, USA.

28.2 Warn-Codes

Warning codes provide information supplemental to the status code in SIP response messages when the
failure of the transaction results from a Session Description Protocol (SDP, [5]). Wam-code” values
can be registered with IANA as they arise.

The “warn-code” consists of three digits. A first digit of “3” indicates warnings specific to SIP.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

1xx and 2xx have been taken by HTTP/1.1.

28.3 Header Field Names

Header field names do not require working group or working group chair review prior to IANA registration,
but sHouLD be documented in an RFC or Internet-Draft before IANA is consulted.
The following information needs to be provided to IANA in order to register a new header field name:

e The name and email address of the individual performing the registration;

¢ the name of the header field being registered;

a compact form version for that header field, if one is defined;

e the name of the draft or RFC where the header field is defined;

a copy of the draft or RFC where the header field is defined.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 175]

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

Header fieldssHOuULD NOT use theX- prefix notation andmusT NOT duplicate the names of header
fields used by SMTP or HTTP unless the syntax is a compatible superset and the semantics are similar.
Some common and widely used header fisldy be assigned one-letter compact forms (Section 7.3.3).
Compact forms can only be assigned after SIP working group review. In the absence of this working group,
a designated expert reviews the request.

28.4 Method and Response Codes

Because the status code space is limited, they do require working group or working group chair review, and
MUST be documented in an RFC or Internet draft. The same procedures apply to new method names.

The following information needs to be provided to IANA in order to register a new response code or
method:

e The name and email address of the individual performing the registration;

the number of the response code or name of the method being registered;
¢ the default reason phrase for that status code, if applicable;
¢ the name of the draft or RFC where the method or status code is defined;

e a copy of the draft or RFC where the method or status code is defined.

29 Changes Made in Version 00

e Indicated that UAC should send badBlANCEL andBYE after a retransmission fails.

e Added semicolon and question mark to the list of unreserved characters tmaihgart of SIP URLS
to handletel: URLs properly.

e Uniform handling of if hop counMax-Forwards: return 483. Note that this differs from HTTP/1.1
behavior, where onfOPTIONS and TRACE allow this header, but respond as the final recipient
when the value reaches zero.

e Clarified that a forking proxy sendSCKs only forINVITE requests.

¢ Clarified wording of DNS caching. Added paragraph on “negative caching”, i.e., what to do if one
of the hosts failed. It is probably not a good idea to simply drop this host from the list if the DNS ttl
value is more than a few minutes, since that would mean that load balancing may not work for quite a
while after a server is brought back on line. This will be true in particular if a server group receives a
large number of requests from a small number of upstream servers, as is likely to be the case for calls
between major consumer ISPs. However, without getting into arbitrary and complicated retry rules, it
seems hard to specify any general algorithm. Might it be worthwhile to simply limit the “black list”
interval to a few minutes?

e Added optionalCall-Info and Alert-Info header fields that describe the caller and information to be
used in alerting. (Currently, avoided use of “purpose” qualification since it is not yet clear whether
rendering content without understanding its meaning is always appropriate. For example, if a UAS

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 176]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

5969 does not understand that this header is to replace ringing, it would mix both local ring tone and the
5970 indicated sound URL.) TBD!

5971 e SDP “s=" lines can’'t be empty, unfortunately.

5072 e Noted thatmaddr could also contain a unicast address, $"d0ULD contain the multicast address if

5973 the request is sent via multicast (Section 24.44.

5974 e Clarified that responses are sent to po¥ia sent-by value.

5975 e Added “other-*" to theuser URL parameter and thidide andContent-Disposition headers.

5976 ¢ Clarified generation of timeout (408) responses in forking proxies and mentidxies header.

5977 e Clarified thatCANCEL and INVITE are separate transactions (Fig. 7). Thus, IM€ITE request

5978 generates a 487 (Request Terminated)G@ANCEL or BYE arrives.

5979 e Clarified thatRecord-Route sHOULD be inserted in every request, but that the route, once estab-
5980 lished, persists. This provides robustness if the called UAS crashes.

5981 e Emphasized that proxy, redirect, registrar and location servers are logical, not physical entities and
5982 that UAC and UAS roles are defined on a request-by-request basis. (Section 6)

5983 e In Section 24.44, noted that threaddr andreceived parameters also need to be encrypted when
5984 doing Via hiding.

5085 e Simplified Fig. 7 to only shoWuNVITE transaction.
5986 e Added definition of the use @@ontact (Section 24.10) foOPTIONS.

5987 e Added HTTP/RFC 822 heade@ontent-Language andMIME-Version.

59088 e Added note in minimal section indicating that UAs need to support UDP.

5989 e Added explanation explaining what a UA should do when receiving an ilNMITE with a tag.

5990 ¢ Clarified UA and proxy behavior for 302 responses.

5991 e Added details on what a UAS should do when receiving a tafg¥diT E request for an unknown calll
5992 leg. This could occur if the UAS had crashed and the UAC senddMVfEFE or if the BYE got lost
5993 and the UAC still believes to be in the call.

5094 e Added definition ofContact in 4xx, 5xx and 6xx to “redirect” to more error details.

5995 e Added note to forking proxy description to gatheAuthenticate from responses. This allows several
5996 branches to be authenticated simultaneously.

5997 e Changed URI syntax to use URL escaping instead of quotation marks.

5998 e Changed SIP URL definition to reference RFC 2806tédephone-subscriber part.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 177]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

5999 e Clarified that theTo URI should basically be ignored by the receiving UAS except for matching
6000 requests to call legs. In particuldip headers with a scheme or name unknown to the callee should
6001 be accepted.

6002 e Clarified thatmaddr is to be added by any client, either proxy or UAC.

6003 e Added response code 488 to indicate that there was no common media at the particular destination.
6004 (606 indicates such failure globally.)
6005 ¢ In Section 24.19, noted that registration updates can shorten the validity period.

6006 ¢ Added note to enclose the URI for digest in quotation marks. The BNF in RFC 2617 is in error.

6007 e Clarified that registrars uskuthorization andWWW-Authenticate, not proxy authentication.

6008 ¢ Added note in Section 24.10 thdtéaders” are copied fromContact into the new request.

6009 e Changed URL syntax so that port specifications have to have at least one digit, in line with other URL
6010 formats such as “http”. Previously, an empty port number was permissible.

6011 e In SDP section, added a section on how to add and delete streamNY IreEs.

6012 e |IETF-blessed extensions now have short names, withieuietf. prefix.

6013 e Cseq is unigue within a call leg, not just within a call (Section 24.16).

6014 e Added IPv6 literal addresses to the SIP URL definition, according to RFC 2732 [42]. Modified the

6015 IPv4 address to limit segments to at most three digits.

6016 ¢ Modified registration procedure so that it explicitly references the URL comparison. Updates with
6017 shorter expiration time are now allowed.

6018 e For send-only media, SDP still must indicate the address and port, since these are needed as destina-
6019 tions for RTCP messages.

6020 e Changed references regarding DNS SRV records from RFC 2052 to RFC 2782, which is now a Pro-

6021 posed Standard. Integrated SRV into the search procedure and removed the SRV appendix. The only
6022 visible change is that protocol and service names are now prefixed by an underscore. Added wording
6023 that incorporates the precedenceraddr.

6024 e Allow parameters irRecord-Route andRoute headers.

