
SACM D. Waltermire, Ed.
Internet-Draft NIST
Intended status: Informational K. Watson
Expires: September 18, 2016 DHS
 C. Kahn
 L. Lorenzin
 Pulse Secure, LLC
 M. Cokus
 D. Haynes
 The MITRE Corporation
 March 17, 2016

 SACM Information Model
 draft-ietf-sacm-information-model-04

Abstract

 This document defines the information model for SACM.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 18, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Waltermire, et al. Expires September 18, 2016 [Page 1]

Internet-Draft SACM Information Model March 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 7
 1.1. Problem Statement . 8
 1.1.1. Referring to an Endpoint 9
 1.1.2. Dealing with Uncertainty 10
 2. Conventions used in this document 11
 2.1. Requirements Language 11
 3. Information Model Framework 11
 3.1. Attributes . 11
 3.1.1. Syntax . 11
 3.2. Objects . 12
 3.2.1. Syntax . 13
 3.3. Metadata . 14
 3.4. Relationships . 15
 3.5. Designation . 15
 3.6. Privacy . 15

 3.7. Type Space . 16
 3.7.1. Abstract Data Types 16
 3.7.1.1. unsigned8 . 16
 3.7.1.2. unsigned16 16
 3.7.1.3. unsigned32 16
 3.7.1.4. unsigned64 16
 3.7.1.5. signed8 . 16
 3.7.1.6. signed16 . 16
 3.7.1.7. signed32 . 17
 3.7.1.8. signed64 . 17
 3.7.1.9. float32 . 17
 3.7.1.10. float64 . 17
 3.7.1.11. boolean . 17
 3.7.1.12. macAddress 17
 3.7.1.13. string . 17
 3.7.1.14. dateTimeSeconds 17
 3.7.1.15. dateTimeMilliseconds 17
 3.7.1.16. dateTimeMicroseconds 18
 3.7.1.17. dateTimeNanoseconds 18
 3.7.1.18. ipv4Address 18
 3.7.1.19. ipv6Address 18
 3.7.1.20. basicList . 18
 3.7.1.21. subTemplateList 18
 3.7.1.22. subTemplateMultiList 18
 3.7.2. Data Type Semantics 18
 3.7.3. quantity . 19
 3.7.4. totalCounter . 19

Waltermire, et al. Expires September 18, 2016 [Page 2]

Internet-Draft SACM Information Model March 2016

 3.7.5. deltaCounter . 19
 3.7.6. identifier . 19
 3.7.7. flags . 19
 3.7.8. list . 20
 4. Information Model Assets 20
 4.1. Asset . 21
 4.2. Endpoint . 21
 4.3. Hardware Component 22
 4.3.1. Hardware Instance 22
 4.4. Software Component 22
 4.4.1. Software Instance 24
 4.5. Asset Identity . 24
 4.6. Relationships . 24
 5. Information Model Elements 24
 5.1. Identifying Attributes 27
 5.1.1. How Known . 27
 5.1.2. Whether to Include 28
 5.1.3. Certificate . 28
 5.1.3.1. Range of values 28
 5.1.3.2. Meaning . 28
 5.1.3.3. Multiplicity 28
 5.1.3.4. Stability . 29
 5.1.3.5. Accuracy . 29
 5.1.3.6. Data model requirements 29
 5.1.4. Public Key . 29
 5.1.5. Username? . 29
 5.1.6. Tool-Specific Identifier 29
 5.1.7. Identification of Endpoints where SACM Components
 Reside . 30
 5.1.8. Security Considerations 30
 5.2. Identity . 30
 5.3. Location . 31
 5.4. Endpoint Attribute Assertion 32
 5.4.1. Form and Precise Meaning 32
 5.4.2. Asserter . 32
 5.4.3. Example . 33
 5.4.4. A Use Case . 33
 5.4.5. Event . 33
 5.4.6. Difference between Attribute and Event 33
 5.5. Attribute-Value Pair 34
 5.5.1. Unique Endpoint Identifier 35
 5.5.2. Posture Attribute 35
 5.6. Evaluation Result . 36
 5.7. SACM Component . 36
 5.7.1. External Attribute Collector 36
 5.7.2. Evaluator . 37

 5.8. Organization? . 37
 5.9. Guidance . 38

Waltermire, et al. Expires September 18, 2016 [Page 3]

Internet-Draft SACM Information Model March 2016

 5.9.1. Internal Collection Guidance 38
 5.9.2. External Collection Guidance 38
 5.9.3. Evaluation Guidance 38
 5.9.4. Retention Guidance 38
 5.10. Endpoint . 39
 5.10.1. Endpoint Identity 39
 5.10.2. Software Component 39
 5.10.2.1. Unique Software Identifier 40
 5.11. User . 40
 5.11.1. User Identity 40
 5.12. hardwareSerialNumber 41
 5.13. interfaceName . 41
 5.14. interfaceIndex . 41
 5.15. interfaceMacAddress 41
 5.16. interfaceType . 42
 5.17. interfaceFlags . 42
 5.18. networkInterface . 42
 5.19. softwareIdentifier 43
 5.20. softwareTitle . 43
 5.21. softwareCreator . 43
 5.22. simpleVersion . 44
 5.23. rpmVersion . 44
 5.24. ciscoTrainVersion . 44
 5.25. softwareVersion . 44
 5.26. lastUpdated . 45
 5.27. softwareInstance . 45
 5.28. globallyUniqueIdentifier 46
 5.29. dataOrigin . 46
 5.30. dataSource . 46
 5.31. creationTimestamp . 46
 5.32. collectionTimestamp 46
 5.33. publicationTimestamp 47
 5.34. relayTimestamp . 47
 5.35. storageTimestamp . 47
 5.36. type . 47
 5.37. protocolIdentifier 48
 5.38. sourceTransportPort 48
 5.39. sourceIPv4PrefixLength 49
 5.40. ingressInterface . 49
 5.41. destinationTransportPort 49
 5.42. sourceIPv6PrefixLength 50
 5.43. sourceIPv4Prefix . 50
 5.44. destinationIPv4Prefix 50
 5.45. sourceMacAddress . 50
 5.46. ipVersion . 50
 5.47. interfaceName . 51
 5.48. interfaceDescription 51
 5.49. applicationDescription 51

Waltermire, et al. Expires September 18, 2016 [Page 4]

Internet-Draft SACM Information Model March 2016

 5.50. applicationId . 51
 5.51. applicationName . 51
 5.52. exporterIPv4Address 52
 5.53. exporterIPv6Address 52
 5.54. portId . 52
 5.55. templateId . 52
 5.56. collectorIPv4Address 53
 5.57. collectorIPv6Address 53
 5.58. informationElementIndex 53
 5.59. basicList . 54
 5.60. subTemplateList . 54
 5.61. subTemplateMultiList 54
 5.62. informationElementId 54
 5.63. informationElementDataType 54
 5.64. informationElementDescription 55

 5.65. informationElementName 55
 5.66. informationElementRangeBegin 56
 5.67. informationElementRangeEnd 56
 5.68. informationElementSemantics 56
 5.69. informationElementUnits 57
 5.70. userName . 57
 5.71. applicationCategoryName 57
 5.72. mibObjectValueInteger 57
 5.73. mibObjectValueOctetString 58
 5.74. mibObjectValueOID . 58
 5.75. mibObjectValueBits 59
 5.76. mibObjectValueIPAddress 59
 5.77. mibObjectValueCounter 59
 5.78. mibObjectValueGauge 60
 5.79. mibObjectValueTimeTicks 60
 5.80. mibObjectValueUnsigned 60
 5.81. mibObjectValueTable 61
 5.82. mibObjectValueRow . 61
 5.83. mibObjectIdentifier 61
 5.84. mibSubIdentifier . 62
 5.85. mibIndexIndicator . 62
 5.86. mibCaptureTimeSemantics 62
 5.87. mibContextEngineID 63
 5.88. mibContextName . 64
 5.89. mibObjectName . 64
 5.90. mibObjectDescription 64
 5.91. mibObjectSyntax . 64
 5.92. mibModuleName . 64
 6. SACM Usage Scenario Example 65
 6.1. Graph Model for Detection of Posture Deviation 65
 6.1.1. Components . 65
 6.1.2. Identifiers . 66
 6.1.3. Metadata . 66

Waltermire, et al. Expires September 18, 2016 [Page 5]

Internet-Draft SACM Information Model March 2016

 6.1.4. Relationships between Identifiers and Metadata . . . 67
 6.2. Workflow . 67
 7. Acknowledgements . 68
 7.1. Contributors . 68
 8. IANA Considerations . 68
 9. Operational Considerations 69
 10. Privacy Considerations 69
 11. Security Considerations 69
 12. References . 70
 12.1. Normative References 70
 12.2. Informative References 70
 Appendix A. Change Log . 76
 A.1. Changes in Revision 01 76
 A.2. Changes in Revision 02 77
 A.3. Changes in Revision 03 77
 A.4. Changes in Revision 04 78
 Appendix B. Mapping to SACM Use Cases 78
 Appendix C. Security Automation with TNC IF-MAP 78
 C.1. What is Trusted Network Connect? 78
 C.2. What is TNC IF-MAP? 79
 C.3. What is the TNC Information Model? 79
 Appendix D. Text for Possible Inclusion in the Terminology Draft 80
 D.1. Terms and Definitions 80
 D.1.1. Pre-defined and Modified Terms 80
 D.1.2. New Terms . 81
 Appendix E. Text for Possible Inclusion in the Architecture or
 Use Cases . 81
 E.1. Introduction . 82
 E.2. Core Principles . 82
 E.3. Architecture Assumptions 83
 Appendix F. Text for Possible Inclusion in the Requirements
 Draft . 87
 F.1. Problem Statement . 87
 F.2. Problem Scope . 87
 Appendix G. Text With No Clear Home Yet 88
 G.1. Operations . 88
 G.1.1. Generalized Workflow 88
 G.2. From Information Needs to Information Elements 89
 G.3. Information Model Elements 89
 G.3.1. Asset Identifiers 91

 G.3.1.2. Endpoint Identification 93
 G.3.1.3. Software Identification 94
 G.3.1.4. Hardware Identification 97
 G.3.2. Other Identifiers 97
 G.3.2.1. Platform Configuration Item Identifier 97
 G.3.2.2. Configuration Item Identifier 103
 G.3.2.3. Vulnerability Identifier 105
 G.3.3. Endpoint characterization 105

Waltermire, et al. Expires September 18, 2016 [Page 6]

Internet-Draft SACM Information Model March 2016

 G.3.4. Posture Attribute Expression 109
 G.3.4.2. Platform Configuration Attributes 109
 G.3.5. Actual Value Representation 111
 G.3.5.1. Software Inventory 111
 G.3.5.2. Collected Platform Configuration Posture
 Attributes 112
 G.3.6. Evaluation Guidance 113
 G.3.6.1. Configuration Evaluation Guidance 113
 G.3.7. Evaluation Result Reporting 115
 G.3.7.1. Configuration Evaluation Results 115
 G.3.7.2. Software Inventory Evaluation Results 117
 Appendix H. Graph Model . 117
 H.1. Background: Graph Models 118
 H.2. Graph Model Overview 119
 H.3. Identifiers . 119
 H.4. Links . 120
 H.5. Metadata . 120
 H.6. Use for SACM . 121
 H.7. Provenance . 121
 H.8. Extensibility . 121
 Authors' Addresses . 122

1. Introduction

 This document defines an information model for endpoint posture
 assessment. The scope of the information model is to describe the
 mandatory-to-implement information needs required to realize the
 assessment of an endpoint in a scalable and extensible way. The
 information model aims to inform the development of specific data
 models that support the endpoint posture assessment process. The
 terms "information model" and "data model" align with the definitions
 in [RFC3444].

 The five primary activities to support this information model are:

 1. Endpoint Identification

 2. Endpoint Characterization

 3. Endpoint Attribute Expression

 4. Guidance Expression

 5. Endpoint Evaluation Result Expression

 These activities are aimed at the level of the technology that
 performs operations to support the collection, communication, and
 evaluation of endpoint information.

Waltermire, et al. Expires September 18, 2016 [Page 7]

Internet-Draft SACM Information Model March 2016

 Review of the SACM Use Case [RFC7632] usage scenarios show a common
 set of business process areas that are critical to understanding
 endpoint posture such that appropriate policies, security
 capabilities, and decisions can be developed and implemented.

 For this information model we have chosen to focus on the following
 business process areas:

 o Endpoint Management

 o Software Inventory Management

 o Hardware Inventory Management

 o Configuration Management

 o Vulnerability Management

 These management process areas are a way to connect the SACM use
 cases and building blocks [RFC7632] to the organizational needs such
 that the definition of information requirements has a clearly
 understood context. For more information, see Appendix B which maps
 the SACM information model to the SACM use cases.

 The SACM information model offers a loose coupling between providers
 and consumers of security information. A provider can relay what it
 observes or infers, without knowing which consumers will use the
 information, or how they will use it. A consumer need not know
 exactly which provider generated a piece of information, or by what
 method.

 At the same time, a consumer *can* know these things, if necessary.

 As things evolve, a provider can relay supplemental information.
 Some consumers will understand and benefit from the supplemental
 information; other consumers will not understand and will disregard
 it.

1.1. Problem Statement

 SACM requires a large and broad set of mission and business
 processes, and to make the most effective use of technology, the same
 data must support multiple processes. The activities and processes
 described within this document tend to build off of each other to
 enable more complex characterization and assessment. In an effort to
 create an information model that serves a common set of management
 processes represented by the usage scenarios in the SACM Use Cases
 [RFC7632], we have narrowed down the scope of this model to focus on

Waltermire, et al. Expires September 18, 2016 [Page 8]

Internet-Draft SACM Information Model March 2016

 the information needs required for endpoint identification, endpoint
 characterization, endpoint attribute expression, guidance expression,
 and endpoint evaluation result expression.

 Administrators can't get technology from disparate sources to work
 together; they need information to make decisions, but the
 information is not available. Everyone is collecting the same data,
 but storing it as different information. Administrators therefore
 need to collect data and craft their own information, which may not
 be accurate or interoperable because it's customized by each
 administrator, not shared. A standard information model enables
 flexibility in collecting, storing, and exchanging information
 despite platform differences.

 A way is needed to exchange information that (a) has breadth, meaning
 the pieces of the notation are useful for a variety of endpoint
 information, and (b) has longevity, meaning that the pieces of the
 notation will stay useful over time.

 When creating standards, it's not sufficient to go from the
 requirements directly to the protocol; the standards must eliminate
 ambiguity in the information transported. This is the purpose of
 information models generally. The SACM problem space is about
 integrating many information sources. This information model
 addresses the need to integrate security components, support multiple
 data models, and provide interoperability in a way that is platform
 agnostic, scales, and works over time.

1.1.1. Referring to an Endpoint

 How to refer to an endpoint is problematic. Ideally, an endpoint
 would have a unique identifier. These identifiers would have a one-
 to-one relationship with endpoints. Every observation of an
 endpoint, or inference about an endpoint would be labeled with its

 identifier.

 However:

 o An external posture attribute collector typically cannot observe
 the unique identifier directly. An external posture attribute
 collector should be able to report exactly what it has observed,
 unembellished. It should not have to *infer* which endpoint it
 has observed; that inference should be left to other SACM
 components. So, SACM cannot require that every observation
 include the unique endpoint identifier.

 o Internal posture attribute collectors are not present on all
 endpoints. They are not present on "dumb" devices such as

Waltermire, et al. Expires September 18, 2016 [Page 9]

Internet-Draft SACM Information Model March 2016

 Internet of Things (IoT) devices, or on Bring Your Own Device
 (BYOD) devices. In these cases, *no* observers have direct access
 to the unique endpoint identifier.

 o An endpoint identifier is generally subject to cloning, when a
 system image is cloned. Then, it is no longer unique.

 o Suppose the endpoint identifier is highly clone resistant -- such
 as a unique certificate within a hardware cryptographic module.
 Even so, it is possible to replace all of the software -- for
 example, changing a Windows machine to a Linux machine. Is it
 still the same endpoint? For SACM purposes, it isn't really the
 same endpoint.

 So SACM components must be able to put disparate observations
 together and form a picture of an endpoint -- somewhat like a
 detective. The SACM information model must facilitate this.

1.1.2. Dealing with Uncertainty

 With many information models, the information is considered certain.
 In SACM, information is not certain. Attackers may develop
 countermeasures to fool some SACM components. Attackers may
 compromise some SACM components.

 So the model must let SACM components and humans reason with
 uncertainty. There are no facts, only assertions.

 SACM components must be able to cross check observations and
 inferences against each other. They should be able to give weight if
 an observation or inference is corroborated by more than one method.
 Although SACM will probably not prescribe *how* to do this cross
 checking, SACM should provide the components with information that
 can be used to determine provenance.

 SACM components must be able to consider the reputation of the
 observer or inferrer. That reputation should account for the method
 of observing or inferring, the implementer of the SACM component that
 made the observation or inference, and the compliance status of the
 endpoint on which the observation or inference was made. For
 example, if some observers are found to be vulnerable to a Day 1
 exploit, observations from those observers deserve less weight. The
 details of reputation technology may be out of scope for SACM.
 However, again, SACM should provide components with information that
 enables them to make this determination.

Waltermire, et al. Expires September 18, 2016 [Page 10]

Internet-Draft SACM Information Model March 2016

2. Conventions used in this document

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Information Model Framework

 The SACM information model is structured around a core framework that
 can be easily extended to support the modeling needs for endpoint
 posture assessment. This section describes the key concepts that
 make up this framework as well as the IP Information Flow Export
 (IPFIX) Information Model [RFC7012] syntax used to model the
 different information model concepts.

3.1. Attributes

 Attributes are used to model specific endpoint information. At a
 minimum, an attribute must have a name and a value. Additional
 information about attributes can be modeled using metadata as
 described in Section 3.3.

3.1.1. Syntax

 Attributes must be defined using the IPFIX Information Element
 Specification Template as described in Section 2.1 of [RFC7012]. The
 following is a modified version of the template for Information
 Elements provided in Section 9.1 of [RFC7013].

Waltermire, et al. Expires September 18, 2016 [Page 11]

Internet-Draft SACM Information Model March 2016

 elementId: Element identifier goes here if known, or
 "TBD" if it will be assigned by IANA and
 filled in at publication time.; obligatory

 name: Name goes here.; obligatory

 dataType: Data type goes here; obligatory

 status: Status goes here; obligatory

 description: Description goes here.; obligatory

 For Information Elements that
 represent flags, please include a
 table that lists each flag value
 (hexadecimal) and description.
 The following is a template for that
 table.

 +-------+----------------------------------+
 | Value | Description |
 +-------+----------------------------------+
 | | |
 +-------+----------------------------------+

 dataTypeSemantics: Data type semantics, if any, go here; optional

 units: Units, if any, go here; optional

 range: Range, if not implied by the data type, goes
 here; optional

 references: References to other RFCs or documents outside
 the IETF, in which additional information is
 given, or which are referenced by the
 description, go here; optional

 Figure 1

3.2. Objects

 Objects are the mechanism by which attributes (Section 3.1) and/or
 other objects can be logically grouped together to create more
 complex models. Additional information about objects can be modeled
 using metadata as described in Section 3.3.

Waltermire, et al. Expires September 18, 2016 [Page 12]

Internet-Draft SACM Information Model March 2016

3.2.1. Syntax

 Objects are complex Information Elements that can be created using
 one of the following IPFIX constructs that are defined in Section 3.1
 of [RFC7012].

 o basicList: a list of zero or more instances of any Information
 Element

 o subTemplateList: a list of zero or more instances of a single,
 specific Template

 o subTemplateMultiList: a list of zero or more instances of any
 Template

 The following is a modified version of the template for Information
 Elements provided in Section 9.1 of [RFC7013] that can be used to
 model objects.

Waltermire, et al. Expires September 18, 2016 [Page 13]

Internet-Draft SACM Information Model March 2016

elementId: Element identifier goes here if known, or
 "TBD" if it will be assigned by IANA and
 filled in at publication time.; obligatory

name: Name goes here.; obligatory

dataType: Data type goes here; obligatory

status: Status goes here; obligatory

description: Description goes here.; obligatory

 Please include a high-level model diagram that uses
 the following format which is a simplified version
 of a high-level diagram format used in [RFC6313].

 <IE-Name> = (<IE-DataType>, <IE-DataTypeSemantic>,
 <IE-1>,
 <IE-2>,
 <IE-3>,
 ...
)

 dataTypeSemantics: Data type semantics, if any, go here; optional

 units: Units, if any, go here; optional

 range: Range, if not implied by the data type, goes
 here; optional

 references: References to other RFCs or documents outside
 the IETF, in which additional information is
 given, or which are referenced by the
 description, go here; optional

 Figure 2

3.3. Metadata

 Metadata allows components to annotate objects and attributes with
 additional information that will allow other components to make a
 determination about the provenance of the objects and attributes
 during exchanges and evaluations. A proposal outlining various
 options for representing metadata attributes/objects in the IPFIX
 syntax is being discussed on the mailing list. TODO: See IM issue
 #39 at https://github.com/sacmwg/draft-ietf-sacm-information-model/
 issues/39 for more information.

Waltermire, et al. Expires September 18, 2016 [Page 14]

Internet-Draft SACM Information Model March 2016

3.4. Relationships

 TODO: Define what a relationship is. At the end of the day, we want
 to be able to describe the relationships between assets, endpoints,
 and attributes. QUESTION: Are relationships just metadata? Lisa's
 notes have some information on relationships:
 https://mailarchive.ietf.org/arch/msg/sacm/
 kWxlnboHAXD87cned9WavwPZy5w. We also want to consider the
 relationships proposed by Nancy and Henk in
 https://www.ietf.org/proceedings/94/slides/slides-94-sacm-7.pdf.
 Nancy and Henk expect to provide additional information related to
 their Information Model work that can be merged into this document at
 some point. The information is expected to be ready in advance of
 IETF 95. Please see issue #39 at https://github.com/sacmwg/draft-
 ietf-sacm-information-model/issues/39 for more information.

3.5. Designation

 TODO: In the IETF, there are privacy concerns with respect to
 endpoint identity and monitoring. As a result, the Endpoint ID
 Design Team proposes that "endpoint identity" be changed to "endpoint
 designation". Designation attributes can be used to correlate

 endpoints, information about endpoints, events, etc. NOTE:
 Designation attributes are just those that are mandatory-to-
 implement. In practice, organizations may need to select additional
 attributes beyond the mandatory-to-implement attributes to
 successfully identify an endpoint on their network. Operational and
 privacy concerns will be covered in Operational Considerations and
 Privacy Considerations sections respectively. A proposal outlining
 various options for representing designation attributes/objects in
 the IPFIX syntax is being discussed on the mailing list. See IM
 issue #39 at https://github.com/sacmwg/draft-ietf-sacm-information-
 model/issues/39 for more information.

3.6. Privacy

 TODO: In the IETF, there are privacy concerns with respect to
 endpoint identity and monitoring. As a result, it was proposed that
 a privacy property be included to denote when a information element
 represents a privacy concern. A proposal outlining various options
 for representing privacy attributes/objects in the IPFIX syntax is
 being discussed on the mailing list. See IM issue #39 at
 https://github.com/sacmwg/draft-ietf-sacm-information-model/issues/39
 for more information.

Waltermire, et al. Expires September 18, 2016 [Page 15]

Internet-Draft SACM Information Model March 2016

3.7. Type Space

 This section describes the abstract data types that can be used for
 the specification of the SACM Information Elements in Section 5.
 Section 3.7.1 describes the set of abstract data types. This section
 used Section 3 of [RFC7012] as a starting point and was modified to
 address the needs of SACM.

3.7.1. Abstract Data Types

 This section describes the set of valid abstract data types of the
 SACM information model, independent of how they are implemented in a
 data model. Note that further abstract data types may be specified
 by future extensions of the SACM information model.

3.7.1.1. unsigned8

 The type "unsigned8" represents a non-negative integer value in the
 range of 0 to 255.

3.7.1.2. unsigned16

 The type "unsigned16" represents a non-negative integer value in the
 range of 0 to 65535.

3.7.1.3. unsigned32

 The type "unsigned32" represents a non-negative integer value in the
 range of 0 to 4294967295.

