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Abstract

This document describes the messages and procedures of the Negative-ACKnowledgment (NACK) Oriented
Reliable Multicast (NORM) Protocol. This protocol is designed to provide end-to-end reliable transport of bulk
data objects or streams over generic IP multicast routing and forwarding services. NORM uses a selective, negative
acknowledgment mechanism for transport reliability and offers additional protocol mechanisms to allow for
operation with minimal a priori coordination among senders and receivers. A congestion control scheme is
specified to allow the NORM protocol to fairly share available network bandwidth with other transport protocols
such as Transmission Control Protocol (TCP). It is capable of operating with both reciprocal multicast routing
among senders and receivers and with asymmetric connectivity (possibly a unicast return path) between the senders
and receivers. The protocol offers a number of features to allow different types of applications or possibly other
higher level transport protocols to utilize its service in different ways. The protocol leverages the use of FEC-based
repair and other IETF reliable multicast transport (RMT) building blocks in its design.
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Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].
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1.  Introduction and Applicability

The Negative-acknowledgment (NACK) Oriented Reliable Multicast (NORM) protocol is designed to provide
reliable transport of data from one or more sender(s) to a group of receivers over an IP multicast network. The
primary design goals of NORM are to provide efficient, scalable, and robust bulk data (e.g., computer files,
transmission of persistent data) transfer across possibly heterogeneous IP networks and topologies. The NORM
protocol design provides support for distributed multicast session participation with minimal coordination among
senders and receivers. NORM allows senders and receivers to dynamically join and leave multicast sessions at
will with minimal overhead for control information and timing synchronization among participants. To
accommodate this capability, NORM protocol message headers contain some common information allowing
receivers to easily synchronize to senders throughout the lifetime of a reliable multicast session. NORM is designed
to be self-adapting to a wide range of dynamic network conditions with little or no pre-configuration. The protocol
is purposely designed to be tolerant of inaccurate timing estimations or lossy conditions that may occur in many
networks including mobile and wireless. The protocol is also designed to exhibit convergence and efficient
operation even in situations of heavy packet loss and large queuing or transmission delays.

This document is a product of the IETF RMT WG and follows the guidelines provided in [RFC3269].

Statement of Intent

This memo contains the definitions necessary to fully specify a Reliable Multicast Transport protocol in accordance
with the criteria of [RFC2357]. A prior document, [RFC3940], contained a previous description of the NORM
Protocol specification described in this document. RFC3940 was published in the "Experimental" category. It
was the stated intent of the RMT working group to re-submit this specifications as an IETF Proposed Standard
in due course.

This Proposed Standard specification is thus based on [RFC3940] and has been updated according to accumulated
experience and growing protocol maturity since the publication of RFC3940. Said experience applies both to this
specification itself and to congestion control strategies related to the use of this specification.

The differences between [RFC3940] and this document are listed in Section 9.

1.1  NORM Data Delivery Service Model

A NORM protocol instance (NormSession) is defined within the context of participants communicating
connectionless (e.g., Internet Protocol (IP) or User Datagram Protocol (UDP)) packets over a network using
pre-determined addresses and host port numbers. Generally, the participants exchange packets using an IP multicast
group address, but unicast transport may also be established or applied as an adjunct to multicast delivery. In the
case of multicast, the participating NormNodes will communicate using a common IP multicast group address
and port number that has been chosen via means outside the context of the given NormSession. Other IETF data
format and protocol standards exist that may be applied to describe and convey the required a priori information
for a specific NormSession (e.g., Session Description Protocol (SDP)   [RFC4566], Session Announcement
Protocol (SAP)  [RFC2974], etc.).

The NORM protocol design is principally driven by the assumption of a single sender transmitting bulk data
content to a group of receivers. However, the protocol MAY operate with multiple senders within the context of
a single NormSession. In initial implementations of this protocol, it is anticipated that multiple senders will transmit
independent of one another and receivers will maintain state as necessary for each sender. However, in future
versions of NORM, it is possible that some aspects of protocol operation (e.g., round-trip time collection) may
provide for alternate modes allowing more efficient performance for applications requiring multiple senders.

NORM provides for three types of bulk data content objects (NormObjects) to be reliably transported. These types
include:

1. static computer memory data content (NORM_OBJECT_DATA type),

2. computer storage files (NORM_OBJECT_FILE type), and

3. non-finite streams of continuous data content (NORM_OBJECT_STREAM type).
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The distinction between NORM_OBJECT_DATA and NORM_OBJECT_FILE is simply to provide a hint to
receivers in NormSessions serving multiple types of content as to what type of storage should be allocated for
received content (i.e., memory or file storage). Other than that distinction, the two are identical, providing for
reliable transport of finite (but potentially very large) units of content. These static data and file services are
anticipated to be useful for multicast-based cache applications with the ability to reliably provide transmission of
large quantities of static data. Other types of static data/file delivery services might make use of these transport
object types, too. The use of the NORM_OBJECT_STREAM type is at the application's discretion and could be
used to carry static data or file content also. The NORM reliable stream service opens up additional possibilities
such as serialized reliable messaging or other unbounded, perhaps dynamically produced content. The
NORM_OBJECT_STREAM provides for reliable transport analogous to that of the Transmission Control Protocol
(TCP), although NORM receivers will be able to begin receiving stream content at any point in time. The
applicability of this feature will depend upon the application.

The NORM protocol also allows for a small amount of out-of-band data (sent as NORM_INFO messages) to be
attached to the data content objects transmitted by the sender. This readily-available out-of-band data allows
multicast receivers to quickly and efficiently determine the nature of the corresponding data, file, or stream bulk
content being transmitted. This allows application-level control of the receiver node's participation in the current
transport activity. This also allows the protocol to be flexible with minimal pre-coordination among senders and
receivers. The NORM_INFO content is designed to be atomic in that its size MUST fit into the payload portion
of a single NORM message.

NORM does NOT provide for global or application-level identification of data content within in its message
headers. Note the NORM_INFO out-of-band data mechanism could be leveraged by the application for this purpose
if desired, or identification could alternatively be embedded within the data content. NORM does identify transmitted
content (NormObjects) with transport identifiers that are applicable only while the sender is transmitting and/or
repairing the given object. These transport data content identifiers (NormTransportIds) are assigned in a
monotonically increasing fashion by each NORM sender during the course of a NormSession. Each sender
maintains its NormTransportId assignments independently so that individual NormObjects may be uniquely
identified during transport with the concatenation of the sender session-unique identifier (NormNodeId) and the
assigned NormTransportId. The NormTransportIds are assigned from a large, but fixed, numeric space in increasing
order and may be reassigned during long-lived sessions. The NORM protocol provides mechanisms so that the
sender application may terminate transmission of data content and inform the group of this in an efficient manner.
Other similar protocol control mechanisms (e.g., session termination, receiver synchronization, etc.) are specified
so that reliable multicast application variants may construct different, complete bulk transfer communication
models to meet their goals.

To summarize, the NORM protocol provides reliable transport of different types of data content (including
potentially mixed types). The senders enqueue and transmit bulk content in the form of static data or files and/or
non-finite, ongoing stream types. NORM senders provide for repair transmission of data and/or FEC content in
response to NACK messages received from the receiver group. Mechanisms for out-of-band information and
other transport control mechanisms are specified for use by applications to form complete reliable multicast
solutions for different purposes.

1.2  NORM Scalability

Group communication scalability requirements lead to adaptation of negative acknowledgment (NACK) based
protocol schemes when feedback for reliability is required [RmComparison]. NORM is a protocol centered around
the use of selective NACKs to request repairs of missing data. NORM provides for the use of packet-level forward
error correction (FEC) techniques for efficient multicast repair and optional proactive transmission robustness
[RFC3453]. FEC-based repair can be used to greatly reduce the quantity of reliable multicast repair requests and
repair transmissions [MdpToolkit] in a NACK-oriented protocol. The principal factor in NORM scalability is the
volume of feedback traffic generated by the receiver set to facilitate reliability and congestion control. NORM
uses probabilistic suppression of redundant feedback based on exponentially distributed random backoff timers.
The performance of this type of suppression relative to other techniques is described in [McastFeedback]. NORM
dynamically measures the group's round-trip timing status to set its suppression and other protocol timers. This
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allows NORM to scale well while maintaining reliable data delivery transport with low latency relative to the
network topology over which it is operating.

Feedback messages can be either multicast to the group at large or sent via unicast routing to the sender. In the
case of unicast feedback, the sender relays the feedback state to the group to facilitate feedback suppression. In
typical Internet environments, it is expected that the NORM protocol will readily scale to group sizes on the order
of tens of thousands of receivers. A study of the quantity of feedback for this type of protocol is described in
[NormFeedback]. NORM is able to operate with a smaller amount of feedback than a single TCP connection,
even with relatively large numbers of receivers. Thus, depending upon the network topology, it is possible that
NORM may scale to larger group sizes. With respect to computer resource usage, the NORM protocol does NOT
require that state be kept on all receivers in the group. NORM senders maintain state only for receivers providing
explicit congestion control feedback. However, NORM receivers must maintain state for each active sender. This
may constrain the number of simultaneous senders in some uses of NORM.

1.3  Environmental Requirements and Considerations

All of the environmental requirements and considerations that apply to the RMT Multicast NACK Building Block
 [RFC5401], FEC Building Block  [RFC5052], and TCP-Friendly Multicast Congestion Control (TFMCC) Building
Block  [RFC4654], also apply to the NORM protocol.

The NORM protocol SHALL be capable of operating in an end-to-end fashion with no assistance from intermediate
systems beyond basic IP multicast group management, routing, and forwarding services. While the techniques
utilized in NORM are principally applicable to flat, end-to-end IP multicast topologies, they could also be applied
in the sub-levels of hierarchical (e.g., tree-based) multicast distribution if so desired. NORM can make use of
reciprocal (among senders and receivers) multicast communication under the Any-Source Multicast (ASM) model
defined in [RFC1112], but SHALL also be capable of scalable operation in asymmetric topologies such as
Source-Specific Multicast (SSM) [RFC4607] where there may only be unicast routing service from the receivers
to the sender(s).

NORM is compatible with IPv4 and IPv6. Additionally, NORM may be used with networks employing Network
Address Translation (NAT) providing the NAT device supports IP multicast and/or can cache UDP traffic source
port numbers for remapping feedback traffic from receivers to the sender(s).
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2.  Architecture Definition

A NormSession is comprised of participants (NormNodes) acting as senders and/or receivers. NORM senders
transmit data content in the form of NormObjects to the session destination address and the NORM receivers
attempt to reliably receive the transmitted content using negative acknowledgments to request repair. Each
NormNode within a NormSession is assumed to have a preselected unique 32-bit identifier (NormNodeId).
NormNodes MUST have uniquely assigned identifiers within a single NormSession to distinguish between possible
multiple senders and to distinguish feedback information from different receivers. There are two reserved
NormNodeId values. A value of 0x00000000 is considered an invalid NormNodeId value and a value of
0xffffffff is a "wild card" NormNodeId. While the protocol does not preclude multiple sender nodes
concurrently transmitting within the context of a single NORM session (i.e., many- to-many operation), any type
of interactive coordination among NORM senders is assumed to be controlled by the application or higher protocol
layer. There are some optional mechanisms specified in this document that can be leveraged for such application
layer coordination.

As previously noted, NORM allows for reliable transmission of three different basic types of data content. The
first type is NORM_OBJECT_DATA, which is used for static, persistent blocks of data content maintained in the
sender's application memory storage. The second type is NORM_OBJECT_FILE, which corresponds to data
stored in the sender's non-volatile file system. The NORM_OBJECT_DATA and NORM_OBJECT_FILE types
both represent NormObjects of finite but potentially very large size. The third type of data content is
NORM_OBJECT_STREAM, which corresponds to an ongoing transmission of undefined length. This is analogous
to the reliable stream service provide by TCP for unicast data transport. The format of the stream content is
application-defined and may be byte or message oriented. The NORM protocol provides for "flushing" of the
stream to expedite delivery or possibly enforce application message boundaries. NORM protocol implementations
may offer either (or both) in-order delivery of the stream data to the receive application or out-of-order (more
immediate) delivery of received segments of the stream to the receiver application. In either case, NORM sender
and receiver implementations provide buffering to facilitate repair of the stream as it is transported.