6025 e In Table 1, listudp as the default value for the transport parameter in SIP URI.

6026 ¢ Removed sentence thktom can be encrypted. It cannot, since the header is needed for call-leg
6027 identification.

6028 ¢ Added note that a UAC only copiesTa tag into subsequent transactions if it arrives in a 200 OK to

6029 anINVITE. This avoids the problem that occurs when requests get resubmitted after receiving, say,
6030 a 407 (or possibly 500, 503, 504, 305, 400, 411, 413, maybe even 408). Under the old rules, these
6031 requests would have a tag, which would force the called UAS to reject the request, since it doesn’t
6032 have an entry for this tag.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 178]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6033 e Loop detection has been modified to taketbguest-URI into account. This allows the same request
6034 to visit the server twice, but with different request URIs (“spiral”).

6035 e Elaborated on URL comparison and comparisofraim/To fields.

6036 e Addednp-queried user parameter.

6037 e Changedag syntax from UUID to token, since there’s no reason to restrict it to hex.

6038 ¢ Added Content-Disposition header based on earlier discussions about labeling what to do with a
6039 message body (part).

6040 ¢ Clarification: proxies must inseffo tags for locally generated responses.

6041 ¢ Clarification: multicast may be used for subsequent registrations.

6042 e Feature: Adde®upported header. Needed if client wants to indicate things the server can usefully
6043 return in the response.

6044 e Bug: TheFrom, To, andVia headers were missing extension parameters. Hingyption and

6045 Response-Key header fields now “officially” allow parameters consisting only of a token, rather
6046 than just “token = value”.

6047 e Bug: Allow was listed as optional in 405 responses in Table 2. It is mandatory.

6048 e Added: “A BYE request from either called or calling party terminates any peniNMJTE, but the

6049 INVITE request transactiomusT be completed with a final response.”

6050 e Clarified: “If an INVITE request for an existing session fails, the session description agreed upon in
6051 the last successfUNVITE transaction remains in force.”

6052 ¢ Clarified what happens if twiNVITE requests meet each other on the wire, either traveling the same
6053 or in opposite directions:

6054 A UAC musT NOT issue anotheNVITE request for the same call leg before the pre-

6055 vious transaction has completed. A UAS that receiveNAfITE before it sent the final

6056 response to atNVITE with a lower CSeq numbermusT return a 400 (Bad Request)

6057 response andhusT include aRetry-After header field with a randomly chosen value of

6058 between 0 and 10 seconds. A UA that receiveBNAATE while it has anNVITE transac-

6059 tion pending, returns a 500 (Internal Server Error) and also includRetrg-After header

6060 field.

6061 e Expires header clarified: limits only duration dNVITE transaction, not the actual session. SDP
6062 does the latter.

6063 e Theln-Reply-To header was added.

6064 e There were two incompatible BNFs fo¥WW-Authenticate. One defined for PGP, and the other
6065 borrowed from HTTP. For basic or digest:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 179]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6066 WWW-Authenticate: basic realm="Wallyworld"

6067 and for pgp:

6068 WWW-Authenticate: pgp; realm="Wallyworld"

6069 The latter is incorrect and the semicolon has been removed.

6070 ¢ Added rules folRoute construction from called to calling UA.

6071 e We now allowAccept andAccept-Encoding in BYE andCANCEL requests. There is no particular

6072 reason not to allow them, as both requests could theoretically return responses, particularly when
6073 interworking with other signaling systems.

6074 e PGP “pgp-pubalgorithm” allows server to request the desired public-key algorithm.

6075 ¢ ABNF rules now describe tokens explicitly rather than by subtraction; explicit character enumeration
6076 for CTL, etc.

6077 ¢ Registrars should be careful to check ate header as the expiration time may well be in the past,
6078 as seen by the client.

6079 e Content-Length is mandatory; Table 2 erroneously marked it as optional.

6080 e User-Agent was classified in a syntax definition as a request header rather than a general header.
6081 e Clarified ordering of items to be signed and include realm in list.

6082 e Allow Record-Route in 401 and 484 responses.

6083 e Hop-by-hop headers need to precede end-to-end headers only if authentication is used.

6084 e 1xx message bodiesAy now contain session descriptions.

6085 e Changed references to HTTP/1.1 and authentication to point to the latest RFCs.

6086 e Added 487 (Request terminated) status response. It is issued if the original request was terminated
6087 via CANCEL or BYE.

6088 e The spec was not clear on the identification of a call leg. Section 1.3 says it's the combinafmn of
6089 From, andCall-ID. However, requests from the callee to the caller havdthendFrom reversed, so

6090 this definition is not quite accurate. Additionally, the “tag” field should be included in the definition
6091 of call leg. The spec now says that a call leg is defined as the combination of local-address, remote-
6092 address, and call-id, where these addresses include tags.

6093 Text was added to Section 6.21 to emphasize thaFtben and To headers designate the originator

6094 of the request, not that of the call leg.

6095 e All URI parameters, excephethod, are allowed in &equest-URI. Consequently, also updated the

6096 description of which parameters are copied from 3xx responses in Sec. 24.10.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 180]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6097 e The use of CRLF, CR,or LF to terminate lines was confusing. Basically, each header line can be
6098 terminated by a CR, LF, or CRLF. Furthermore, the end of the headers is signified by a “double
6099 return”. Simplified to require sending of CRLF, but require senders to receive CR and LF as well and
6100 only allow CR CR, LF LF in addition to double CRLF as a header-body separator.

6101 e Round brackets i€ontact header were part of the HTTP legacy, and very hard to implement. They
6102 are also not that useful and were removed.

6103 e The spec said that a proxy is a back-to-back UAS/UAC. This is almost, but not quite, true. For
6104 example, a UAS should insert a tag into a provisional response, but a proxy should not. This was
6105 clarified.

6106 e Section 6.13 in the RFC begins mid-paragraph after the BNF. The following text was misplaced in the
6107 conversion to ASCII:

6108 Even if the “display-name” is empty, the “name-addr” fomwsT be used if the “addr-
6109 spec” contains a comma, semicolon or question mark.

a0 30 Changes Made in Version 01

6111 ¢ Uniform syntax specification for semicolon parameters:

Foo = "Foo” ":” something *(;" foo-param)

foo-param = "bar” "=" token
6112 | generic-param
6113 ¢ Removedp-queried user parameter since this is now part of a tel URL extension parameter.
6114 ¢ In SDP section, noted that if the capabilities intersection is empty, a dummy format list still has to be
6115 returned due to SDP syntax constraints. Previously, the text had required that no formats be listed.
6116 (Brian Rosen)
6117 e Reorganized tables 2 and 3 to show proxy interaction with headers rather than “end-to-end” or “hop-
6118 by-hop”.

a0 31 Changes Made in Version 02

6120 e Added “or UAS” in description ofreceived headers in Section 24.44. This makes the response
6121 algorithm work even if the last IP address in ¥i& is incorrect.

6122 e Tentatively removed restriction th@ANCEL requests cannot hawoute headers. (Billy Biggs)

6123 ¢ Tentatively added\Iso header foBYE requests, as it is widely implemented and a simple means to
6124 implement unsupervised call transfer. Subject to removal if there is protest. (Billy Biggs)

6125 ¢ If aproxy sends arequest by UDP (TCP), the spec did not disallow placing TCP (UDP) in the transport
6126 parameter of th&ia field, which it should. Added a note that the transport protocol actually used is
6127 included.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 181]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6128 e No default value for theg parameter in Contact is defined. This is not strictly needed, but is useful for
6129 consistent behaviors at recursive proxies and at UAC’s. Now 0.5.