3.7.1.4. unsigned64

 The type "unsigned64" represents a non-negative integer value in the
 range of 0 to 18446744073709551615.

3.7.1.5. signed8

 The type "signed8" represents an integer value in the range of -128
 to 127.

3.7.1.6. signed16

 The type "signed16" represents an integer value in the range of
 -32768 to 32767.

Waltermire, et al. Expires September 18, 2016 [Page 16]

Internet-Draft SACM Information Model March 2016

3.7.1.7. signed32

 The type "signed32" represents an integer value in the range of
 -2147483648 to 2147483647.

3.7.1.8. signed64

 The type "signed64" represents an integer value in the range of
 -9223372036854775808 to 9223372036854775807.

3.7.1.9. float32

 The type "float32" corresponds to an IEEE single-precision 32-bit
 floating point type as defined in [IEEE.754.1985].

3.7.1.10. float64

 The type "float64" corresponds to an IEEE double-precision 64-bit
 floating point type as defined in [IEEE.754.1985].

3.7.1.11. boolean

 The type "boolean" represents a binary value. The only allowed
 values are "true" and "false".

3.7.1.12. macAddress

 The type "macAddress" represents a MAC-48 address as defined in
 [IEEE.802-3.2012].

3.7.1.13. string

 The type "string" represents a finite-length string of valid
 characters from the Unicode coded character set [ISO.10646]. Unicode
 incorporates ASCII [RFC20] and the characters of many other
 international character sets.

3.7.1.14. dateTimeSeconds

 The type "dateTimeSeconds" represents a time value expressed with
 second-level precision.

3.7.1.15. dateTimeMilliseconds

 The type "dateTimeMilliseconds" represents a time value expressed
 with millisecond-level precision.

Waltermire, et al. Expires September 18, 2016 [Page 17]

Internet-Draft SACM Information Model March 2016

3.7.1.16. dateTimeMicroseconds

 The type "dateTimeMicroseconds" represents a time value expressed
 with microsecond-level precision.

3.7.1.17. dateTimeNanoseconds

 The type "dateTimeNanoseconds" represents a time value expressed with
 nanosecond-level precision.

3.7.1.18. ipv4Address

 The type "ipv4Address" represents an IPv4 address as defined in
 [RFC0791].

3.7.1.19. ipv6Address

 The type "ipv6Address" represents an IPv6 address as defined in
 [RFC3587].

3.7.1.20. basicList

 The type "basicList" represents a list of zero or more instances of
 any Information Element as defined in [RFC6313].

3.7.1.21. subTemplateList

 The type "subTemplateList" represents a list of zero or more
 instances of a structured data type, where the data type of each list
 element is the same and corresponds with a single Template Record as
 defined in [RFC6313].

3.7.1.22. subTemplateMultiList

 The type "subTemplateMultiList" represents a list of zero or more
 instances of a structured data type, where the data type of each list
 element can be different and corresponds with different Template
 definitions as defined in [RFC6313].

3.7.2. Data Type Semantics

 This section describes the set of valid data type semantics of the
 IPFIX information model.

 Further data type semantics may be specified by future updates to
 this document. Changes to the associated "IPFIX Information Element
 Semantics" subregistry [IANA-IPFIX] require a Standards Action
 [RFC5226].

Waltermire, et al. Expires September 18, 2016 [Page 18]

Internet-Draft SACM Information Model March 2016

3.7.3. quantity

 "quantity" is a numeric (integral or floating point) value
 representing a measured value pertaining to the record. This is
 distinguished from counters that represent an ongoing measured value
 whose "odometer" reading is captured as part of a given record. This
 is the default semantic type of all numeric data types.

3.7.4. totalCounter

 "totalCounter" is an integral value reporting the value of a counter.
 Counters are unsigned and wrap back to zero after reaching the limit
 of the type. For example, an unsigned64 with counter semantics will
 continue to increment until reaching the value of 2**64 - 1. At this
 point, the next increment will wrap its value to zero and continue
 counting from zero. The semantics of a total counter is similar to
 the semantics of counters used in the Simple Network Management
 Protocol (SNMP), such as Counter32 as defined in [RFC2578]. The only
 difference between total counters and counters used in SNMP is that
 the total counters have an initial value of 0. A total counter
 counts independently of the export of its value.

3.7.5. deltaCounter

 "deltaCounter" is an integral value reporting the value of a counter.
 Counters are unsigned and wrap back to zero after reaching the limit
 of the type. For example, an unsigned64 with counter semantics will
 continue to increment until reaching the value of 2**64 - 1. At this
 point, the next increment will wrap its value to zero and continue
 counting from zero. The semantics of a delta counter is similar to
 the semantics of counters used in SNMP, such as Counter32 as defined
 in [RFC2578]. The only difference between delta counters and
 counters used in SNMP is that the delta counters have an initial
 value of 0. A delta counter is reset to 0 each time it is exported
 and/or expires without export.

3.7.6. identifier

 "identifier" is an integral value that serves as an identifier.
 Specifically, mathematical operations on two identifiers (aside from
 the equality operation) are meaningless. Identifiers MUST be one of

 the signed or unsigned data types.

3.7.7. flags

 "flags" is an integral value that represents a set of bit fields.
 Logical operations are appropriate on such values, but other

Waltermire, et al. Expires September 18, 2016 [Page 19]

Internet-Draft SACM Information Model March 2016

 mathematical operations are not. Flags MUST always be of an unsigned
 data type.

3.7.8. list

 A list represents an arbitrary-length sequence of zero or more
 Information Elements, either composed of regular Information Elements
 or composed of data conforming to a Template Record. See [RFC6313].

4. Information Model Assets

 TODO: Explain the different SACM assets. Right now, we have
 distilled this down to an endpoint, hardware, software, and identity.
 Previously, this diagram also included account, location, address,
 and network inteface, but, these things are not assets and can either
 be consolidated into one of the existing asset types (e.g. network
 interface => hardware, account => identity, etc.) or are just
 metadata about the assets (e.g. location => endpoint). We should
 also explain the types of assets below rather than just referencing
 out to the Terminology draft.

 TODO: The figure below needs to be updated to show the relationships
 between the different types of assets.

Waltermire, et al. Expires September 18, 2016 [Page 20]

Internet-Draft SACM Information Model March 2016

 +---------+*______in>_______*+-----+
 |Hardware | |! !|
 |Component| +---------+ |! !|
 +---------+ |Software |in> |! !|
 1| |Component|____|! !|
 | +---------+* *|! !|
 | 1| |! !|
 | *| | | +----------+
 | +---------+ |End- |*_____*| Identity |
 *| |Software |in> |point| acts +----------+

 +---------+ |Instance |____| | for>
 |Hardware | +---------+* 1|! !|
 |Instance |__________________|! !|
 +---------+* in> 1|! !|
 |! !|
 |! !|____
 |! !|0..1|
 +-----+ |
 |* |
 |_______|
 in>

 Figure 3: Model of an Endpoint

4.1. Asset

 TODO: Define Asset here in the context of the information model.

 [I-D.ietf-sacm-terminology] defines an asset as: Defined in
 {{RFC4949}} as "a system resource that is (a) required to be
 protected by an information system's security policy, (b) intended to
 be protected by a countermeasure, or (c) required for a system's
 mission". In the scope of SACM, an asset can be composed of other
 assets. Examples of Assets include: Endpoints, Software, Guidance,
 or X.509 public key certificates. An asset is not necessarily owned
 by an organization.

4.2. Endpoint

 TODO: Define an Endpoint asset. Explain how it is made up of HW
 components, SW components, asset identity, etc.

 An endpoint is the hollow center of the model. An endpoint is an
 abstract ideal. Any endpoint attribute assertion that mentions an
 endpoint mentions it by specifying identifying attributes. Even if
 there is one preferred endpoint identity, that is modeled as an

Waltermire, et al. Expires September 18, 2016 [Page 21]

Internet-Draft SACM Information Model March 2016

 identity. We do not anticipate any AVP whose attribute type is
 "endpoint".

4.3. Hardware Component

 TODO: Define a Hardware Component asset. Explain how it is things
 like motherboards, network cards, etc.

 Hardware components may also be assets and/or harmful. For example,
 a USB port on a system may be disabled to prevent information flow
 into our out of a particular system; this provides an additional
 layer of protection that can complement software based protections.
 Other such assets may include access to or modification of storage
 media, hardware key stores, microphones and cameras. Like software
 assets, we can consider these hardware components both from the
 perspective of (a) an asset that needs protection and (b) an asset
 that can be compromised in some way to do harm.

 A data model MAY designate a hardware component by its manufacturer
 and a part number.

4.3.1. Hardware Instance

 A hardware instance is just an instance of a particular component.

 A data model MUST support the following relationships:

 o A hardware instance is an "instance of" a hardware component.

 o A hardware instance is "in" an endpoint.

 Hardware instances may need to be modeled because (a) an endpoint may
 have multiple instances of a hardware component, (b) a hardware
 instance may be compromised, whereas other instances may remain
 intact.

 A data model MAY designate a hardware instance by its component and a
 unique serial number.

4.4. Software Component

 TODO: Define a Software Component asset. Explain how it is the
 software installed on the endpoint including the operating system.

 An endpoint contains and runs software components.

 Relationship:

Waltermire, et al. Expires September 18, 2016 [Page 22]

Internet-Draft SACM Information Model March 2016

 o If an endpoint has an instance of a software component, we say
 that the software component is "in" the endpoint. This is a
 shorthand.

 Some software components are assets. "Asset" is defined in RFC4949
 [RFC4949] as "a system resource that is (a) required to be protected
 by an information system's security policy, (b) intended to be
 protected by a countermeasure, or (c) required for a system's
 mission."

 An examination of software needs to consider both (a) software assets
 and (b) software that may do harm. A posture attribute collector may
 not know (a) from (b). It is useful to define Software Component as
 the union of (a) and (b).

 Examples of Software Assets:

 o An application

 o A patch

 o The operating system kernel

 o A boot loader

 o Firmware that controls a disk drive

 o A piece of JavaScript found in a web page the user visits

 Examples of harmful software components:

 o A malicious entertainment app

 o A malicious executable

 o A web page that contains malicious JavaScript

 o A business application that shipped with a virus

 Software components SHOULD be disjoint from each other. In other
 words, software componennts SHOULD be so defined that a given byte of
 software on an endpoint belongs to only one software component.

 Different versions of the same piece of software MUST be modeled as
 different components. Software versioning is not built into the
 information model.

Waltermire, et al. Expires September 18, 2016 [Page 23]

Internet-Draft SACM Information Model March 2016

 Each separately installable piece of software SHOULD be modeled as a
 component. Sometimes it may be better to divide more finely: what an
 installer installs MAY be modeled as several components.

 A data model MAY identify a software component by parts of an ISO
 SWID tag.

4.4.1. Software Instance

 Each copy of a piece of software is called a software instance. The
 configuration of a software instance is regarded as part of the
 software instance. Configuration can strongly affect security
 posture.

 A data model MUST support the following relationships:

 o A software instance is an "instance of" a software component.

 o A software instance is "in" an endpoint.

 A data model MAY use ISO SWID tags to describe software instances.

4.5. Asset Identity

 TODO: Define an Asset Identity asset. Explain how it is things like
 user, device, etc. where certificates, usernames, etc. come into
 place since they are not really hardware or software. NOTE: Make
 sure it is clear that this is not identity in the sense of what we
 have been saying endpoint identity (now designation).

4.6. Relationships

 TODO: Define the relationships between assets (endpoints, hardware,
 software, etc.). These will depicted in the overview diagram.

5. Information Model Elements

 TODO: Define specific containers, attributes, and metadata. We may
 want to consider adding small diagrams showing the relationships
 between each (see Lisa's notes:
 https://mailarchive.ietf.org/arch/msg/sacm/
 kWxlnboHAXD87cned9WavwPZy5w). This may be too much work, but, not
 sure yet.

 The SACM Information Model contains several elements of the
 architecture, including:

Waltermire, et al. Expires September 18, 2016 [Page 24]

Internet-Draft SACM Information Model March 2016

 o SACM Components, which may be Collectors, Evaluators, etc.
 Collectors may be internal (performed within the endpoint itself)
 or external (performed outside of the endpoint, such as by a
 hypervisor or remote sensor)

 o Guidance, which tells SACM components what to do

 o Posture, in the form of posture attributes and evaluation results

 o Additional information about the endpoint, such as a
 representation of a software component, endpoint identity, user
 identity, address, location, and authorization constraining the
 endpoint

 The SACM Information Model does not (in this draft) specify how long
 information is retained. Historical information is modeled the same
 way as current information. Historical information may be
 represented differently in an implementation, but that difference
 would be in data models, not in the information model.

 Figure 4 introduces the endpoint attributes and their relationships.

 +---------+*____in>______*+-----+
 |Hardware | |! !|
 |Component| +---------+ |! !| +--------+*______________
 +---------+ |Software |in>|! !|*____*|Location|_________ <in|
 1| |Component|___|! !| in> +--------+* <in *| |
 | +---------+* *|! !| +-------+ |

 | 1| |! !| |Account| |
 | *| | | +----------+ +-------+ |
 | +--------+ |End- |*____*| Identity |______|0..1 |
 | |Software|in> |point| acts +----------+ belongs |
 +--------+ |Instance|_____| | for> 0..1|^ to> |
 |Hardware| +--------+* 1|! !| |acts |
 |Instance|________________|! !| *|for |*
 +--------+* in> 1|! !|______+---------+ +-------+
 |! !|1 <in *|Network |1_______*|Address|
 |! !|____ |Interface| <bound +-------+
 |! !|0..1| +---------+ to
 +-----+ | *| |0..1
 |* | |___|
 |_______| in>
 in>

 Figure 4: Model of an Endpoint

Waltermire, et al. Expires September 18, 2016 [Page 25]

Internet-Draft SACM Information Model March 2016

 ISSUE (CEK): we agreed to remove location and account from the model,
 did we not? TODO: Remove Network Interface, Location, Address, and
 Account from this diagram if we end up removing the corresponding
 sections from the information model.

 Figure 5 is the core of the information model. It represents the
 information elements and their relationships.

 +-----+ +---------+
 | AVP |____________|Endpoint |
 +-----+1..* 1|Attribute|
 |Assertion|
 +---------+
 |* +-------+
 | |Summary|
 | +-------+
 |produced-by *|
 |V |
 1| |
 +--------+ +-----------+ |
 | | | SACM |____________________|
 |Guidance| | Component |1 <produced-by
 +--------+*____________1+-----------+
 <produced-by

 Figure 5: Information Elements

 Figure 6 is a potential alternative structure for assertions. It is
 inspired by triple stores. See http://www.w3.org/TR/2014/REC-rdf11-
 concepts-20140225/.

 +-----+______________+---------+ +---------+
 | AVP |1 <subject *|assertion|________________|predicate|
 | |______________| |* predicate> 1+---------+
 +-----+1 <object *+---------+
 1^ |*
 |_____________________|
 <asserter

 Figure 6: Information Elements, Take 2

 Note: UML 2 is specified by [UML].

 TODO: update text to match new figure:

 Need to be clear in the description that ???

Waltermire, et al. Expires September 18, 2016 [Page 26]

Internet-Draft SACM Information Model March 2016

 For some of the relationships, will need some language and guidance
 to the interfaces and relationships we expect to have happen, MUSTs
 and SHOULDs, as well as explaining the extensibility that other
 relationships can exist, show examples of how that can happen.
 Others that we haven't thought of yet, might be added by another RFC
 or in another way

5.1. Identifying Attributes

 TODO: Need to rename this section to align with new "designation"
 term.

 Identifying attributes let a consumer identify an endpoint, for two
 purposes:

 o To tell whether two endpoint attribute assertions concern the same
 endpoint (This is not simple, as Section 1.1.1 explains.)

 o To respond to compliance measurements, for example by reporting,
 remediating, and quarantining (SACM does not specify these
 responses, but SACM exists to enable them.)

 Out of scope of this section: *classifying* an endpoint so as to
 apply appropriate collection guidance to it. We don't call this
 "identification".

5.1.1. How Known

 Each attribute-value pair or triple MUST be marked with how the
 provider knows. There MUST be at least one marking. The possible
 markings follow.

 "Self" means that the endpoint furnished the information: it is
 self-reported. "Self" does not (necessarily) mean that the
 provider runs on the the monitored endpoint. Self-reported
 information is generally subject to the Lying Endpoint Problem.
 (TODO: citation)

 "Authority" means that the provider got the information, directly
 or indirectly, from an authority that assigned it. For example,
 the producer got an IP-MAC association from a DHCP server (or was
 itself the DHCP server).

 "Observation" means that the provider got the information from
 observations of network traffic. For example, the producer saw
 the source address in an IP packet.

Waltermire, et al. Expires September 18, 2016 [Page 27]

Internet-Draft SACM Information Model March 2016

 "Verification" means that the provider has verified the
 information. For example:

 * The provider does IP communication with the endpoint and knows
 the IP address with which it communicates.

 * The provider makes an SSH connection to the endpoint and knows
 the endpoint's public key by virtue of authenticating it.

 * The monitored endpoint is a virtual machine and the provider
 knows by peeking into it.

 TODO: Explain security considerations and how consumers are meant to
 use these markings.

5.1.2. Whether to Include

 When publishing an endpoint attribute assertion, the provider MUST
 publish at least all common identifying AVPs that it knows through
 verification. If the provider knows none through verification but it
 knows at least one in another way, it MUST publish at least one. The
 provider SHOULD publish all common identifying AVPs it knows.

5.1.3. Certificate

5.1.3.1. Range of values

 MUST be X.509 certificate, per [RFC5280].

5.1.3.2. Meaning

 Throughout the time interval of the AVP, the endpoint had the private
 key corresponding to the specified certificate.

 Throughout the time interval, the certificate was valid: it had a
 valid certificate chain from a CA certificate that the asserter
 trusted; every certificate in the chain was time-valid; no
 certificate in in the chain (excluding the CA certificate) was
 revoked. ISSUE (CEK): Do we want to get this PKI-ish? If so, would
 we include the CA certificate as well?

5.1.3.3. Multiplicity

 An endpoint may use, or have the right to use, one or more
 certificates.

 Some certificates may be used on more than one endpoint. Other
 certificates are (by intent) bound to a single endpoint. ISSUE

Waltermire, et al. Expires September 18, 2016 [Page 28]

Internet-Draft SACM Information Model March 2016

 (CEK): Is there a standard way to distinguish the two? We could
 perhaps provide a configurable criterion, as an information element.
 Should we?

5.1.3.4. Stability

 Certificates are replaced, due to expiration and other reasons. By
 and large, they are not replaced often. A year is a typical
 interval. In sum, they are persistent.

 A private key is baked into hardware is almost immutable. But again,
 hardware can be replaced.

5.1.3.5. Accuracy

 If a certificate is known by verification, the attribute is highly
 accurate.

5.1.3.6. Data model requirements

 All SACM data models MUST support this entire subsection.

5.1.4. Public Key

 TODO

5.1.5. Username?

 ISSUE (CEK): If a user certificate can be an identifying attribute,
 why not a username also? At an earlier stage of our discussions,
 usernames were considered common identifying attributes. Did we
 decide they should not be? Or just forget them?

 Many endpoints do not have client certificates. An authenticated
 username is a useful clue for identifying such an endpoint. I log in
 only to a handful of personal endpoints. I also present my username
 and password to many multi-user servers. We would have to
 distinguish personal endpoints from server endpoints somehow.

5.1.6. Tool-Specific Identifier

 TODO

 TODO: "Tool-specific identifier" suggests that two tools could never
 agree on a tool-specific identifier. But a community may agree on an
 identifier notation, and might even create a formal standard. All
 that's important is that each of these attributes has a type and

Waltermire, et al. Expires September 18, 2016 [Page 29]

Internet-Draft SACM Information Model March 2016

 meaning *not* specified by the SACM internet drafts. "Vendor-
 specific identifier?" "Custom identifier?"

5.1.7. Identification of Endpoints where SACM Components Reside

 Every information element needs identifying attributes of its
 producer's endpoint. (TODO: Provide normative language. SHOULD?
 MUST?)

 Specifically, in an endpoint attribute assertion, we need identifying
 attributes of the asserter's endpoint. If the asserter is external,
 the assertion will contain identifying attributes of two endpoints.
 (TODO: Discuss what this information is for.)

5.1.8. Security Considerations

 Effects of misidentification

 Things that can cause misidentification

 How minimize misidentification

5.2. Identity

 TODO: Delete this section?

 An identity is the non-secret part of a credential. Examples are a
 username, an X.500 distinguished name, and a public key. Passwords,
 private keys, and other secrets are not considered part of an
 identity.

 A data model MUST support the following relationships:

 o An endpoint may "act for" an identity. This SHALL mean that the
 endpoint claims or proves that it has this identity. For example,
 if the endpoint is part of an Active Directory domain and Alice
 logs into the endpoint with her AD username (alice) and password,
 the endpoint "acts for" alice. An endpoint MAY "act for" more
 than one identity, such as a machine identity and a user identity.

 o A identity may "belong to" an account. For example, an enterprise
 may have a database that maps identities to accounts. CEK: Is
 this relevant? I don't see how we'd use the notion of an account
 in identifying an endpoint or in specifying compliance
 measurements to be taken.

Waltermire, et al. Expires September 18, 2016 [Page 30]

Internet-Draft SACM Information Model March 2016

5.3. Location

 TODO: Delete this section?

 Location can be logical or physical. Location can be a clue to an
 endpoint's identity.

 A data model MUST support the following relationships:

 o One or more endpoints may be "in" a location

 o A location may be "in" one or more locations

 o A network address may be "in" a location

 o An account may be "in" a location; this would happen if the
 account represents a user, and a physical access control system

 reports on the user's location

 Examples of location:

 o The switch, access point, VPN gateway, or cell tower to which the
 endpoint is linked

 o The switch port where the endpoint is plugged in

 o The location of the endpoint's IP address in the network topology

 o The geographic location of the endpoint (which is often self-
 reported)

 o A user location (may be reported by a physical access control
 system)

 CEK: The last three examples seem too advanced for the first set of
 SACM RFCs. I do not know a notation that would be interoperable and
 useful for endpoint identification. Should we drop them?

 CEK: If we do drop them, all we have left is the device and port at
 which the endpoint is linked to the network. Maybe we should regard
 that as a kind of address.

 A data model MUST support switch + port number, access point, and VPN
 gateway as locations. The other examples are optional.

 More than one of kind of location may pertain to an endpoint.
 Endpoint has a many-to-many relationship with Location.

Waltermire, et al. Expires September 18, 2016 [Page 31]

Internet-Draft SACM Information Model March 2016

5.4. Endpoint Attribute Assertion

 TODO: Integrate into the Section 3 as appropriate.

5.4.1. Form and Precise Meaning

 An endpoint attribute assertion has:

 o One or more attribute-value pairs (AVPs)

 o Time intervals over which the AVPs hold

 o Endpoint uniquely identified? True or false

 o Provenance, including:

 * The SACM component that made the assertion

 * Information about the method used to derive the assertion

 It means that over the specified time interval, there was an endpoint
 for which all of the listed attribute-value pairs were true.

 If the "Endpoint uniquely identified" is true, the set of attributes-
 value pairs together make this assertion apply to only one endpoint.

 The attributes can include posture attributes and identification
 attributes. The model does not make a rigid distinction between the
 two uses of attributes.

 Some of the attributes may be multi-valued.

 One of the AVPs may be a unique endpoint identifier. Not every
 endpoint will have one. If there is one, the SACM component that
 produces the Endpoint Attribute Assertion will not necessarily know
 what it is.

5.4.2. Asserter

 An Endpoint Attribute Assertion may come from an attribute collector
 or an evaluator. It may come from a SACM component that derives it
 from out-of-band sources, such as a physical inventory system. A

 SACM component may derive it from other Endpoint Attribute
 Assertions.

Waltermire, et al. Expires September 18, 2016 [Page 32]

Internet-Draft SACM Information Model March 2016

5.4.3. Example

 For example, an attribute assertion might have these attribute-value
 pairs:

 mac-address = 01:23:45:67:89:ab

 os = OS X

 os-version = 10.6.8

 This asserts that an endpoint with MAC address 01:23:45:67:89:ab ran
 OS X 10.6.8 throughout the specified time interval. A profiler might
 have provided this assertion.