All NormObjects are logically segmented into FEC coding blocks and symbols for transmission by the sender.
In NORM, an FEC encoding symbol directly corresponds to the payload of NORM_DATA messages or "segment".
Note that when systematic FEC codes are used, the payload of NORM_DATA messages sent for the first portion
of a FEC encoding block are source symbols (actual segments of original user data), while the remaining symbols
for the block consist of parity symbols generated by FEC encoding. These parity symbols are generally sent in
response to repair requests, but some number may be sent proactively at the end each encoding block to increase
the robustness of transmission. When non-systematic FEC codes are used, all symbols sent consist of FEC encoding
parity content. In this case, the receiver must receive a sufficient number of symbols to reconstruct (via FEC
decoding) the original user data for the given block.

Transmitted NormObjects are temporarily yet uniquely identified within the NormSession context using the given
sender's NormNodeId, NormInstanceId, and a temporary NormObjectTransportId. Depending upon the
implementation, individual NORM senders may manage their NormInstanceIds independently, or a common
NormInstanceId may be agreed upon for all participating nodes within a session if needed as a session identifier.
NORM NormObjectTransportId data content identifiers are sender-assigned and applicable and valid only during
a NormObject's actual transport (i.e., for as long as the sender is transmitting and providing repair of the indicated
NormObject). For a long-lived session, the NormObjectTransportId field can wrap and previously-used identifiers
may be re-used. Note that globally unique identification of transported data content is not provided by NORM
and, if required, must be managed by the NORM application. The individual segments or symbols of the
NormObject are further identified with FEC payload identifiers which include coding block and symbol identifiers.
These are discussed in detail later in this document.

2.1  Protocol Operation Overview

A NORM sender primarily generates messages of type NORM_DATA. These messages carry original data segments
or FEC symbols and repair segments/symbols for the bulk data/file or stream NormObjects being transferred. By
default, redundant FEC symbols are sent only in response to receiver repair requests (NACKs) and thus normally
little or no additional transmission overhead is imposed due to FEC encoding. However, the NORM implementation
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MAY be optionally configured to proactively transmit some amount of redundant FEC symbols along with the
original content to potentially enhance performance (e.g., improved delay) at the cost of additional transmission
overhead. This option may be sensible for certain network conditions and can allow for robust, asymmetric
multicast (e.g., unidirectional routing, satellite, cable) [FecHybrid] with reduced receiver feedback, or, in some
cases, no feedback.

A sender message of type NORM_INFO is also defined and is used to carry OPTIONAL out-of-band context
information for a given transport object. A single NORM_INFO message can be associated with a NormObject.
Because of its atomic nature, missing NORM_INFO messages can be NACKed and repaired with a slightly lower
delay process than NORM's general FEC-encoded data content. NORM_INFO may serve special purposes for
some bulk transfer, reliable multicast applications where receivers join the group mid-stream and need to ascertain
contextual information on the current content being transmitted. The NACK process for NORM_INFO will be
described later. When the NORM_INFO message type is used, its transmission should precede transmission of
any NORM_DATA message for the associated NormObject.

The sender also generates messages of type NORM_CMD to assist in certain protocol operations such as congestion
control, end-of-transmission flushing, round trip time estimation, receiver synchronization, and optional positive
acknowledgment requests or application defined commands. The transmission of NORM_CMD messages from the
sender is accomplished by one of three different procedures. These procedures are: single, best effort unreliable
transmission of the command; repeated redundant transmissions of the command; and positively-acknowledged
commands. The transmission technique used for a given command depends upon the function of the command.
Several core commands are defined for basic protocol operation. Additionally, implementations MAY wish to
consider providing the OPTIONAL application-defined commands that can take advantage of the transmission
methodologies available for commands. This allows for application-level session management mechanisms that
can make use of information available to the underlying NORM protocol engine (e.g., round-trip timing,
transmission rate, etc.). A notable distinction between NORM_DATA message and some NORM_CMD message
transmissions is that typically a receiver will need to allocate resources to manage reliable reception when
NORM_DATA messages are received. However some NORM_CMD messages may be completely atomic and no
specific state may need to be kept. Thus, for session management or other purposes it is possible that even
participants acting principally as data receivers MAY transmit NORM_CMD messages. However, it is
RECOMMENDED that this is not done within the context of the NORM multicast session unless congestion
control is addressed. For example, many receiver nodes transmitting NORM_CMD messages simultaneously can
cause congestion for the destination(s).

All sender transmissions are subject to rate control governed by a peak transmission rate set for each participant
by the application. This can be used to limit the quantity of multicast data transmitted by the group. When NORM's
congestion control algorithm is enabled the rate for senders is automatically adjusted. In some networks, it may
be desirable to establish minimum and maximum bounds for the rate adjustment depending upon the application
even when dynamic congestion control is enabled. However, in the case of the general Internet, congestion control
policy SHALL be observed that is compatible with coexistent TCP flows.

NORM receivers generate messages of type NORM_NACK or NORM_ACK in response to transmissions of data
and commands from a sender. The NORM_NACK messages are generated to request repair of detected data
transmission losses. Receivers generally detect losses by tracking the sequence of transmission from a sender.
Sequencing information is embedded in the transmitted data packets and end-of-transmission commands from
the sender. NORM_ACK messages are generated in response to certain commands transmitted by the sender. In
the general (and most scalable) protocol mode, NORM_ACK messages are sent only in response to congestion
control commands from the sender. The feedback volume of these congestion control NORM_ACK messages is
controlled using the same timer-based probabilistic suppression techniques as for NORM_NACK messages to avoid
feedback implosion. In order to meet potential application requirements for positive acknowledgment from
receivers, other NORM_ACK messages are defined and available for use.

2.2  Protocol Building Blocks

The operation of the NORM protocol is based primarily upon the concepts presented in the Multicast NACK
Building Block document  [RFC5401]. This includes the basic NORM architecture and the data transmission,
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repair, and feedback strategies discussed in that document. Additional reliable multicast building blocks, as
described in [RFC3048], are applied in creating the full NORM protocol instantiation . NORM also makes use
of Forward Error Correction encoding techniques for repair messaging and optional transmission robustness as
described in [RFC3453]. NORM uses the FEC Payload ID as specified by the FEC Building Block document
 [RFC5052]. Additionally, for congestion control, this document fully specifies a baseline congestion control
mechanism (NORM-CC) based on the TCP-Friendly Multicast Congestion Control (TFMCC) scheme of
 [TfmccPaper] and [RFC4654].

2.3  Design Tradeoffs

While the various features of NORM are designed to provide some measure of general purpose utility, it is
important to emphasize the understanding that "no one size fits all" in the reliable multicast transport arena. There
are numerous engineering trade-offs involved in reliable multicast transport design and this requires an increased
awareness of application and network architecture considerations. Performance requirements affecting design can
include: group size, heterogeneity (e.g., capacity and/or delay), asymmetric delivery, data ordering, delivery delay,
group dynamics, mobility, congestion control, and transport across low capacity connections. NORM contains
various parameters to accommodate many of these differing requirements. The NORM protocol and its mechanisms
MAY be applied in multicast applications outside of bulk data transfer, but there is an assumed model of bulk
transfer transport service that drives the trade-offs that determine the scalability and performance described in
this document.

The ability of NORM to provide reliable data delivery is also governed by any buffer constraints of the sender
and receiver applications. NORM protocol implementations SHOULD be designed to operate with the greatest
efficiency and robustness possible within application-defined buffer constraints. Buffer requirements for reliability,
as always, are a function of the delay-bandwidth product of the network topology. NORM performs best when
allowed more buffering resources than typical point-to-point transport protocols. This is because NORM feedback
suppression is based upon randomly-delayed transmissions from the receiver set, rather than immediately transmitted
feedback. There are definitive trade-offs between buffer utilization, group size scalability, and efficiency of
performance. Large buffer sizes allow the NORM protocol to perform most efficiently in large delay-bandwidth
topologies and allow for longer feedback suppression backoff timeouts. This yields improved group size scalability.
NORM can operate with reduced buffering but at a cost of decreased efficiency (lower relative goodput) and
reduced group size scalability.
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3.  Conformance Statement

This Protocol Instantiation document, in conjunction with the RMT Building Block documents of [RFC5401]
and [RFC5052], completely specifies a working reliable multicast transport protocol that conforms to the
requirements described in RFC 2357 [RFC2357].

This document specifies the following message types and mechanisms which are REQUIRED in complying
NORM protocol implementations:

PurposeMessage Type
Sender message for application data transmission.
Implementations must support at least one of the

NORM_DATA

NORM_OBJECT_DATA, NORM_OBJECT_FILE, or
NORM_OBJECT_STREAM delivery services. The use
of the NORM FEC Object Transmission Information
header extension is OPTIONAL with NORM_DATA
messages.
Sender command to excite receivers for repair requests
in lieu of ongoing NORM_DATA transmissions. Note

NORM_CMD(FLUSH)

the use of the NORM_CMD(FLUSH) for positive
acknowledgment of data receipt is OPTIONAL.
Sender command to advertise its current valid repair
window in response to invalid requests for repair.

NORM_CMD(SQUELCH)

Sender command to advertise current repair (and
congestion control state) to group when unicast

NORM_CMD(REPAIR_ADV)

feedback messages are detected. Used to
control/suppress excessive receiver feedback in
asymmetric multicast topologies.
Sender command used in collection of round trip
timing and congestion control status from group (this

NORM_CMD(CC)

may be OPTIONAL if alternative congestion control
mechanism and round trip timing collection is used).
Receiver message used to request repair of missing
transmitted content.

NORM_NACK

Receiver message used to proactively provide feedback
for congestion control purposes. Also used with the

NORM_ACK

OPTIONAL NORM Positive Acknowledgment
Process.

This document also describes the following message types and associated mechanisms which are OPTIONAL
for complying NORM protocol implementations:

PurposeMessage Type
Sender message for providing ancillary context
information associated with NORM transport objects.

NORM_INFO

The use of the NORM FEC Object Transmission
Information header extension is OPTIONAL with
NORM_INFO messages.
Sender command to indicate it has reached
end-of-transmission and will no longer respond to
repair requests.

NORM_CMD(EOT)

Sender command to support application-defined,
positively acknowledged commands sent outside of

NORM_CMD(ACK_REQ)

the context of the bulk data content being transmitted.
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PurposeMessage Type
The NORM Positive Acknowledgment Procedure
associated with this message type is OPTIONAL.
Sender command containing application-defined
commands sent outside of the context of the bulk data
content being transmitted.

NORM_CMD(APPLICATION)

Optional message type reserved for experimental
implementations of the NORM protocol.

NORM_REPORT
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4.  Message Formats

As mentioned in Section 2.1, there are two primary classes of NORM messages: sender messages and receiver
messages. NORM_CMD, NORM_INFO, and NORM_DATA message types are generated by senders of data content,
and NORM_NACK and NORM_ACK messages generated by receivers within a NormSession. Sender messages
SHOULD be governed by congestion control for Internet use. For session management or other purposes, receivers
may wish to employ NORM_CMD message transmissions. The principal rationale for distinguishing sender and
receiver messages is that receivers will typically need to allocate resources to support reliable reception from
sender(s) and NORM sender messages are subject to congestion control. NORM receivers MAY employ the
NORM_CMD message type for application-defined purposes but it is RECOMMENDED that congestion control
and feedback implosion issues be addressed. Additionally, an auxiliary message type of NORM_REPORT is also
provided for experimental purposes. This section describes the message formats used by the NORM protocol.
These messages and their fields are referenced in the detailed functional description of the NORM protocol given
in Section 5. Individual NORM messages are designed to be compatible with the MTU limitations of encapsulating
Internet protocols including IPv4, IPv6, and UDP. The current NORM protocol specification assumes UDP
encapsulation and leverages the transport features of UDP. The NORM messages are independent of network
addresses and can be used in IPv4 and IPv6 networks.

4.1  NORM Common Message Header and Extensions

There are some common message fields contained in all NORM message types. Additionally, a header extension
mechanism is defined to expand the functionality of the NORM protocol without revision to this document. All
NORM protocol messages begin with a common header with information fields as follows:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version|  type |    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: NORM Common Message Header Format

The "version" field is a 4-bit value indicating the protocol version number. NORM implementations SHOULD
ignore received messages with version numbers different from their own. This number is intended to indicate and
distinguish upgrades of the protocol which may be non-interoperable. The NORM version number for this
specification is 1.

The message "type" field is a 4-bit value indicating the NORM protocol message type. These types are defined
as follows:

ValueMessage
1NORM_INFO
2NORM_DATA
3NORM_CMD
4NORM_NACK
5NORM_ACK
6NORM_REPORT

The 8-bit "hdr_len" field indicates the number of 32-bit words that comprise the given message's header portion.
This is used to facilitate header extensions that may be applied. The presence of header extensions are implied
when the "hdr_len" value is greater than the base value for the given message "type".