6130 e Clarified thatTo andFrom tag values should be different to simplify request matching when calling
6131 oneself.

6132 e Removed ability to carry multiple requests in a single UDP packet (Section 24.14).

6133 e Added note thafllow MAY be included in requests, to indicate requestor capabilities for the same
6134 call ID.

6135 e Added note to Section 24.17 indicating that registratsT include theDate header to accomodate

6136 UAs that do not have a notion of absolute time.

6137 ¢ Added note emphasizing that non-SIP URIs are permissidREGISTER.

6138 ¢ Rewrote the server lookup section to be more precise and more like pseudo-code, with nesting instead
6139 of “gotos”.

6140 e Removed note

6141 Note that the two URLs example.com and example.com:5060, while considered equal,

6142 may not lead to the same server, as the former causes a DNS SRV lookup, while the latter

6143 only uses the A record.

6144 since that is no longer the case.

6145 e Emphasized that proxies have to forward requests with unknown methods.

6146 ¢ Aligned definition of call leg with URI comparison rules.

6147 ¢ Required that second branch parameter be globally unique, so that a proxy can distinguish different
6148 branches in spiral scenarios similar to the following, with record-routing in place:

6149 B ->P1 - > P2 - > Pl --emeemeeeeeee > A

6150 BYE B B/l P1/2,B/1 P2/3,P1/2,B/1 P1/4,P2/3,P1/2,B/1

6151 Here, A/1 denotes theia entry with host A and branch parameter 1. Also, this requires updating the
6152 definition of isomorphic requests, since tRequest-URI is the same for alBYE that are record-

6153 routed.

6154 ¢ RemovedVia hiding from spec, for the following reasons:

6155 — complexity, particularly hidden “gotchas” that surface at various points (as in this instance);

6156 — interference with loop detection and debugging;

6157 — Unlike HTTP, where via-hiding makes sense since all data is contained in the request or re-
6158 sponseVia-hiding in SIP by itself does nothing to hide the caller or callee, as address informa-
6159 tion is revealed in a number of places:

6160 + Contact;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 182]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6161 + Route/Record-Route;

6162 x SDP, including the o= and c=lines;

6163 x possibly accidental leakage Wser-Agent header andCall-1D headers.

6164 — Unless this is implemented everywhere, the feature is not likely to be very useful, without the
6165 sender having any recourse such as “don't route this request unless you can hide”. It appears
6166 that almost all existing proxies simply ignore the Hide header.

6167 e AddedError-Info header field.

as 32 Changes Made in Version 03

6169 e Description ofRoute and Record-Route moved to separate section, which is new. All UAs must

6170 now support this mechanism.

6171 e Removed status code 411, since it cannot occur (Jonathan Rosenberg, James Jack).

6172 e RewroteRecord-Route section to reflect new mechanism. In particular, requests from callee to caller
6173 now use the same path as in the opposite direction, without substitutifigaheheader field values.

6174 Themaddr parameter is now optional.

6175 ¢ Disallowed SIP URLs that only have a password, without a user name. The prototype from RFC 1738
6176 also doesn't allow this.

6177 e Allow registrar to set the expiration time.

6178 e CSeq (Section 24.16) is counted within a call leg, not a call.

6179 e Removed wording that connection closing is equivaler@&NCEL or 500. This does not work for

6180 connections that are used for multiple transactions and has other problems.

6181 e Cleaned up CSeq section. Removed text about inse@bgg method when it is absent. Clarified

6182 that CSeq increments for all requests, not JINVITE. Clarified that all out of order requests, not

6183 just out of ordedNVITE, are rejected with a 400 class response. Clarified the meaning of “initial”
6184 sequence number. Clarified that after a request forks, each 200 OK is a separate call leg, and thus,
6185 separate CSeq space. Clarified that CSeq humbers are independent for each direction of a call leg.
6186 e Massive reorganization and cleanup of the SDP section. Introduced the concept of the offer-answer
6187 model. Clarified that set of codecs in m line are usable all at the same time. Inserted size restriction
6188 on representation of values in o line. Explicitly describe forked media. New media lines for adding
6189 streams appear at the bottom of the SDP (used to say append).

6190 e Removed Also.

6191 e Added text toRequire andProxy-Require sections, making it aHOULD to retry the request without

6192 the unsupported extension.

6193 e Added text to section on 415, saying that UABouLD retry the request without the unsupported

6194 body.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 183]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6195 e Added text to section o8 ANCEL andACK, clarifying much of the behavior.
6196 ¢ Modified Content-Type to indicate that it can be present even if the body is empty.
6197 e From tags mandatory

6198 e Old text said that if you hang up before sendingfK, you need not send th&CK. That is wrong.
6199 Text fixed so that a\CK is always sent.

6200 ¢ Old text said that if you never got a response tdNYITE, the UAC should send both aNVITE and
6201 CANCEL. This doesn’t make sense. Rahter, it should do nothing and consider the call terminated.

6202 ¢ Added text that says pending requests are responded to with a 4B¥ E & received.

6203 e Updated section 2.2, so that its clear tBaintact is not used wittBYE.

6204 ¢ Clarified Via processing rules. Added text on handling loops when proxies route on headers besides
6205 the request URI. Added text on handling case when sent-by contains a domain name. Added text to
6206 6.47 on opening TCP connections to send responses upstream.

6207 e Clarified that a 1xx with an unknown xx is not the same as the 100 response.

6208 e Removed usage d®etry-After in REGISTER.

6209 ¢ Clarified usage of persistent connections.

6210 ¢ Clarified that servers supporting HTTP basic or digest in rfc2@UBT be backwards compatible
6211 with RFC 2069.

6212 e Clarified thatACK contains the same branch ID as the request its acknowledging.

6213 e Added definitions for spiral, B2BUA.

6214 ¢ Rephrased definitions for UAC, UAS, Call, call-leg, caller, callee, making them more concrete.

6215 e URL comparison ignores parameters not present in both URLs only for unknown parameters.

6216 e Clarified that * inContact is used only irREGISTER with Expires header zero. Mentioned * case

6217 in section onContact syntax.

6218 ¢ Removed text that says a UA can inse€antact in 2xx that indicates the address of a proxy. Not

6219 likely to work in general.

6220 e Removed SDP text about aligning media streams within a media type to handle certain crash and
6221 restart cases.

6222 e Receiving a 481 to a mid-call request terminates that call leg. Agreed upon at IETF 49.

6223 ¢ Introduced definition of regular transaction - niiVITE exceptingACK andCANCEL.

6224 ¢ Clarified rules for overlapping transactions.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 184]

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

33

Forking proxiesmusT be stateful (used to sayHOULD). Proxies that send requests on multicast
MUST be stateful (used to say nothing)

Text added recommending that registrars authorize that entyoim field can register address-of-
record in theTo field.

Forwarding of non-100 provisionals upstream in a proxy changed $&eouULD to MUST.

Removed PGP.

Changes Made in Version 04

Removed Unsupported as a request header from Table 3.

Clarified SDP procedures for changing IP address and port. Specifically, spelled out the duration for
which a UA needs to received media on the old port and address.