5.4.4. A Use Case

 For example, Endpoint Attribute Assertions should help SACM
 components to track an endpoint as it roams or stays stationary.
 They must track endpoints because they must track endpoints' postures
 over time. Tracking of an endpoint can employ many clues, such as:

 The endpoint's MAC address

 The authenticated identity (even if it identifies a user)

 The location of the endpoint and the user

5.4.5. Event

 An event is represented as a Posture Attribute Assertion whose time
 interval has length zero.

 Some potential kinds of events are:

 o A structured syslog message [RFC5424]

 o IF-MAP event metadata [TNC-IF-MAP-NETSEC-METADATA]

 o A NetFlow message [RFC3954]

5.4.6. Difference between Attribute and Event

 Author: Henk Birkholz

 "Attribute" and "event" are often used fairly interchangeably. A
 clear distinction makes the words more useful.

Waltermire, et al. Expires September 18, 2016 [Page 33]

Internet-Draft SACM Information Model March 2016

 An *attribute* tends not to change until something causes a change.
 In contrast, an *event* occurs at a moment in time.

 For a nontechnical example, let us consider "openness" as an
 attribute of a door, with two values, "open" and "closed". A closed
 door tends to stay closed until something opens it (a breeze, a
 person, or a dog).

 The door's opening or closing is an event.

 Similarly, "Host firewall enabled" may be modeled as a true/false

 attribute of an endpoint. Enabling or disabling the host firewall
 may be modeled as an event. An endpoint's crashing also may be
 modeled as an event.

 Although events are not attributes, we use one kind of information
 element, the "Endpoint Attribute Assertion", to describe both
 attributes and events.

5.5. Attribute-Value Pair

 TODO: Integrate into the Section 3 as appropriate.

 The set of attribute types must be extensible, by other IETF
 standards, by other standards groups, and by vendors. How to express
 attribute types is not defined here, but is left to data models.

 The value may be structured. For example, it may something like XML.

 The information model requires a standard attribute type (or possibly
 more than one) for each box in Figure 4:

 o Hardware Component: the value identifies the hardware type. For
 example, it may consist of the make and model number.

 o Hardware Instance: the value, together with the Hardware Component
 value, uniquely identifies the hardware instance. For example, it
 may be a manufacturer-assigned serial number. This notion might
 not apply to all virtual hardware components.

 o Software Component: the value identifies a unit of software. Each
 installable piece of software should be separately identifiable.
 For example, this might be a Software Identifier (SWID).
 Therefore, a software inventory for an endpoint should be
 expressed as an Endpoint Attribute Assertion.

 o Software Instance: the value describes how the software component
 is installed and configured.

Waltermire, et al. Expires September 18, 2016 [Page 34]

Internet-Draft SACM Information Model March 2016

 o Endpoint: The value is a unique endpoint identifier.

 o Location

 o Identity: The value is the non-secret part of a credential. For
 example, it may be a certificate, or just a subject Distinguished
 Name extracted from a certificate. It may be a username.

 o Network Interface: TBD

 o User: [cek: Do we want this? If one user uses different
 credentials at different times, do we think SACM components will
 need know that it's the same user?]

 o Address: The value is an IP, MAC, or other network address,
 possibly qualified with its scope.

5.5.1. Unique Endpoint Identifier

 An organization should try to uniquely identify and label an
 endpoint, whether the endpoint is enrolled or is discovered in the
 operational environment. The identifier should be assigned by or
 used in the enrollment process.

 Here "unique" means one-to-one. In practice, uniqueness is not
 always attainable. Even if an endpoint has a unique identifier, an
 attribute collector may not always know it.

 If the attribute type of an AVP is "endpoint", the value is a unique
 identifier of the endpoint.

5.5.2. Posture Attribute

 Some AVPs will be posture attributes.

 See the definition in the SACM Terminology for Security Assessment

 [I-D.ietf-sacm-terminology].

 Some potential kinds of posture attributes are:

 o A NEA posture attribute (PA) [RFC5209]

 o A YANG model [RFC6020]

 o An IF-MAP device-characteristics metadata item
 [TNC-IF-MAP-NETSEC-METADATA]

Waltermire, et al. Expires September 18, 2016 [Page 35]

Internet-Draft SACM Information Model March 2016

5.6. Evaluation Result

 Evaluation Results (see [I-D.ietf-sacm-terminology]) are modeled as
 Endpoint Attribute Assertions.

 An Evaluation Result derives from one or more other Endpoint
 Attribute Assertions.

 An example is: a NEA access recommendation [RFC5793]

 An evaluator may be able to evaluate better if history is available.
 This is a use case for retaining Endpoint Attribute Assertions for a
 time.

 An Evaluation Result may be retained longer than the Endpoint
 Attribute Assertions from which it derives. (Figure 4 does not show
 this.) In the limiting case, Endpoint Attribute Assertions are not
 retained. When as an Endpoint Attribute Assertion arrives, an
 evaluator produces an Evaluation Result. These mechanics are out of
 the scope of the Information Model.

5.7. SACM Component

 Although SACM components are mainly covered by the SACM architecture,
 we have some remarks. TODO: Move them to the architecture document?

 ISSUE (CEK): Why do we need information elements that model SACM
 compoments?

5.7.1. External Attribute Collector

 An external collector is a collector that observes endpoints from
 outside. [kkw-many of these [collectors] are actually configured and
 operated to manage assets for reasons other than posture assessments.
 it is critical to bring them into this, so i like it...but does it
 matter if the [collector] isn't intended to support posture
 assessment, but happens to have information that can be used by
 posture assessment collection consumers? do we lump them together
 with collectors that are intended to support posture assessment but
 run external to the endpoint?] [jmf: ditto. The exampled below are
 of things that would perform external collection].

 [cek-to kkw's comment, I think the purpose here is to capture their
 contribution to continuous monitoring. I don't see the need to
 separate things whose primary job is monitoring from things whose
 primary job is something else. Is there a need?]

Waltermire, et al. Expires September 18, 2016 [Page 36]

Internet-Draft SACM Information Model March 2016

 [cek-to jmf's comment, that is what they are examples of; is a text
 change needed?]

 Examples:

 o A RADIUS server [RFC3580] whereby an endpoint has logged onto the
 network

 o A network profiling system, which discovers and classifies network
 nodes

 o A Network Intrusion Detection System (NIDS) sensor

 o A vulnerability scanner

 o A hypervisor that peeks into the endpoint, the endpoint being a
 virtual machine

 o A management system that configures and installs software on the
 endpoint

5.7.2. Evaluator

 An evaluator can consume endpoint attribute assertions, previous
 evaluations of posture attributes, or previous reports of evaluation
 results. [kkw-i don't think this conflicts with the definition in the
 terminology doc re: that evaluation tasks evaluate posture
 attributes.]

 [cek-I like the change. I think it *does* require a change in the
 terminology doc, though.]

 Example: a NEA posture validator [RFC5209]

 [jmf- a NEA posture validator is not an example of this definition.
 A NEA posture assessment is, maybe?]

 [cek-Why isn't a NEA posture validator an example?]

5.8. Organization?

 [kkw-from a reporting standpoint there needs to be some concept like
 organization or system. without this, there is no way to produce
 result reports that can be acted upon to provide the insight or
 accountability that almost all continuous monitoring instances are
 trying to achieve. from a scoring or grading standpoint, an endpoint
 needs to be associated with exactly one organization or system. it
 can have a many to many relationship with other types of results

Waltermire, et al. Expires September 18, 2016 [Page 37]

Internet-Draft SACM Information Model March 2016

 reporting "bins". is this important to include here? we had
 organization as a core asset type for this reason, so i think it is a
 key information element. but i also know that i do not want to define
 all the different reporting types, so i am unsure.]

 [cek-I had not thought of this at all. Would it make sense to treat
 the organization and the bins as part of the guidance for creating
 reports? Maybe not. We should discuss.]

5.9. Guidance

 [jmf- the guidance sections need more detail. . .]

 [cek - What is missing? We would welcome a critique or text.]

 Guidance is generally configurable by human administrators.

5.9.1. Internal Collection Guidance

 An internal collector may need guidance to govern what it collects
 and when.

5.9.2. External Collection Guidance

 An external collector may need guidance to govern what it collects
 and when.

5.9.3. Evaluation Guidance

 An evaluator typically needs Evaluation Guidance to govern what it

 considers to be a good or bad security posture.

5.9.4. Retention Guidance

 A SACM deployment may retain posture attributes, events, or
 evaluation results for some time. Retention supports ad hoc
 reporting and other use cases.

 If information is retained, retention guidance controls what is
 retained and for how long.

 If two or more pieces of retention guidance apply to a piece of
 information, the guidance calling for the longest retention should
 take precedence.

Waltermire, et al. Expires September 18, 2016 [Page 38]

Internet-Draft SACM Information Model March 2016

5.10. Endpoint

 See the definition in the SACM Terminology for Security Assessment
 [I-D.ietf-sacm-terminology].

 In the model, an endpoint can be part of another endpoint. This
 covers cases where multiple physical endpoints act as one endpoint.
 The constituent endpoints may not be distinguishable by external
 observation of network behavior.

 For example, a hosting center may maintain a redundant set
 (redundancy group) of multi-chassis setups to provide active
 redundancy and load distribution on network paths to WAN gateways.
 Multi-chassis link aggregation groups make the chassis appear as one
 endpoint. Traditional security controls must be applied either to
 physical endpoints or the redundancy groups they compose (and
 occasionally both). Loss of redundancy is difficult to detect or
 mitigate without specific posture information about the current state
 of redundancy groups. Even if a physical endpoint (e.g. router) that
 is part of a redundancy group is replaced, the redundancy group can
 remain the same.

5.10.1. Endpoint Identity

 An endpoint identity provides both identification and authentication
 of the endpoint. For example, an identity may be an X.509
 certificate [RFC5280] and corresponding private key. [jmf- this
 example should be formatted like the other examples in this section]

 Not all kinds of identities are guaranteed to be unique.

5.10.2. Software Component

 An endpoint contains and runs software components.

 Some of the software components are assets. "Asset" is defined in
 RFC4949 [RFC4949] as "a system resource that is (a) required to be
 protected by an information system's security policy, (b) intended to
 be protected by a countermeasure, or (c) required for a system's
 mission."

 An examination of software needs to consider both (a) software assets
 and (b) software that may do harm. A posture attribute collector may
 not know (a) from (b). It is useful to define Software Component as
 the union of (a) and (b).

 Examples of Software Assets:

Waltermire, et al. Expires September 18, 2016 [Page 39]

Internet-Draft SACM Information Model March 2016

 o An application

 o A patch

 o The operating system kernel

 o A boot loader

 o Firmware that controls a disk drive

 o A piece of JavaScript found in a web page the user visits

 Examples of harmful software components:

 o A malicious entertainment app

 o A malicious executable

 o A web page that contains malicious JavaScript

 o A business application that shipped with a virus

5.10.2.1. Unique Software Identifier

 Organizations need to be able to uniquely identify and label software
 installed or run on an endpoint. Specifically, they need to know the
 name, publisher, unique ID, and version; and any related patches. In
 some cases the software's identity might be known a priori by the
 organization; in other cases, a software identity might be first
 detected by an organization when the software is first inventoried in
 an operational environment. Due to this, it is important that an
 organization have a stable and consistent means to identify software
 found during collection.

 A piece of software may have a unique identifier, such as a SWID tag
 (ISO/IEC 19770).

5.11. User

5.11.1. User Identity

 An endpoint is often - but not always - associated with one or more
 users.

 A user's identity provides both identification and authentication of
 the user. @@@ Eh?

Waltermire, et al. Expires September 18, 2016 [Page 40]

Internet-Draft SACM Information Model March 2016

5.12. hardwareSerialNumber

 elementId: TBD
 name: hardwareSerialNumber
 dataType: string
 dataTypeSemantics: default
 status: current
 description: A globally unique identifier for a particular
 piece of hardware assigned by the vendor.

5.13. interfaceName

 elementId: TBD
 name: interfaceName
 dataType: string
 dataTypeSemantics: default
 status: current
 description: A short name uniquely describing an interface,
 eg "Eth1/0". See [RFC2863] for the definition
 of the ifName object.

5.14. interfaceIndex

 elementId: TBD

 name: interfaceIndex
 dataType: unsigned32
 dataTypeSemantics: identifier
 status: current
 description: The index of an interface installed on an endpoint.
 The value matches the value of managed object
 'ifIndex' as defined in [RFC2863]. Note that ifIndex
 values are not assigned statically to an interface
 and that the interfaces may be renumbered every time
 the device's management system is re-initialized,
 as specified in [RFC2863].

5.15. interfaceMacAddress

 elementId: TBD
 name: interfaceMacAddress
 dataType: macAddress
 dataTypeSemantics: default
 status: current
 description: The IEEE 802 MAC address associated with a network
 interface on an endpoint.

Waltermire, et al. Expires September 18, 2016 [Page 41]

Internet-Draft SACM Information Model March 2016

5.16. interfaceType

 elementId: TBD
 name: interfaceType
 dataType: unsigned32
 dataTypeSemantics: identifier
 status: current
 description: The type of a network interface. The value matches
 the value of managed object 'ifType' as defined in
 [IANA registry ianaiftype-mib].

5.17. interfaceFlags

 elementId: TBD
 name: interfaceFlags
 dataType: unsigned16
 dataTypeSemantics: flags
 status: current
 description: This information element specifies the flags
 associated with a network interface. Possible
 values include:

 +-------+----------------------------------+
 | Value | Description |
 +-------+----------------------------------+
 | 0x1 | interface is up |
 | 0x2 | broadcast address valid |
 | 0x4 | turn on debugging |
 | 0x8 | is a loopback net |
 | 0x10 | interface is point-to-point link |
 | 0x20 | avoid use of trailers |
 | 0x40 | resources allocated |
 | 0x80 | no address resolution protocol |
 | 0x100 | receive all packets |
 +-------+----------------------------------+

5.18. networkInterface

Waltermire, et al. Expires September 18, 2016 [Page 42]

Internet-Draft SACM Information Model March 2016

 elementId: TBD
 name: networkInterface
 dataType: basicList
 dataTypeSemantics: default
 status: current
 description: Information about a network interface
 installed on an endpoint. The
 following high-level digram
 describes the structure of
 networkInterface information
 element.

 networkInterface = (basicList, allof,
 interfaceName,
 interfaceIndex,
 macAddress,
 ifType,
 flags
)

5.19. softwareIdentifier

 elementId: TBD
 name: softwareIdentifier
 dataType: string
 dataTypeSemantics: default
 status: current
 description: A globally unique identifier for a particular
 software application.

5.20. softwareTitle

 elementId: TBD
 name: softwareTitle
 dataType: string
 dataTypeSemantics: default
 status: current
 description: The title of the software application.

5.21. softwareCreator

 elementId: TBD
 name: softwareCreator
 dataType: string
 dataTypeSemantics: default
 status: current
 description: The software developer (e.g., vendor or author).

Waltermire, et al. Expires September 18, 2016 [Page 43]

Internet-Draft SACM Information Model March 2016

5.22. simpleVersion

 elementId: TBD
 name: simpleVersion
 dataType: simpleVersionType
 dataTypeSemantics: default
 status: current
 description: The version string for a software application that
 follows the simple versioning scheme.

5.23. rpmVersion

 elementId: TBD
 name: rpmVersion
 dataType: rpmVersionType
 dataTypeSemantics: default
 status: current
 description: The version string for a software application that

 follows the RPM versioning scheme.

5.24. ciscoTrainVersion

 elementId: TBD
 name: ciscoTrainVersion
 dataType: ciscoTrainVersionType
 dataTypeSemantics: default
 status: current
 description: The version string for a software application that
 follows the Cisco Train Release versioning scheme.

5.25. softwareVersion

Waltermire, et al. Expires September 18, 2016 [Page 44]

Internet-Draft SACM Information Model March 2016

 elementId: TBD
 name: softwareVerison
 dataType: basicList
 dataTypeSemantics: default
 status: current
 description: The version of the software application. Software
 applications may be versioned using a number of
 schemas. The following high-level digram describes
 the structure of the softwareVersion information
 element.

 softwareVersion(basicList, exactlyOneOf,
 simpleVersion,
 rpmVersion,
 ciscoTrainVersion,
 ...
)

5.26. lastUpdated

 elementId: TBD
 name: lastUpdated
 dataType: dateTimeSeconds
 dataTypeSemantics: default
 status: current
 description: The date and time when the software instance
 was last updated on the system (e.g., new
 version instlalled or patch applied)

5.27. softwareInstance

 elementId: TBD
 name: softwareInstance
 dataType: subTemplateMultiList
 dataTypeSemantics: default
 status: current
 description: Information about an instance of software
 installed on an endpoint. The following
 high-level digram describes the structure of
 softwareInstance information element.

 softwareInstance = (subTemplateMultiList, allof,
 softwareIdentifier,

 title,
 creator,
 softwareVersion,
 lastUpdated
)

Waltermire, et al. Expires September 18, 2016 [Page 45]

Internet-Draft SACM Information Model March 2016

5.28. globallyUniqueIdentifier

 elementId: TBD
 name: globallyUniqueIdentifier
 dataType: unsigned8
 dataTypeSemantics: identifier
 status: current
 metadata: true
 description: TODO.

5.29. dataOrigin

 elementId: TBD
 name: dataOrigin
 dataType: string
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The origin of the data. TODO make a better
 description.

5.30. dataSource

 elementId: TBD
 name: dataSource
 dataType: string
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The source of the data. TODO make a better
 description.

5.31. creationTimestamp

 elementId: TBD
 name: creationTimestamp
 dataType: dateTimeSeconds
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The date and time when the posture
 information was created by a SACM Component.

5.32. collectionTimestamp

Waltermire, et al. Expires September 18, 2016 [Page 46]

Internet-Draft SACM Information Model March 2016

 elementId: TBD
 name: collectionTimestamp
 dataType: dateTimeSeconds
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The date and time when the posture
 information was collected or observed by a SACM
 Component.

5.33. publicationTimestamp

 elementId: TBD
 name: publicationTimestamp
 dataType: dateTimeSeconds
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The date and time when the posture
 information was published.

5.34. relayTimestamp

 elementId: TBD
 name: relayTimestamp
 dataType: dateTimeSeconds
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The date and time when the posture
 information was relayed to another SACM Component.

5.35. storageTimestamp

 elementId: TBD
 name: storageTimestamp
 dataType: dateTimeSeconds
 dataTypeSemantics: default
 status: current
 metadata: true
 description: The date and time when the posture
 information was stored in a Repository.

5.36. type

Waltermire, et al. Expires September 18, 2016 [Page 47]

Internet-Draft SACM Information Model March 2016

 elementId: TBD
 name: type
 dataType: unsigned16
 dataTypeSemantics: flags
 status: current
 metadata: true
 description: The type of data model use to represent
 some set of endpoint information. The following table
 lists the set of data models supported by SACM.

 +-------+----------------------------------+
 | Value | Description |
 +-------+----------------------------------+
 | 0x00 | Data Model 1 |
 +-------+----------------------------------+
 | 0x01 | Data Model 2 |
 +-------+----------------------------------+
 | 0x02 | Data Model 3 |
 +-------+----------------------------------+
 |... | ... |
 +-------+----------------------------------+

5.37. protocolIdentifier

elementId: TBD
name: protocolIdentifier
dataType: unsigned8
dataTypeSemantics: identifier
status: current
description: The value of the protocol number in the IP packet header.
 The protocol number identifies the IP packet payload type.
 Protocol numbers are defined in the IANA Protocol Numbers
 registry.

 In Internet Protocol version 4 (IPv4), this is carried in the
 Protocol field. In Internet Protocol version 6 (IPv6), this
 is carried in the Next Header field in the last extension

 header of the packet.

5.38. sourceTransportPort

Waltermire, et al. Expires September 18, 2016 [Page 48]

Internet-Draft SACM Information Model March 2016

elementId: TBD
name: sourceTransportPort
dataType: unsigned16
dataTypeSemantics: identifier
status: current
description: The source port identifier in the transport header.
 For the transport protocols UDP, TCP, and SCTP, this is the
 source port number given in the respective header. This
 field MAY also be used for future transport protocols that
 have 16-bit source port identifiers.

5.39. sourceIPv4PrefixLength

 elementId: TBD
 name: sourceIPv4PrefixLength
 dataType: unsigned8
 dataTypeSemantics:
 status: current
 description: The number of contiguous bits that are relevant in the
 sourceIPv4Prefix Information Element.

5.40. ingressInterface

elementId: TBD
name: ingressInterface
dataType: unsigned32
dataTypeSemantics: identifier
status: current
description: The index of the IP interface where packets of this Flow
 are being received. The value matches the value of managed
 object 'ifIndex' as defined in [RFC2863].
 Note that ifIndex values are not assigned statically to an
 interface and that the interfaces may be renumbered every
 time the device's management system is re-initialized, as
 specified in [RFC2863].

5.41. destinationTransportPort

elementId: TBD
name: destinationTransportPort
dataType: unsigned16
dataTypeSemantics: identifier
status: current
description: The destination port identifier in the transport header.
 For the transport protocols UDP, TCP, and SCTP, this is the
 destination port number given in the respective header.
 This field MAY also be used for future transport protocols
 that have 16-bit destination port identifiers.

Waltermire, et al. Expires September 18, 2016 [Page 49]

Internet-Draft SACM Information Model March 2016

5.42. sourceIPv6PrefixLength

 elementId: TBD
 name: sourceIPv6PrefixLength
 dataType: unsigned8
 dataTypeSemantics:

 status: current
 description: The number of contiguous bits that are relevant in the
 sourceIPv6Prefix Information Element.

5.43. sourceIPv4Prefix

 elementId: TBD
 name: sourceIPv4Prefix
 dataType: ipv4Address
 dataTypeSemantics: default
 status: current
 description: IPv4 source address prefix.

5.44. destinationIPv4Prefix

 elementId: TBD
 name: destinationIPv4Prefix
 dataType: ipv4Address
 dataTypeSemantics: default
 status: current
 description: IPv4 destination address prefix.

5.45. sourceMacAddress

 elementId: TBD
 name: sourceMacAddress
 dataType: macAddress
 dataTypeSemantics: default
 status: current
 description: The IEEE 802 source MAC address field.

5.46. ipVersion

 elementId: TBD
 name: ipVersion
 dataType: unsigned8
 dataTypeSemantics: identifier
 status: current
 description: The IP version field in the IP packet header.

Waltermire, et al. Expires September 18, 2016 [Page 50]

Internet-Draft SACM Information Model March 2016

5.47. interfaceName

elementId: TBD
name: interfaceName
dataType: string
dataTypeSemantics: default
status: current
description: A short name uniquely describing an interface, eg "Eth1/0".

5.48. interfaceDescription

elementId: TBD
name: interfaceDescription
dataType: string
dataTypeSemantics: default
status: current
description: The description of an interface, eg "FastEthernet 1/0" or "ISP
connection".

5.49. applicationDescription

 elementId: TBD
 name: applicationDescription
 dataType: string
 dataTypeSemantics: default
 status: current
 description: Specifies the description of an application.

5.50. applicationId

 elementId: TBD

 name: applicationId
 dataType: octetArray
 dataTypeSemantics: default
 status: current
 description: Specifies an Application ID per [RFC6759].

5.51. applicationName

 elementId: TBD
 name: applicationName
 dataType: string
 dataTypeSemantics: default
 status: current
 description: Specifies the name of an application.

Waltermire, et al. Expires September 18, 2016 [Page 51]

Internet-Draft SACM Information Model March 2016

5.52. exporterIPv4Address

elementId: TBD
name: exporterIPv4Address
dataType: ipv4Address
dataTypeSemantics: default
status: current
description: The IPv4 address used by the Exporting Process. This is used
 by the Collector to identify the Exporter in cases where the
 identity of the Exporter may have been obscured by the use of
 a proxy.

5.53. exporterIPv6Address

elementId: TBD
name: exporterIPv6Address
dataType: ipv6Address
dataTypeSemantics: default
status: current
description: The IPv6 address used by the Exporting Process. This is used
 by the Collector to identify the Exporter in cases where the
 identity of the Exporter may have been obscured by the use of
 a proxy.