The "sequence" field is a 16-bit value that is set by the message originator as a monotonically increasing number
incremented with each NORM message transmitted. Note that two independent "sequence" spaces MUST be
maintained. One sequence space SHALL be kept for NORM sender messages (NORM_INFO, NORM_DATA, and
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NORM_CMD) generated, and a separate, independent "sequence" space SHALL be kept for NORM receiver
messages (NORM_NACK and NORM_NACK). The sender message "sequence" value can be monitored by receiving
nodes to detect packet losses in the transmissions from a sender and used to estimate raw packet loss for congestion
control purposes. Note that this value is NOT used in the NORM protocol to detect missing reliable data content
and does NOT identify the application data or FEC payload that may be attached. The "sequence" field may also
be leveraged for protection from message replay attacks, particularly of NORM_NACK or other feedback messages.
For this reason, NORM receiver messages are also sequence numbered. An independent sequence space MUST
be used for receiver messages because when receivers generate unicast NORM_NACK or NORM_ACK messages,
those messages will not be visible to the group at large that may be performing loss estimation. Also, NORM
congestion control is applied only to sender messages. The size of the "sequence" field is intended to be sufficient
to allow detection of a reasonable range of packet loss within the delay-bandwidth product of expected network
connections.

The "source_id" field is a 32-bit value identifying the node that sent the message. A participant's NORM node
identifier (NormNodeId) can be set according to application needs but unique identifiers must be assigned within
a single NormSession. In some cases, use of the host IP address or a hash of it can suffice, but alternative
methodologies for assignment and potential collision resolution of node identifiers within a multicast session need
to be considered. For example, the "source identifier" mechanism defined in the Real-Time Protocol (RTP)
specification [RFC3550] may be applicable to use for NORM node identifiers. At this point in time, the protocol
makes no assumptions about how these unique identifiers are actually assigned.

NORM Header Extensions

When header extensions are applied, they follow the message type's base header and precede any payload portion.
There are two formats for header extensions, both of which begin with an 8-bit "het" (header extension type) field.
One format is provided for variable-length extensions with "het" values in the range from 0 through 127. The
other format is for fixed length (one 32-bit word) extensions with "het" values in the range from 128 through 255.
These formats are given here:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   het <=127   |      hel      |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
|                    Header Extension Content                   |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: NORM Variable Length Header Extension Format

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   het >=128   |    reserved   |    Header Extension Content   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: NORM Fixed Length (32-bit) Header Extension Format

The "Header Extension Content" portion of the header extension is defined for each extension type. Some header
extensions are defined within this document for NORM baseline FEC and congestion control operations.

4.2  Sender Messages

NORM sender messages include the NORM_DATA type, the NORM_INFO type, and the NORM_CMD type.
NORM_DATA and NORM_INFO messages contain application data content while NORM_CMD messages are used
for various protocol control functions.
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4.2.1  NORM_DATA Message

The NORM_DATA message is expected to be the predominant type transmitted by NORM senders. These messages
are used to encapsulate segmented data content for objects of type NORM_OBJECT_DATA, NORM_OBJECT_FILE,
and NORM_OBJECT_STREAM. NORM_DATA messages may contain original or FEC-encoded application data
content.

The format of NORM_DATA messages is comprised of three logical portions: 1) a fixed-format NORM_DATA
header portion, 2) a FEC Payload ID portion with a format dependent upon the FEC encoding used, and 3) a
payload portion containing source or encoded application data content. Note for objects of type
NORM_OBJECT_STREAM, the payload portion contains additional fields used to appropriately recover stream
content. NORM implementations MAY also extend the NORM_DATA header to include a FEC Object Transmission
Information (EXT_FTI) header extension. This allows NORM receivers to automatically allocate resources and
properly perform FEC decoding without the need for pre-configuration or out-of-band information.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=2|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     flags     |    fec_id     |     object_transport_id       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         fec_payload_id                        |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                header_extensions (if applicable)              |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          payload_len*         |       payload_msg_start*      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        payload_offset*                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          payload_data*                        |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4: NORM_DATA Message Format

*IMPORTANT NOTE: The "payload_len", "payload_msg_start" and "payload_offset" fields are present ONLY
for objects of type NORM_OBJECT_STREAM. These fields, as with the entire payload, are subject to any FEC
encoding used. Thus, when systematic FEC codes are used, these values may be directly interpreted for packets
containing source symbols only while packets containing FEC parity content require decoding before these fields
can be interpreted.

The "version", "type", "hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header
as described in Section 4.1. The value of the NORM_DATA "type" field is 2. The NORM_DATA base "hdr_len"
value is 4 (32-bit words) plus the size of the "fec_payload_id" field. The "fec_payload_id" field size depends
upon the FEC encoding type referenced by the "fec_id" field. For example, when small block, systematic codes
are used, a "fec_id" value of 129 is indicated and the size of the "fec_payload_id" is two 32-bit words. In this case
the . The "fec_id" field is used to indicate the FEC coding type. For example, when small block, systematic codes
are used, a "fec_id" value of 129 is indicated and the size of the "fec_payload_id" is two 32-bit words. In this case
the NORM_DATA base "hdr_len" value is 6. The cumulative size of any header extensions applied is added into
the "hdr_len" field.
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The "instance_id" field contains a value generated by the sender to uniquely identify its current instance of
participation in the NormSession. This allows receivers to detect when senders have perhaps left and rejoined a
session in progress. When a sender (identified by its "source_id") is detected to have a new "instance_id", the
NORM receivers SHOULD drop their previous state on the sender and begin reception anew, or at least treat this
"instance" as a new, separate sender.

The "grtt" field contains a non-linear quantized representation of the sender's current estimate of group round-trip
time (GRTT) (this is also referred to as R_max in [TfmccPaper]). This value is used to control timing of the
NACK repair process and other aspects of protocol operation as described in this document. Normally, the
advertised "grtt" value will correspond to what the sender has measured based on feedback from the group, but,
at low transmission rates, the advertised "grtt" SHALL be set to MAX(grttMeasured,
NormSegmentSize/senderRate) where the NormSegmentSize is sender's segment size in bytes and
the senderRate is the sender's current transmission rate in bytes per second. The algorithm for encoding and
decoding this field is described in the RMT Multicast NACK Building Block document  [RFC5401].

The "backoff" field value is used by receivers to determine the maximum backoff timer value used in the timer-based
NORM NACK feedback suppression. This 4-bit field supports values from 0-15 which is multiplied by the sender
GRTT to determine the maximum backoff timeout. The "backoff" field informs the receivers of the sender's
backoff factor parameter Ksender. Recommended values and their use are described in the NORM receiver
NACK procedure description in Section 5.3.

The "gsize" field contains a representation of the sender's current estimate of group size. This 4-bit field can
roughly represent values from ten to 500 million where the most significant bit value of 0 or 1 represents a mantissa
of 1 or 5, respectively and the three least significant bits incremented by one represent a base 10 exponent (order
of magnitude). For examples, a field value of "0x0" represents 1.0e+01 (10), a value of "0x8" represents 5.0e+01
(50), a value of "0x1" represents 1.0e+02 (100), and a value of "0xf" represents 5.0e+08. For NORM feedback
suppression purposes, the group size does not need to be represented with a high degree of precision. The group
size may even be estimated somewhat conservatively (i.e., overestimated) to maintain low levels of feedback
traffic. A default group size estimate of 10,000 ("gsize" = 0x3) is recommended for general purpose reliable
multicast applications using the NORM protocol.

The "flags" field contains a number of different binary flags providing information and hints regarding how the
receiver should handle the identified object. Defined flags in this field include:

PurposeValueFlag
Indicates message is a repair
transmission

0x01NORM_FLAG_REPAIR

Indicates a repair segment intended
to meet a specific receiver erasure,

0x02NORM_FLAG_EXPLICIT

as compared to parity segments
provided by the sender for general
purpose (with respect to an FEC
coding block) erasure filling.
Indicates availability of
NORM_INFO for object.

0x04NORM_FLAG_INFO

Indicates that repair transmissions
for the specified object will be

0x08NORM_FLAG_UNRELIABLE

unavailable (One-shot, best effort
transmission).
Indicates object is file-based data
(hint to use disk storage for
reception).

0x10NORM_FLAG_FILE

Indicates object is of type
NORM_OBJECT_STREAM.

0x20NORM_FLAG_STREAM

NORM_FLAG_REPAIR is set when the associated message is a repair transmission. This information can be used
by receivers to help observe a join policy where it is desired that newly joining receivers only begin participating
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in the NACK process upon receipt of new (non-repair) data content. NORM_FLAG_EXPLICIT is used to mark
repair messages sent when the data sender has exhausted its ability to provide "fresh" (not previously transmitted)
parity segments as repair. This flag could possibly be used by intermediate systems implementing functionality
to control sub-casting of repair content to different legs of a reliable multicast topology with disparate repair
needs. NORM_FLAG_INFO is set only when optional NORM_INFO content is actually available for the associated
object. Thus, receivers will NACK for retransmission of NORM_INFO only when it is available for a given object.
NORM_FLAG_UNRELIABLE is set when the sender wishes to transmit an object with only "best effort" delivery
and will not supply repair transmissions for the object. NORM receivers SHOULD NOT execute repair requests
for objects marked with the NORM_FLAG_UNRELIABLE flag. Note that receivers may inadvertently request
repair of such objects when all segments (or info content) for those objects are not received (i.e., a gap in the
"object_transport_id" sequence is noted). In this case, the sender should invoke the NORM_CMD(SQUELCH)
process as described in Section 4.2.3.

NORM_FLAG_FILE can be set as a hint from the sender that the associated object should be stored in non-volatile
storage. NORM_FLAG_STREAM is set when the identified object is of type NORM_OBJECT_STREAM. The
presence of NORM_FLAG_STREAM overrides that of NORM_FLAG_FILE with respect to interpretation of object
size and the format of NORM_DATA messages.

The "fec_id" field corresponds to the FEC Encoding Identifier described in the FEC Building Block document
[RFC5052]. The "fec_id" value implies the format of the "fec_payload_id" field and, coupled with FEC Object
Transmission Information, the procedures to decode FEC encoded content. Small block, systematic codes ("fec_id"
= 129) are expected to be used for most NORM purposes and the NORM_OBJECT_STREAM requires systematic
FEC codes for most efficient performance.

The "object_transport_id" field is a monotonically and incrementally increasing value assigned by the sender to
NormObjects being transmitted. Transmissions and repair requests related to that object use the same
"object_transport_id" value. For sessions of very long or indefinite duration, the "object_transport_id" field may
be repeated, but it is presumed that the 16-bit field size provides an adequate enough sequence space to avoid
object confusion amongst receivers and sources (i.e., receivers SHOULD re-synchronize with a server when
receiving object sequence identifiers sufficiently out-of-range with the current state kept for a given source).
During the course of its transmission within a NORM session, an object is uniquely identified by the concatenation
of the sender "source_id" and the given "object_transport_id". Note that NORM_INFO messages associated with
the identified object carry the same "object_transport_id" value.

The "fec_payload_id" identifies the attached NORM_DATA "payload" content. The size and format of the
"fec_payload_id" field depends upon the FEC type indicated by the "fec_id" field. These formats are given in the
descriptions of specific FEC schemes such as those described in the IETF FEC Basic Schemes
 [I-D.ietf-rmt-bb-fec-basic-schemes-revised] specification or in additional FEC Scheme documents that may be
defined. As an example, the format of the "fec_payload_id" format for Small Block, Systematic codes ("fec_id"
= 129) from the FEC Basic Schemes  [I-D.ietf-rmt-bb-fec-basic-schemes-revised] specification is given here:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       source_block_number                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        source_block_len       |      encoding_symbol_id       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5: Example: FEC Payload Id Format for "fec_id" = 129

In this example FEC payload identifier, the "source_block_number", "source_block_len", and "encoding_symbol_id"
fields correspond to the "Source Block Number", "Source Block Length, and "Encoding Symbol ID" fields of the
FEC Payload ID format for Small Block Systematic FEC Schemes identified by a "fec_id" value of 129 as specified
by the FEC Basic Schemes   [I-D.ietf-rmt-bb-fec-basic-schemes-revised] document . The "source_block_number"
identifies the coding block's relative position with a NormObject. Note that, for NormObjects of type
NORM_OBJECT_STREAM, the "source_block_number" may wrap for very long lived sessions. The
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"source_block_len" indicates the number of user data segments in the identified coding block. Given the
"source_block_len" information of how many symbols of application data are contained in the block, the receiver
can determine whether the attached segment is data or parity content and treat it appropriately. Some applications
may dynamically "shorten" code blocks when the pending information content is not predictable (e.g. real-time
message streams). In that case, the "source_block_len" value given for an "encoding_symbol_id" that contains
FEC parity content SHALL take precedence over the "source_block_len" value provided for any packets containing
source symbols. Also, the "source_block_len" value given for an ordinally higher "encoding_symbol_id" SHALL
take precedence over the "source_block_len" given for prior encoding symbols. The reason for this is that the
sender may only know the maximum source block length at the time is transmitting source symbols, but then
subsequently "shorten" the code and then provide that last source symbol and/or encoding symbols with FEC
parity content. The "encoding_symbol_id" identifies which specific symbol (segment) within the coding block
the attached payload conveys. Depending upon the value of the "encoding_symbol_id" and the associated
"source_block_len" parameters for the block, the symbol (segment) referenced may be a user data or an FEC
parity segment. For systematic codes, encoding symbols numbered less than the source_block_len contain
original application data while segments greater than or equal to source_block_len contain parity symbols
calculated for the block. The concatenation of object_transport_id::fec_payload_id can be viewed
as a unique transport protocol data unit identifier for the attached segment with respect to the NORM sender's
instance within a session.