Added text in the SDP session which recommends that the answerer use the same ordering of codecs
as used on the offer, in order to help ensure symmetric codec operation under normal conditions.

Fixed bug in the example in the SDP section, where the new media line was listed at the top. Should
have been the bottom.

Authorization credentials are cached based on the URL ofTithbeader, not the entiréo header as
10.48 implied.

Section 10.31, orProxy-Authenticate, indicated that a server responds with a 401 if the client
guessed wrong. This is incorrect. It should be 407.

Section 10.14, removed motivational text abQantact allowing anINVITE to be routed directly
between end systems, since its confusing. Some have interpreted to meRedbed-Route is
ignored wherContact is present.

Added reference to SCTP RFC.
Updated 2.2 to allow non-SIP URLs @PTIONS and 2xx toOPTIONS.
Fixed example in 20.5. AddediCK for 487, and addedlo tag to 487 response.

Clarified further URL comparisons. Its only URL parameters without defaults that are ignored if not
present in both URLSs.

Section 1.5.2, UDP mandatory for all. TCP isaouLD for UA, MmusT for proxy, registrar, redirect
servers.

Brought syntax foiContact, Via, and the SIP URL into alignment between the text and postscript
versions.

Updated the text in section 6 which said that the ordering of header fields follows HTTP, with the
exception ofVia, where order matters. However, the HTTP spec says that order matters, so this
sentence is redundant and confusing. The sentence was removed.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 185]

6258

6259

6260

6261

6262

6263

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

34

Added e lines to SDP examples in the Examples section.

RewroteAllow discussion, more formally defining its semantics and usage cases.

Updated text on 604 status, to indicate that its based oR#ugiest-URI, not theTo.

Added response registrations to IANA considerations. Provided more details on registration process.
Clarified that only a UAS rejects a request becauséthiag doesn't match a local value.

Clarified that stateless proxies need to route based on static criteria only.

Proxy and UACCANCEL generation upon 2xx, 6xx if it forked is nowssdOULD; used to be a1AY .

Added text saying that a UASHouLD send aBYE if it never gets arACK for a 2xx establishing a
call leg.

Added text saying that a UASHOULD send a rdNVITE if it never gets anACK for a 2xx to a
reANVITE.

Added text on 503 processing, indicating that a client should try a different server when receiving a
503, and that a proxy shouldn’t forward a 503 upstream unless it can’t service any other requests.

Removed motivational text in Section 10.43\ia headers since its not consistent with the text before
it.

Changed IPSec reference to RFC 2401, from RFC 1825.
Updated retransmission defininition in 17.3.4 to be consistent with the rest of the spec.

Softened the language for insertion of the transport param in the record-route. Specifically, it can be
inserted in private networks where it is known apriori that the specific transport is supported.

Updated definition of B2BUA.

Added text to section on 420 processing, which mandates that the client retry the request without
extensions listed in thensupported header in the response.

Allow Authentication-Info header to be used for HTTP digest.

Changes Made in Version 05

Updated Table 2 to reflect th&tror-Info is a response header in 3xx-6xx responses (it was previously
listed as a request header).

RemovedVWW-Authenticate as a request header from Table 3. Authentication of responses is now
done according to RFC 2617.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 186]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6286 e Updated theAccept, Accept-Encoding and Accept-Language sections. More details on precise

6287 semantics for the various requests and responses is now provided. Presence of these headers is now
6288 a sHouLD for INVITE and 2xx toINVITE when a non-default value is present. Extra emphasis is
6289 placed on including théccept-Language in INVITE and 2xx in order to support internationaliza-

6290 tion. Usage of these three header€INCEL has been removed since it makes no sense.

6201 e Generalized local outbound processing rules in Section 16.4.1 to cover the case where the UAS is
6292 using a local outbound proxy which was not in the initial call setup path.

6293 e Updated record-routing section, so that a proxy can insert a transport param if it knows that the proxy
6294 on one side supports the specific transport (the previous text required the proxy to know whether the
6295 proxies on both sides supported the specific transport).

6296 ¢ AddedAuthentication-Info to Section 10.

6297 e Clarified the meaning of Table 2 for responses.

6298 e Updated Table 1 to reflect that maddr is no longer mandatoReitord-Route.

6299 e Updated Table 3 so that header fields in responsA€td are never listed as optional, mandatory, etc.

6300 - only not applicable. This is because response&G& are not allowed. Also improved wording in

6301 Section 5.1.1 to clarify that theneusT NOT be responses &CK.

6302 e Updated SRV procedures. Old text said to treat a failure to contact a server as a 4xx, which would
6303 stop the SRV processing. But, this is not so. Sentence was stricken.

6304 e Updated 12.1 to clarify that 2xINVITE responsesusT contain session descriptions.

6305 e ChangedJser-Agent to a request header in Table 3.

6306 e Updated SDP section, so that a UA cannot change the SDP when it gelfs\élTé= with no SDP.

6307 ¢ Clarified Appendix B that a unicast offerusT have a unicast response.

6308 e Clarified that any request can be record-routed, but it may not be used by the UA, depending on the
6309 method.

6310 e non-2xx responses IBIVITE no longer retransmitted over TCP.

6311 e Removed lower bound on T1 and T2 in private networks, which can use lower values. Furthermore,
6312 T1 can be smaller on the public Internet if proper RTT estimation is used.

6313 e UAS Cannot send BYE for a call leg until it receive\CK, in order to eliminate a race condition

6314 betweerBYE and 200 OK.

6315 e Support of CR or LF alone as line terminators, as opposed to CRLF, is no longer required.

6316 ¢ Client behavior on receipt of a 3xx to tBIVITE is now specified, and it is no longer forbidden to

6317 generate a 3xx. This is heeded to maintain the idempotentM\OITE, as a proxy might redirect

6318 without knowing its a 3xx.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 187]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6319 e CANCEL cannot be sent before a 1xx is received, in order to eliminate race condition between request
6320 andCANCEL.

6321 e Termination of the client and server transactions is now based entirely on timeouts, rather than re-
6322 transmission counters, in order to unify TCP and UDP behavior. Timeout values scale as a function
6323 of the RTT estimate, defined as T1. For reliable transports, many of these timers are now set to zero.
6324 Many timeouts differ than in bis-04.

6325 e Added a working RTT estimation algorithm using tfénestamp header, and specified it to be

6326 compliant to RFC 2988.

6327 e UAS accepting requests with unknown schemes in the URI ifthiéeld is now aRECOMMENDED

6328 instead ofsHouLD. This reflects the fact that processing a request whemdlield doesn’'t match is

6329 a matter of policy.

6330 e Bodies are now allowed in any request and response, incl@ikigCEL, although there may not be

6331 any semantics associated with that.

6332 e Supporting ofINVITE without SDP is now a1usT (no strength was previously specified).

6333 ¢ Registration procedures for visiting, which had a few sentences in bis-04, have been removed. Roam-
6334 ing is a complex issue, and should be treated elsewhere.

6335 e Bis-04 mandated that a 2xx responsdIBGISTER contain expiresontact parameters indicating

6336 the expiration time of a contact. This behavior has now been made consistent with requests, so that
6337 the expiration time of a contact is the same in either case: the expires param is used first if present,
6338 then theExpires header if present, else one hour for SIP URLSs.

6339 e Action parameter in contact registrations is deprecated.

6340 e 2xx to REGISTER MUST contain current contacts. This was justigouLD in bis-04.