5.54. portId

 elementId: TBD
 name: portId
 dataType: unsigned32
 dataTypeSemantics: identifier
 status: current
 description: An identifier of a line port that is unique per IPFIX
 Device hosting an Observation Point. Typically, this
 Information Element is used for limiting the scope
 of other Information Elements.

5.55. templateId

Waltermire, et al. Expires September 18, 2016 [Page 52]

Internet-Draft SACM Information Model March 2016

elementId: TBD
name: templateId
dataType: unsigned16
dataTypeSemantics: identifier
status: current
description: An identifier of a Template that is locally unique within a
 combination of a Transport session and an Observation Domain.

 Template IDs 0-255 are reserved for Template Sets, Options
 Template Sets, and other reserved Sets yet to be created.
 Template IDs of Data Sets are numbered from 256 to 65535.

 Typically, this Information Element is used for limiting
 the scope of other Information Elements.
 Note that after a re-start of the Exporting Process Template
 identifiers may be re-assigned.

5.56. collectorIPv4Address

 elementId: TBD
 name: collectorIPv4Address
 dataType: ipv4Address
 dataTypeSemantics: default
 status: current
 description: An IPv4 address to which the Exporting Process sends Flow
 information.

5.57. collectorIPv6Address

 elementId: TBD
 name: collectorIPv6Address
 dataType: ipv6Address
 dataTypeSemantics: default
 status: current
 description: An IPv6 address to which the Exporting Process sends Flow
 information.

5.58. informationElementIndex

elementId: TBD
name: informationElementIndex
dataType: unsigned16
dataTypeSemantics: identifier
status: current
description: A zero-based index of an Information Element
 referenced by informationElementId within a Template referenced by
 templateId; used to disambiguate scope for templates containing
 multiple identical Information Elements.

Waltermire, et al. Expires September 18, 2016 [Page 53]

Internet-Draft SACM Information Model March 2016

5.59. basicList

elementId: TBD
name: basicList
dataType: basicList
dataTypeSemantics: list
status: current
description: Specifies a generic Information Element with a basicList abstract
 data type. For example, a list of port numbers, a list of
 interface indexes, etc.

5.60. subTemplateList

elementId: TBD
name: subTemplateList
dataType: subTemplateList
dataTypeSemantics: list
status: current
description: Specifies a generic Information Element with a subTemplateList
 abstract data type.

5.61. subTemplateMultiList

 elementId: TBD
 name: subTemplateMultiList

 dataType: subTemplateMultiList
 dataTypeSemantics: list
 status: current
 description: Specifies a generic Information Element with a
 subTemplateMultiList abstract data type.

5.62. informationElementId

elementId: TBD
name: informationElementId
dataType: unsigned16
dataTypeSemantics: identifier
status: current
description: This Information Element contains the ID of another Information
 Element.

5.63. informationElementDataType

Waltermire, et al. Expires September 18, 2016 [Page 54]

Internet-Draft SACM Information Model March 2016

elementId: TBD
name: informationElementDataType
dataType: unsigned8
dataTypeSemantics:
status: current
description: A description of the abstract data type of an IPFIX
 information element.These are taken from the abstract data types
 defined in section 3.1 of the IPFIX Information Model [RFC5102];
 see that section for more information on the types described
 in the informationElementDataType sub-registry.

 These types are registered in the IANA IPFIX Information Element
 Data Type subregistry. This subregistry is intended to assign
 numbers for type names, not to provide a mechanism for adding data
 types to the IPFIX Protocol, and as such requires a Standards
 Action [RFC5226] to modify.

5.64. informationElementDescription

elementId: TBD
name: informationElementDescription
dataType: string
dataTypeSemantics: default
status: current
description: A UTF-8 [RFC3629] encoded Unicode string containing a
 human-readable description of an Information Element. The content
 of the informationElementDescription MAY be annotated with one or
 more language tags [RFC4646], encoded in-line [RFC2482] within the
 UTF-8 string, in order to specify the language in which the
 description is written. Description text in multiple languages
 MAY tag each section with its own language tag; in this case, the
 description information in each language SHOULD have equivalent
 meaning. In the absence of any language tag, the "i-default"
 [RFC2277] language SHOULD be assumed. See the Security
 Considerations section for notes on string handling for
 Information Element type records.

5.65. informationElementName

elementId: TBD
name: informationElementName
dataType: string
dataTypeSemantics: default
status: current
description: A UTF-8 [RFC3629] encoded Unicode string containing
 the name of an Information Element, intended as a simple
 identifier. See the Security Considerations section for notes on
 string handling for Information Element type records.

Waltermire, et al. Expires September 18, 2016 [Page 55]

Internet-Draft SACM Information Model March 2016

5.66. informationElementRangeBegin

 elementId: TBD
 name: informationElementRangeBegin
 dataType: unsigned64
 dataTypeSemantics: quantity
 status: current
 description: Contains the inclusive low end of the range of
 acceptable values for an Information Element.

5.67. informationElementRangeEnd

 elementId: TBD
 name: informationElementRangeEnd
 dataType: unsigned64
 dataTypeSemantics: quantity
 status: current
 description: Contains the inclusive high end of the range of
 acceptable values for an Information Element.

5.68. informationElementSemantics

elementId: TBD
name: informationElementSemantics
dataType: unsigned8
dataTypeSemantics:
status: current
description: A description of the semantics of an IPFIX
 Information Element. These are taken from the data type
 semantics defined in section 3.2 of the IPFIX Information
 Model [RFC5102]; see that section for more information
 on the types defined in the informationElementSemantics
 sub-registry. This field may take the values in Table ;
 the special value 0x00 (default) is used to note that
 no semantics apply to the field; it cannot be manipulated
 by a Collecting Process or File Reader that does not
 understand it a priori.

 These semantics are registered in the IANA IPFIX
 Information Element Semantics subregistry. This subregistry
 is intended to assign numbers for semantics names, not
 to provide a mechanism for adding semantics to the
 IPFIX Protocol, and as such requires a Standards
 Action [RFC5226] to modify.

Waltermire, et al. Expires September 18, 2016 [Page 56]

Internet-Draft SACM Information Model March 2016

5.69. informationElementUnits

elementId: TBD
name: informationElementUnits
dataType: unsigned16
dataTypeSemantics:
status: current
description: A description of the units of an IPFIX Information
 Element. These correspond to the units implicitly defined in the
 Information Element definitions in section 5 of the IPFIX
 Information Model [RFC5102]; see that section for more information
 on the types described in the informationElementsUnits sub-registry.
 This field may take the values in Table 3 below; the special value
 0x00 (none) is used to note that the field is unitless.

 These types are registered in the IANA IPFIX Information Element
 Units subregistry; new types may be added on a First Come First
 Served [RFC5226] basis.

5.70. userName

 elementId: TBD
 name: userName
 dataType: string
 dataTypeSemantics: default
 status: current
 description: User name associated with the flow.

5.71. applicationCategoryName

elementId: TBD
name: applicationCategoryName
dataType: string
dataTypeSemantics: default
status: current
description: An attribute that provides a first level categorization for
 each Application ID.

5.72. mibObjectValueInteger

Waltermire, et al. Expires September 18, 2016 [Page 57]

Internet-Draft SACM Information Model March 2016

elementId: TBD
name: mibObjectValueInteger
dataType: signed64
dataTypeSemantics: identifier
status: current
description: An IPFIX Information Element which denotes that the
 integer value of a MIB object will be exported. The MIB Object
 Identifier ("mibObjectIdentifier") for this field MUST be exported
 in a MIB Field Option or via another means. This Information
 Element is used for MIB objects with the Base Syntax of Integer32
 and INTEGER with IPFIX Reduced Size Encoding used as required.
 The value is encoded as per the standard IPFIX Abstract Data Type
 of signed64.

5.73. mibObjectValueOctetString

elementId: TBD
name: mibObjectValueOctetString
dataType: octetArray
dataTypeSemantics: default
status: current
description: An IPFIX Information Element which denotes that an
 Octet String or Opaque value of a MIB object will be exported.
 The MIB Object Identifier ("mibObjectIdentifier") for this field
 MUST be exported in a MIB Field Option or via another means. This
 Information Element is used for MIB objects with the Base Syntax
 of OCTET STRING and Opaque. The value is encoded as per the
 standard IPFIX Abstract Data Type of octetArray.

5.74. mibObjectValueOID

elementId: TBD
name: mibObjectValueOID
dataType: octetArray
dataTypeSemantics: default
status: current
description: An IPFIX Information Element which denotes that an
 Object Identifier or OID value of a MIB object will be exported.
 The MIB Object Identifier ("mibObjectIdentifier") for this field
 MUST be exported in a MIB Field Option or via another means. This
 Information Element is used for MIB objects with the Base Syntax
 of OBJECT IDENTIFIER. Note - In this case the
 "mibObjectIdentifier" will define which MIB object is being
 exported while the value contained in this Information Element

 will be an OID as a value. The mibObjectValueOID Information
 Element is encoded as ASN.1/BER [BER] in an octetArray.

Waltermire, et al. Expires September 18, 2016 [Page 58]

Internet-Draft SACM Information Model March 2016

5.75. mibObjectValueBits

elementId: TBD
name: mibObjectValueBits
dataType: octetArray
dataTypeSemantics: flags
status: current
description: An IPFIX Information Element which denotes that a set
 of Enumerated flags or bits from a MIB object will be exported.
 The MIB Object Identifier ("mibObjectIdentifier") for this field
 MUST be exported in a MIB Field Option or via another means. This
 Information Element is used for MIB objects with the Base Syntax
 of BITS. The flags or bits are encoded as per the standard IPFIX
 Abstract Data Type of octetArray, with sufficient length to
 accommodate the required number of bits. If the number of bits is
 not an integer multiple of octets then the most significant bits
 at end of the octetArray MUST be set to zero.

5.76. mibObjectValueIPAddress

elementId: TBD
name: mibObjectValueIPAddress
dataType: ipv4Address
dataTypeSemantics: default
status: current
description: An IPFIX Information Element which denotes that the
 IPv4 Address of a MIB object will be exported. The MIB Object
 Identifier ("mibObjectIdentifier") for this field MUST be exported
 in a MIB Field Option or via another means. This Information
 Element is used for MIB objects with the Base Syntax of IPaddress.
 The value is encoded as per the standard IPFIX Abstract Data Type
 of ipv4Address.

5.77. mibObjectValueCounter

elementId: TBD
name: mibObjectValueCounter
dataType: unsigned64
dataTypeSemantics: snmpCounter
status: current
description: An IPFIX Information Element which denotes that the
 counter value of a MIB object will be exported. The MIB Object
 Identifier ("mibObjectIdentifier") for this field MUST be exported
 in a MIB Field Option or via another means. This Information
 Element is used for MIB objects with the Base Syntax of Counter32
 or Counter64 with IPFIX Reduced Size Encoding used as required.
 The value is encoded as per the standard IPFIX Abstract Data Type
 of unsigned64.

Waltermire, et al. Expires September 18, 2016 [Page 59]

Internet-Draft SACM Information Model March 2016

5.78. mibObjectValueGauge

elementId: TBD
name: mibObjectValueGauge
dataType: unsigned32
dataTypeSemantics: snmpGauge
status: current
description: An IPFIX Information Element which denotes that the
 Gauge value of a MIB object will be exported. The MIB Object
 Identifier ("mibObjectIdentifier") for this field MUST be exported
 in a MIB Field Option or via another means. This Information
 Element is used for MIB objects with the Base Syntax of Gauge32.
 The value is encoded as per the standard IPFIX Abstract Data Type

 of unsigned64. This value will represent a non-negative integer,
 which may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value.

5.79. mibObjectValueTimeTicks

elementId: TBD
name: mibObjectValueTimeTicks
dataType: unsigned32
dataTypeSemantics: default
status: current
description: An IPFIX Information Element which denotes that the
 TimeTicks value of a MIB object will be exported. The MIB Object
 Identifier ("mibObjectIdentifier") for this field MUST be exported
 in a MIB Field Option or via another means. This Information
 Element is used for MIB objects with the Base Syntax of TimeTicks.
 The value is encoded as per the standard IPFIX Abstract Data Type
 of unsigned32.

5.80. mibObjectValueUnsigned

elementId: TBD
name: mibObjectValueUnsigned
dataType: unsigned64
dataTypeSemantics: identifier
status: current
description: An IPFIX Information Element which denotes that an
 unsigned integer value of a MIB object will be exported. The MIB
 Object Identifier ("mibObjectIdentifier") for this field MUST be
 exported in a MIB Field Option or via another means. This
 Information Element is used for MIB objects with the Base Syntax
 of unsigned64 with IPFIX Reduced Size Encoding used as required.
 The value is encoded as per the standard IPFIX Abstract Data Type
 of unsigned64.

Waltermire, et al. Expires September 18, 2016 [Page 60]

Internet-Draft SACM Information Model March 2016

5.81. mibObjectValueTable

elementId: TBD
name: mibObjectValueTable
dataType: subTemplateList
dataTypeSemantics: list
status: current
description: An IPFIX Information Element which denotes that a
 complete or partial conceptual table will be exported. The MIB
 Object Identifier ("mibObjectIdentifier") for this field MUST be
 exported in a MIB Field Option or via another means. This
 Information Element is used for MIB objects with a SYNTAX of
 SEQUENCE. This is encoded as a subTemplateList of mibObjectValue
 Information Elements. The template specified in the
 subTemplateList MUST be an Options Template and MUST include all
 the Objects listed in the INDEX clause as Scope Fields.

5.82. mibObjectValueRow

elementId: TBD
name: mibObjectValueRow
dataType: subTemplateList
dataTypeSemantics: list
status: current
description: An IPFIX Information Element which denotes that a
 single row of a conceptual table will be exported. The MIB Object
 Identifier ("mibObjectIdentifier") for this field MUST be exported
 in a MIB Field Option or via another means. This Information
 Element is used for MIB objects with a SYNTAX of SEQUENCE. This
 is encoded as a subTemplateList of mibObjectValue Information
 Elements. The subTemplateList exported MUST contain exactly one
 row (i.e., one instance of the subtemplate). The template
 specified in the subTemplateList MUST be an Options Template and
 MUST include all the Objects listed in the INDEX clause as Scope
 Fields.

5.83. mibObjectIdentifier

elementId: TBD
name: mibObjectIdentifier
dataType: octetArray
dataTypeSemantics: default
status: current
description: An IPFIX Information Element which denotes that a MIB
 Object Identifier (MIB OID) is exported in the (Options) Template
 Record. The mibObjectIdentifier Information Element contains the
 OID assigned to the MIB Object Type Definition encoded as ASN.1/
 BER [BER].

Waltermire, et al. Expires September 18, 2016 [Page 61]

Internet-Draft SACM Information Model March 2016

5.84. mibSubIdentifier

elementId: TBD
name: mibSubIdentifier
dataType: unsigned32
dataTypeSemantics: identifier
status: current
description: A non-negative sub-identifier of an Object Identifier (OID).

5.85. mibIndexIndicator

elementId: TBD
name: mibIndexIndicator
dataType: unsigned64
dataTypeSemantics: flags
status: current
description: This set of bit fields is used for marking the
 Information Elements of a Data Record that serve as INDEX MIB
 objects for an indexed Columnar MIB object. Each bit represents
 an Information Element in the Data Record with the n-th bit
 representing the n-th Information Element. A bit set to value 1
 indicates that the corresponding Information Element is an index
 of the Columnar Object represented by the mibFieldValue. A bit
 set to value 0 indicates that this is not the case.

 If the Data Record contains more than 64 Information Elements, the
 corresponding Template SHOULD be designed such that all INDEX
 Fields are among the first 64 Information Elements, because the
 mibIndexIndicator only contains 64 bits. If the Data Record
 contains less than 64 Information Elements, then the extra bits in
 the mibIndexIndicator for which no corresponding Information
 Element exists MUST have the value 0, and must be disregarded by
 the Collector. This Information Element may be exported with
 IPFIX Reduced Size Encoding.

5.86. mibCaptureTimeSemantics

Waltermire, et al. Expires September 18, 2016 [Page 62]

Internet-Draft SACM Information Model March 2016

elementId: TBD
name: mibCaptureTimeSemantics
dataType: unsigned8
dataTypeSemantics: identifier
status: current
description: Indicates when in the lifetime of the flow the MIB
 value was retrieved from the MIB for a mibObjectIdentifier. This

 is used to indicate if the value exported was collected from the
 MIB closer to flow creation or flow export time and will refer to
 the Timestamp fields included in the same record. This field
 SHOULD be used when exporting a mibObjectValue that specifies
 counters or statistics.

 If the MIB value was sampled by SNMP prior to the IPFIX Metering
 Process or Exporting Process retrieving the value (i.e., the data
 is already stale) and it's important to know the exact sampling
 time, then an additional observationTime* element should be paired
 with the OID using structured data. Similarly, if different
 mibCaptureTimeSemantics apply to different mibObject elements
 within the Data Record, then individual mibCaptureTimeSemantics
 should be paired with each OID using structured data.

 Values:
 0. undefined
 1. begin - The value for the MIB object is captured from the
 MIB when the Flow is first observed
 2. end - The value for the MIB object is captured from the MIB
 when the Flow ends
 3. export - The value for the MIB object is captured from the
 MIB at export time
 4. average - The value for the MIB object is an average of
 multiple captures from the MIB over the observed life of the
 Flow

5.87. mibContextEngineID

elementId: TBD
name: mibContextEngineID
dataType: octetArray
dataTypeSemantics: default
status: current
description: A mibContextEngineID that specifies the SNMP engine
 ID for a MIB field being exported over IPFIX. Definition as per
 [RFC3411] section 3.3.

Waltermire, et al. Expires September 18, 2016 [Page 63]

Internet-Draft SACM Information Model March 2016

5.88. mibContextName

elementId: TBD
name: mibContextName
dataType: string
dataTypeSemantics: default
status: current
description: This Information Element denotes that a MIB Context
 Name is specified for a MIB field being exported over IPFIX.
 Reference [RFC3411] section 3.3.

5.89. mibObjectName

 elementId: TBD
 name: mibObjectName
 dataType: string
 dataTypeSemantics: default
 status: current
 description: The name (called a descriptor in [RFC2578]
 of an object type definition.

5.90. mibObjectDescription

 elementId: TBD
 name: mibObjectDescription
 dataType: string
 dataTypeSemantics: default
 status: current
 description: The value of the DESCRIPTION clause of an MIB object
 type definition.

5.91. mibObjectSyntax

elementId: TBD
name: mibObjectSyntax
dataType: string
dataTypeSemantics: default
status: current
description: The value of the SYNTAX clause of an MIB object type
 definition, which may include a Textual Convention or Subtyping.
 See [RFC2578].

5.92. mibModuleName

Waltermire, et al. Expires September 18, 2016 [Page 64]

Internet-Draft SACM Information Model March 2016

 elementId: TBD
 name: mibModuleName
 dataType: string
 dataTypeSemantics: default
 status: current
 description: The textual name of the MIB module that defines a MIB
 Object.

6. SACM Usage Scenario Example

 TODO: this section needs to refer out to wherever the operations /
 generalized workflow content ends up

 TODO: revise to eliminate graph references

 This section illustrates the proposed SACM Information Model as
 applied to SACM Usage Scenario 2.2.3, Detection of Posture Deviations
 [RFC7632]. The following subsections describe the elements
 (components and elements), graph model, and operations (sample
 workflow) required to support the Detection of Posture Deviations
 scenario.

 The Detection of Posture Deviations scenario involves multiple
 elements interacting to accomplish the goals of the scenario.
 Figure 4 illustrates those elements along with their major
 communication paths.

6.1. Graph Model for Detection of Posture Deviation

 The following subsections contain examples of identifiers and
 metadata which would enable detection of posture deviation. These
 lists are by no means exhaustive - many other types of metadata would
 be enumerated in a data model that fully addressed this usage
 scenario.

6.1.1. Components

 The proposed SACM Information Model contains three components, as
 defined in the SACM Architecture [I-D.ietf-sacm-architecture]:
 Posture Attribute Information Provider, Posture Attribute Information
 Consumer, and Control Plane.

 In this example, the components are instantiated as follows:

 o The Posture Attribute Information Provider is an endpoint security
 service which monitors the compliance state of the endpoint and
 reports any deviations for the expected posture.

Waltermire, et al. Expires September 18, 2016 [Page 65]

Internet-Draft SACM Information Model March 2016

 o The Posture Attribute Information Consumer is an analytics engine

 which absorbs information from around the network and generates a
 "heat map" of which areas in the network are seeing unusually high
 rates of posture deviations.

 o The Control Plane is a security automation broker which receives
 subscription requests from the analytics engine and authorizes
 access to appropriate information from the endpoint security
 service.

6.1.2. Identifiers

 To represent the elements listed above, the set of identifiers might
 include (but is not limited to):

 o Identity - a device itself, or a user operating a device,
 categorized by type of identity (e.g. username or X.509
 certificate [RFC5280])

 o Software asset

 o Network Session

 o Address - categorized by type of address (e.g. MAC address, IP
 address, Host Identity Protocol (HIP) Host Identity Tag (HIT)
 [RFC5201], etc.)

 o Task - categorized by type of task (e.g. internal collector,
 external collector, evaluator, or reporting task)

 o Result - categorized by type of result (e.g. evaluation result or
 report)

 o Guidance

6.1.3. Metadata

 To characterize the elements listed above, the set of metadata types
 might include (but is not limited to):

 o Authorization metadata attached to an identity identifier, or to a
 link between a network session identifier and an identity
 identifier, or to a link between a network session identifier and
 an address identifier.

 o Location metadata attached to a link between a network session
 identifier and an address identifier.

Waltermire, et al. Expires September 18, 2016 [Page 66]

Internet-Draft SACM Information Model March 2016

 o Event metadata attached to an address identifier or an identity
 identifier of an endpoint, which would be made available to
 interested parties at the time of publication, but not stored
 long-term. For example, when a user disables required security
 software, an internal collector associated with an endpoint
 security service might publish guidance violation event metadata
 attached to the identity identifier of the endpoint, to notify
 consumers of the change in endpoint state.

 o Posture attribute metadata attached to an identity identifier of
 an endpoint. For example, when required security software is not
 running, an internal collector associated with an endpoint
 security service might publish posture attribute metadata attached
 to the identity identifier of the endpoint, to notify consumers of
 the current state of the endpoint.

6.1.4. Relationships between Identifiers and Metadata

 Interaction between multiple sets of identifiers and metadata lead to
 some fairly common patterns, or "constellations", of metadata. For
 example, an authenticated-session metadata constellation might
 include a central network session with authorizations and location
 attached, and links to a user identity, an endpoint identity, a MAC
 address, an IP address, and the identity of the policy server that
 authorized the session, for the duration of the network session.

 These constellations may be independent of each other, or one
 constellation may be connected to another. For example, an
 authenticated-session metadata constellation may be created when a
 user connects an endpoint to the network; separately, an endpoint-
 posture metadata constellation may be created when an endpoint
 security system and other collectors gather and publish posture
 information related to an endpoint. These two constellations are not
 necessarily connected to each other, but may be joined if the
 component publishing the authenticated-session metadata constellation
 is able to link the network session identifier to the identity
 identifier of the endpoint.

6.2. Workflow

 The workflow for exchange of information supporting detection of
 posture deviation, using a standard publish/subscribe/query transport
 model such as available with IF-MAP [TNC-IF-MAP-SOAP-Binding] or
 XMPP-Grid [I-D.salowey-sacm-xmpp-grid], is as follows:

 1. The analytics engine (Posture Assessment Information Consumer)
 establishes connectivity and authorization with the transport
 fabric, and subscribes to updates on posture deviations.

Waltermire, et al. Expires September 18, 2016 [Page 67]

Internet-Draft SACM Information Model March 2016

 2. The endpoint security service (Posture Assessment Information
 Provider) requests connection to the transport fabric.

 3. Transport fabric authenticates and establishes authorized
 privileges (e.g. privilege to publish and/or subscribe to
 security data) for the requesting components.

 4. The endpoint security service evaluates the endpoint, detects
 posture deviation, and publishes information on the posture
 deviation.

 5. The transport fabric notifies the analytics engine, based on its
 subscription of the new posture deviation information.

 Other components, such as access control policy servers or
 remediation systems, may also consume the posture deviation
 information provided by the endpoint security service.