Additional FEC Object Transmission Information (FTI) (as described in the FEC Building Block document
[RFC5052]) is required to properly receive and decode NORM transport objects. This information MAY be
provided as out-of-band session information. However, in some cases, it may be useful for the sender to include
this information "in-band" to facilitate receiver operation with minimal pre-configuration. For this purpose, the
NORM FEC Object Transmission Information Header Extension (EXT_FTI) is defined. This header extension
MAY be applied to NORM_DATA and NORM_INFO messages to provide this necessary information. The format
of the EXT_FTI consists of two parts, a general part that contains the size of the associated transport object and
a portion that depends upon the FEC scheme being used. The "fec_id" field in NORM_DATA and NORM_INFO
messages identifies the FEC scheme. The format of the EXT_FTI general part is given here.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    het = 64   |    hel = 4    |       object_size (msb)       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       object_size (lsb)                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  FEC Scheme specific content ...              |

Figure 6: EXT_FTI Header Extension General Portion Format

The header extension type "het" field value for the EXT_FTI header extension is 64. The header extension length
"hel" value depends upon the format of the FTI for encoding type identified by the "fec_id" field.

The 48-bit "object_size" field indicates the total length of the object (in bytes) for the static object types of
NORM_OBJECT_FILE and NORM_OBJECT_DATA. This information is used by receivers to determine storage
requirements and/or allocate storage for the received object. Receivers with insufficient storage capability may
wish to forego reliable reception (i.e., not NACK for) of the indicated object. In the case of objects of type
NORM_OBJECT_STREAM, the "object_size" field is used by the sender to advertise the size of its stream buffer
to the receiver group. In turn, the receivers SHOULD use this information to allocate a stream buffer for reception
of corresponding size.

As noted, the format of the extension depends upon the FEC code in use, but in general it SHOULD contain any
required details on the FEC code in use (e.g., FEC Instance ID, etc.). As an example, the format of the EXT_FTI
for small block systematic codes ("fec_id" = 129) is given here:
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    het = 64   |    hel = 4    |       object_size (msb)       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       object_size (lsb)                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       fec_instance_id         |          segment_size         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       fec_max_block_len       |         fec_num_parity        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7: Example: EXT_FTI Header Extension Format for "fec_id" = 129

In this example (for "fec_id" = 129), the "hel" field value is 4. The size of the EXT_FTI header extension may
be different for other FEC schemes.

The 48-bit "object_size" serves the purpose described previously.

The "fec_instance_id" corresponds to the "FEC Instance ID" described in the FEC Building Block document
[RFC5052]. In this case, the "fec_instance_id" is a value corresponding to the particular type of Small Block
Systematic Code being used (e.g., Reed-Solomon GF(2^8), Reed-Solomon GF(2^16), etc). The standardized
assignment of FEC Instance ID values is described in [RFC5052].

The "segment_size" field indicates the sender's current setting for maximum message payload content (in bytes).
This allows receivers to allocate appropriate buffering resources and to determine other information in order to
properly process received data messaging. Typically, FEC parity symbol segments will be of this size.

The "fec_max_block_len" indicates the current maximum number of user data segments per FEC coding block
to be used by the sender during the session. This allows receivers to allocate appropriate buffer space for buffering
blocks transmitted by the sender.

The "fec_num_parity" corresponds to the "maximum number of encoding symbols that can be generated for any
source block" as described in for FEC Object Transmission Information for Small Block Systematic Codes in the
FEC Building Block document [RFC5052]. For example, Reed-Solomon codes may be arbitrarily shortened to
create different code variations for a given block length. In the case of Reed-Solomon (GF(2^8) and GF(2^16))
codes, this value indicates the maximum number of parity segments available from the sender for the coding
blocks. This field MAY be interpreted differently for other systematic codes as they are defined.

The payload portion of NORM_DATA messages includes source data or FEC encoded application content. The
content of this payload depends upon the FEC scheme being employed, and support for streaming using the
NORM_OBJECT_STREAM type, when applicable, necessitates some additional content in the payload.

The "payload_len", "payload_msg_start", and "payload_offset" fields are present ONLY for transport objects of
type NORM_OBJECT_STREAM. These fields allow senders to arbitrarily vary the size of NORM_DATA payload
segments for streams. This allows applications to flush transmitted streams as needed to meet unique streaming
requirements. For objects of types NORM_OBJECT_FILE and NORM_OBJECT_DATA, these fields are unnecessary
since the receiver can calculate the payload length and offset information from the "fec_payload_id" using the
REQUIRED block partitioning algorithm described in the FEC Building Block document [RFC5052]. When
systematic FEC codes (e.g., "fec_id" = 129) are used, the "payload_len", "payload_msg_start", and "payload_offset"
fields contain actual payload_data length, message start index (or stream control code), and byte offset values for
the associated application stream data segment (the remainder of the "payload_data" field content) for those
NORM_DATA messages containing source data symbols. In NORM_DATA messages that contain FEC parity content,
these fields do not contain values that can be directly interpreted, but instead are values computed from FEC
encoding the "payload_len", "payload_msg_start", and "payload_offset" fields for the source data segments of
the corresponding coding block. The actual "payload_msg_start", "payload_len" and "payload_offset" values of
missing data content can be determined upon decoding a FEC coding block. Note that these fields do NOT
contribute to the value of the NORM_DATA "hdr_len" field. These fields are present only when the "flags" portion
of the NORM_DATA message indicate the transport object is of type NORM_OBJECT_STREAM.

[Page 19]Standards TrackAdamson, et al.

December 2008NORM ProtocolINTERNET DRAFT



The "payload_len" value, when non-zero, indicates the length (in bytes) of the source content contained in the
associated "payload_data" field. When the "payload_len" value is equal to ZERO, this indicates that the
"payload_msg_start" field should be alternatively interpreted as a "stream_control_code". The only
"stream_control_code" value currently defined is NORM_STREAM_END = 0. The NORM_STREAM_END code
indicates that the sender is terminating transmission of stream content at the corresponding position in the stream
and the receiver should not expect content (or NACK for any content) following that position in the stream. Future
versions of this specification may define additional stream control codes if necessary. Values of
"stream_control_code" that are not understood SHOULD be ignored.

The "payload_msg_start" field serves one of two exclusive purposes. When the "payload_len" value is non-zero,
the "payload_msg_start" field, when also set to a non-zero value, indicates that the associated "payload_data"
content contains an application-defined message boundary (start-of-message). When such a message boundary
is indicated, the first byte of an application-defined message, with respect to the "payload_data" field, will be
found at an offset of "payload_msg_start - 1" bytes. Thus, if a NORM_DATA payload for a NORM_OBJECT_STREAM
contains the start of an application message at the first byte of the "payload_data" field, the value of the
"payload_msg_start" field will be '1'. NORM implementations SHOULD provide sender stream applications with
a capability to mark message boundaries in this manner. Similarly, the NORM receiver implementation SHOULD
enable the application to recover such message boundary information. This enables NORM receivers to
"synchronize" reliable reception of transmitted message stream content in a meaningful way (i.e., meaningful to
the application) at any time, whether joining a session already in progress, or departing the session and returning.
Note that if the value of the "payload_msg_start" field is ZERO, no message boundary is present. The
"payload_msg_start" value will always be less than or equal to the "payload_len" value except for the special case
of "payload_len = 0", that indicates the "payload_msg_start" field should instead be interpreted as a
"stream_control_code"

The "payload_offset" field indicates the relative byte position (from the sender stream transmission start) of the
source content contained in the "payload_data" field. Note that for long-lived streams, the "payload_offset" field
may wrap.

The "payload_data" field contains the original application source or parity content for the symbol identified by
the "fec_payload_id". The length of this field SHALL be limited to a maximum of the sender's NormSegmentSize
bytes as given in the FTI for the object. Note the length of this field for messages containing parity content will
always be of length NormSegmentSize. When encoding data segments of varying sizes, the FEC encoder SHALL
assume ZERO value padding for data segments with length less than the NormSegmentSize. It is RECOMMENDED
that a sender's NormSegmentSize generally be constant for the duration of a given sender's term of participation
in the session, but may possibly vary on a per-object basis. The NormSegmentSize is expected to be configurable
by the sender application prior to session participation as needed for network topology maximum transmission
unit (MTU) considerations. For IPv6, MTU discovery may be possibly leveraged at session startup to perform
this configuration. The "payload_data" content may be delivered directly to the application for source symbols
(when systematic FEC encoding is used) or upon decoding of the FEC block. For NORM_OBJECT_FILE and
NORM_OBJECT_STREAM objects, the data segment length and offset can be calculated using the block partitioning
algorithm described in the FEC Building Block document [RFC5052]. For NORM_OBJECT_STREAM objects,
the length and offset is obtained from the segment's corresponding embedded "payload_len" and "payload_offset"
fields.

4.2.2  NORM_INFO Message

The NORM_INFO message is used to convey OPTIONAL, application-defined, out-of-band context information
for transmitted NormObjects. An example NORM_INFO use for bulk file transfer is to place MIME type information
for the associated file, data, or stream object into the NORM_INFO payload. Receivers may use the NORM_INFO
content to make a decision as whether to participate in reliable reception of the associated object. Each NormObject
can have an independent unit of NORM_INFO associated with it. NORM_DATA messages contain a flag to indicate
the availability of NORM_INFO for a given NormObject. NORM receivers may NACK for retransmission of
NORM_INFO when they have not received it for a given NormObject. The size of the NORM_INFO content is
limited to that of a single NormSegmentSize for the given sender. This atomic nature allows the NORM_INFO to
be rapidly and efficiently repaired within the NORM reliable transmission process.
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When NORM_INFO content is available for a NormObject, the NORM_FLAG_INFO flag SHALL be set in
NORM_DATA messages for the corresponding "object_transport_id" and the NORM_INFO message shall be
transmitted as the first message for the NormObject.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=1|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     flags     |     fec_id    |     object_transport_id       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                header_extensions (if applicable)              |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         payload_data                          |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8: NORM_INFO Message Format

The "version", "type", "hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header
as described in Section 4.1. The value of "hdr_len" field when no header extensions are present is 4.

The "instance_id", "grtt", "backoff", "gsize", "flags", "fec_id", and "object_transport_id" fields carry the same
information and serve the same purpose as with NORM_DATA messages. These values allow the receiver to prepare
appropriate buffering, etc, for further transmissions from the sender when NORM_INFO is the first message
received.

As with NORM_DATA messages, the NORM FTI Header Extension (EXT_FTI) may be optionally applied to
NORM_INFO messages. To conserve protocol overhead, some NORM implementations may wish to apply the
EXT_FTI when used to NORM_INFO messages only and not to NORM_DATA messages.

The NORM_INFO "payload_data" field contains sender application-defined content which can be used by receiver
applications for various purposes as described above.

4.2.3  NORM_CMD Messages

NORM_CMD messages are transmitted by senders to perform a number of different protocol functions. This includes
functions such as round-trip timing collection, congestion control functions, synchronization of sender/receiver
repair "windows", and notification of sender status. A core set of NORM_CMD messages is enumerated. Additionally,
a range of command types remain available for potential application-specific use. Some NORM_CMD types may
have dynamic content attached. Any attached content will be limited to maximum length of the sender
NormSegmentSize to retain the atomic nature of commands. All NORM_CMD messages begin with a common set
of fields, after the usual NORM message common header. The standard NORM_CMD fields are:

[Page 21]Standards TrackAdamson, et al.