6341 e Multicast operation radically changed. Now, the treatment is no different than unicast. That is, only
6342 the first non-1xx response to a multicast request will be used. This is a natural consequence of the
6343 layering now applied to the protocol. This still enables anycast types of functions, mirroring the real
6344 usage of registrar discovery.

6345 e To completely separate transport rules from transaction rules, the rule in bis-04 that said a UAC
6346 SHOULD keep a connection opened until a response is received, has been turned into a timer recom-
6347 mendation. Specifically, the spec now says that®Es OMMENDED that connections be kept opened

6348 for a minimum interval of sufficient duration to guarantee, with high probability, that responses are
6349 sent over the same connections as a request.

6350 ¢ Re-use of existing connections for new requests to the same address and poREBI@MMENDED,

6351 it was only amAY in bis-04.

6352 ¢ Modification of headers below th&uthorization header by proxies is no longer disallowed, since the

6353 only mechanism that use<horization in that way, PGP, has been deprecated previously.

6354 e Authentication of registrations NnORECOMMENDED; no strength was defined previously.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 188]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6355 e Registering of new headers with IANA is nasHOULD; no strength was defined previously.

6356 e Proxy aggregation of challenges novgaouLD; no strength was defined previously.

6357 e Server support of basic authentication downgraded fserauLD to MAY .

6358 e UAC resubmitting requests with credentials after a challenge upgradedviromio SHOULD.

6359 e TLS is nowRECOMMENDED as the transport layer security for SIP signaling.

6360 e UA recursion on a redirect is nogHOULD; no strength was assigned previously.

6361 e UA reuse of headers in a recursed request is 8B@ULD; no strength was assigned previously.

6362 e Security considerations added fall-Info andAlert-Info.

6363 e Proxies no longer forward a 6xx immediately on receiving it. Instead, ANCEL pending

6364 branches immediately. This avoids a potential race condition that would result in a UAC getting a
6365 6xx followed by a 2xx. In all cases except this race condition, the result will be the same - the 6xx is
6366 forwarded upstream.

6367 e The term call-leg has been eliminated from the spec; a more generic term, dialog, is used in its place.
6368 e For SRV processing, subsequent requests with the €attdD (as opposed to the same transaction
6369 in bis-04) are sent to the same server.

6370 e SRV processing generalized to deal with the fact that the default port is transport dependent.

6371 e Per IESG request, draft-ietf-sip-serverfeatures has been integrated into bis.

6372 e Per IESG request, draft-ietf-sip-100rel will be integrated into bis. This is marked with a placeholder
6373 in this draft.

6374 e The BNF has been converted from implicit LWS to explicit LWS.

6375 e Caching of responses in a proxy to avoid redoing location server lookups used tsHxeuaD.
6376 Caching behavior for responses is now fully encapsulated in the transaction processing.
6377 e Proxy usage of SRV in processifpute headers upgraded frosHOULD to MUST.

s 35 Changes Made in Version 06

6379 e Made TCP mandatory for user agents.

6380 e The two states of a dialog are now called early and confirmed.

6381 e CANCEL requests now carriRoute header fields.

6382 e Changes section in -05 forgot to mention the removal oBheryption andResponse-Key headers.

6383 These were removed since the only mechanism that used them, PGP, had already been deprecated. As
6384 such, they were effectively “garbage collected”.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 189]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6385 e Updated error in transaction definitioACK-2xx is a separate transactiohRCK for non-2xx is part
6386 of the same transaction.

6387 e ChangedContact-Length typo to Content-Length in various sections, including throughout the
6388 examples section.

6389 e Changed Table 3 entry fdRecord-Route and Route for REGISTER from "0” for optional to "-”
6390 for Not Allowed.

6391 e Changed Table 3 entry fdRoute for ACK, BYE, CANCEL, INVITE, andOPTIONS from "0” for

6392 optional to "c” for conditional, depending on whether a route set has been defined for the dialog or
6393 the response code.

6394 e Updated Figure 5; adding missing label on “calling” to “completed” transition.

6395 e Fixed errored transport example from Section 19.2.1.

6396 e Clarified that 17.2.3 and 17.1.3 are rules that define retransmissions.

6397 e fixed reported bugs in bnf (missing productions, bad tex markup), etc. Added new SWS production
6398 to have an LWS which allows zero spaces, and used that With any separators. Removed the # rule.
6399 e ACK for non-2xx has to have the sarRmute as the request its acknowledging. The text formerly
6400 said that theACK MUST NOT containRoute, this has now radically changed tusT haveRoute if

6401 the request its cancelling had one.

6402 ¢ Clarified that stateless proxies apftpute processing logic t€ ANCEL requests.

6403 e Emphasized that escaping in the hostname portion of SIP URIs is not currently allowed.

6404 e Added discussion on when configuration changes affect the ability of a proxy to forward requests
6405 stateful or statelessly.

6406 e Explicitly stated that a proxy may addRecord-Route header field value to any request.

6407 ¢ Added discussion on the use of To tags in hop-hop responses at a proxy.

6408 e Relaxed text concerning proxies forwardi@@NCELs when a matching response context can’t be
6409 found to allow theCANCEL to be processed statefully.

6410 e Changed references to “short” form of SIP headers to “compact” form.

6411 e Changedate example to a valid date.

6412 ¢ Clarified howACK gets from transport to UAS core.

6413 e Adding missing “SIP/2.0” to firsREGISTER in the examples section.

6414 e Fixed bug in 17.2.3 which said that &CK matched a server transaction if ti&eq method (not
6415 number) matched that of thBIVITE. It should be the reverse; number, not method.

6416 e Fixed bug in 22.15 where it safdontent-Length instead ofContent-Type.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 190]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6417 e Incorporated draft-ietf-sip-100rel-04 into bis.

6418 ¢ Reliability of provisional responses now only defined for provisional respondddAid E, although

6419 extension methods can allow its usage. This is becBE®&CK needs to be sent within the context

6420 of a dialog, and only responsesIiVITE establish dialogs.

6421 e Can no longer send a reliable provisional response after a final response; its not compatible with the
6422 transaction machines, which generally assume no provisionals after a final.

6423 e Proxy behavior for reliable provisional responses no longer defined separately; the spec states that it
6424 simply acts as a uas.

6425 e Scope oRecord-Route header fields for a reliable provisional response is now the dialog rather than
6426 the particular request.

6427 e ExamplePRACK flows were lost when incorporating into bis.

6428 e Formal IANA registration of “100rel” option tag.

6429 e If reliable provisional response gets RRACK after 32*T1, UAS sends 5xx to original request.

6430 e Recommended UA behavior for caching credentials.

6431 ¢ Included guidelines for devices presenting pre-configured credentials vs. prompting end users to
6432 provide credentials for a specific realm.

6433 ¢ Added section on stateless UAS Behavior, clarifying secure handling of unauthenticated requests to
6434 prevent potential DoS threat.

6435 e Provided motivation for aggregation of challenges in the Security Considerations, and made the be-
6436 havioral language there more specific.

6437 e Provided guidelines for the construction of realm strings for authentication.

6438 e Changed concept of protection domain for SIP so that it is no longer defined by both a Request-URI
6439 and a realm; it is now only defined by a realm.

6440 e Putin some text encouraging UACs not to resubmit rejected credentials when re-challenged.

6441 ¢ Added falsification of source IP address to tfia denial of service attack case.