7. Acknowledgements

 Many of the specifications in this document have been developed in a
 public-private partnership with vendors and end-users. The hard work
 of the SCAP community is appreciated in advancing these efforts to
 their current level of adoption.

 Over the course of developing the initial draft, Brant Cheikes, Matt
 Hansbury, Daniel Haynes, Scott Pope, Charles Schmidt, and Steve
 Venema have contributed text to many sections of this document.

7.1. Contributors

 The RFC guidelines no longer allow RFCs to be published with a large
 number of authors. Some additional authors contributed to specific
 sections of this document; their names are listed in the individual
 section headings as well as alphabetically listed with their
 affiliations below.

 +---------------+----------------+---------------------------------+
 | Name | Affiliation | Contact |
 +---------------+----------------+---------------------------------+
 | Henk Birkholz | Fraunhofer SIT | henk.birkholz@sit.fraunhofer.de |
 +---------------+----------------+---------------------------------+

8. IANA Considerations

 This memo includes no request to IANA.

Waltermire, et al. Expires September 18, 2016 [Page 68]

Internet-Draft SACM Information Model March 2016

9. Operational Considerations

 TODO: Need to include various operational considerations here.
 Proposed sections include timestamp accuracy and which attributes
 attributes designate an endpoint.

10. Privacy Considerations

 TODO: Need to include various privacy considerations here.

11. Security Considerations

 Posture Assessments need to be performed in a safe and secure manner.
 In that regard, there are multiple aspects of security that apply to
 the communications between components as well as the capabilities
 themselves. Due to time constraints, this information model only
 contains an initial listing of items that need to be considered with
 respect to security. This list is not exhaustive, and will need to
 be augmented as the model continues to be developed/refined.

 Initial list of security considerations include:

 Authentication: Every component and asset needs to be able to
 identify itself and verify the identity of other components
 and assets.

 Confidentiality: Communications between components need to be
 protected from eavesdropping or unauthorized collection.
 Some communications between components and assets may need to
 be protected as well.

 Integrity: The information exchanged between components needs to be
 protected from modification. some exchanges between assets
 and components will also have this requirement.

 Restricted Access: Access to the information collected, evaluated,
 reported, and stored should only be viewable/consumable to
 authenticated and authorized entities.

 The TNC IF-MAP Binding for SOAP [TNC-IF-MAP-SOAP-Binding] and TNC IF-
 MAP Metadata for Network Security [TNC-IF-MAP-NETSEC-METADATA]
 document security considerations for sharing information via security
 automation. Most, and possibly all, of these considerations also
 apply to information shared via this proposed information model.

Waltermire, et al. Expires September 18, 2016 [Page 69]

Internet-Draft SACM Information Model March 2016

12. References

12.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3587] Hinden, R., Deering, S., and E. Nordmark, "IPv6 Global
 Unicast Address Format", RFC 3587, DOI 10.17487/RFC3587,
 August 2003, <http://www.rfc-editor.org/info/rfc3587>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List

 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6313] Claise, B., Dhandapani, G., Aitken, P., and S. Yates,
 "Export of Structured Data in IP Flow Information Export
 (IPFIX)", RFC 6313, DOI 10.17487/RFC6313, July 2011,
 <http://www.rfc-editor.org/info/rfc6313>.

12.2. Informative References

 [CCE] The National Institute of Standards and Technology,
 "Common Configuration Enumeration", 2014,
 <http://nvd.nist.gov/CCE/>.

 [CCI] United States Department of Defense Defense Information
 Systems Agency, "Control Correlation Identifier", 2014,
 <http://iase.disa.mil/cci/>.

 [CPE-WEBSITE]
 The National Institute of Standards and Technology,
 "Common Platform Enumeration", 2014,
 <http://scap.nist.gov/specifications/cpe/>.

 [CVE-WEBSITE]
 The MITRE Corporation, "Common Vulnerabilities and
 Exposures", 2014, <http://cve.mitre.org/about/>.

Waltermire, et al. Expires September 18, 2016 [Page 70]

Internet-Draft SACM Information Model March 2016

 [I-D.ietf-sacm-architecture]
 Cam-Winget, N., Ford, B., Lorenzin, L., McDonald, I., and
 l. loxx@cisco.com, "Secure Automation and Continuous
 Monitoring (SACM) Architecture", draft-ietf-sacm-
 architecture-00 (work in progress), October 2014.

 [I-D.ietf-sacm-requirements]
 Cam-Winget, N. and L. Lorenzin, "Secure Automation and
 Continuous Monitoring (SACM) Requirements", draft-ietf-
 sacm-requirements-01 (work in progress), October 2014.

 [I-D.ietf-sacm-terminology]
 Waltermire, D., Montville, A., Harrington, D., and N. Cam-
 Winget, "Terminology for Security Assessment", draft-ietf-
 sacm-terminology-05 (work in progress), August 2014.

 [I-D.salowey-sacm-xmpp-grid]
 Salowey, J., Lorenzin, L., Kahn, C., Pope, S., Appala, S.,
 Woland, A., and N. Cam-Winget, "XMPP Protocol Extensions
 for Use in SACM Information Transport", draft-salowey-
 sacm-xmpp-grid-00 (work in progress), July 2014.

 [IM-LIAISON-STATEMENT-NIST]
 Montville, A., "Liaison Statement: Call for Contributions
 for the SACM Information Model to NIST", May 2014,
 <http://datatracker.ietf.org/liaison/1329/>.

 [ISO.18180]
 "Information technology -- Specification for the
 Extensible Configuration Checklist Description Format
 (XCCDF) Version 1.2", ISO/IEC 18180, 2013,
 <http://standards.iso.org/ittf/PubliclyAvailableStandards/
 c061713_ISO_IEC_18180_2013.zip>.

 [ISO.19770-2]
 "Information technology -- Software asset management --
 Part 2: Software identification tag", ISO/IEC 19770-2,
 2009.

 [NISTIR-7275]
 Waltermire, D., Schmidt, C., Scarfone, K., and N. Ziring,
 "Specification for the Extensible Configuration Checklist
 Description Format (XCCDF) Version 1.2", NISTIR 7275r4,
 March 2013, <http://csrc.nist.gov/publications/nistir/
 ir7275-rev4/nistir-7275r4_updated-march-2012_clean.pdf>.

Waltermire, et al. Expires September 18, 2016 [Page 71]

Internet-Draft SACM Information Model March 2016

 [NISTIR-7693]
 Wunder, J., Halbardier, A., and D. Waltermire,
 "Specification for Asset Identification 1.1", NISTIR 7693,
 June 2011,
 <http://csrc.nist.gov/publications/nistir/ir7693/
 NISTIR-7693.pdf>.

 [NISTIR-7694]
 Halbardier, A., Waltermire, D., and M. Johnson,
 "Specification for the Asset Reporting Format 1.1",
 NISTIR 7694, June 2011,
 <http://csrc.nist.gov/publications/nistir/ir7694/
 NISTIR-7694.pdf>.

 [NISTIR-7695]
 Cheikes, B., Waltermire, D., and K. Scarfone, "Common
 Platform Enumeration: Naming Specification Version 2.3",
 NISTIR 7695, August 2011,
 <http://csrc.nist.gov/publications/nistir/ir7695/
 NISTIR-7695-CPE-Naming.pdf>.

 [NISTIR-7696]
 Parmelee, M., Booth, H., Waltermire, D., and K. Scarfone,
 "Common Platform Enumeration: Name Matching Specification
 Version 2.3", NISTIR 7696, August 2011,
 <http://csrc.nist.gov/publications/nistir/ir7696/
 NISTIR-7696-CPE-Matching.pdf>.

 [NISTIR-7697]
 Cichonski, P., Waltermire, D., and K. Scarfone, "Common
 Platform Enumeration: Dictionary Specification Version
 2.3", NISTIR 7697, August 2011,
 <http://csrc.nist.gov/publications/nistir/ir7697/
 NISTIR-7697-CPE-Dictionary.pdf>.

 [NISTIR-7698]
 Waltermire, D., Cichonski, P., and K. Scarfone, "Common
 Platform Enumeration: Applicability Language Specification
 Version 2.3", NISTIR 7698, August 2011,
 <http://csrc.nist.gov/publications/nistir/ir7698/
 NISTIR-7698-CPE-Language.pdf>.

 [NISTIR-7848]
 Davidson, M., Halbardier, A., and D. Waltermire,
 "Specification for the Asset Summary Reporting Format
 1.0", NISTIR 7848, May 2012,
 <http://csrc.nist.gov/publications/drafts/nistir-7848/
 draft_nistir_7848.pdf>.

Waltermire, et al. Expires September 18, 2016 [Page 72]

Internet-Draft SACM Information Model March 2016

 [OVAL-LANGUAGE]
 Baker, J., Hansbury, M., and D. Haynes, "The OVAL Language
 Specification version 5.10.1", January 2012,
 <https://oval.mitre.org/language/version5.10.1/>.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 DOI 10.17487/RFC3411, December 2002,
 <http://www.rfc-editor.org/info/rfc3411>.

 [RFC3416] Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,

 <http://www.rfc-editor.org/info/rfc3416>.

 [RFC3418] Presuhn, R., Ed., "Management Information Base (MIB) for
 the Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, DOI 10.17487/RFC3418, December 2002,
 <http://www.rfc-editor.org/info/rfc3418>.

 [RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between
 Information Models and Data Models", RFC 3444,
 DOI 10.17487/RFC3444, January 2003,
 <http://www.rfc-editor.org/info/rfc3444>.

 [RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G., and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580,
 DOI 10.17487/RFC3580, September 2003,
 <http://www.rfc-editor.org/info/rfc3580>.

 [RFC3954] Claise, B., Ed., "Cisco Systems NetFlow Services Export
 Version 9", RFC 3954, DOI 10.17487/RFC3954, October 2004,
 <http://www.rfc-editor.org/info/rfc3954>.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <http://www.rfc-editor.org/info/rfc4287>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <http://www.rfc-editor.org/info/rfc4949>.

 [RFC5201] Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
 Henderson, "Host Identity Protocol", RFC 5201,
 DOI 10.17487/RFC5201, April 2008,
 <http://www.rfc-editor.org/info/rfc5201>.

Waltermire, et al. Expires September 18, 2016 [Page 73]

Internet-Draft SACM Information Model March 2016

 [RFC5209] Sangster, P., Khosravi, H., Mani, M., Narayan, K., and J.
 Tardo, "Network Endpoint Assessment (NEA): Overview and
 Requirements", RFC 5209, DOI 10.17487/RFC5209, June 2008,
 <http://www.rfc-editor.org/info/rfc5209>.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <http://www.rfc-editor.org/info/rfc5424>.

 [RFC5792] Sangster, P. and K. Narayan, "PA-TNC: A Posture Attribute
 (PA) Protocol Compatible with Trusted Network Connect
 (TNC)", RFC 5792, DOI 10.17487/RFC5792, March 2010,
 <http://www.rfc-editor.org/info/rfc5792>.

 [RFC5793] Sahita, R., Hanna, S., Hurst, R., and K. Narayan, "PB-TNC:
 A Posture Broker (PB) Protocol Compatible with Trusted
 Network Connect (TNC)", RFC 5793, DOI 10.17487/RFC5793,
 March 2010, <http://www.rfc-editor.org/info/rfc5793>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6876] Sangster, P., Cam-Winget, N., and J. Salowey, "A Posture
 Transport Protocol over TLS (PT-TLS)", RFC 6876,
 DOI 10.17487/RFC6876, February 2013,
 <http://www.rfc-editor.org/info/rfc6876>.

 [RFC7012] Claise, B., Ed. and B. Trammell, Ed., "Information Model
 for IP Flow Information Export (IPFIX)", RFC 7012,
 DOI 10.17487/RFC7012, September 2013,
 <http://www.rfc-editor.org/info/rfc7012>.

 [RFC7013] Trammell, B. and B. Claise, "Guidelines for Authors and
 Reviewers of IP Flow Information Export (IPFIX)
 Information Elements", BCP 184, RFC 7013,
 DOI 10.17487/RFC7013, September 2013,
 <http://www.rfc-editor.org/info/rfc7013>.

Waltermire, et al. Expires September 18, 2016 [Page 74]

Internet-Draft SACM Information Model March 2016

 [RFC7171] Cam-Winget, N. and P. Sangster, "PT-EAP: Posture Transport
 (PT) Protocol for Extensible Authentication Protocol (EAP)
 Tunnel Methods", RFC 7171, DOI 10.17487/RFC7171, May 2014,
 <http://www.rfc-editor.org/info/rfc7171>.

 [RFC7632] Waltermire, D. and D. Harrington, "Endpoint Security
 Posture Assessment: Enterprise Use Cases", RFC 7632,
 DOI 10.17487/RFC7632, September 2015,
 <http://www.rfc-editor.org/info/rfc7632>.

 [SP800-117]
 Quinn, S., Scarfone, K., and D. Waltermire, "Guide to
 Adopting and Using the Security Content Automation
 Protocol (SCAP) Version 1.2", SP 800-117, January 2012,
 <http://csrc.nist.gov/publications/drafts/800-117-R1/
 Draft-SP800-117-r1.pdf>.

 [SP800-126]
 Waltermire, D., Quinn, S., Scarfone, K., and A.
 Halbardier, "The Technical Specification for the Security
 Content Automation Protocol (SCAP): SCAP Version 1.2",
 SP 800-126, September 2011,
 <http://csrc.nist.gov/publications/nistpubs/800-126-rev2/
 SP800-126r2.pdf>.

 [TNC-Architecture]
 Trusted Computing Group, ""TNC Architecture",
 Specification Version 1.5", May 2012.

 [TNC-IF-M-TLV-Binding]
 Trusted Computing Group, ""TNC IF-M: TLV Binding",
 Specification Version 1.0", May 2014.

 [TNC-IF-MAP-ICS-METADATA]
 Trusted Computing Group, ""TNC IF-MAP Metadata for ICS
 Security", Specification Version 1.0", May 2014.

 [TNC-IF-MAP-NETSEC-METADATA]
 Trusted Computing Group, ""TNC IF-MAP Metadata for Network
 Security", Specification Version 1.1", May 2012.

 [TNC-IF-MAP-SOAP-Binding]
 Trusted Computing Group, ""TNC IF-MAP Binding for SOAP",
 Specification Version 2.2", March 2014.

 [TNC-IF-T-TLS]
 Trusted Computing Group, ""TNC IF-T: Binding to TLS",
 Specification Version 2.0", February 2013.

Waltermire, et al. Expires September 18, 2016 [Page 75]

Internet-Draft SACM Information Model March 2016

 [TNC-IF-T-Tunneled-EAP]
 Trusted Computing Group, ""TNC IF-T: Protocol Bindings for
 Tunneled EAP Methods", Specification Version 2.0", May
 2014.

 [TNC-IF-TNCCS-TLV-Binding]
 Trusted Computing Group, ""TNC IF-TNCCS: TLV Binding",
 Specification Version 2.0", May 2014.

 [UML] Object Management Group, ""Unified Modeling Language TM
 (UML (R))", Version 2.4.1", August 2011.

 [W3C.REC-rdf11-concepts-20140225]
 Cyganiak, R., Wood, D., and M. Lanthaler, "RDF 1.1
 Concepts and Abstract Syntax", World Wide Web Consortium
 Recommendation REC-rdf11-concepts-20140225, February 2014,
 <http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225>.

 [W3C.REC-soap12-part1-20070427]
 Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.,
 Nielsen, H., Karmarkar, A., and Y. Lafon, "SOAP Version
 1.2 Part 1: Messaging Framework (Second Edition)", World
 Wide Web Consortium Recommendation REC-
 soap12-part1-20070427, April 2007,
 <http://www.w3.org/TR/2007/REC-soap12-part1-20070427>.

Appendix A. Change Log

A.1. Changes in Revision 01

 Renamed "credential" to "identity", following industry usage. A
 credential includes proof, such as a key or password. A username or
 a distinguished name is called an "identity".

 Removed Session, because an endpoint's network activity is not SACM's
 initial focus

 Removed Authorization, for the same reason

 Added many-to-many relationship between Hardware Component and
 Endpoint, for clarity

 Added many-to-many relationship between Software Component and
 Endpoint, for clarity

 Added "contains" relationship between Network Interface and Network
 Interface

Waltermire, et al. Expires September 18, 2016 [Page 76]

Internet-Draft SACM Information Model March 2016

 Removed relationship between Network Interface and Account. The
 endpoint knows the identity it used to gain network access. The PDP
 also knows that. But they probably do not know the account.

 Added relationship between Network Interface and Identity. The
 endpoint and the PDP will typically know the identity.

 Made identity-to-account a many-to-one relationship.

A.2. Changes in Revision 02

 Added Section 5.1, Identifying Attributes.

 Split the figure into Figure 4 and Figure 5.

 Added Figure 6, proposing a triple-store model.

 Some editorial cleanup

A.3. Changes in Revision 03

 Moved Appendix A.1, Appendix A.2, and Appendix B into the Appendix.
 Added a reference to it in Section 1

 Added the Section 3 section. Provided notes for the type of
 information we need to add in this section.

 Added the Section 4 section. Moved sections on Endpoint, Hardware
 Component, Software Component, Hardware Instance, and Software
 Instance there. Provided notes for the type of information we need
 to add in this section.

 Removed the Provenance of Information Section. SACM is not going to

 solve provenance rather give organizations enough information to
 figure it out.

 Updated references to the Endpoint Security Posture Assessment:
 Enterprise Use Cases document to reflect that it was published as an
 RFC.

 Fixed the formatting of a few figures.

 Included references to [RFC3580] where RADIUS is mentioned.

Waltermire, et al. Expires September 18, 2016 [Page 77]

Internet-Draft SACM Information Model March 2016

A.4. Changes in Revision 04

 Integrated the IPFIX [RFC7012] syntax into Section 3.

 Converted many of the existing SACM Information Elements to the IPFIX
 syntax.

 Included existing IPFIX Information Elements and datatypes that could
 likely be reused for SACM in Section 5 and Section 3 respectively.

 Removed the sections related to reports as described in
 https://github.com/sacmwg/draft-ietf-sacm-information-model/
 issues/30.

 Cleaned up other text throughout the document.

Appendix B. Mapping to SACM Use Cases

 TODO: revise

 (wandw)This information model directly corresponds to all four use
 cases defined in the SACM Use Cases draft [RFC7632]. It uses these
 use cases in coordination to achieve a small set of well-defined
 tasks.

 Sections [removed] thru [removed] address each of the process areas.
 For each process area, a "Process Area Description" sub-section
 represent an end state that is consistent with all the General
 Requirements and many of the Use Case Requirements identified in the
 requirements draft [I-D.ietf-sacm-requirements].

 The management process areas and supporting operations defined in
 this memo directly support REQ004 Endpoint Discovery; REQ005-006
 Attribute and Information Based Queries, and REQ0007 Asynchronous
 Publication.

 In addition, the operations that defined for each business process in
 this memo directly correlate with the typical workflow identified in
 the SACM Use Case document.(/wandw)

Appendix C. Security Automation with TNC IF-MAP

C.1. What is Trusted Network Connect?

 Trusted Network Connect (TNC) is a vendor-neutral open architecture
 [TNC-Architecture] and a set of open standards for network security
 developed by the Trusted Computing Group (TCG). TNC standards
 integrate security components across end user systems, servers, and

Waltermire, et al. Expires September 18, 2016 [Page 78]

Internet-Draft SACM Information Model March 2016

 network infrastructure devices into an intelligent, responsive,
 coordinated defense. TNC standards have been widely adopted by

 vendors and customers; the TNC endpoint assessment protocols [TNC-IF-
 M-TLV-Binding][TNC-IF-TNCCS-TLV-Binding][TNC-IF-T-Tunneled-EAP][TNC-I
 F-T-TLS] were used as the base for the IETF NEA RFCs
 [RFC5792][RFC5793][RFC7171][RFC6876].

 Traditional information security architectures have separate silos
 for endpoint security, network security, server security, physical
 security, etc. The TNC architecture enables the integration and
 categorization of security telemetry sources via the information
 model contained in its Interface for Metadata Access Points (IF-MAP)
 [TNC-IF-MAP-SOAP-Binding]. IF-MAP provides a query-able repository
 of security telemetry that may be used for storage or retrieval of
 such data by multiple types of security systems and endpoints on a
 vendor-neutral basis. The information model underlying the IF-MAP
 repository covers, directly or indirectly, all of the security
 information types required to serve SACM use-cases.

C.2. What is TNC IF-MAP?

 IF-MAP provides a standard client-server protocol for MAP clients to
 exchange security-relevant information via database server known as
 the Metadata Access Point or MAP. The data (known as "metadata")
 stored in the MAP is XML data. Each piece of metadata is tagged with
 a metadata type that indicates the meaning of the metadata and
 identifies an XML schema for it. Due to the XML language, the set of
 metadata types is easily extensible.

 The MAP is a graph database, not a relational database. Metadata can
 be associated with an identifier (e.g. the email address
 "user@example.com") or with a link between two identifiers (e.g. the
 link between MAC address 00:11:22:33:44:55 and IPv4 address
 192.0.2.1) where the link defines an association (for example: a
 relation or state) between the identifiers. These links between
 pairs of identifiers create an ad hoc graph of relationships between
 identifiers. The emergent structure of this graph reflects a
 continuously evolving knowledge base of security-related metadata
 that is shared between various providers and consumers.

C.3. What is the TNC Information Model?

 The TNC Information Model underlying IF-MAP relies on the graph
 database architecture to enable a (potentially distributed) MAP
 service to act as a shared clearinghouse for information that
 infrastructure devices can act upon. The IF-MAP operations and
 metadata schema specifications (TNC IF-MAP Binding for SOAP
 [TNC-IF-MAP-SOAP-Binding], TNC IF-MAP Metadata for Network Security

Waltermire, et al. Expires September 18, 2016 [Page 79]

Internet-Draft SACM Information Model March 2016

 [TNC-IF-MAP-NETSEC-METADATA], and TNC IF-MAP Metadata for ICS
 Security [TNC-IF-MAP-ICS-METADATA]) define an extensible set of
 identifiers and data types.

 Each IF-MAP client may interact with the IF-MAP graph data store
 through three fundamental types of operation requests:

 o Publish, which may create, modify, or delete metadata associated
 with one or more identifiers and/or links in the graph

 o Search, which retrieves a selected sub-graph according to a set of
 search criteria

 o Subscribe, which allows a client to manage a set of search
 commands which asynchronously return selected sub-graphs when
 changes to that sub-graph are made by other IF-MAP clients

 The reader is invited to review the existing IF-MAP specification
 [TNC-IF-MAP-SOAP-Binding] for more details on the above graph data
 store operation requests and their associated arguments.

 The current IF-MAP specification provides a SOAP
 [W3C.REC-soap12-part1-20070427] binding for the above operations, as
 well as associated SOAP operations for managing sessions, error
 handling, etc.

Appendix D. Text for Possible Inclusion in the Terminology Draft

D.1. Terms and Definitions

 This section describes terms that have been defined by other RFCs and
 Internet Drafts, as well as new terms introduced in this document.

D.1.1. Pre-defined and Modified Terms

 This section contains pre-defined terms that are sourced from other
 IETF RFCs and Internet Drafts. Descriptions of terms in this section
 will reference the original source of the term and will provide
 additional specific context for the use of each term in SACM. For
 sake of brevity, terms from [I-D.ietf-sacm-terminology] are not
 repeated here unless the original meaning has been changed in this
 document.

 Asset For this Information Model it is necessary to change the
 scope of the definition of asset from the one provided in
 [I-D.ietf-sacm-terminology]. Originally defined in [RFC4949]
 and referenced in [I-D.ietf-sacm-terminology] as "a system
 resource that is (a) required to be protected by an

Waltermire, et al. Expires September 18, 2016 [Page 80]

Internet-Draft SACM Information Model March 2016

 information system's security policy, (b) intended to be
 protected by a countermeasure, or (c) required for a system's
 mission." This definition generally relates to an "IT
 Asset", which in the context of this document is overly
 limiting. For use in this document, a broader definition of
 the term is needed to represent non-IT asset types as well.

 In [NISTIR-7693] an asset is defined as "anything that has
 value to an organization, including, but not limited to,
 another organization, person, computing device, information
 technology (IT) system, IT network, IT circuit, software
 (both an installed instance and a physical instance), virtual
 computing platform (common in cloud and virtualized
 computing), and related hardware (e.g., locks, cabinets,
 keyboards)." This definition aligns better with common
 dictionary definitions of the term and better fits the needs
 of this document.