December 2008NORM ProtocolINTERNET DRAFT



 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     flavor    |                                               |
+-+-+-+-+-+-+-+-+        NORM_CMD Content                       +
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9: NORM_CMD Standard Fields

The "version", "type", "hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header
as described in Section 4.1. The value of the "hdr_len" field for NORM_CMD messages without header extensions
present depends upon the "flavor" field.

The "instance_id", "grtt", "backoff", and "gsize" fields provide the same information and serve the same purpose
as with NORM_DATA and NORM_INFO messages. The "flavor" field indicates the type of command to follow.
The remainder of the NORM_CMD message is dependent upon the command type ("flavor"). NORM command
flavors include:

PurposeFlavorCommand
Used to indicate sender temporary
end-of-transmission. (Assists in

1NORM_CMD(FLUSH)

robustly initiating outstanding
repair requests from receivers).
May also be optionally used to
collect positive acknowledgment of
reliable reception from subset of
receivers.
Used to indicate sender permanent
end-of-transmission.

2NORM_CMD(EOT)

Used to advertise sender's current
repair window in response to

3NORM_CMD(SQUELCH)

out-of-range NACKs from
receivers.
Used for GRTT measurement and
collection of congestion control
feedback.

4NORM_CMD(CC)

Used to advertise sender's
aggregated repair/feedback state for

5NORM_CMD(REPAIR_ADV)

suppression of unicast feedback
from receivers.
Used to request application-defined
positive acknowledgment from a
list of receivers (OPTIONAL).

6NORM_CMD(ACK_REQ)

Used for application-defined
purposes which may need to

7NORM_CMD(APPLICATION)

temporarily preempt data
transmission (OPTIONAL).
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4.2.3.1  NORM_CMD(FLUSH) Message

The NORM_CMD(FLUSH) command is sent when the sender reaches the end of all data content and pending
repairs it has queued for transmission. This may indicate a temporary or permanent end of data transmission, but
the sender is still willing to respond to repair requests. This command is repeated once per 2*GRTT to excite the
receiver set for any outstanding repair requests up to and including the transmission point indicated within the
NORM_CMD(FLUSH) message. The number of repeats is equal to NORM_ROBUST_FACTOR unless a list of
receivers from which explicit positive acknowledgment is expected ("acking_node_list") is given. In that case,
the "acking_node_list" is updated as acknowledgments are received and the NORM_CMD(FLUSH) is repeated
according to the mechanism described in Section 5.5.3. The greater the NORM_ROBUST_FACTOR, the greater
the probability that all applicable receivers will be excited for acknowledgment or repair requests (NACKs) AND
that the corresponding NACKs are delivered to the sender. A default value of NORM_ROBUST_FACTOR equal
to 20 is RECOMMENDED. If a NORM_NACK message interrupts the flush process, the sender SHALL re-initiate
the flush process after any resulting repair transmissions are completed.

Note that receivers also employ a timeout mechanism to self-initiate NACKing (if there are outstanding repair
needs) when no messages of any type are received from a sender. This inactivity timeout is related to the
NORM_CMD(FLUSH) and NORM_ROBUST_FACTOR and is specified in Section 5.3. Receivers SHALL self-initiate
the NACK repair process when the inactivity has expired for a specific sender and the receiver has pending repairs
needed from that sender. With a sufficiently large NORM_ROBUST_FACTOR value, data content is delivered with
a high assurance of reliability. The penalty of a large NORM_ROBUST_FACTOR value is the potential transmission
of excess NORM_CMD(FLUSH) messages and a longer inactivity timeout for receivers to self-initiate a terminal
NACK process.

For finite-size transport objects such as NORM_OBJECT_DATA and NORM_OBJECT_FILE, the flush process
(if there are no further pending objects) occurs at the end of these objects. Thus, FEC repair information is always
available for repairs in response to repair requests elicited by the flush command. However, for
NORM_OBJECT_STREAM, the flush may occur at any time, including in the middle of an FEC coding block if
systematic FEC codes are employed. In this case, the sender will not yet be able to provide FEC parity content
for the concurrent coding block and will be limited to explicitly repairing the stream with source data content for
that block. Applications that anticipate frequent flushing of stream content SHOULD be judicious in the selection
of the FEC coding block size (i.e., do not use a very large coding block size if frequent flushing occurs). For
example, a reliable multicast application transmitting an on-going series of intermittent, relatively small messages
will need to trade-off using the NORM_OBJECT_DATA paradigm versus the NORM_OBJECT_STREAM paradigm
with an appropriate FEC coding block size. This is analogous to application trade-offs for other transport protocols
such as the selection of different TCP modes of operation such as "no delay", etc.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   flavor = 1  |    fec_id     |      object_transport_id      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         fec_payload_id                        |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                acking_node_list (if applicable)               |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 10: NORM_CMD(FLUSH) Message Format
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The "version", "type", "hdr_len", "sequence", and "source_id" fields form the NORM Common Message Header
as described in Section 4.1. In addition to the NORM common message header and standard NORM_CMD fields,
the NORM_CMD(FLUSH) message contains fields to identify the current status and logical transmit position of
the sender.

The "fec_id" field indicates the FEC type used for the flushing "object_transport_id" and implies the size and
format of the "fec_payload_id" field. Note the "hdr_len" value for the NORM_CMD(FLUSH) message is 4 plus
the size of the "fec_payload_id" field when no header extensions are present.

The "object_transport_id" and "fec_payload_id" fields indicate the sender's current logical "transmit position".
These fields are interpreted in the same manner as in the NORM_DATA message type. Upon receipt of the
NORM_CMD(FLUSH), receivers are expected to check their completion state THROUGH (including) this
transmission position. If receivers have outstanding repair needs in this range, they SHALL initiate the NORM
NACK Repair Process as described in Section 5.3. If receivers have no outstanding repair needs, no response to
the NORM_CMD(FLUSH) is generated.

For NORM_OBJECT_STREAM objects using systematic FEC codes, receivers MUST request "explicit-only"
repair of the identified "source_block_number" if the given "encoding_symbol_id" is less than the
"source_block_len". This condition indicates the sender has not yet completed encoding the corresponding FEC
block and parity content is not yet available. An "explicit-only" repair request consists of NACK content for the
applicable "source_block_number" which does not include any requests for parity-based repair. This allows
NORM sender applications to "flush" an ongoing stream of transmission when needed, even if in the middle of
an FEC block. Once the sender resumes stream transmission and passes the end of the pending coding block,
subsequent NACKs from receivers SHALL request parity-based repair as usual. Note that the use of a systematic
FEC code is assumed here. It should also be noted that a sender has the option of arbitrarily shortening a given
code block when such an application "flush" occurs. In this case, the receiver will request explicit repair, but the
sender MAY provide FEC-based repair (parity segments) in response. These parity segments MUST contain the
corrected "source_block_len" for the shortened block and that "source_block_len" associated with segments
containing parity content SHALL override the previously advertised "source_block_len". Similarly, the
"source_block_len" associated with the highest ordinal "encoding_symbol_id" shall take precedence over prior
symbols when a difference (e.g., due to code shortening at the sender) occurs. Normal receiver NACK initiation
and construction is discussed in detail in Section 5.3.

The OPTIONAL "acking_node_list" field contains a list of NormNodeIds for receivers from which the sender is
requesting explicit positive acknowledgment of reception up through the transmission point identified by the
"object_transport_id" and "fec_payload_id" fields. The length of the list can be inferred from the length of the
received NORM_CMD(FLUSH) message. When the "acking_node_list" is present, the lightweight positive
acknowledgment process described in Section 5.5.3 SHALL be observed.

4.2.3.2  NORM_CMD(EOT) Message

The NORM_CMD(EOT) command is sent when the sender reaches permanent end-of-transmission with respect
to the NormSession and will not respond to further repair requests. This allows receivers to gracefully reach closure
of operation with this sender (without requiring any timeout) and free any resources that are no longer needed.
The NORM_CMD(EOT) command SHOULD be sent with the same robust mechanism as used for
NORM_CMD(FLUSH) commands to provide a high assurance of reception by the receiver set.
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   flavor = 2  |                    reserved                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 11: NORM_CMD(EOT) Message Format

The value of the "hdr_len" field for NORM_CMD(EOT) messages without header extensions present is 4. The
"reserved" field is reserved for future use and MUST be set to an all ZERO value. Receivers MUST ignore the
"reserved" field.

4.2.3.3  NORM_CMD(SQUELCH) Message

The NORM_CMD(SQUELCH) command is transmitted in response to outdated or invalid NORM_NACK content
received by the sender. Invalid NORM_NACK content consists of repair requests for NormObjects for which the
sender is unable or unwilling to provide repair. This includes repair requests for outdated objects, aborted objects,
or those objects which the sender previously transmitted marked with the NORM_FLAG_UNRELIABLE flag. This
command indicates to receivers what content is available for repair, thus serving as a description of the sender's
current "repair window". Receivers SHALL not generate repair requests for content identified as invalid by a
NORM_CMD(SQUELCH).

The NORM_CMD(SQUELCH) command is sent once per 2*GRTT at the most. The NORM_CMD(SQUELCH)
advertises the current "repair window" of the sender by identifying the earliest (lowest) transmission point for
which it will provide repair, along with an encoded list of objects from that point forward that are no longer valid
for repair. This mechanism allows the sender application to cancel or abort transmission and/or repair of specific
previously enqueued objects. The list also contains the identifiers for any objects within the repair window that
were sent with the NORM_FLAG_UNRELIABLE flag set. In normal conditions, it is expected the
NORM_CMD(SQUELCH) will be needed infrequently, and generally only to provide a reference repair window
for receivers who have fallen "out-of-sync" with the sender due to extremely poor network conditions.

The starting point of the invalid NormObject list begins with the lowest invalid NormTransportId greater than
the current "repair window" start from the invalid NACK(s) that prompted the generation of the squelch. The
length of the list is limited by the sender's NormSegmentSize. This allows the receivers to learn the status of the
sender's applicable object repair window with minimal transmission of NORM_CMD(SQUELCH) commands. The
format of the NORM_CMD(SQUELCH) message is:
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  flavor = 3   |     fec_id    |      object_transport_id      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         fec_payload_id                        |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        invalid_object_list                    |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 12: NORM_CMD(SQUELCH) Message Format

In addition to the NORM common message header and standard NORM_CMD fields, the NORM_CMD(SQUELCH)
message contains fields to identify the earliest logical transmit position of the sender's current repair window and
an "invalid_object_list" beginning with the index of the logically earliest invalid repair request from the offending
NACK message which initiated the NORM_CMD(SQUELCH) transmission. The value of the "hdr_len" field when
no extensions are present is 4 plus the size of the "fec_payload_id" field that is dependent upon the FEC scheme
identified by the "fec_id" field.

The "object_transport_id" and "fec_payload_id" fields are concatenated to indicate the beginning of the sender's
current repair window (i.e., the logically earliest point in its transmission history for which the sender can provide
repair). The "fec_id" field implies the size and format of the "fec_payload_id" field. This serves as an advertisement
of a "synchronization" point for receivers to request repair. Note, that while an "encoding_symbol_id" may be
included in the "fec_payload_id" field, the sender's repair window SHOULD be aligned on FEC coding block
boundaries and thus the "encoding_symbol_id" SHOULD be zero.

The "invalid_object_list" is a list of 16-bit NormTransportIds that, although they are within the range of the
sender's current repair window, are no longer available for repair from the sender. For example, a sender application
may dequeue an out-of-date object even though it is still within the repair window. The total size of the
"invalid_object_list" content is can be determined from the packet's payload length and is limited to a maximum
of the NormSegmentSize of the sender. Thus, for very large repair windows, it is possible that a single
NORM_CMD(SQUELCH) message may not be capable of listing the entire set of invalid objects in the repair
window. In this case, the sender SHALL ensure that the list begins with a NormObjectId that is greater than or
equal to the lowest ordinal invalid NormObjectId from the NACK message(s) that prompted the
NORM_CMD(SQUELCH) generation. The NormObjectIds in the "invalid_object_list" MUST be ordinally greater
than the "object_transport_id" marking the beginning of the sender's repair window. This insures convergence of
the squelch process, even if multiple invalid NACK/ squelch iterations are required. This explicit description of
invalid content within the sender's current window allows the sender application (most notably for discrete object
transport) to arbitrarily invalidate (i.e., dequeue) portions of enqueued content (e.g., certain objects) for which it
no longer wishes to provide reliable transport.