6442 e Provided canonical MD5 hash for an empty message body to be used in Digest integrity calculation.

6443 ¢ Added security considerations for tRANCEL andACK methods.

6444 e Deprecated and removed Basic auth scheme. Prexiss NOT accept or request Basic.
6445 ¢ Strengthened language regarding the sending of the “qop” parameter; receipt of cnonce is based on
6446 uqopn.

6447 ¢ Clarified the construction the URI in the Request-URREGISTER requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 191]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6448 ¢ Noted that registrarsHouULD provideDate headers in 200 (OK) responsesR&GISTER, and that

6449 clients can use these Dates to set their internal clocks.

6450 e Processing oOREGISTERS at a registrar now must be with atomicity and isolation.

6451 ¢ Registrars nownusT processRequire headers.

6452 ¢ ClarifiedCSeq increment oveREGISTER messages for the sar@all-ID, and necessity of tracking

6453 Call-IDs andCSeqs for contact addresses by a registrar

6454 e Added registrar-side handling for

6455 Contact:

6456 Expires: 0

6457 e Added description generalizing processing@PTIONS responses to include proxies as well as
6458 UAS. Included language describing useMdix-Forwards as a SIP capabilities traceroute. Described
6459 construction of &kequest-URI for anOPTIONS sent to a proxy.

6460 e Defined “Not Applicable” in Tables 2 and 3 to mean that the header field is undefined and should be
6461 ignored if present.

6462 ¢ Removed old references to general headers in Table 3.

6463 ¢ Allowed a proxy to insert dMax-Forwards header field in Table 2. Also added description of the use
6464 of the header by elements that can not otherwise guarantee loop detection.

6465 e Fixed dialog matching reference in 22.37.

6466 ¢ Reinforced that all 6xx, including 603 and 606, are only sent if the UAS knows that no other endpoint
6467 will accept the call.

6468 e Clarified that for 302 responses, tB@entact is used just once to recurse a new transaction, unless an
6469 Expires header oexpires parameter is present.

6470 ¢ Clarified that 405 is sent when the server knows the method, but the method is not allowed for the
6471 resource in the Request-URI. 501 is sent when the server has never heard of the method at all.

6472 ¢ Included note that no MIME types for message bodies of 3xx responses have been defined.

6473 e Stated explicitly in Section 22.10 oG@ontact the rules for parsing display names, URI and URI

6474 parameters, and header parameters. Referenced this text in the secflorendfrrom header fields.

6475 e Corrected references fimestamp section.

6476 e Noted inVia section that the host or network address and port part of the header does not follow
6477 the SIP URI syntax; spaces around : are permitted. Also noted that spaces are permitted around /.
6478 Modified an example to show this.

6479 e Added text to describe tHeontact header fields in a 2xx response to@RTIONS as having redirect

6480 semantics. Modified example to show both a SIP and m@itiotact URI.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 192]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6481 e Added text to describe the use@PTIONS within a dialog to query a peer for capabilities, and noted
6482 that the request has no impact on the dialog.

6483 e Added text to 302 (Moved Temporarily) section saying that if a cac@eatact URI fails, the request

6484 may be retried with the origindRequest-URI. Removed recursion rules (moved to UA section) and
6485 “call” specific language. Specifically stated both proxies and Uas may cache URI for expiration
6486 interval.

6487 e Added text to 488/606 section to allow SDP message bodies, formatted the same as SDP in 200 (OK)

6488 responses tOPTIONS. Removed text on SDP response message bodies froxvaheing section.

6489 e Outbound server is now called outbound proxy

6490 e Clarified that a transaction in the completed state is not “in progress” when it comes to overlapping
6491 transactions.

6492 e 488 response is used to reject an offer.

6493 ¢ Clarified how to reject an offer.

6494 e Clarified that requests witho tag outside a dialog may have been simply missrouted.

6495 e General UAS behaviour applies @ANCEL andBYE
6496 e Clarified when to us8YE to terminate an early dialog.

6497 e Explained when a UAS detects gaps in @&eq space.

6498 e Specified behavior for inclusion of bodiesACK for non-2xx;MUST be same type as request, or one

6499 of the types inAccept if the response was 415.

6500 e Updated the default value of timer D to be 32s, instead of T3.

6501 ¢ Clarified that RTT estimate of T1 applies to all requests and responses sent to that IP address, and
6502 included a discussion of how this is not quite right when there are stateless proxies in the path.

6503 e 180 (Ringing) responses for iBVITES are not typically useful.

6504 e ACKsMUST contain the same credentials as IN¥ITE.

6505 e ACK for non-2xx responses needs to contain the sRmgte headers as the request. Same reason

6506 CANCEL needs to.

6507 ¢ Increased minimum timer for holding persistent connections, and clarified the reasoning behind the
6508 timer.

6509 ¢ Clarified that persistent connections are indexed by address, port, transport, and that ephemeral source
6510 ports imply that peering relationships will ususally involve two connections.

6511 e Timer T3 no longer used; it was a dangling reference in bis-05.

6512 ¢ Clarified Figure 7 to indicate that 100 is only sent if TU won't respond in 200ms.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 193]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6513 e Re-added text that said proxies)sT and UAsHOULD support TCP, which somehow got accidentally
6514 deleted from bis-05.
6515 e Clarified meaning of an empt#ccept header field.

6516 e Added RFC 2616 security warning ab&sgrver header field to bot&erver andUser-Agent header
6517 fields.

6518 e Added handling of transport failures to transaction state machines, and added a section for server
6519 transactions.

6520 ¢ Disallowed port inTo/From header URIs.

6521 e Allowed password in botfio andFrom header URIs.

6522 ¢ Disallowed themethod URI parameter ilREGISTER and RedirecContact header URISs.

6523 e Absolved proxies from issuinGANCELSs based on thExpires header of adNVITE. Included text

6524 pointing out that theywAy do so, but it is unnecessary.

6525 ¢ Clarified aggregating authentication challenges at a proxy.

6526 ¢ Added notice that even though proxies are requirecdANCEL outstanding client transactions upon
6527 forwarding a final response, an endpoint may still receive multiple 200 (OK) responseB\igIdiE.

6528 Also noted that future extensions could override the requiremeDANCEL.

6529 e Reinforced that proxies must wait for provisional responses before geneCANGEL requests.

6530 e Request merging moved to general Ua behaviour section.

6531 e Request processing is atomic.

6532 ¢ Clarified how to resolve glare conditions.

6533 e Added UAs should ignore unknown extension header parameters.

6534 ¢ Clarified when quoted string vs. token can be used as a display name.

6535 e Explicitly stated that a header parameter name can appear at most once per header field value.
6536 e Noted that proxies no longer treat merged requests as an error.

6537 e Clarified that proxies caRecord-Route header field values to requests already in dialogs to improve
6538 robustness, but that chosing not to do so will not normally cause them to be removed from the path.
6539 e Clarified that proxies do not remove any received parameters they may have atfietaader fields

6540 when forwarding responses.

6541 ¢ Deprecated absolute time Expires andRetry-After.

6542 e Added pointer to what to do with responses that were meant for a proxy

6543 e Summarized stateful proxy forwarding behavior with respect to what final responses get forwarded

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 194]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6544 e Clarified that elements on the start line of messages are separated by &siraylaracter
6545 e Explicitly stated that a SIP URI parameter name to occur at most once in a URI.