D.1.2. New Terms

 IT Asset Originally defined in [RFC4949] as "a system resource that
 is (a) required to be protected by an information system's
 security policy, (b) intended to be protected by a
 countermeasure, or (c) required for a system's mission."

 Security Content Automation Protocol (SCAP) According to SP800-126,
 SCAP, pronounced "ess-cap", is "a suite of specifications
 that standardize the format and nomenclature by which
 software flaw and security configuration information is
 communicated, both to machines and humans." SP800-117
 revision 1 [SP800-117] provides a general overview of SCAP
 1.2. The 11 specifications that comprise SCAP 1.2 are
 synthesized by a master specification, SP800-126 revision 2
 [SP800-126], that addresses integration of the specifications
 into a coherent whole. The use of "protocol" in its name is
 a misnomer, as SCAP defines only data models. SCAP has been
 adopted by a number of operating system and security tool
 vendors.

Appendix E. Text for Possible Inclusion in the Architecture or Use
 Cases

Waltermire, et al. Expires September 18, 2016 [Page 81]

Internet-Draft SACM Information Model March 2016

E.1. Introduction

 The posture of an endpoint is the status of the endpoint with respect
 to the security policies and risk models of the organization.

 A system administrator needs to be able to determine which elements
 of an endpoint have a security problem and which do not conform the
 organization's security policies. The CIO needs to be able to
 determine whether endpoints have security postures that conform to
 the organization's policies to ensure that the organization is
 complying with its fiduciary and regulatory responsibilities. The
 regulator or auditor needs to be able to assess the level of due
 diligence being achieved by an organization to ensure that all
 regulations and due diligence expectations are being met. The
 operator needs to understand which assets have deviated from
 organizational policies so that those assets can be remedied.

 Operators will focus on which endpoints are composed of specific
 assets with problems. CIO and auditors need a characterization of
 how an organization is performing as a whole to manage the posture of
 its endpoints. All of these actors need deployed capabilities that
 implement security automation standards in the form of data formats,
 interfaces, and protocols to be able to assess, in a timely and
 secure fashion, all assets on all endpoints within their enterprise.
 This information model provides a basis to identify the desirable
 characteristics of data models to support these scenarios. Other
 SACM specifications, such as the SACM Architecture, will describe the
 potential components of an interoperable system solution based on the
 SACM information model to address the requirements for scalability,
 timeliness, and security.

E.2. Core Principles

 This information model is built on the following core principles:

 o Collection and Evaluation are separate tasks.

 o Collection and Evaluation can be performed on the endpoint, at a
 local server that communicates directly with the endpoint, or
 based on data queried from a back end data store that does not
 communicate directly with any endpoints.

 o Every entity (human or machine) that notifies, queries, or
 responds to any guidance, collection, or evaluator must have a way
 of identifying itself and/or presenting credentials.
 Authentication is a key step in all of the processes, and while
 needed to support the business processes, information needs to
 support authentication are not highlighted in this information

Waltermire, et al. Expires September 18, 2016 [Page 82]

Internet-Draft SACM Information Model March 2016

 model. There is already a large amount of existing work that
 defines information needs for authentication.

 o Policies are reflected in guidance for collection, evaluation, and
 reporting.

 o Guidance will often be generated by humans or through the use of
 transformations on existing automation data. In some cases,
 guidance will be generated dynamically based on shared information
 or current operational needs. As guidance is created it will be
 published to an appropriate guidance data store allowing guidance
 to be managed in and retrieved from convenient locations.

 o Operators of a continuous monitoring or security automation system
 will need to make decisions when defining policies about what
 guidance to use or reference. The guidance used may be directly
 associated with policy or may be queried dynamically based on
 associated metadata.

 o Guidance can be gathered from multiple data stores. It may be
 retrieved at the point of use or may be packaged and forwarded for

 later use. Guidance may be retrieved in event of a collection or
 evaluation trigger or it may be gathered ahead of time and stored
 locally for use/reference during collection and evaluation
 activities.

E.3. Architecture Assumptions

 This information model will focus on WHAT information needs to be
 exchanged to support the business process areas. The architecture
 document is the best place to represent the HOW and the WHERE this
 information is used. In an effort to ensure that the data models
 derived from this information model scale to the architecture, four
 core architectural components need to be defined. They are
 producers, consumers, capabilities, and repositories. These elements
 are defined as follows:

 o Producers (e.g., Evaluation Producer) collect, aggregate, and/or
 derive information items and provide them to consumers. For this
 model there are Collection, Evaluation, and Results Producers.
 There may or may not be Guidance Producers.

 o Consumers (e.g., Collection Consumer) request and/or receive
 information items from producers for their own use. For this
 model there are Collection, Evaluation, and Results Consumers.
 There may or may not be Guidance Consumers.

Waltermire, et al. Expires September 18, 2016 [Page 83]

Internet-Draft SACM Information Model March 2016

 o Capabilities (e.g., Posture Evaluation Capability) take the input
 from one or more producers and perform some function on or with
 that information. For this model there are Collection Guidance,
 Collection, Evaluation Guidance, Evaluation, Reporting Guidance,
 and Results Reporting Capabilities.

 o Repositories (e.g., Enterprise Repository) store information items
 that are input to or output from Capabilities, Producers, and
 Consumers. For this model we refer to generic Enterprise and
 Guidance Repositories.

 Information that needs to be communicated by or made available to any
 of these components will be specified in each of the business process
 areas.

 In the most trivial example, illustrated in Figure 7, Consumers
 either request information from, or are notified by, Producers.

 +----------+ Request +----------+
 | <-----------------+ |
 | Producer | | Consumer |
 | +-----------------> |
 +----------+ Response +----------+

 +----------+ +----------+
 | | Notify | |
 | Producer +-----------------> Consumer |
 | | | |
 +----------+ +----------+

 Figure 7: Example Producer/Consumer Interactions

 As illustrated in Figure 8, writing and querying from data
 repositories are a way in which this interaction can occur in an
 asynchronous fashion.

Waltermire, et al. Expires September 18, 2016 [Page 84]

Internet-Draft SACM Information Model March 2016

 +----------+ +----------+
Producer		Consumer
 +-----+----+ +----^-----+
 | |
 Write | +------------+ | Query
 | | | |
 +-----> Repository +-------+
 | |
 +------------+

 Figure 8: Producer/Consumer Repository Interaction

 To perform an assessment, these elements are chained together. The
 diagram below is illustrative of this and process, and is meant to
 demonstrate WHAT basic information exchanges need to occur, while
 trying to maintain flexibility in HOW and WHERE they occur.

 For example:

 o the collection capability can reside on the endpoint or not.

 o the collection producer can be part of the collection capability
 or not.

 o a repository can be directly associated with a producer and/or an
 evaluator or stand on its own.

 o there can be multiple "levels" of producers and consumers.

Waltermire, et al. Expires September 18, 2016 [Page 85]

Internet-Draft SACM Information Model March 2016

 +-------------+
 |Evaluation |
 +-------------+ |Guidance +--+
 |Endpoint | |Capability | |
 +-------+ | +-------------+ |
 | | | |
 | +-------+-----+ +-----v-------+
 | Collection | |Evaluation |
 +-> Capability +--+--------+ |Capability |
 | | |Collection | +-----------+ +----------+
 | +------------+Producer | | |---| | |
 | | | |Collection | |Evaluation|
 | | | |Consumer | |Producer |
 | +----+------+ +----^------+ +---+------+
 ++---------+ | | |

Collection	+-----v------+ +---+--------+				
Guidance				Collection	
Capability		Collection		Producer	
		Consumer	-----		
 +----------+ +------------+ +------------+ |
 | Collection | |
 | Repository | |
 +------------+ |
 |
 +--------------+ +---------------+ |
 |Evaluation | |Evaluation | |
 |Results | |Consumer <-----+
 |Producer |-----------| |
 +-----+--------+ +---------------+
 | |Results Reporting|
 | |Capability |
 | +------------^----+
 | |
 +-----v--------+ +----+------+
 |Evaluation | |Reporting |
 |Results | |Guidance |
 |Consumer | |Repository |
 +---+----------+ +-----------+ +-------------+
 | | Results |
 +-----------------------------> Repository |
 | |
 +-------------+

 Figure 9: Producer/Consumer Complex Example

 This illustrative example in Figure 9 provides a set of information
 exchanges that need to occur to perform a posture assessment. The
 rest of this information model is using this set of exchanges based

Waltermire, et al. Expires September 18, 2016 [Page 86]

Internet-Draft SACM Information Model March 2016

 on these core architectural components as the basis for determining
 information elements.

Appendix F. Text for Possible Inclusion in the Requirements Draft

F.1. Problem Statement

 Scalable and sustainable collection, expression, and evaluation of
 endpoint information is foundational to SACM's objectives. To secure
 and defend one's network one must reliably determine what devices are
 on the network, how those devices are configured from a hardware
 perspective, what software products are installed on those devices,
 and how those products are configured. We need to be able to
 determine, share, and use this information in a secure, timely,
 consistent, and automated manner to perform endpoint posture
 assessments.

F.2. Problem Scope

 The goal of this iteration of the information model is to define the
 information needs for an organization to effectively monitor the
 endpoints operating on their network, the software installed on those
 endpoints, and the configuration of that software. Once we have
 those three business processes in place, we can identify vulnerable
 endpoints in a very efficient manner.

 The four business process areas represent a large set of tasks that
 support endpoint posture assessment. In an effort to address the
 most basic and foundational needs, we have also narrowed down the
 scope inside of each of the business processes to a set of defined
 tasks that strive to achieve specific results in the operational
 environment and the organization. These tasks are:

 1. Define the assets. This is what we want to know about an asset.
 For instance, organizations will want to know what software is
 installed and its many critical security attributes such as patch
 level.

 2. Resolve what assets compose an endpoint. This requires
 populating the data elements and attributes needed to exchange

 information pertaining to the assets composing an endpoint.

 3. Express what expected values for the data elements and attributes
 need to be evaluated against the actual collected instances of
 asset data. This is how an organization can express its policy
 for an acceptable data element or attribute value. A system
 administrator can also identify specific data elements and

Waltermire, et al. Expires September 18, 2016 [Page 87]

Internet-Draft SACM Information Model March 2016

 attributes that represent problems, such as vulnerabilities, that
 need to be detected on an endpoint.

 4. Evaluate the collected instances of the asset data against those
 expressed in the policy.

 5. Report the results of the evaluation.

Appendix G. Text With No Clear Home Yet

G.1. Operations

 Operations that may be carried out the proposed SACM Information
 Model are:

 o Publish data: Security information is made available in the
 information model when a component publishes data to it.

 o Subscribe to data: A component seeking to consume an on-going
 stream of security information "subscribes" to such data from the
 information model.

 o Query: This operation enables a component to request a specific
 set of security data regarding a specific asset (such as a
 specific user endpoint).

 The subscribe capability will allow SACM components to monitor for
 selected security-related changes in the graph data store without
 incurring the performance penalties associated with polling for such
 changes.

G.1.1. Generalized Workflow

 The proposed SACM Information Model would be most commonly used with
 a suitable transport protocol for collecting and distributing
 security data across appropriate network platforms and endpoints.
 The information model is transport agnostic and can be used with its
 native transport provided by IF-MAP or by other data transport
 protocols such as the recently proposed XMPP-Grid.

 1. A Posture Assessment Information Consumer (Consumer) establishes
 connectivity and authorization with the transport fabric.

 2. A Posture Assessment Information Provider (Provider) with a
 source of security data requests connection to the transport
 fabric.

Waltermire, et al. Expires September 18, 2016 [Page 88]

Internet-Draft SACM Information Model March 2016

 3. Transport fabric authenticates and establishes authorized
 privileges (e.g. privilege to publish and/or subscribe to
 security data) for the requesting components.

 4. Components may either publish security data, subscribe to
 security data, query for security data, or any combination of
 these operations.

 Any component sharing information - either as Provider or Consumer -

 may do so on a one-to-one, one-to-many and/or many-to-many meshed
 basis.

G.2. From Information Needs to Information Elements

 The previous sections highlighted information needs for a set of
 management process areas that use posture assessment to achieve
 organizational security goals. A single information need may be made
 up of multiple information elements. Some information elements may
 be required for two different process areas, resulting in two
 different requirements. In an effort to support the main idea of
 collect once and reuse the data to support multiple processes, we try
 to define a singular set of information elements that will support
 all the associated information needs.

G.3. Information Model Elements

 TODO: Kim to pull up relevant content into section 4 / Elements

 Traditionally, one would use the SACM architecture to define
 interfaces that required information exchanges. Identified
 information elements would then be based on those exchanges. Because
 the SACM architecture document is still in the personal draft stage,
 this information model uses a different approach to the
 identification of information elements. First it lists the four main
 endpoint posture assessment activities. Then it identifies
 management process areas that use endpoint posture assessment to
 achieve organizational security objectives. These process areas were
 then broken down into operations that mirrored the typical workflow
 from the SACM Use Cases draft [RFC7632]. These operations identify
 architectural components and their information needs. In this
 section, information elements derived from those information needs
 are mapped back to the four main activities listed above.

 The original liaison statement [IM-LIAISON-STATEMENT-NIST] requested
 contributions for the SACM information model in the four areas
 described below. Based on the capabilities defined previously in
 this document, the requested areas alone do not provide a sufficient
 enough categorization of the necessary information model elements.

Waltermire, et al. Expires September 18, 2016 [Page 89]

Internet-Draft SACM Information Model March 2016

 The following sub-sections directly address the requested areas as
 follows:

 1. Endpoint Identification

 A. Appendix G.3.1 Asset Identifiers: Describes identification of
 many different asset types including endpoints.

 2. Endpoint Characterization

 A. Appendix G.3.3 Endpoint characterization: This directly maps
 to the requested area.

 3. Endpoint Attribute Expression/Representation

 A. Appendix G.3.4 Posture Attribute Expression: This corresponds
 to the first part of "Endpoint Attribute Expression/
 Representation."

 B. Appendix G.3.5 Actual Value Representation: This corresponds
 to the second part of "Endpoint Attribute Expression/
 Representation."

 4. Policy evaluation expression and results reporting

 A. Appendix G.3.6 Evaluation Guidance: This corresponds to the
 first part of "Policy evaluation expression and results
 reporting."

 B. Appendix G.3.7 Evaluation Result Reporting: corresponds to
 the second part of "Policy evaluation expression and results
 reporting."

 Additionally, Appendix G.3.2 Other Identifiers: describes other

 important identification concepts that were not directly requested by
 the liaison statement.

 Per the liaison statement, each subsection references related work
 that provides a basis for potential data models. Some analysis is
 also included for each area of related work on how directly
 applicable the work is to the SACM efforts. In general, much of the
 related work does not fully address the general or use case-based
 requirements for SACM, but they do contain some parts that can be
 used as the basis for data models that correspond to the information
 model elements. In these cases additional work will be required by
 the WG to adapt the specification. In some cases, existing work can
 largely be used in an unmodified fashion. This is also indicated in
 the analysis. Due to time constraints, the work in this section is

Waltermire, et al. Expires September 18, 2016 [Page 90]

Internet-Draft SACM Information Model March 2016

 very biased to previous work supported by the authors and does not
 reflect a comprehensive listing. An attempt has been made where
 possible to reference existing IETF work. Additional research and
 discussion is needed to include other related work in standards and
 technology communities that could and should be listed here. The
 authors intend to continue this work in subsequent revisions of this
 draft.

 Where possible when selecting and developing data models in support
 of these information model elements, extension points and IANA
 registries SHOULD be used to provide for extensibility which will
 allow for future data models to be addressed.

G.3.1. Asset Identifiers

 In this context an "asset" refers to "anything that has value to an
 organization" (see [NISTIR-7693]). This use of the term "asset" is
 broader than the current definition in [I-D.ietf-sacm-terminology].
 To support SACM use cases, a number of different asset types will
 need to be addressed. For each type of asset, one or more type of
 asset identifier will be needed for use in establishing contextual
 relationships within the SACM information model. The following asset
 types are referenced or implied by the SACM use cases:

 Endpoint: Identifies an individual endpoint for which posture is
 collected and evaluated.

 Hardware: Identifies a given type of hardware that may be installed
 within an endpoint.

 Software: Identifies a given type of software that may be installed
 within an endpoint.

 Network: Identifies a network for which a given endpoint may be
 connected or request a connection to.

 Organization: Identifies an organizational unit.

 Person: Identifies an individual, often within an organizational
 context.

G.3.1.1. Related Work

G.3.1.1.1. Asset Identification

 The Asset Identification specification [NISTIR-7693] is an XML-based
 data model that "provides the necessary constructs to uniquely
 identify assets based on known identifiers and/or known information

Waltermire, et al. Expires September 18, 2016 [Page 91]

Internet-Draft SACM Information Model March 2016

 about the assets." Asset identification plays an important role in
 an organization's ability to quickly correlate different sets of
 information about assets. The Asset Identification specification

 provides the necessary constructs to uniquely identify assets based
 on known identifiers and/or known information about the assets.
 Asset Identification provides a relatively flat and extensible model
 for capturing the identifying information about a one or more assets,
 and also provides a way to represent relationships between assets.

 The model is organized using an inheritance hierarchy of specialized
 asset types/classes (see Figure 10), providing for extension at any
 level of abstraction. For a given asset type, a number of properties
 are defined that provide for capturing identifying characteristics
 and the referencing of namespace qualified asset identifiers, called
 "synthetic IDs."

 The following figure illustrates the class hierarchy defined by the
 Asset Identification specification.

 asset
 +-it-asset
 | +-circuit
 | +-computing-device
 | +-database
 | +-network
 | +-service
 | +-software
 | +-system
 | +-website
 +-data
 +-organization
 +-person

 Figure 10: Asset Identification Class Hierarchy

Waltermire, et al. Expires September 18, 2016 [Page 92]

Internet-Draft SACM Information Model March 2016

 This table presents a mapping of notional SACM asset types to those
 asset types provided by the Asset Identification specification.

 +--------------+------------------+---------------------------------+
SACM Asset	Asset	Notes
Type	Identification	
	Type	
+--------------+------------------+---------------------------------+		
Endpoint	computing-device	This is not a direct mapping
		since a computing device is not
		required to have network-
		connectivity. Extension will be
		needed to define a directly
		aligned endpoint asset type.
+--------------+------------------+---------------------------------+		
Hardware	Not Applicable	The concept of hardware is not
		addressed by the asset
		identification specification.
		An extension can be created
		based on the it-asset class to
		address this concept.
+--------------+------------------+---------------------------------+		
Software	software	Direct mapping.
+--------------+------------------+---------------------------------+		
Network	network	Direct mapping.
+--------------+------------------+---------------------------------+		
Organization	organization	Direct mapping.
 +--------------+------------------+---------------------------------+

 | Person | person | Direct mapping. |
 +--------------+------------------+---------------------------------+

 Table 1: Mapping of SACM to Asset Identification Asset Types

 This specification has been adopted by a number of SCAP validated
 products. It can be used to address asset identification and
 categorization needs within SACM with minor modification.

G.3.1.2. Endpoint Identification

 An unique name for an endpoint. This is a foundational piece of
 information that will enable collected posture attributes to be
 related to the endpoint from which they were collected. It is
 important that this name either be created from, provide, or be
 associated with operational information (e.g., MAC address, hardware
 certificate) that is discoverable from the endpoint or its
 communications on the network. It is also important to have a method
 of endpoint identification that can persist across network sessions
 to allow for correlation of collected data over time.

Waltermire, et al. Expires September 18, 2016 [Page 93]

Internet-Draft SACM Information Model March 2016

G.3.1.2.1. Related Work

 The previously introduced asset identification specification (see
 Appendix G.3.1.1.1 provides a basis for endpoint identification using
 the "computing-device" class. While the meaning of this class is
 broader than the current definition of an endpoint in the SACM
 terminology [I-D.ietf-sacm-terminology], either that class or an
 appropriate sub-class extension can be used to capture identification
 information for various endpoint types.

G.3.1.3. Software Identification

 A unique name for a unit of installable software. Software names
 should generally represent a unique release or installable version of
 software. Identification approaches should allow for identification
 of commercially available, open source, and organizationally
 developed custom software. As new software releases are created, a
 new software identifier should be created by the releasing party
 (e.g., software creator, publisher, licensor). Such an identifier is
 useful to:

 o Relate metadata that describes the characteristics of the unit of
 software, potentially stored in a repository of software
 information. Typically, the software identifier would be used as
 an index into such a repository.

 o Indicate the presence of the software unit on a given endpoint.

 o To determine what endpoints are the targets for an assessment
 based on what software is installed on that endpoint.

 o Define guidance related to a software unit that represents
 collection, evaluation, or other automatable policies.

 In general, an extensible method of software identification is needed
 to provide for adequate coverage and to address legacy identification
 approaches. Use of an IANA registry supporting multiple software
 identification methods would be an ideal way forward.

G.3.1.3.1. Related Work

 While we are not aware of a one-size-fits-all solution for software
 identification, there are two existing specifications that should be
 considered as part of the solution set. They are described in the
 following subsections.

Waltermire, et al. Expires September 18, 2016 [Page 94]

Internet-Draft SACM Information Model March 2016

G.3.1.3.1.1. Common Platform Enumeration

G.3.1.3.1.1.1. Background

 The Common Platform Enumeration (CPE) [CPE-WEBSITE] is composed of a
 family of four specification that are layered to build on lower-level
 functionality. The following describes each specification:

 1. CPE Naming: A standard machine-readable format [NISTIR-7695] for
 encoding names of IT products and platforms. This defines the
 notation used to encode the vendor, software name, edition,
 version and other related information for each platform or
 product. With the 2.3 version of CPE, a second, more advanced
 notation was added to the original colon-delimited notation for
 CPE naming.

 2. CPE Matching: A set of procedures [NISTIR-7696] for comparing
 names. This describes how to compare two CPE names to one
 another. It describes a logical method that ensures that
 automated systems comparing two CPE names would arrive at the
 same conclusion.

 3. CPE Applicability Language: An XML-based language [NISTIR-7698]
 for constructing "applicability statements" that combine CPE
 names with simple logical operators.

 4. CPE Dictionary: An XML-based catalog format [NISTIR-7697] that
 enumerates CPE Names and associated metadata. It details how to
 encode the information found in a CPE Dictionary, thereby
 allowing multiple organizations to maintain compatible CPE
 Dictionaries.

 The primary use case of CPE is for exchanging software inventory
 data, as it allows the usage of unique names to identify software
 platforms and products present on an endpoint. The NIST currently
 maintains and updates a dictionary of all agreed upon CPE names, and
 is responsible for ongoing maintenance of the standard. Many of the
 names in the CPE dictionary have been provided by vendors and other
 3rd-parties.

 While the effort has seen wide adoption, most notably within the US
 Government, a number of critical flaws have been identified. The
 most critical issues associated with the effort are:

 o Because there is no requirement for vendors to publish their own,
 official CPE names, CPE necessarily requires one or more
 organizations for curation. This centralized curation requirement
 ensures that the effort has difficulty scaling.

Waltermire, et al. Expires September 18, 2016 [Page 95]

Internet-Draft SACM Information Model March 2016

 o Not enough primary source vendors provide platform and product
 naming information. As a result, this pushes too much of the
 effort out onto third-party groups and non-authoritative
 organizations. This exacerbates the ambiguity in names used for
 identical platforms and products and further reduces the utility
 of the effort.

G.3.1.3.1.1.2. Applicability to Software Identification

 The Common Platform Enumeration (CPE) Naming specification version
 2.3 defines a scheme for human-readable standardized identifiers of
 hardware and software products.

 CPE names are the identifier format for software and hardware
 products used in SCAP 1.2 and is currently adopted by a number of
 SCAP product vendors.

 CPE names can be directly referenced in the asset identification
 software class (see Appendix G.3.1.1.1.)

 Although relevant, CPE has an unsustainable maintenance "tail" due to
 the need for centralized curation and naming-consistency enforcement.