4.2.3.4  NORM_CMD(CC) Message

The NORM_CMD(CC) messages contains fields to enable sender-to-receiver group greatest round-trip time (GRTT)
measurement and to excite the group for congestion control feedback. A baseline NORM congestion control
scheme (NORM-CC), based on the TCP-Friendly Multicast Congestion Control (TFMCC) scheme of [RFC4654]
is described in Section 5.5.2 of this document. The NORM_CMD(CC) message is usually transmitted as part of
NORM-CC congestion control operation. A NORM header extension is defined below to be used with the
NORM_CMD(CC) message to support NORM-CC operation. Different header extensions may be defined for the
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NORM_CMD(CC) (and/or other NORM messages as needed) to support alternative congestion control schemes
in the future. If NORM is operated in a private network with congestion control operation disabled, the
NORM_CMD(CC) message is then used for GRTT measurement only and may optionally be sent less frequently
than with congestion control operation.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |            sequence           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   flavor = 4  |    reserved   |          cc_sequence          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         send_time_sec                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        send_time_usec                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               header extensions (if applicable)               |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  cc_node_list (if applicable)                 |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 13: NORM_CMD(CC) Message Format

The NORM common message header and standard NORM_CMD fields serve their usual purposes. The value of
the "hdr_len" field when no header extensions are present is 6.

The "reserved" field is for potential future use and MUST be set to ZERO in this version of the NORM protocol
and its baseline NORM-CC congestion control scheme. It may be possible that alternative congestion control
schemes may use the NORM_CMD(CC) message defined here and leverage the "reserved" field for scheme-specific
purposes.

The "cc_sequence" field is a sequence number applied by the sender. For NORM-CC operation, it is used to
provide functionality equivalent to the "feedback round number" (fb_nr)described in [RFC4654]. The most
recently received "cc_sequence" value is recorded by receivers and can be fed back to the sender in congestion
control feedback generated by the receivers for that sender. The "cc_sequence" number can also be used in NORM
implementations to assess how recently a receiver has received NORM_CMD(CC) probes from the sender. This
can be useful instrumentation for complex or experimental multicast routing environments.

The "send_time" field is a timestamp indicating the time that the NORM_CMD(CC) message was transmitted.
This consists of a 64-bit field containing 32-bits with the time in seconds ("send_time_sec") and 32-bits with the
time in microseconds ("send_time_usec") since some reference time the source maintains (usually 00:00:00, 1
January 1970). The byte ordering of the fields is "Big Endian" network order. Receivers use this timestamp
adjusted by the amount of delay from the time they received the NORM_CMD(CC) message to the time of their
response as the "grtt_response" portion of NORM_ACK and NORM_NACK messages generated. This allows the
sender to evaluate round-trip times to different receivers for congestion control and other (e.g., GRTT determination)
purposes.

To facilitate the baseline NORM-CC scheme described in Section 5.5.2, a NORM-CC Rate header extension
(EXT_RATE) is defined to inform the group of the sender's current transmission rate. This is used along with the
loss detection "sequence" field of all NORM sender messages and the NORM_CMD(CC) GRTT collection process
to support NORM-CC congestion control operation. The format of this header extension is as follows:
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    het = 128  |    reserved   |           send_rate           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The "send_rate" field indicates the sender's current transmission rate in bytes per second. The 16-bit "send_rate"
field consists of 12 bits of mantissa in the most significant portion and 4 bits of base 10 integer exponent (E)
information in the least significant portion. The 12-bit mantissa portion of the field is scaled such that a base 10
mantissa (M) floating point value of 0.0 corresponds to 0 and a value of 10.0 corresponds to 4096 in the upper
12 bits of the 16-bit "send_rate" field . Thus:

send_rate = (((int)(M * 4096.0 / 10.0 + 0.5)) << 4) | E;

For example, to represent a transmission rate of 256kbps (3.2e+04 bytes per second), the lower 4 bits of the 16-bit
field contain a value of 0x04 to represent the exponent (E) while the upper 12 bits contain a value of 0x51f (M)
as determined from the equation given above:

send_rate = (((int)((3.2 * 4096.0 / 10.0) + 0.5)) << 4) | 4;
          = (0x51f << 4) | 0x4
          = 0x51f4

To decode the "send_rate" field, the following equation can be used:

value = (send_rate >> 4) * (10/4096) * power(10, (send_rate & x000f))

Note the maximum transmission rate that can be represented by this scheme is approximately 9.99e+15 bytes per
second.

When this extension is present, a "cc_node_list" may be attached as the payload of the NORM_CMD(CC) message.
The presence of this header extension also implies that NORM receivers should respond according to the procedures
described in Section 5.5.2.

The "cc_node_list" consists of a list of NormNodeIds and their associated congestion control status. This includes
the current limiting receiver (CLR) node, any potential limiting receiver (PLR) nodes that have been identified,
and some number of receivers for which congestion control status is being provided, most notably including the
receivers' current RTT measurement. The maximum length of the "cc_node_list" provides for at least the CLR
and one other receiver, but may be configurable for more timely feedback to the group. The list length can be
inferred from the length of the NORM_CMD(CC) message.

Each item in the "cc_node_list" is in the following format:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          cc_node_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    cc_flags   |     cc_rtt    |            cc_rate            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The "cc_node_id" is the NormNodeId of the receiver which the item represents.

The "cc_flags" field contains flags indicating the congestion control status of the indicated receiver. The following
flags are defined:

PurposeValueFlag
Receiver is the current limiting
receiver (CLR).

0x01NORM_FLAG_CC_CLR
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PurposeValueFlag
Receiver is a potential limiting
receiver (PLR).

0x02NORM_FLAG_CC_PLR

Receiver has measured RTT with
respect to sender.

0x04NORM_FLAG_CC_RTT

Sender/receiver is in "slow start"
phase of congestion control

0x08NORM_FLAG_CC_START

operation (i.e., The receiver has not
yet detected any packet loss and the
"cc_rate" field is the receiver's
actual measured receive rate).
Receiver is imminently leaving the
session and its feedback should not

0x10NORM_FLAG_CC_LEAVE

be considered in congestion control
operation.

The "cc_rtt" contains a quantized representation of the RTT as measured by the sender with respect to the indicated
receiver. This field is valid only if the NORM_FLAG_CC_RTT flag is set in the "cc_flags" field. This one byte
field is a quantized representation of the RTT using the algorithm described in the Multicast NACK Building
Block document  [RFC5401].

The "cc_rate" field contains a representation of the receiver's current calculated (during steady-state congestion
control operation) or twice its measured (during the slow start phase) congestion control rate. This field is encoded
and decoded using the same technique as described for the NORM_CMD(CC) "send_rate" field.

4.2.3.5  NORM_CMD(REPAIR_ADV) Message

The NORM_CMD(REPAIR_ADV) message is used by the sender to "advertise" its aggregated repair state from
NORM_NACK messages accumulated during a repair cycle and/or congestion control feedback received. This
message is sent only when the sender has received NORM_NACK and/or NORM_ACK(CC) (when congestion
control is enabled) messages via unicast transmission instead of multicast. By relaying this information to the
receiver set, suppression of feedback can be achieved even when receivers are unicasting that feedback instead
of multicasting it among the group [NormFeedback].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  flavor = 5   |     flags     |            reserved           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               header extensions (if applicable)               |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       repair_adv_payload                      |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 14: NORM_CMD(REPAIR_ADV) Message Format

The "instance_id", "grtt", "backoff", "gsize", and "flavor" fields serve the same purpose as in other NORM_CMD
messages. The value of the "hdr_len" field when no extensions are present is 4.
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The "flags" field provide information on the NORM_CMD(REPAIR_ADV) content. There is currently one
NORM_CMD(REPAIR_ADV) flag defined:

NORM_REPAIR_ADV_FLAG_LIMIT = 0x01

This flag is set by the sender when it is unable to fit its full current repair state into a single NormSegmentSize. If
this flag is set, receivers should limit their NACK response to generating NACK content only up through the
maximum ordinal transmission position (objectId::fecPayloadId) included in the "repair_adv_content".

When congestion control operation is enabled, a header extension may be applied to the
NORM_CMD(REPAIR_ADV) representing the most limiting (in terms of congestion control feedback suppression)
congestion control response. This allows the NORM_CMD(REPAIR_ADV) message to suppress receiver congestion
control responses as well as NACK feedback messages. The field is defined as a header extension so that alternative
congestion control schemes may be used with NORM without revision to this document. A NORM-CC Feedback
Header Extension (EXT_CC) is defined to encapsulate congestion control feedback within NORM_NACK,
NORM_ACK, and NORM_CMD(REPAIR_ADV) messages. If another congestion control technique (e.g., Pragmatic
General Multicast Congestion Control (PGMCC) [PgmccPaper]) is used within a NORM implementation, an
additional header extension MAY need to be defined encapsulate any required feedback content. The NORM-CC
Feedback Header Extension format is:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     het = 3   |    hel = 3    |          cc_sequence          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    cc_flags   |     cc_rtt    |            cc_loss            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            cc_rate            |          cc_reserved          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The "cc_sequence" field contains the current greatest "cc_sequence" value receivers have received in
NORM_CMD(CC) messages from the sender. This information assists the sender in congestion control operation
by providing an indicator of how current ("fresh") the receiver's round-trip measurement reference time is and
whether the receiver has been successfully receiving recent congestion control probes. For example, if it is apparent
the receiver has not been receiving recent congestion control probes (and thus possibly other messages from the
sender), the sender may choose to take congestion avoidance measures. For NORM_CMD(REPAIR_ADV) messages,
the sender SHALL set the "cc_sequence" field value to the value set in the last NORM_CMD(CC) message sent.

The "cc_flags" field contains bits representing the receiver's state with respect to congestion control operation.
The possible values for the "cc_flags" field are those specified for the NORM_CMD(CC) message node list item
flags. These fields are used by receivers in controlling (suppressing as necessary) their congestion control feedback.
For NORM_CMD(REPAIR_ADV) messages, the NORM_FLAG_CC_RTT should be set only when all feedback
messages received by the sender have the flag set. Similarly, the NORM_FLAG_CC_CLR or NORM_FLAG_CC_PLR
should be set only when no feedback has been received from non-CLR or non-PLR receivers. And the
NORM_FLAG_CC_LEAVE should be set only when all feedback messages the sender has received have this flag
set. These heuristics for setting the flags in NORM_CMD(REPAIR_ADV) ensure the most effective suppression
of receivers providing unicast feedback messages.

The "cc_rtt" field SHALL be set to a default maximum value and the NORM_FLAG_CC_RTT flag SHALL be
cleared when no receiver has yet received RTT measurement information. When a receiver has received RTT
measurement information, it shall set the "cc_rtt" value accordingly and set the NORM_FLAG_CC_RTT flag in
the "cc_flags" field. For NORM_CMD(REPAIR_ADV) messages, the sender SHALL set the "cc_rtt" field value
to the largest non-CLR/non-PLR RTT it has measured from receivers for the current feedback round.

The "cc_loss" field represents the receiver's current packet loss fraction estimate for the indicated source. The
loss fraction is a value from 0.0 to 1.0 corresponding to a range of zero to 100 percent packet loss. The 16-bit
"cc_loss" value is calculated by the following formula:
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"cc_loss" = decimal_loss_fraction * 65535.0

For NORM_CMD(REPAIR_ADV) messages, the sender SHALL set the "cc_loss" field value to the largest
non-CLR/non-PLR loss estimate it has received from receivers for the current feedback round.

The "cc_rate" field represents the receivers current local congestion control rate. During "slow start", when the
receiver has detected no loss, this value is set to twice the actual rate it has measured from the corresponding
sender and the NORM_FLAG_CC_START is set in the "cc_flags' field. Otherwise, the receiver calculates a
congestion control rate based on its loss measurement and RTT measurement information (even if default) for
the "cc_rate" field. For NORM_CMD(REPAIR_ADV) messages, the sender SHALL set the "cc_loss" field value
to the lowest non-CLR/non-PLR "cc_rate" report it has received from receivers for the current feedback round.

The "cc_reserved" field is reserved for future NORM protocol use. Currently, senders SHALL set this field to
ZERO, and receivers SHALL ignore the content of this field.

The "repair_adv_payload" is in exactly the same form as the "nack_content" of NORM_NACK messages and can
be processed by receivers for suppression purposes in the same manner, with the exception of the condition when
the NORM_REPAIR_ADV_FLAG_LIMIT is set.