6546 e Changed Table 2 to shoiccept, Accept-Encoding, Accept-Language, andSupported as for a
6547 2xx to anOPTIONS as m*

6548 e Changed Table 2 to sho@ontent-Length as “t”, which is defined to mean that it should be present,
6549 but must be present if TCP is used.

6550 ¢ Added the notion that registrars that accept registrations on a multicast interface might want to redirect
6551 registrations to a unicast interface.

6552 ¢ Request merging now a behavior of the UA, rather than the proxy server.

6553 ¢ Solidified the circumstances under which UAs should retry rejected requests with theCsdirie

6554 but a differentCSeq.

6555 e Corrected erroneous statement that contact addresses were not cached across dialogs; now dependent
6556 on status code and expiration interval.

6557 e Tags are a1usT for non-100 provisionals, ®mAy for 100 (Trying).

6558 e Discouraged generation of 1xx respones to MW TE requests.

6559 e Fixed references t€ontent- handling headers in the UA section.

6560 e Timestamp headers must be copied from requests into a 100 Trying for RTT calculation.

6561 e Request processing is now said to be atomic.

6562 e Potential infinite redirection loop problem fixed; redirect servetssT NOT send a redirect to the

6563 same URI they received in the redirected request.

6564 e Further specified which URIs servers can expect to see in Request-URIs of requests (relationship to
6565 contact headers).

6566 ¢ Defined pre-loaded route headers.

6567 ¢ Clarified normative language @fccept-Encoding, Accept-Language, and Content-Disposition

6568 in regard to no header being present.

6569 ¢ Noted that “transport=TLS” in a SIP URI refers to TLS over TCP.

6570 ¢ Refined discussion on forming requests based on a given SIP URI.

6571 ¢ Clarified “matching the topmost Via” for stateless proxies.

6572 e Added discussion of how proxies respond to transaction failure and notification of state-machine
6573 timeouts.

6574 e Corrected description of proxy behavior when recursing on 3xx contacts to account for contacts not
6575 recursed on (such as contacts containing non-SIP URISs).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 195]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6576 e AddedReply-To header field.
6577 ¢ Clarified that responses @PTIONS are scoped to thRequest-URI of the request.

6578 e Added 491 (Request Pending) response code.

6579 e Proxies should not remove malformed headers that it doesn’t care about when forwarding requests.
6580 e Noted that proxies can’t generate their own 1xx provisional responses, but they can use a virutual
6581 colocated UAS to achieve the same effect.

6582 e Two SIP URIs which are identical with the exception of the presence aiasidr parameter in one,

6583 and nomaddr parameter in the other are not equivalent.

6584 ¢ Modified transaction, UA, and proxy sections so that branch ID is now a unique transaction identifier.
6585 Updated all example messages so that UAC insert branch ID, and magic cookie is present in all branch
6586 ID values.

6587 e CANCELs andACKsMUST NOT containRequire or Proxy-Require headers.

6588 e A UA sHouLD NoTsend relNVITE or BYE upon media failure.

6589 e Only SIP URIs can be used as addresses of recdREBISTER requests.

6590 e RegistrarsvusT NOT increase the expiration interval of registrations. Intervals that are tooshegrt
6591 be rejected with a 423 vMlin-Expires.

6592 e Security Considerations substantially reorganized and expanded.

6593 e TLS support for proxy servers, registrars and redirect servers nowsd.

6594 e Minimum ciphersuite for TLS now AES.

6595 ¢ S/MIME now slightly more implementable. S/IMIME support is nowaouLD for UAs.

6596 e S/MIME now relies on RFC 2633 CMS messages.

6597 e Threat models against the SIP protocol are now provided.
6598 e Example architectures in which security mechanisms might be used are described.
6599 ¢ Limitations of security mechanisms are described.

6600 e Added 493 (Undecipherable) response code.

6601 e FixedACK column in Table 3 entry fowarning.

6602 e Added text describing how to recurse on a 3xx as a UAC.

6603 e SIP URIs are compared case-sensitive across the userpart, case-insensitive everywhere else.
6604 e Proxies strip transport and port when stripping maddr.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 196]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6605 e Port and transport apply to maddr when maddr is present in a SIP URI.

6606 ¢ Restored record-route example from bis-04.

6607 ¢ Reinforced that SIP messagesay contain binary bodies or body parts.

6608 e Added section discussing conversion of tel URLs to SIP URIs, focusing on issues with maintaining
6609 equivalence.

6610 e Clarified use of transaction key in building values to includ&etord-Route values.

6611 ¢ Clarified requirements on the inclusion of information in the loop-detection hash used in branch pa-
6612 rameters.

6613 e Noted in the proxy section th&ecord-Route values are only valid within the scope of the dialog in

6614 which they are provided.

6615 ¢ Added definitions for redirect server, recursion, header, message, request, response, and route refresh
6616 request.

6617 e Placing headers needed by proxi¥$a(Route, Record-Route, etc.) at the top of messages is now

6618 RECOMMENDED.

6619 ¢ Reinforced that proxies processing messages do not fork, even by recursingon returned 3xx responses.
6620 e Removed restriction on proxies addiRgcord-Route to REGISTER requests. Added that registrars

6621 ignoreRecord-Route if it occurs.

6622 ¢ Allowed for loose-route policies, capturing use of default outbound proxies as a loose route decision.
6623 e The scope ofontact header fields is not limited to the dialog.

6624 e Added text saying that when the caller wishes to be anonymous, the URI should be scrambled as well.
6625 e Moved 485 response generation from UAS to proxy.

6626 e RequiremusT only reference standards track RFCs.

6627 e Removed requirement on proxies to not forward a request to a multicast group that had already been
6628 visited.

6629 e Deprecated loop-detection. Madléax-Forwards mandatory with an initial value of 70. Proxies

6630 insert aMax-Forwards of 70 if they find the header missing.

6631 e Placed HTTP Digest and S/MIME in sections independent of the security Considerations.

6632 e Added 416 (Unsupported URI Scheme) and discussion on its handling. Added guidance on how a

6633 UAC would select the URI in the To/Request-URI based on user input.
6634 e Noted thatBYE without tags is now rejected, which is a backwards compatibility break with RFC
6635 2543.

6636 e Reference offer-answer for formatting of SDPO®TIONS response, 488, 606.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 197]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

6637 e Timer C now managed by the TU. Proxies have a minimum of 3 minutes, but it is extended through
6638 provisional responses.

6639 e Proxies can go stateless mid-transaction if they didn't do anything that would have otherwise pre-
6640 vented them from being stateless in the first place.

e 36 Acknowledgments

es42 We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions.
esa3 Detailed comments were provided by Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan, Cdric
esaa Fluckiger, Yaron Goland, Bernie Hneisen, Phil Hoffer, Christian Huitema, Jean Jervis, Gadi Karmi, Pe-
eeas ter Kjellerstedt, Anders Kristensen, Jonathan Lennox, Gethin Liddell, Alison Mankin, Keith Moore, Vern
ssss Paxson, Moshe J. Sambol, Chip Sharp, Igor Slepchin, Eric Tremblay., and Rick Workman.