 Its mention in this document is to support the historic inclusion of
 CPE as part of SCAP and implementation of this specification in a
 number of security processes and products. Going forward, software
 identification (SWID) tags are recommended as a replacement for CPE.
 To this end, work has been started to align both efforts to provide
 translation for software units identified using SWID tags to CPE
 Names. This translation would allow tools that currently use CPE-
 based identifiers to map to SWID identifiers during a transition
 period.

G.3.1.3.1.2. Software Identification (SWID) Tags

 The software identification tag specification [ISO.19770-2] is an
 XML-based data model that is used to describe a unit of installable
 software. A SWID tag contains data elements that:

 o Identify a specific unit of installable software,

 o Enable categorization of the software (e.g., edition, bundle),

 o Identification and hashing of software artifacts (e.g.,
 executables, shared libraries),

 o References to related software and dependencies, and

 o Inclusion of extensible metadata.

Waltermire, et al. Expires September 18, 2016 [Page 96]

Internet-Draft SACM Information Model March 2016

 SWID tags can be associated with software installation media,
 installed software, software updates (e.g., service packs, patches,
 hotfixes), and redistributable components. SWID tags also provide
 for a mechanism to relate these concepts to each other. For example,
 installed software can be related back to the original installation
 media, patches can be related to the software that they patch, and
 software dependencies can be described for required redistributable
 components. SWID tags are ideally created at build-time by the
 software creator, publisher or licensor; are bundled with software
 installers; and are deployed to an endpoint during software
 installation.

 SWID tags should be considered for two primary uses:

 1. As the data format for exchanging descriptive information about
 software products, and

 2. As the source of unique identifiers for installed software.

 In addition to usage for software identification, a SWID tag can
 provide the necessary data needed to target guidance based on
 included metadata, and to support verification of installed software
 and software media using cryptographic hashes. This added
 information increases the value of using SWID tags as part of the
 larger security automation and continuous monitoring solution space.

G.3.1.4. Hardware Identification

 Due to the time constraints, research into information elements and
 related work for identifying hardware is not included in this
 revision of the information model.

G.3.2. Other Identifiers

 In addition to identifying core asset types, it is also necessary to
 have stable, globally unique identifiers to represent other core
 concepts pertaining to posture attribute collection and evaluation.
 The concept of "global uniqueness" ensures that identifiers provided
 by multiple organization do not collide. This may be handled by a
 number of different mechanisms (e.g., use of namespaces).

G.3.2.1. Platform Configuration Item Identifier

 A name for a low-level, platform-dependent configuration mechanism as
 determined by the authoritative primary source vendor. New
 identifiers will be created when the source vendor makes changes to
 the underlying platform capabilities (e.g., adding new settings,

 replacing old settings with new settings). When created each

Waltermire, et al. Expires September 18, 2016 [Page 97]

Internet-Draft SACM Information Model March 2016

 identifier should remain consistent with regards to what it
 represents. Generally, a change in meaning would constitute the
 creation of a new identifier.

 For example, if the configuration item is for "automatic execution of
 code", then the platform vendor would name the low-level mechanism
 for their platform (e.g., autorun for mounted media).

G.3.2.1.1. Related Work

G.3.2.1.1.1. Common Configuration Enumeration

 The Common Configuration Enumeration (CCE) [CCE] is an effort managed
 by NIST. CCE provides a unique identifier for platform-specific
 configuration items that facilitates fast and accurate correlation of
 configuration items across multiple information sources and tools.
 CCE does this by providing an identifier, a human readable
 description of the configuration control, parameters needed to
 implement the configuration control, various technical mechanisms
 that can be used to implement the configuration control, and
 references to documentation that describe the configuration control
 in more detail.

 By vendor request, NIST issues new blocks of CCE identifiers.
 Vendors then populate the required fields and provided the details
 back to NIST for publication in the "CCE List", a consolidated
 listing of assigned CCE identifiers and associated data. Many
 vendors also include references to these identifiers in web pages,
 SCAP content, and prose configuration guides they produce.

 CCE the identifier format for platform specific configuration items
 in SCAP and is currently adopted by a number of SCAP product vendors.

 While CCE is largely supported as a crowd-sourced effort, it does
 rely on a central point of coordination for assignment of new CCE
 identifiers. This approach to assignment requires a single
 organization, currently NIST, to manage allocations of CCE
 identifiers which doesn't scale well and introduces sustainability
 challenges for large volumes of identifier assignment. If this
 approach is used going forward by SACM, a namespaced approach is
 recommended for identifier assignment that allows vendors to manage
 their own namespace of CCE identifiers. This change would require
 additional work to specify and implement.

Waltermire, et al. Expires September 18, 2016 [Page 98]

Internet-Draft SACM Information Model March 2016

G.3.2.1.1.2. Open Vulnerability and Assessment Language

G.3.2.1.1.2.1. Background

 The Open Vulnerability and Assessment Language (OVAL(R)) is an XML
 schema-based data model developed as part of a public-private
 information security community effort to standardize how to assess
 and report upon the security posture of endpoints. OVAL provides an
 established framework for making assertions about an endpoint's
 posture by standardizing the three main steps of the assessment
 process:

 1. representing the current endpoint posture;

 2. analyzing the endpoint for the presence of the specified posture;
 and

 3. representing the results of the assessment.

 OVAL facilitates collaboration and information sharing among the
 information security community and interoperability among tools.
 OVAL is used internationally and has been implemented by a number of
 operating system and security tools vendors.

Waltermire, et al. Expires September 18, 2016 [Page 99]

Internet-Draft SACM Information Model March 2016

 The following figure illustrates the OVAL data model.

 +------------+
 +-----------------+ | Variables |
 | Common <---+ |
 +--------> | +------------+
 | | | +------------+
 | | <---+ Directives |
 | +--------^----^---+ | |
 | | | +--------+---+
 | | +-----+ | | |
 | | | |
 | +--------+--------+ | |
 | | System | | |
 | | Characteristics | | |
 +------+------+ | | | +--------v---+
 | Definitions | | | | | Results |
 | | +--------^--------+ +-+ |
 | | | | |
 | | +------------+ |
 +------^------+ +-------+----+
 | |
 +--------------------------------------+

 Note: The direction of the arrows indicate a model dependency

 Figure 11: The OVAL Data Model

 The OVAL data model [OVAL-LANGUAGE], visualized in Figure 11, is
 composed of a number of different components. The components are:

 o Common: Constructs, enumerations, and identifier formats that are
 used throughout the other model components.

 o Definitions: Constructs that describe assertions about system
 state. This component also includes constructs for internal
 variable creation and manipulation through a variety of functions.
 The core elements are:

 * Definition: A collection of logical statements that are
 combined to form an assertion based on endpoint state.

 * Test(platform specific): A generalized construct that is
 extended in platform schema to describe the evaluation of
 expected against actual state.

Waltermire, et al. Expires September 18, 2016 [Page 100]

Internet-Draft SACM Information Model March 2016

 * Object(platform specific): A generalized construct that is
 extended in platform schema to describe a collectable aspect of
 endpoint posture.

 * State(platform specific): A generalized construct that is
 extended in platform schema to describe a set of criteria for
 evaluating posture attributes.

 o Variables: Constructs that allow for the parameterization of the
 elements used in the Definitions component based on externally
 provided values.

 o System Characteristics: Constructs that represent collected
 posture from one or more endpoints. This element may be embedded
 with the Results component, or may be exchanged separately to
 allow for separate collection and evaluation. The core elements
 of this component are:

 * CollectedObject: Provides a mapping of collected Items to
 elements defined in the Definitions component.

 * Item(platform specific): A generalized construct that is
 extended in platform schema to describe specific posture
 attributes pertaining to an aspect of endpoint state.

 o Results: Constructs that represent the result of evaluating
 expected state (state elements) against actual state (item
 elements). It includes the true/false evaluation result for each
 evaluated Definition and Test. Systems characteristics are
 embedded as well to provide low-level posture details.

 o Directives: Constructs that enable result reporting detail to be
 declared, allowing for result production to be customized.

 End-user organizations and vendors create assessment guidance using
 OVAL by creating XML instances based on the XML schema implementation
 of the OVAL Definitions model. The OVAL Definitions model defines a
 structured identifier format for each of the Definition, Test,
 Object, State, and Item elements. Each instantiation of these
 elements in OVAL XML instances are assigned a unique identifier based
 on the specific elements identifier syntax. These XML instances are
 used by tools that support OVAL to drive collection and evaluation of
 endpoint posture. When posture collection is performed, an OVAL
 Systems Characteristics XML instance is generated based on the
 collected posture attributes. When this collected posture is
 evaluated, an OVAL Result XML instance is generated that contains the
 results of the evaluation. In most implementations, the collection
 and evaluation is performed at the same time.

Waltermire, et al. Expires September 18, 2016 [Page 101]

Internet-Draft SACM Information Model March 2016

 Many of the elements in the OVAL model (i.e., Test, Object, State,
 Item) are abstract, requiring a platform-specific schema
 implementation, called a "Component Model" in OVAL. These platform
 schema implementations are where platform specific posture attributes
 are defined. For each aspect of platform posture a specialized OVAL
 Object, which appears in the OVAL Definitions model, provides a
 format for expressing what posture attribute data to collect from an
 endpoint through the specification of a datatype, operation, and
 value(s) on entities that uniquely identify a platform configuration
 item. For example, a hive, key, and name is used to identify a

 registry key on a Windows endpoint. Each specialized OVAL Object has
 a corresponding specialized State, which represents the posture
 attributes that can be evaluated, and an Item which represents the
 specific posture attributes that can be collected. Additionally, a
 specialized Test exists that allows collected Items corresponding to
 a CollectedObject to be evaluated against one or more specialized
 States of the same posture type.

 The OVAL language provides a generalized approach suitable for
 posture collection and evaluation. While this approach does provide
 for a degree of extensibility, there are some concerns that should be
 addressed in order to make OVAL a viable basis for SACM's use. These
 concerns include:

 o Platform Schema Creation and Maintenance: In OVAL platform schema,
 the OVAL data model maintains a tight binding between the Test,
 Object, State, and Item elements used to assess an aspect of
 endpoint posture. Creating a new platform schema or adding a new
 posture aspect to an existing platform schema can be a very labor
 intensive process. Doing so often involves researching and
 understanding system APIs and can be prone to issues with
 inconsistency within and between platforms. To simplify platform
 schema creation and maintenance, the model needs to be evolved to
 generalize the Test, Object, and State elements, requiring only
 the definition of an Item representation.

 o Given an XML instance based on the Definitions model, it is not
 clear in the specification how incremental collection and
 evaluation can occur. Because of this, typically, OVAL
 assessments are performed on a periodic basis. The OVAL
 specification needs to be enhanced to include specifications for
 performing event-based and incremental assessment in addition to
 full periodic collection.

 o Defining new functions for manipulating variable values is current
 handled in the Definitions schema. This requires revision to the
 core language to add new functions. The OVAL specification needs

Waltermire, et al. Expires September 18, 2016 [Page 102]

Internet-Draft SACM Information Model March 2016

 to be evolved to provide for greater extensibility in this area,
 allowing extension schema to define new functions.

 o The current process for releasing a new version of OVAL, bundle
 releases of the core language with release of community recognized
 platform schema. The revision processes for the core and platform
 schema need to be decoupled. Each platform schema should use some
 mechanism to declare which core language version it relies on.

 If adopted by SCAM, these issues will need to be addressed as part of
 the SCAM engineering work to make OVAL more broadly adoptable as a
 general purpose data model for posture collection and evaluation.

G.3.2.1.1.2.2. Applicability to Platform Configuration Item
 Identification

 Each OVAL Object is identified by a globally unique identifier. This
 globally unique identifier could be used by the SACM community to
 identify platform-specific configuration items and at the same time
 serve as collection guidance. If used in this manner, OVAL Objects
 would likely need to undergo changes in order to decouple it from
 evaluation guidance and to provide more robust collection
 capabilities to support the needs of the SACM community.

G.3.2.2. Configuration Item Identifier

 An identifier for a high-level, platform-independent configuration
 control. This identification concept is necessary to allow similar
 configuration item concepts to be comparable across platforms. For
 example, a configuration item might be created for the minimum
 password length configuration control, which may then have a number
 of different platform-specific configuration settings. Without this
 type of identification, it will be difficult to perform evaluation of
 expected versus actual state in a platform-neutral way.

 High-level configuration items tend to change much less frequently
 than the platform-specific configuration items (see Appendix G.3.2.1)
 that might be associated with them. To provide for the greatest
 amount of sustainability, collections of configuration item
 identifiers are best defined by specific communities of interest,
 while platform-specific identifiers are best defined by the source
 vendor of the platform. Under this model, the primary source vendors
 would map their platform-specific configuration controls to the
 appropriate platform-independent item allowing end-user organizations
 to make use of these relationships.

 To support different communities of interest, it may be necessary to
 support multiple methods for identification of configuration items

Waltermire, et al. Expires September 18, 2016 [Page 103]

Internet-Draft SACM Information Model March 2016

 and for associating related metadata. Use of an IANA registry
 supporting multiple configuration item identification methods would
 be an ideal way forward. To the extent possible, a few number of
 configuration item identification approaches is desirable, to
 maximize the update by vendors who would be maintain mapping of
 platform-specific configuration identifiers to the more general
 platform-neutral configuration identifiers.

G.3.2.2.1. Related Work

G.3.2.2.1.1. Control Correlation Identifier

 The Control Correlation Identifier (CCI) [CCI] is developed and
 managed by the United States Department of Defense (US-DoD) Defense
 Information Systems Agency (DISA). According to their website, CCI
 "provides a standard identifier and description for each of the
 singular, actionable statements that comprise an information
 assurance (IA) control or IA best practice. CCI bridges the gap
 between high-level policy expressions and low-level technical
 implementations. CCI allows a security requirement that is expressed
 in a high-level policy framework to be decomposed and explicitly
 associated with the low-level security setting(s) that must be
 assessed to determine compliance with the objectives of that specific
 security control. This ability to trace security requirements from
 their origin (e.g., regulations, IA frameworks) to their low-level
 implementation allows organizations to readily demonstrate compliance
 to multiple IA compliance frameworks. CCI also provides a means to
 objectively roll-up and compare related compliance assessment results
 across disparate technologies."

 It is recommended that this approach be analysed as a potential
 candidate for use as a configuration item identifier method.

 Note: This reference to CCI is for informational purposes. Since the
 editors do not represent DISA's interests, its inclusion in this
 document does not indicate the presence or lack of desire to
 contribute aspects of this effort to SACM.

G.3.2.2.1.2. A Potential Alternate Approach

 There will likely be a desire by different communities to create
 different collections of configuration item identifiers. This
 fracturing may be caused by:

 o Different requirements for levels of abstraction,

 o Varying needs for timely maintenance of the collection, and

Waltermire, et al. Expires September 18, 2016 [Page 104]

Internet-Draft SACM Information Model March 2016

 o Differing scopes of technological needs.

 Due to these and other potential needs, it will be difficult to
 standardize around a single collection of configuration identifiers.

 A workable solution will be one that is scalable and usable for a
 broad population of end-user organizations. An alternate approach
 that should be considered is the definition of data model that
 contains a common set of metadata attributes, perhaps supported by an
 extensible taxonomy, that can be assigned to platform-specific
 configuration items. If defined at a necessary level of granularity,
 it may be possible to query collections of platform-specific
 configuration items provided by vendors to create groupings at
 various levels of abstractions. By utilizing data provided by
 vendors, technological needs and the timeliness of information can be
 addressed based on customer requirements.

 SACM should consider this and other approaches to satisfy the need
 for configuration item roll-up in a way that provides the broadest
 benefit, while achieving a sensible degree of scalability and
 sustainability.

G.3.2.3. Vulnerability Identifier

 An unique name for a known software flaw that exists in specific
 versions of one or more units of software. One use of a
 vulnerability identifier in the SACM context is to associate a given
 flaw with the vulnerable software using software identifiers. For
 this reason at minimum, software identifiers should identify a
 software product to the patch or version level, and not just to the
 level that the product is licensed.

G.3.2.3.1. Related Work

G.3.2.3.1.1. Common Vulnerabilities and Exposures

 Common Vulnerabilities and Exposures (CVE) [CVE-WEBSITE] is a MITRE
 led effort to assign common identifiers to publicly known security
 vulnerabilities in software to facilitate the sharing of information
 related to the vulnerabilities. CVE is the industry standard by
 which software vendors, tools, and security professionals identify
 vulnerabilities and could be used to address SACM's need for a
 vulnerability identifier.

G.3.3. Endpoint characterization

 Target when policies (collection, evaluated, guidance) apply

 Collection can be used to further characterize

Waltermire, et al. Expires September 18, 2016 [Page 105]

Internet-Draft SACM Information Model March 2016

 Also human input

 Information required to characterize an endpoint is used to determine
 what endpoints are the target of a posture assessment. It is also
 used to determine the collection, evaluation, and/or reporting
 policies and the associated guidance that apply to the assessment.
 Endpoint characterization information may be populated by:

 o A manual input process and entered into records associated with
 the endpoint, or

 o Using information collected and evaluated by an assessment.

 Regardless of the method of collection, it will be necessary to query
 and exchange endpoint characterization information as part of the
 assessment planning workflow.

G.3.3.1. Related Work

G.3.3.1.1. Extensible Configuration Checklist Description Format

G.3.3.1.1.1. Background

 The Extensible Configuration Checklist Description Format (XCCDF) is
 a specification that provides an XML-based format for expressing
 security checklists. The XCCDF 1.2 specification is published by
 International Organization for Standardization (ISO) [ISO.18180].
 XCCDF contains multiple components and capabilities, and various
 components align with different elements of this information model.

 This specification was originally published by NIST [NISTIR-7275].
 When contributed to ISO Joint Technical Committee 1 (JTC 1), a
 comment was introduced indicating an interest in the IETF becoming
 the maintenance organization for this standard. If the SACM working
 group is interested in taking on engineering work pertaining to
 XCCDF, a contribution through a national body can be made to create a
 ballot resolution for transition of this standard to the IETF for
 maintenance.

G.3.3.1.1.2. Applicability to Endpoint characterization

 The target component of XCCDF provides a mechanism for capturing
 characteristics about an endpoint including the fully qualified
 domain name, network address, references to external identification
 information (e.g. Asset Identification), and is extensible to
 support other useful information (e.g. MAC address, globally unique
 identifier, certificate, etc.). XCCDF may serve as a good starting

Waltermire, et al. Expires September 18, 2016 [Page 106]

Internet-Draft SACM Information Model March 2016

 point for understanding the types of information that should be used
 to identify an endpoint.

G.3.3.1.2. Asset Reporting Format

G.3.3.1.2.1. Background

 The Asset Reporting Format (ARF) [NISTIR-7694] is a data model to
 express information about assets, and the relationships between
 assets and reports. It facilitates the reporting, correlating, and
 fusing of asset information within and between organizations. ARF is
 vendor and technology neutral, flexible, and suited for a wide
 variety of reporting applications.

 There are four major sub-components of ARF:

 o Asset: The asset component element includes asset identification
 information for one or more assets. It simply houses assets
 independent of their relationships to reports. The relationship
 section can then link the report section to specific assets.

 o Report: The report component element contains one or more asset
 reports. An asset report is composed of content (or a link to
 content) about one or more assets.

 o Report-Request: The report-request component element contains the
 asset report requests, which can give context to asset reports
 captured in the report section. The report-request section simply
 houses asset report requests independent of the report which was
 subsequently generated.

 o Relationship: The relationship component element links assets,
 reports, and report requests together with well-defined
 relationships. Each relationship is defined as {subject}
 {predicate} {object}, where {subject} is the asset, report
 request, or report of interest, {predicate} is the relationship
 type being established, and {object} is one or more assets, report
 requests, or reports.

G.3.3.1.2.2. Relationship to Endpoint Characterization

 For Endpoint Characterization, ARF can be used in multiple ways due
 to its flexibility. ARF supports the use of the Asset Identification
 specification (more in Appendix G.3.3.1.2.3) to embed the
 representation of one or more assets as well as relationships between
 those assets. It also allows the inclusion of report-requests, which
 can provide details on what data was required for an assessment.

Waltermire, et al. Expires September 18, 2016 [Page 107]

Internet-Draft SACM Information Model March 2016

 ARF is agnostic to the data formats of the collected posture
 attributes and therefore can be used within the SACM Architecture to
 provide Endpoint Characterization without dictating data formats for
 the encoding of posture attributes. The embedded Asset
 Identification data model (see Appendix G.3.1.1.1) can be used to
 characterize one or more endpoints to allow targeting for collection,
 evaluation, etc. Additionally, the report-request model can dictate
 the type of reporting that has been requested, thereby providing
 context as to which endpoints the guidance applies.

G.3.3.1.2.3. Asset Identification

 Described earlier

 In the context of Endpoint Characterization, the Asset Identification
 data model could be used to encode information that identifies
 specific endpoints and/or classes of endpoints to which a particular
 assessment is relevant. The flexibility in the Asset Identification
 specification allows usage of various endpoint identifiers as defined
 by the SACM engineering work.

 As stated in Appendix G.3.3.1.2.3, the Asset Identification
 specification is included within the Asset Reporting Framework (ARF)
 and therefore can be used in concert with that specification as well.

G.3.3.1.3. The CPE Applicability Language

 CPE described earlier

 Applicability in CPE is defined as an XML language [NISTIR-7698] for
 using CPE names to create applicability statements using logical
 expressions. These expressions can be used to applicability
 statements that can drive decisions about assets, whether or not to
 do things like collect data, report data, and execute policy
 compliance checks.

 It is recommended that SACM evolve the CPE Applicability Language
 through engineering work to allow it to better fit into the security
 automation vision laid out by the Use Cases and Architecture for
 SACM. This should include de-coupling the identification part of the
 language from the logical expressions, making it such that the
 language is agnostic to the method by which assets are identified.
 This will allow use of SWID, CPE Names, or other identifiers to be
 used, perhaps supported by an IANA registry of identifier types.

 The other key aspect that should be evolved is the ability to make
 use of the Applicability Language against a centralized repository of
 collected posture attributes. The language should be able to make

Waltermire, et al. Expires September 18, 2016 [Page 108]

Internet-Draft SACM Information Model March 2016

 applicability statements against previously collected posture
 attributes, such that an enterprise can quickly query the correct set
 of applicable endpoints in an automated and scalable manner.

G.3.4. Posture Attribute Expression

 Discuss the catalog concept. Listing of things that can be chosen
 from. Things we can know about. Vendors define catalogs. Ways for
 users to get vendor-provided catalogs.

 To support the collection of posture attributes, there needs to be a
 way for operators to identify and select from a set of platform-
 specific attribute(s) to collect. The same identified attributes
 will also need to be identified post-collection to associate the
 actual value of that attribute pertaining to an endpoint as it was
 configured at the time of the collection. To provide for
 extensibility, the need exists to support a variety of possible
 identification approaches. It is also necessary to enable vendors of
 software to provide a listing, or catalog, of the available posture
 attributes to operators that can be collected. Ideally, a federated
 approach will be used to allow organizations to identify the location
 for a repository containing catalogs of posture attributes provided
 by authoritative primary source vendors. By querying these

 repositories, operators will be able to acquire the appropriate
 listings of available posture attributes for their deployed assets.
 One or more posture attribute expressions are needed to support these
 exchanges.

G.3.4.1. Related Work

 The ATOM Syndication Format [RFC4287] provides an extensible,
 flexible XML-based expression for organizing a collection of data
 feeds consisting of entries. This standard can be used to express
 one or more catalogs of posture attributes represented as data feeds.
 Groupings of posture attributes would be represented as entries.
 These entries could be defined using the data models described in the
 "Related Work" sections below. Additionally, this approach can also
 be used more generally for guidance repositories allowing other forms
 of security automation guidance to be exchanged using the same
 format.

G.3.4.2. Platform Configuration Attributes

 A low-level, platform-dependent posture attribute as determined by
 the authoritative primary source vendor. Collection guidance will be
 derived from catalogs of platform specific posture attributes.

Waltermire, et al. Expires September 18, 2016 [Page 109]

Internet-Draft SACM Information Model March 2016

 For example, a primary source vendor would create a platform-specific
 posture attribute that best models the posture attribute data for
 their platform.