4.2.3.6  NORM_CMD(ACK_REQ) Message

The NORM_CMD(ACK_REQ) message is used by the sender to request acknowledgment from a specified list of
receivers. This message is used in providing a lightweight positive acknowledgment mechanism that is OPTIONAL
for use by the reliable multicast application. A range of acknowledgment request types is provided for use at the
application's discretion. Provision for application-defined, positively-acknowledged commands allows the
application to automatically take advantage of transmission and round-trip timing information available to the
NORM protocol. The details of the NORM positive acknowledgment process including transmission of the
NORM_CMD(ACK_REQ) messages and the receiver response (NORM_ACK) are described in Section 5.5.3. The
format of the NORM_CMD(ACK_REQ) message is:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  flavor = 6   |    reserved   |    ack_type   |    ack_id     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       acking_node_list                        |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 15: NORM_CMD(ACK_REQ) Message Format

The NORM common message header and standard NORM_CMD fields serve their usual purposes. The value of
the "hdr_len" field for NORM_CMD(ACK_REQ) messages with no header extension present is 4.

The "ack_type" field indicates the type of acknowledgment being requested and thus implies rules for how the
receiver will treat this request. The following "ack_type" values are defined and are also used in NORM_ACK
messages described later:

PurposeValueACK Type
Used to identify NORM_ACK
messages sent in response to
NORM_CMD(CC) messages.

1NORM_ACK_CC
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PurposeValueACK Type
Used to identify NORM_ACK
messages sent in response to
NORM_CMD(FLUSH) messages.

2NORM_ACK_FLUSH

Reserved for possible future NORM
protocol use.

3-15NORM_ACK_RESERVED

Used at application's discretion.16-255NORM_ACK_APPLICATION

The NORM_ACK_CC value is provided for use only in NORM_ACKs generated in response to the NORM_CMD(CC)
messages used in congestion control operation. Similarly, the NORM_ACK_FLUSH is provided for use only in
NORM_ACKs generated in response to applicable NORM_CMD(FLUSH) messages. NORM_CMD(ACK_REQ)
messages with "ack_type" of NORM_ACK_CC or NORM_ACK_FLUSH SHALL NOT be generated by the sender.

The NORM_ACK_RESERVED range of "ack_type" values is provided for possible future NORM protocol use.

The NORM_ACK_APPLICATION range of "ack_type" values is provided so that NORM applications may
implement application-defined, positively-acknowledged commands that are able to leverage internal transmission
and round-trip timing information available to the NORM protocol implementation.

The "ack_id" provides a sequenced identifier for the given NORM_CMD(ACK_REQ) message. This "ack_id" is
returned in NORM_ACK messages generated by the receivers so that the sender may associate the response with
its corresponding request.

The "reserved" field is reserved for possible future protocol use and SHALL be set to ZERO by senders and
ignored by receivers.

The "acking_node_list" field contains the NormNodeIds of the current NORM receivers that are desired to provide
positive acknowledge (NORM_ACK) to this request. The packet payload length implies the length of the
"acking_node_list" and its length is limited to the sender NormSegmentSize. The individual NormNodeId items
are listed in network (Big Endian) byte order. If a receiver's NormNodeId is included in the "acking_node_list",
it SHALL schedule transmission of a NORM_ACK message as described in Section 5.5.3.

4.2.3.7  NORM_CMD(APPLICATION) Message

This command allows the NORM application to robustly transmit application-defined commands. The command
message preempts any ongoing data transmission and is repeated up to NORM_ROBUST_FACTOR times at a rate
of once per 2*GRTT. This rate of repetition allows the application to observe any response (if that is the application's
purpose for the command) before it is repeated. Possible responses may include initiation of data transmission,
other NORM_CMD(APPLICATION) messages, or even application-defined, positively-acknowledge commands
from other NormSession participants. The transmission of these commands will preempt data transmission when
they are scheduled and may be multiplexed with ongoing data transmission. This type of robustly transmitted
command allows NORM applications to define a complete set of session control mechanisms with less state than
the transfer of FEC encoded reliable content requires while taking advantage of NORM transmission and round-trip
timing information.
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=3|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          instance_id          |     grtt      |backoff| gsize |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  flavor = 7   |                    reserved                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                   Application-Defined Content                 |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 16: NORM_CMD(APPLICATION) Message Format

The NORM common message header and NORM_CMD fields are interpreted as previously described. The value
of the NORM_CMD(APPLICATION) "hdr_len" field when no header extensions are present is 4.

The "Application-Defined Content" area contains information in a format at the discretion of the application. The
size of this payload SHALL be limited to a maximum of the sender's NormSegmentSize setting. Upon reception,
the NORM protocol implementation SHALL deliver the content to the receiver application. Note that any detection
of duplicate reception of a NORM_CMD(APPLICATION) message is the responsibility of the application.

4.3  Receiver Messages

The NORM message types generated by participating receivers consist of the NORM_NACK and NORM_ACK
message types. NORM_NACK messages are sent to request repair of missing data content from sender transmission
and NORM_ACK messages are generated in response to certain sender commands including NORM_CMD(CC) and
NORM_CMD(ACK_REQ).

4.3.1  NORM_NACK Message

The principal purpose of NORM_NACK messages is for receivers to request repair of sender content via selective,
negative acknowledgment upon detection of incomplete data. NORM_NACK messages will be transmitted according
to the rules of NORM_NACK generation and suppression described in Section 5.3. NORM_NACK messages also
contain additional fields to provide feedback to the sender(s) for purposes of round-trip timing collection and
congestion control.

The payload of NORM_NACK messages contains one or more repair requests for different objects or portions of
those objects. The NORM_NACK message format is as follows:
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=4|    hdr_len    |            sequence           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           server_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           instance_id         |            reserved           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       grtt_response_sec                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       grtt_response_usec                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               header extensions (if applicable)               |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          nack_payload                         |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 17: NORM_NACK Message Format

The NORM common message header fields serve their usual purposes. The value of the "hdr_len" field for
NORM_NACK messages without header extensions present is 6.

The "server_id" field identifies the NORM sender to which the NORM_NACK message is destined.

The "instance_id" field contains the current session identifier given by the sender identified by the "server_id"
field in its sender messages. The sender SHOULD ignore feedback messages which contain an invalid "instance_id"
value.

The "grtt_response" fields contain an adjusted version of the timestamp from the most recently received
NORM_CMD(CC) message for the indicated NORM sender. The format of the "grtt_response" is the same as the
"send_time" field of the NORM_CMD(CC). The "grtt_response" value is relative to the "send_time" the source
provided with a corresponding NORM_CMD(CC) command. The receiver adjusts the source's NORM_CMD(CC)
"send_time" timestamp by adding the time delta from when the receiver received the NORM_CMD(CC) to when
the NORM_NACK is transmitted in response to calculate the value in the "grtt_response" field. This is the
"receive_to_response_delta" value used in the following formula:

grtt_response = NORM_CMD(CC) send_time + receive_to_response_delta

The receiver SHALL set the "grtt_response" to a ZERO value, to indicate that it has not yet received a
NORM_CMD(CC) message from the indicated sender and that the sender should ignore the "grtt_response" in this
message.

For NORM-CC operation, the NORM-CC Feedback Header Extension, as described in the
NORM_CMD(REPAIR_ADV} message description, is added to NORM_NACK messages to provide feedback on
the receivers current state with respect to congestion control operation. Note that alternative header extensions
for congestion control feedback may be defined for alternative congestion control schemes for NORM use in the
future.

The "reserved" field is for potential future NORM use and SHALL be set to ZERO for this version of the protocol.

The "nack_payload" of the NORM_NACK message specifies the repair needs of the receiver with respect to the
NORM sender indicated by the "server_id" field. The receiver constructs repair requests based on the NORM_DATA
and/or NORM_INFO segments it requires from the sender in order to complete reliable reception up to the sender's
transmission position at the moment the receiver initiates the NACK Procedure as described in Section 5.3. A
single NORM Repair Request consists of a list of items, ranges, and/or FEC coding block erasure counts for
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needed NORM_DATA and/or NORM_INFO content. Multiple repair requests may be concatenated within the
"nack_payload" field of a NORM_NACK message. Note that a single NORM Repair Request can possibly include
multiple "items", "ranges", or "erasure_counts". In turn, the "nack_payload" field MAY contain multiple repair
requests. A single NORM Repair Request has the following format:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      form     |     flags     |             length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      repair_request_items                     |
|                             ...                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 18: NORM Repair Request Format

The "form" field indicates the type of repair request items given in the "repair_request_items" list. Possible values
for the "form" field include:

ValueForm
1NORM_NACK_ITEMS
2NORM_NACK_RANGES
3NORM_NACK_ERASURES

A "form" value of NORM_NACK_ITEMS indicates each repair request item in the "repair_request_items" list is
to be treated as an individual request. A value of NORM_NACK_RANGES indicates that the "repair_request_items"
list consists of pairs of repair request items that correspond to inclusive ranges of repair needs. And the
NORM_NACK_ERASURES "form" indicates that the repair request items are to be treated individually and that
the "encoding_symbol_id" portion of the "fec_payload_id" field of the repair request item (see below) is to be
interpreted as an erasure count for the FEC coding block identified by the repair request item's
"source_block_number".

The "flags" field is currently used to indicate the level of data content for which the repair request items apply
(i.e., an individual segment, entire FEC coding block, or entire transport object). Possible flag values include:

PurposeValueFlag
Indicates the listed segment(s) or
range of segments are required as
repair.

0x01NORM_NACK_SEGMENT

Indicates the listed block(s) or
range of blocks in entirety are
required as repair.

0x02NORM_NACK_BLOCK

Indicates that NORM_INFO is
required as repair for the listed
object(s).

0x04NORM_NACK_INFO

Indicates the listed object(s) or
range of objects in entirety are
required as repair.

0x08NORM_NACK_OBJECT

When the NORM_NACK_SEGMENT flag is set, the "object_transport_id" and "fec_payload_id" fields are used to
determine which sets or ranges of individual NORM_DATA segments are needed to repair content at the receiver.
When the NORM_NACK_BLOCK flag is set, this indicates the receiver is completely missing the indicated coding
block(s) and requires transmissions sufficient to repair the indicated block(s) in their entirety. When the
NORM_NACK_INFO flag is set, this indicates the receiver is missing the NORM_INFO segment for the indicated
"object_transport_id". Note the NORM_NACK_INFO may be set in combination with the NORM_NACK_BLOCK
or NORM_NACK_SEGMENT flags, or may be set alone. When the NORM_NACK_OBJECT flag is set, this indicates
the receiver is missing the entire NormTransportObject referenced by the "object_transport_id". This also implicitly
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requests any available NORM_INFO for the NormObject, if applicable. The "fec_payload_id" field is ignored
when the flag NORM_NACK_OBJECT is set.

The "length" field value is the length in bytes of the "repair_request_items" field.

The "repair_request_items" field consists of a list of individual or range pairs of transport data unit identifiers in
the following format.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     fec_id    |   reserved    |      object_transport_id      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        fec_payload_id                         |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 19: NORM Repair Request Item Format

The "fec_id" indicates the FEC type and can be used to determine the format of the "fec_payload_id" field. The
"reserved" field is kept for possible future use and SHALL be set to a ZERO value and ignored by NORM nodes
processing NACK content.

The "object_transport_id" corresponds to the NormObject for which repair is being requested and the
"fec_payload_id" identifies the specific FEC coding block and/or segment being requested. When the
NORM_NACK_OBJECT flag is set, the value of the "fec_payload_id" field is ignored. When the
NORM_NACK_BLOCK flag is set, only the FEC code block identifier portion of the "fec_payload_id" is to be
interpreted.

The format of the "fec_payload_id" field depends upon the "fec_id" field value.

When the receiver's repair needs dictate that different forms (mixed ranges and/or individual items) or types
(mixed specific segments and/or blocks or objects in entirety) are required to complete reliable transmission,
multiple NORM Repair Requests with different "form" and or "flags" values can be concatenated within a single
NORM_NACK message. Additionally, NORM receivers SHALL construct NORM_NACK messages with their repair
requests in ordinal order with respect to "object_transport_id" and "fec_payload_id" values. The "nack_payload"
size SHALL NOT exceed the NormSegmentSize for the sender to which the NORM_NACK is destined.