6647 Brian Rosen provided the compiled BNF.

6648 This work is based, inter alia, on [43, 44].

w0 37 Authors’ Addresses

sss0 Authors addresses are listed alphabetically for the editors, the writers, and then the original authors of RFC
ees1 2543. All listed authors actively contributed large amounts of text to this document.

ees2 Jonathan Rosenberg

ees3 dynamicsoft

eesa 72 Eagle Rock Ave

e6s5 East Hanover, NJ 07936

e656 USA

ess7 electronic mail;jdrosen@dynamicsoft.com

ssss Henning Schulzrinne

eeso Dept. of Computer Science

ssc0 Columbia University

es61 1214 Amsterdam Avenue

ess2 New York, NY 10027

e663 USA

es64 electronic mail:schulzrinne@cs.columbia.edu

es6s Gonzalo Camarillo

6666 Ericsson

sss7 Advanced Signalling Research Lab.

es68 FIN-02420 Jorvas

es60 Finland

ss70 €lectronic mail:Gonzalo.Camarillo@ericsson.com

e71 Alan Johnston
es72 WorldCom

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 198]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

e673 100 South 4th Street

es74 St. Louis, MO 63102

6675 USA

ss76 electronic mail:alan.johnston@wcom.com

e677 Jon Peterson

ss7s NeuStar, Inc

es79 1800 Sutter Street, Suite 570

sss0 Concord, CA 94520

ees1 USA

ees2 €lectronic mail;jon.peterson@neustar.com

ees3 Robert Sparks

essa dynamicsoft, Inc.

ssss 5100 Tennyson Parkway

eess Suite 1200

ese7 Plano, Texas 75024

eess USA

ess0 electronic mail:rsparks@dynamicsoft.com

sso0 Mark Handley
es01 ACIRI
ss92 electronic mail:mjh@aciri.org

ee93 EVe Schooler

es0a Computer Science Department 256-80
esos California Institute of Technology

es9s Pasadena, CA 91125

e607 USA

es0s electronic mail:schooler@cs.caltech.edu

w0 REfErences

e00 [1] R. Pandya, “Emerging mobile and personal communication systdElSF Communications Maga-
6701 zine Vol. 33, pp. 44-52, June 1995.

ez [2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
6703 applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.

er04 [3] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request for Com-
6705 ments 2326, Internet Engineering Task Force, Apr. 1998.

eros [4] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J. Segers, “Megaco protocol version
6707 1.0,” Request for Comments 3015, Internet Engineering Task Force, Nov. 2000.

e70s [5] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Inter-
6709 net Engineering Task Force, Apr. 1998.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 199]

6710

6711

6712

6713

6714

6715

6716

6717

6718

6719

6720

6721

6722

6723

6724

6725

6726

6727

6728

6729

6730

6731

6732

6733

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

P. Resnick and Editor, “Internet message format,” Request for Comments 2822, Internet Engineering
Task Force, Apr. 2001.

H. Schulzrinne and J. Rosenberg, “SIP: Session initiation protocol — locating SIP servers,” Internet
Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”
Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

T. Berners-Lee, L. Masinter, and M. McCabhill, “Uniform resource locators (URL),” Request for Com-
ments 1738, Internet Engineering Task Force, Dec. 1994.

F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Request for Comments 2279, Internet
Engineering Task Force, Jan. 1998.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol — HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

A. Vaha-Sipila, “URLSs for telephone calls,” Request for Comments 2806, Internet Engineering Task
Force, Apr. 2000.

N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” Request for
Comments 1750, Internet Engineering Task Force, Dec. 1994.

P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Comments 2368,
Internet Engineering Task Force, July 1998.

D. Meyer, “Administratively scoped IP multicast,” Request for Comments 2365, Internet Engineering
Task Force, July 1998.

E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’'s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

J. Rosenberg and H. Schulzrinne, “An offer/answer model with SDP,” Internet Draft, Internet Engi-
neering Task Force, Oct. 2001. Work in progress.

S. Donovan, “The SIP INFO method,” Request for Comments 2976, Internet Engineering Task Force,
Oct. 2000.

R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet Engineering
Task Force, Apr. 1992.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 200]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

e724 [22] V. Paxson and M. Allman, “Computing TCP'’s retransmission timer,” Request for Comments 2988,
6745 Internet Engineering Task Force, Nov. 2000.

o6 [23] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
6747 authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
6748 neering Task Force, June 1999.

e720 [24] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An exten-
6750 sion to HTTP : Digest access authentication,” Request for Comments 2069, Internet Engineering Task
6751 Force, Jan. 1997.

ez [25] J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Security multiparts for MIME: multipart/signed and
6753 multipart/encrypted,” Request for Comments 1847, Internet Engineering Task Force, Oct. 1995.

e7sa [26] R. Housley, “Cryptographic message syntax,” Request for Comments 2630, Internet Engineering Task
6755 Force, June 1999.

es6 [27] B. Ramsdell and Ed, “S/MIME version 3 message specification,” Request for Comments 2633, Internet
6757 Engineering Task Force, June 1999.

e7s8 [28] T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
6759 neering Task Force, Jan. 1999.

ee0 [29] S. Kentand R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 2401,
6761 Internet Engineering Task Force, Nov. 1998.

ee2 [30] J. Postel, “User datagram protocol,” Request for Comments 768, Internet Engineering Task Force,
6763 Aug. 1980.

eea [31] J. Postel, “DoD standard transmission control protocol,” Request for Comments 761, Internet Engi-
6765 neering Task Force, Jan. 1980.

ees [32] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
6767 and V. Paxson, “Stream control transmission protocol,” Request for Comments 2960, Internet Engi-
6768 neering Task Force, Oct. 2000.

ee0 [33] F. Dawson and T. Howes, “vcard MIME directory profile,” Request for Comments 2426, Internet
6770 Engineering Task Force, Sept. 1998.

o711 [34] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” Request for Com-
6772 ments 2849, Internet Engineering Task Force, June 2000.

e773 [35] R. Troost and S. Dorner, “Communicating presentation information in internet messages: The content-
6774 disposition header,” Request for Comments 1806, Internet Engineering Task Force, June 1995.

e77s [36] R. Braden and Ed, “Requirements for internet hosts - application and support,” Request for Comments
6776 1123, Internet Engineering Task Force, Oct. 1989.

o777 [37] J. Palme, “Common internet message headers,” Request for Comments 2076, Internet Engineering
6778 Task Force, Feb. 1997.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 201]

6779

6780

6781

6782

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

6796

6797

6798

6799

6800

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-06.ps January 28, 2002

[38] H. Alvestrand, “IETF policy on character sets and languages,” Request for Comments 2277, Internet
Engineering Task Force, Jan. 1998.

[39] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Willis, J. Rosenberg, K. Summers, and
H. Schulzrinne, “SIP telephony call flow examples,” Internet Draft, Internet Engineering Task Force,
Apr. 2001. Work in progress.

[40] D. Crocker, Ed., and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for
Comments 2234, Internet Engineering Task Force, Nov. 1997.

[41] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for
Comments 1890, Internet Engineering Task Force, Jan. 1996.

[42] R. Hinden, B. Carpenter, and L. Masinter, “Format for literal IPv6 addresses in URL's,” Request for
Comments 2732, Internet Engineering Task Force, Dec. 1999.

[43] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experiendel. 4, pp. 99-120, June 1993. ISI
reprint series ISI/RS-93-359.

[44] H. Schulzrinne, “Personal mobility for multimedia services in the InternetZuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDNERrlin, Germany), Mar. 1996.

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires July 2002[Page 202]