G.3.4.2.1. Related Work

G.3.4.2.1.1. Open Vulnerability and Assessment Language

 A general overview of OVAL was provided previously in
 Appendix G.3.2.1.1.2.1. The OVAL System Characteristics platform
 extension models provide a catalog of the posture attributes that can
 be collected from an endpoint. In OVAL these posture attributes are
 further grouped into logical constructs called OVAL Items. For
 example, the passwordpolicy_item that is part of the Windows platform
 extension groups together all the posture attributes related to
 passwords for an endpoint running Windows (e.g. maximum password age,
 minimum password length, password complexity, etc.). The various
 OVAL Items defined in the OVAL System Characteristics may serve as a
 good starting for the types of posture attribute data that needs to
 be collected from endpoints.

 OVAL platform extension models may be shared using the ATOM
 Syndication Format.

G.3.4.2.1.2. Network Configuration Protocol and YANG Data Modeling
 Language

 The Network Configuration Protocol (NETCONF) [RFC6241] defines a
 mechanism for managing and retrieving posture attribute data from
 network infrastructure endpoints. The posture attribute data that
 can be collected from a network infrastructure endpoint is highly
 extensible and can defined using the YANG modeling language
 [RFC6020]. Models exist for common datatypes, interfaces, and
 routing subsystem information among other subjects. The YANG
 modeling language may be useful in providing an extensible framework
 for the SACM community to define one or more catalogs of posture
 attribute data that can be collected from network infrastructure
 endpoints.

 Custom YANG modules may also be shared using the ATOM Syndication
 Format.

G.3.4.2.1.3. Simple Network Management Protocol and Management
 Information Base Entry

 The Simple Network Protocol (SNMP) [RFC3411] defines a protocol for
 managing and retrieving posture attribute data from endpoints on a
 network . The posture attribute data that can be collected of an

Waltermire, et al. Expires September 18, 2016 [Page 110]

Internet-Draft SACM Information Model March 2016

 endpoint and retrieved by SNMP is defined by the Management
 Information Base (MIB) [RFC3418] which is hierarchical collection of
 information that is referenced using Object Identifiers . Given this,
 MIBs may provide an extensible way for the SACM community to define a
 catalog of posture attribute data that can be collected off of
 endpoints using SNMP.

 MIBs may be shared using the ATOM Syndication Format.

G.3.5. Actual Value Representation

 Discuss instance concept.

 The actual value of a posture attribute is collected or published
 from an endpoint. The identifiers discussed previously provide names
 for the posture attributes (i.e., software or configuration item)
 that can be the subject of an assessment. The information items
 listed below are the actual values collected during the assessment
 and are all associated with a specific endpoint.

G.3.5.1. Software Inventory

 A software inventory is a list of software identifiers (or content)
 associated with a specific endpoint. Software inventories are
 maintained in some organized fashion so that entities can interact
 with it. Just having software publish identifiers onto an endpoint
 is not enough, there needs to be an organized listing of all those
 identifiers associated with that endpoint.

G.3.5.1.1. Related Work

G.3.5.1.1.1. Asset Summary Reporting

 The Asset Summary Reporting (ASR) specification [NISTIR-7848]
 provides a format for capturing summary information about one or more
 assets. Specifically, it provides the ability to express a
 collection of records from some defined data source and map them to
 some set of assets. As a result, this specification may be useful
 for capturing the software installed on an endpoint, its relevant
 attributes, and associating it with a particular endpoint.

G.3.5.1.1.2. Software Identification Tags

 SWID tag were previously introduced in Appendix G.3.1.3.1.2. As
 stated before, SWID tags are ideally deployed to an endpoint during
 software installation. In the less ideal case, they may also be
 generated based on information retrieved from a proprietary software
 installation data store. At minimum, SWID tag must contain an

Waltermire, et al. Expires September 18, 2016 [Page 111]

Internet-Draft SACM Information Model March 2016

 identifier for each unit of installed software. Given this, SWID
 tags may be a viable way for SACM to express detailed information
 about the software installed on an endpoint.

G.3.5.2. Collected Platform Configuration Posture Attributes

 Configurations associated with a software instance associated with an
 endpoint

 A list of the configuration posture attributes associated with the
 actual values collected from the endpoint during the assessment as
 required/expressed by any related guidance. Additionally, each
 configuration posture attribute is associated with the installed
 software instance it pertains to.

G.3.5.2.1. Related Work

G.3.5.2.1.1. Open Vulnerability and Assessment Language

 A general overview of OVAL was provided previously in
 Appendix G.3.2.1.1.2.1. As mentioned earlier, the OVAL System
 Characteristics platform extensions provide a catalog of the posture
 attributes that can be collected and assessed in the form of OVAL
 Items. These OVAL Items also serve as a model for representing
 posture attribute data and associated values that are collected off
 an endpoint. Furthermore, the OVAL System Characteristics model
 provides a system_info construct that captures information that
 identifies and characterizes the endpoint from which the posture
 attribute data was collected. Specifically, it includes operating
 system name, operating system version, endpoint architecture,
 hostname, network interfaces, and an extensible construct to support
 arbitrary additional information that may be useful in identifying
 the endpoint in an enterprise such as information capture in Asset
 Identification constructs. The OVAL System Characteristics model
 could serve as a useful starting point for representing posture
 attribute data collected from an endpoint although it may need to
 undergo some changes to satisfy the needs of the SACM community.

G.3.5.2.1.2. NETCONF-Based Collection

 Introduced earlier in Appendix G.3.4.2.1.2, NETCONF defines a
 protocol for managing and retrieving posture attribute data from
 network infrastructure endpoints. NETCONF provides the <get-config>
 and <get> operations to retrieve the configuration data, and
 configuration data and state data respectively from a network
 infrastructure endpoint. Upon successful completion of these
 operations, the current posture attribute data of the network
 infrastructure endpoint will be made available. NETCONF also

Waltermire, et al. Expires September 18, 2016 [Page 112]

Internet-Draft SACM Information Model March 2016

 provides a variety of filtering mechanisms (XPath, subtree, content
 matching, etc.) to trim down the posture attribute data that is
 collected from the endpoint. Given that NETCONF is widely adopted by
 network infrastructure vendors, it may useful to consider this
 protocol as a standardized mechanism for collecting posture attribute
 data from network infrastructure endpoints.

 As a side note, members of the OVAL Community have also developed a
 proposal to extend the OVAL Language to support the assessment of
 NETCONF configuration data
 <https://github.com/OVALProject/Sandbox/blob/master/x-netconf-
 definitions-schema.xsd>. The proposal leverages XPath to extract the
 posture attribute data of interest from the XML data returned by
 NETCONF. The collected posture attribute data can then be evaluated
 using OVAL Definitions and the results of the evaluation can be
 expressed as OVAL Results. While this proposal is not currently part
 of the OVAL Language, it may be worth considering.

G.3.5.2.1.3. SNMP-Based Collection

 The SNMP, previously introduced in Appendix G.3.4.2.1.3, defines a
 protocol for managing and retrieving posture attribute data from
 endpoints on a network [RFC3411]. SNMP provides three protocol
 operations [RFC3416] (GetRequest, GetNextRequest, and GetBulkRequest)
 for retrieving posture attribute data defined by MIB objects. Upon
 successful completion of these operations, the requested posture
 attribute data of the endpoint will be made available to the
 requesting application. Given that SNMP is widely adopted by
 vendors, and the MIBs that define posture attribute data on an
 endpoint are highly extensible, it may useful to consider this
 protocol as a standardized mechanism for collecting posture attribute
 data from endpoints in an enterprise.

G.3.6. Evaluation Guidance

G.3.6.1. Configuration Evaluation Guidance

 The evaluation guidance is applied by evaluators during posture
 assessment of an endpoint. This guidance must be able to reference
 or be associated with the following previously defined information
 elements:

 o configuration item identifiers,

 o platform configuration identifiers, and

 o collected Platform Configuration Posture Attributes.

Waltermire, et al. Expires September 18, 2016 [Page 113]

Internet-Draft SACM Information Model March 2016

G.3.6.1.1. Related Work

G.3.6.1.1.1. Open Vulnerability and Assessment Language

 A general overview of OVAL was provided previously in
 Appendix G.3.2.1.1.2.1. The OVAL Definitions model provides an
 extensible framework for making assertions about the state of posture
 attribute data collected from an endpoint. Guidance written against
 this model consists of one or more OVAL Tests, which can be logically
 combined, where each OVAL Test defines what posture attributes should
 be collected from an endpoint (as OVAL Objects) and optionally
 defines the expected state of the posture attributes (as OVAL
 States). While the OVAL Definitions model may be a useful starting
 point for evaluation guidance, it will likely require some changes to
 decouple collection and evaluation concepts to satisfy the needs of
 the SACM community.

G.3.6.1.1.2. XCCDF Rule

 A general description of XCCDF was provided in Appendix G.3.3.1.1.1.
 As noted there, an XCCDF document represents a checklist of items
 against which a given endpoint's state is compared and evaluated. An
 XCCDF Rule represents one assessed item in this checklist. A Rule
 contains both a prose description of the assessed item (either for
 presentation to the user in a tool's user interface, or for rendering
 into a prose checklist for human consumption) and can also contain
 instructions to support automated evaluation of the assessed item, if
 such automated assessment is possible. Automated assessment
 instructions can be provided either within the XCCDF Rule itself, or
 by providing a reference to instructions expressed in other
 languages, such as OVAL.

 In order to support greater flexibility in XCCDF, checklists can be
 tailored to meet certain needs. One way to do this is to enable or
 disable certain rules that are appropriate or inappropriate to a
 given endpoint, respectively. For example, a single XCCDF checklist
 might contain check items to evaluate the configuration of an
 endpoint's operating system. An endpoint deployed in an enterprise's
 DMZ might need to be locked down more than a common internal
 endpoint, due to the greater exposure to attack. In this case, some
 operating system configuration requirements for the DMZ endpoint
 might be unnecessary for the internal endpoint. Nonetheless, most
 configuration requirements would probably remain applicable to both
 environments (providing a common baseline for configuration of the
 given operating system) and thus be common to the checking
 instructions for both types of endpoints. XCCDF supports this by
 allowing a single checklist to be defined, but then tailored to the
 needs of the assessed endpoint. In the previous example, some Rules

Waltermire, et al. Expires September 18, 2016 [Page 114]

Internet-Draft SACM Information Model March 2016

 that apply only to the DMZ endpoint would be disabled during the
 assessment of an internal endpoint and would not be exercised during
 the assessment or count towards the assessment results. To
 accomplish this, XCCDF uses the CPE Applicability Language. By
 enhancing this applicability language to support other aspects of
 endpoint characterization (see Appendix G.3.3.1.3), XCCDF will also
 benefit from these enhancements.

 In addition, XCCDF Rules also support parameterization, allowing
 customization of the expected value for a given check item. For
 example, the DMZ endpoint might require a password of at least 12

 characters, while an internal endpoint may only need 8 or more
 characters in its password. By employing parameterization of the
 XCCDF Rule, the same Rule can be used when assessing either type of
 endpoint, and simply be provided with a different target parameter
 each time to reflect the different role-based requirements. Sets of
 customizations can be stored within the XCCDF document itself: XCCDF
 Values store parameters values that can be used in tailoring, while
 XCCDF Profiles store sets of tailoring instructions, including
 selection of certain Values as parameters and the enabling and
 disabling of certain Rules. The tailoring capabilities supported by
 XCCDF allow a single XCCDF document to encapsulate configuration
 evaluation guidance that applies to a broad range of endpoint roles.

G.3.7. Evaluation Result Reporting

G.3.7.1. Configuration Evaluation Results

 The evaluation guidance applied during posture assessment of an
 endpoint to customize the behavior of evaluators. Guidance can be
 used to define specific result output formats or to select the level-
 of-detail for the generated results. This guidance must be able to
 reference or be associated with the following previously defined
 information elements:

 o configuration item identifiers,

 o platform configuration identifiers, and

 o collected Platform Configuration Posture Attributes.

G.3.7.1.1. Related Work

G.3.7.1.1.1. XCCDF TestResults

 A general description of the eXtensible Configuration Checklist
 Description Format (XCCDF) was provided in section
 Appendix G.3.3.1.1.1. The XCCDF TestResult structure captures the

Waltermire, et al. Expires September 18, 2016 [Page 115]

Internet-Draft SACM Information Model March 2016

 outcome of assessing a single endpoint against the assessed items
 (i.e., XCCDF Rules) contained in an XCCDF instance document. XCCDF
 TestResults capture a number of important pieces of information about
 the assessment including:

 o The identity of the assessed endpoint. See Appendix G.3.3.1.1.2
 for more about XCCDF structures used for endpoint identification.

 o Any tailoring of the checklist that might have been employed. See
 Appendix G.3.6.1.1.2 for more on how XCCDF supports tailoring.

 o The individual results of the assessment of each enabled XCCDF
 Rule in the checklist. See Appendix G.3.6.1.1.2 for more on XCCDF
 Rules.

 The individual results for a given XCCDF Rule capture only whether
 the rule "passed", "failed", or experienced some exceptional
 condition, such as if an error was encountered during assessment.
 XCCDF 1.2 Rule results do not capture the actual state of the
 endpoint. For example, an XCCDF Rule result might indicate that an
 endpoint failed to pass requirement that passwords be of a length
 greater than or equal to 8, but it would not capture that the
 endpoint was, in fact, only requiring passwords of 4 or more
 characters. It may, however, be possible for a user to discover this
 information via other means. For example, if the XCCDF Rule uses an
 OVAL Definition to effect the Rule's evaluation, then the actual
 endpoint state may be captured in the corresponding OVAL System
 Characteristics file.

 The XCCDF TestResult structure does provide a useful structure for
 understanding the overall assessment that was conducted and the
 results thereof. The ability to quickly determine the Rules that are
 not complied with on a given endpoint allow administrators to quickly
 identify where remediation needs to occur.

G.3.7.1.1.2. Open Vulnerability and Assessment Language

 A general overview of OVAL was provided previously in
 Appendix G.3.2.1.1.2.1. OVAL Results provides a model for expressing
 the results of the assessment of the actual state of the posture
 attribute values collected of an endpoint (represented as an OVAL
 System Characteristics document) against the expected posture
 attribute values (defined in an OVAL Definitions document. Using
 OVAL Directives, the granularity of OVAL Results can also be
 specified. The OVAL Results model may be useful in providing a
 format for capturing the results of an assessment.

Waltermire, et al. Expires September 18, 2016 [Page 116]

Internet-Draft SACM Information Model March 2016

G.3.7.1.1.3. Asset Summary Reporting

 A general overview of ASR was provided previously in
 Appendix G.3.5.1.1.1. As ASR provides a way to report summary
 information about assets, it can be used within the SACM Architecture
 to provide a way to aggregate asset information for later use. It
 makes no assertions about the data formats used by the assessment,
 but rather provides an XML, record-based way to collect aggregated
 information about assets.

 By using ASR to collect this summary information within the SACM
 Architecture, one can provide a way to encode the details used by
 various reporting requirements, including user-definable reports.

G.3.7.1.1.4. ARF

 A general overview of ARF was provided previously in
 Appendix G.3.3.1.2.1. Because ARF is data model agnostic, it can
 provide a flexible format for exchanging collection and evaluation
 information from endpoints. It additionally provides a way to encode
 relationships between guidance and assets, and as such, can be used
 to associate assessment results with guidance. This could be the
 guidance that directly triggered the assessment, or for guidance that
 is run against collected posture attributes located in a central
 repository.

G.3.7.2. Software Inventory Evaluation Results

 The results of an evaluation of an endpoint's software inventory
 against an authorized software list. The authorized software list
 represents the policy for what software units are allowed,
 prohibited, and mandatory for an endpoint.

Appendix H. Graph Model

 TODO: Write text on how the information model above can be realized
 in this kind of graph model.

 The graph model describes how security information is structured,
 related, and accessed. Control of operations to supply and/or access
 the data is architecturally distinct from the structuring of the data
 in the information model. Authorization may be applied by the
 Control Plane (as defined in the SACM Architecture
 [I-D.ietf-sacm-architecture]) to requests for information from a
 consumer or requests for publication from a provider, and may also be
 applied by a provider to a direct request from a consumer.

Waltermire, et al. Expires September 18, 2016 [Page 117]

Internet-Draft SACM Information Model March 2016

 This architecture addresses information structure independently of
 the access/transport of that information. This separation enables
 scalability, customizability, and extensibility. Access to provide
 or consume information is particularly suited to publish/subscribe/
 query data transport and data access control models.

 This graph model is a framework that:

 o Facilitates the definition of extensible data types that support
 SACM's use cases

 o Provides a structure for the defined data types to be exchanged
 via a variety of data transport models

 o Describes components used in information exchange, and the objects
 exchanged

 o Captures and organizes evolving information and information
 relationships for multiple data publishers

 o Provides access to the published information via publish, query,
 and subscribe operations

 o Leverages the knowledge and experience gained from incorporating
 TNC IF-MAP into many disparate products that have to integrate and
 share an information model in a scalable, extensible manner

H.1. Background: Graph Models

 Knowledge is often represented with graph-based formalisms. A common
 formalism defines a graph as follows:

 o A set of *vertices*

 o A set of *edges*, each connecting two vertices (technically, an
 edge is an ordered pair of vertices)

 o A set of zero or more *properties* attached to each vertices and
 edges. Each property consists of a type and a optionally a value.
 The type and the value are typically just strings

Waltermire, et al. Expires September 18, 2016 [Page 118]

Internet-Draft SACM Information Model March 2016

 +------------------+ +-----------------+
 | Id: 1 | parent-of |Id: 2 |
 | Given name: Sue | --------------> |Given name: Ann |
 | Family name: Wong| |Family name: Wong|
 +------------------+ +-----------------+

 A VERTEX AN EDGE A VERTEX

 Figure 12: Knowledge represented by a graph

 A pair of vertices connected by an edge is commonly referred to as a
 triple that comprises subject, predicate and object. For example,
 subject = Sue Wong, predicate = is-parent-of, object = Ann Wong. A
 common language that uses this representation is the Resource
 Description Framework (RDF) [W3C.REC-rdf11-concepts-20140225].

H.2. Graph Model Overview

 The proposed model, influenced by IF-MAP, is a labeled graph: each
 vertex has a label.

 A table of synonyms follows.

 +----------------+-----------------+--------------------------------+
 | Graph Theory | Graph Databases | IF-MAP and This Internet Draft |
 +----------------+-----------------+--------------------------------+
Vertex or Node	Node	-
Label	-	Identifier
Edge	Edge	Link
-	Property	Metadata Item

 +----------------+-----------------+--------------------------------+

 In this mode, identifiers and metadata have hierarchical structure.

 The graphical aspect makes this model well suited to non-hierarchical
 relationships, such as connectivity in a computer network.

 Hierarchical properties allow this model to accommodate structures
 such as YANG [RFC6020] data models.

H.3. Identifiers

 Each identifier is an XML element. For extensibility, schemas use
 xsd:anyAttribute and such.

 Alternately, this model could be changed to use another hierarchical
 notation, such as JSON.

Waltermire, et al. Expires September 18, 2016 [Page 119]

Internet-Draft SACM Information Model March 2016

 Identifiers are unique: two different vertices cannot have equivalent
 identifiers.

 An identifier has a type. There is a finite, but extensible, set of
 identifier types. If the identifier is XML, the type is based on the
 XML schema.

 In IF-MAP, standard identifier types include IP address, MAC address,
 identity, and overlay network. Additional identifier types will need
 to be standardized for SACM use cases.

 Any number of metadata items can be attached to an identifier.

 Some identifiers, especially those relating to identity, address, and
 location, require the ability to specify an administrative domain
 (such as AD domain, L2 broadcast domain / L3 routing domain, or
 geographic domain) in order to differentiate between instances with
 the same name occurring in different realms.

H.4. Links

 A link can be thought of as an ordered pair of identifiers.

 Any number of metadata items can be attached to a link.

H.5. Metadata

 A metadata item is the basic unit of information, and is attached to
 an identifier or to a link.

 A given metadata item is an XML document. In IF-MAP metadata items
 are generally small. However, larger ones, such as YANG data models,
 can also fit. For extensibility, the XML schemas of metadata items
 use xsd:anyAttribute and such.

 Alternately, this model could be changed to use another hierarchical
 notation, such as JSON.

 A metadata item has a type. There is a finite, but extensible, set
 of metadata types. If the metadata item is XML, the type is based on
 the XML schema. An example metadata type is
 http://www.trustedcomputinggroup.org/2010/IFMAP-METADATA/2#device-
 characteristic.

 TNC IF-MAP Metadata for Network Security [TNC-IF-MAP-NETSEC-METADATA]
 and TNC IF-MAP Metadata for ICS Security [TNC-IF-MAP-ICS-METADATA]
 define many pertinent metadata types. More will need to be
 standardized for SACM use cases.

Waltermire, et al. Expires September 18, 2016 [Page 120]

Internet-Draft SACM Information Model March 2016

H.6. Use for SACM

 Many of the information elements can be represented as vertices, and
 many of the relationships can be represented as edges.

 Identifiers are like database keys. For example, there would be
 identifiers for addresses, identities, unique endpoint identifiers,
 software component identifiers, and hardware component identifiers.
 The inventory of software instances and hardware instances within an
 endpoint might be expressed using a single YANG description, as a
 single metadata item in the graph. Where to put Endpoint Attribute
 Assertions, Evaluation Results, and the like is an open question.

H.7. Provenance

 Provenance helps to protect the SACM ecosystem against a misled or
 malicious provider.

 The provenance of a metadata item includes:

 o The time when the item was produced

 o The component that produced the item, including its software and
 version

 o The policies that governed the producing component, with versions

 o The method used to produce the information (e.g., vulnerability
 scan)

 How provenance should be expressed is an open question. For
 reference, in IF-MAP provenance of a metadata item is expressed
 within the metadata item [TNC-IF-MAP-NETSEC-METADATA]. For example,
 there is a top-level XML attribute called "timestamp".

 It is critical that provenance be secure from tampering. How to
 achieve that security is out of scope of this document.

H.8. Extensibility

 Anyone can define an identifier type or a metadata type, by creating
 an XML schema (or other specification). There is no need for a
 central authority. Some deployments may exercise administrative
 control over the permitted identifier types and metadata types;
 others may leave components free rein.

 A community of components can agree on and use new identifier and
 metadata types, if the administrators allow it. This allows rapid

Waltermire, et al. Expires September 18, 2016 [Page 121]

Internet-Draft SACM Information Model March 2016

 innovation. Intermediate software that conveys graph changes from
 one component to another does not need changes. Components that do
 not understand the new types do not need changes. Accordingly, a
 consumer normally ignores metadata types and identifier types it does
 not understand.

 As a proof point for this agility, the original use cases for TNC IF-
 MAP Binding for SOAP [TNC-IF-MAP-SOAP-Binding] were addressed in TNC
 IF-MAP Metadata for Network Security [TNC-IF-MAP-NETSEC-METADATA].
 Some years later an additional, major set of use cases, TNC IF-MAP
 Metadata for ICS [TNC-IF-MAP-ICS-METADATA], were specified and
 implemented.

Authors' Addresses

 David Waltermire (editor)
 National Institute of Standards and Technology
 100 Bureau Drive
 Gaithersburg, Maryland 20877
 USA

 Email: david.waltermire@nist.gov

 Kim Watson
 United States Department of Homeland Security
 DHS/CS&C/FNR
 245 Murray Ln. SW, Bldg 410
 MS0613
 Washington, DC 20528
 USA

 Email: kimberly.watson@hq.dhs.gov

 Clifford Kahn
 Pulse Secure, LLC
 2700 Zanker Road, Suite 200
 San Jose, CA 95134
 USA

 Email: cliffordk@pulsesecure.net

Waltermire, et al. Expires September 18, 2016 [Page 122]

Internet-Draft SACM Information Model March 2016

 Lisa Lorenzin
 Pulse Secure, LLC
 2700 Zanker Road, Suite 200
 San Jose, CA 95134
 USA

 Email: llorenzin@pulsesecure.net

 Michael Cokus
 The MITRE Corporation
 903 Enterprise Parkway, Suite 200
 Hampton, VA 23666
 USA

 Email: msc@mitre.org

 Daniel Haynes
 The MITRE Corporation
 202 Burlington Road
 Bedford, MA 01730
 USA

 Email: dhaynes@mitre.org

Waltermire, et al. Expires September 18, 2016 [Page 123]