NORM_NACK Content Examples:

In these examples, a small block, systematic FEC code ("fec_id" = 129) is assumed with a user data block length
of 32 segments. In Example 1, a list of individual NORM_NACK_ITEMS repair requests is given. In Example 2,
a list of NORM_NACK_RANGES requests AND a single NORM_NACK_ITEMS request are concatenated to illustrate
the possible content of a NORM_NACK message. Note that FEC coding block erasure counts could also be provided
in each case. However, the erasure counts are not really necessary since the sender can easily determine the erasure
count while processing the NACK content. However, the erasure count option may be useful for operation with
other FEC codes or for intermediate system purposes.
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Example 1: NORM_NACK "nack_payload" for: Object 12, Coding Block 3, Segments 2,5,and 8

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   form = 1    | flags = 0x01  |       length  = 36            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  fec_id = 129 |   reserved    |    object_transport_id = 12   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    source_block_number = 3                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    source_block_length = 32   |    encoding_symbol_id = 2     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  fec_id = 129 |   reserved    |    object_transport_id = 12   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    source_block_number = 3                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    source_block_length = 32   |    encoding_symbol_id = 5     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  fec_id = 129 |   reserved    |    object_transport_id = 12   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    source_block_number = 3                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    source_block_length = 32   |    encoding_symbol_id = 8     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Example 2: NORM_NACK "nack_payload" for: Object 18, Coding Block 6, Segments 5, 6, 7, 8, 9, 10; and Object
19 NORM_INFO and Coding Block 1, segment 3

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   form = 2    | flags = 0x01  |       length  = 24            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  fec_id = 129 |   reserved    |    object_transport_id = 18   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    source_block_number = 6                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    source_block_length = 32   |    encoding_symbol_id = 5     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  fec_id = 129 |   reserved    |    object_transport_id = 18   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    source_block_number = 6                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    source_block_length = 32   |    encoding_symbol_id = 10    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   form = 1    | flags = 0x05  |       length  = 12            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  fec_id = 129 |   reserved    |    object_transport_id = 19   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    source_block_number = 1                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    source_block_length = 32   |    encoding_symbol_id = 3     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3.2  NORM_ACK Message

The NORM_ACK message is intended to be used primarily as part of NORM congestion control operation and
round-trip timing measurement. As mentioned in the NORM_CMD(ACK_REQ) message description, the
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acknowledgment type NORM_ACK_CC is provided for this purpose. The generation of NORM_ACK(CC) messages
for round-trip timing estimation and congestion-control operation is described in Section 5.5.1 and Section 5.5.2,
respectively. However, some multicast applications may benefit from some limited form of positive acknowledgment
for certain functions. A simple, scalable positive acknowledgment scheme is defined in Section 5.5.3 that can be
leveraged by protocol implementations when appropriate. The NORM_CMD(FLUSH) may be used for OPTIONAL
collection of positive acknowledgment of reliable reception to a certain "watermark" transmission point from
specific receivers using this mechanism. The NORM_ACK type NORM_ACK_FLUSH is provided for this purpose
and the format of the "nack_payload" for this acknowledgment type is given below. Beyond that, a range of
application-defined "ack_type" values is provided for use at the NORM application's discretion. Implementations
making use of application-defined positive acknowledgments may also make use the "nack_payload" as needed,
observing the constraint that the "nack_payload" field size be limited to a maximum of the NormSegmentSize for
the sender to which the NORM_ACK is destined.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|version| type=5|    hdr_len    |          sequence             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           source_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           server_id                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           instance_id         |    ack_type  |     ack_id     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       grtt_response_sec                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       grtt_response_usec                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|               header extensions (if applicable)               |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                   ack_payload (if applicable)                 |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 20: NORM_ACK Message Format

The NORM common message header fields serve their usual purposes. The value of the "hdr_len" field when no
header extensions are present is 6.

The "server_id", "instance_id", and "grtt_response" fields serve the same purpose as the corresponding fields in
NORM_NACK messages. And header extensions may be applied to support congestion control feedback or other
functions in the same manner.

The "ack_type" field indicates the nature of the NORM_ACK message. This directly corresponds to the "ack_type"
field of the NORM_CMD(ACK_REQ) message to which this acknowledgment applies.

The "ack_id" field serves as a sequence number so that the sender can verify that a NORM_ACK message received
actually applies to a current acknowledgment request. The "ack_id" field is not used in the case of the
NORM_ACK_CC and NORM_ACK_FLUSH acknowledgment types.

The "ack_payload" format is a function of the "ack_type". The NORM_ACK_CC message has no attached content.
Only the NORM_ACK header applies. In the case of NORM_ACK_FLUSH, a specific "ack_payload" format is
defined:
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 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     fec_id    |   reserved    |      object_transport_id      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        fec_payload_id                         |
|                              ...                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The "object_transport_id" and "fec_payload_id" are used by the receiver to acknowledge applicable
NORM_CMD(FLUSH) messages transmitted by the sender identified by the "server_id" field.

The "ack_payload" of NORM_ACK messages for application-defined "ack_type" values is specific to the application
but is limited in size to a maximum the NormSegmentSize of the sender referenced by the "server_id".

4.4  General Purpose Messages

Some additional message formats are defined for general purpose in NORM multicast sessions whether the
participant is acting as a sender and/or receiver within the group.

4.4.1  NORM_REPORT Message

This is an optional message generated by NORM participants. This message could be used for periodic performance
reports from receivers in experimental NORM implementations. The format of this message is currently undefined.
Experimental NORM implementations may define NORM_REPORT formats as needed for test purposes. These
report messages SHOULD be disabled for interoperability testing between different NORM implementations.
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5.  Detailed Protocol Operation

This section describes the detailed interactions of senders and receivers participating in a NORM session. A simple
synopsis of protocol operation is given here:

1. The sender periodically transmits NORM_CMD(CC) messages as needed to initialize and collect round-trip
timing and congestion control feedback from the receiver set.

2. The sender transmits an ordinal set of NormObjects segmented in the form of NORM_DATA messages labeled
with NormTransportIds and logically identified with FEC encoding block numbers and symbol identifiers.
NORM_INFO messages may optionally precede the transmission of data content for NORM transport objects.

3. As receivers detect missing content from the sender, they initiate repair requests with NORM_NACK messages.
Note the receivers track the sender's most recent objectId::fecPayloadId transmit position and NACK ONLY
for content ordinally prior to that transmit position. The receivers schedule random backoff timeouts before
generating NORM_NACK messages and wait an appropriate amount of time before repeating the NORM_NACK
if their repair request is not satisfied.

4. The sender aggregates repair requests from the receivers and logically "rewinds" its transmit position to send
appropriate repair messages. The sender sends repairs for the earliest ordinal transmit position first and
maintains this ordinal repair transmission sequence. FEC parity content not previously transmitted for the
applicable FEC coding block is used for repair transmissions to the greatest extent possible. If the sender
exhausts its available FEC parity content on multiple repair cycles for the same coding block, it resorts to an
explicit repair strategy (possibly using parity content) to complete repairs. (The use of explicit repair is expected
to be an exception in general protocol operation, but the possibility does exist for extreme conditions). The
sender immediately assumes transmission of new content once it has sent pending repairs.

5. The sender transmits NORM_CMD(FLUSH) messages when it reaches the end of enqueued transmit content
and pending repairs. Receivers respond to the NORM_CMD(FLUSH) messages with NORM_NACK transmissions
(following the same suppression backoff timeout strategy as for data) if they require further repair.

6. The sender transmissions are subject to rate control limits determined by congestion control mechanisms. In
the baseline NORM-CC operation, each sender in a NormSession maintains its own independent congestion
control state. Receivers provide congestion control feedback in NORM_NACK and NORM_ACK messages.
NORM_ACK feedback for congestion control purposes is governed using a suppression mechanism similar to
that for NORM_NACK messages.

While this overall concept is relatively simple, there are details to each of these aspects that need to be addressed
for successful, efficient, robust, and scalable NORM protocol operation.

5.1  Sender Initialization and Transmission

Upon startup, the NORM sender immediately begins sending NORM_CMD(CC) messages to collect round trip
timing and other information from the potential group. If NORM-CC congestion control operation is enabled, the
NORM-CC Rate header extension MUST be included in these messages. Congestion control operation SHALL
be observed at all times when operating in the general Internet. Even if congestion control operation is disabled
at the sender, it may be desirable to use the NORM_CMD(CC) messaging to collect feedback from the group using
the baseline NORM-CC feedback mechanisms. This proactive feedback collection can be used to establish a
GRTT estimate prior to data transmission and potential NACK operation.

In some cases, applications may wish for the sender to also proceed with data transmission immediately. In other
cases, the sender may wish to defer data transmission until it has received some feedback or request from the
receiver set indicating that receivers are indeed present. Note, in some applications (e.g., web push), this indication
may come out-of-band with respect to the multicast session via other means. As noted, the periodic transmission
of NORM_CMD(CC) messages may precede actual data transmission in order to have an initial GRTT estimate.

With inclusion of the OPTIONAL NORM FEC Object Transmission Information Header Extension (EXT_FTI),
the NORM protocol sender message headers can contain all information necessary to prepare receivers for
subsequent reliable reception. This includes FEC coding parameters, the sender NormSegmentSize, and other
information. If this header extension is not used, it is presumed that receivers have received the FEC Object
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Transmission Information via other means. Additionally, applications may leverage the use of NORM_INFO
messages associated with the session data objects in the session to provide application-specific context information
for the session and data being transmitted. These mechanisms allow for operation with minimal pre-coordination
among the senders and receivers.

The NORM sender begins segmenting application-enqueued data into NORM_DATA segments and transmitting
it to the group. For objects of type NORM_OBJECT_DATA and NORM_OBJECT_FILE, the segmentation algorithm
described in FEC Building Block document  [RFC5052] is RECOMMENDED. For objects of type
NORM_OBJECT_STREAM, segmentation will typically be into uniform FEC coding block sizes, with individual
segment sizes controlled by the application. In most cases, the application and NORM implementation SHOULD
strive to produce full-sized (NormSegmentSize) segments when possible. The rate of transmission is controlled
via congestion control mechanisms or is a fixed rate if desired for closed network operations. The receivers
participating in the multicast group provide feedback to the sender as needed. When the sender reaches the end
of data it has enqueued for transmission or any pending repairs, it transmits a series of NORM_CMD(FLUSH)
messages at a rate of one per 2*GRTT. Receivers may respond to these NORM_CMD(FLUSH) messages with
additional repair requests. A protocol parameter "NORM_ROBUST_FACTOR" determines the number of flush
messages sent. If receivers request repair, the repair is provided and flushing occurs again at the end of repair
transmission. The sender may attach an OPTIONAL "acking_node_list" to NORM_CMD(FLUSH) containing the
NormNodeIds for receivers from which it expects explicit positive acknowledgment of reception. The
NORM_CMD(FLUSH) message may be also used for this optional function any time prior to the end of data
enqueued for transmission with the NORM_CMD(FLUSH) messages multiplexed with ongoing data transmissions.
The OPTIONAL NORM positive acknowledgment procedure is described in Section 5.5.3.

5.1.1  Object Segmentation Algorithm

NORM senders and receivers MUST use a common algorithm for logically segmenting transport data into FEC
encoding blocks and symbols so that appropriate NACKs can be constructed to request repair of missing data.
NORM FEC coding blocks are comprised of multi-byte symbols (segments) that are transmitted in the payload
of NORM_DATA messages. Each NORM_DATA message will contain one or more source or encoding symbol(s)
identified by the "fec_payload_id" field and the NormSegmentSize sender parameter defines the maximum size
(in bytes) of the "payload_data" field containing the content (a "segment"). The FEC encoding type and associated
parameters govern the source block size (number of source symbols per coding block, etc.). NORM senders and
receivers use these FEC parameters, along with the NormSegmentSize and transport object size to compute the
source block structure for transport objects. These parameters are provided in the FEC Object Transmission
Information for each object. The block partitioning algorithm described in the FEC Building Block document
 [RFC5052] is RECOMMENDED for use to compute a source block structure such that all source blocks are as
close to being equal length as possible. This helps avoid the performance disadvantages of "short" FEC blocks.
Note this algorithm applies only to the statically-sized NORM_OBJECT_DATA and NORM_OBJECT_FILE
transport object types where the object size is fixed and predetermined. For NORM_OBJECT_STREAM objects,
the object is segmented according to the maximum source block length given in the FEC Transmission Information,
unless the FEC Payload ID indicates an alternative size for a given block.

5.2  Receiver Initialization and Reception

The NORM protocol is designed such that receivers may join and leave the group at will. However, some
applications may be constrained such that receivers need to be members of the group prior to start of data
transmission. NORM applications may use different policies to constrain the impact of new receivers joining the
group in the middle of a session. For example, a useful implementation policy is for new receivers joining the
group to limit or avoid repair requests for transport objects already in progress. The NORM sender implementation
may wish to impose additional constraints to limit the ability of receivers to disrupt reliable multicast performance
by joining, leaving, and rejoining the group often. Different receiver "join policies" may be appropriate for different
applications and/or scenarios. For general purpose operation, a default policy where receivers are allowed to
request repair only for coding blocks with a NormTransportId and FEC coding block number greater than or equal
to the first non-repair NORM_DATA or NORM_INFO message received upon joining the group is RECOMMENDED.
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For objects of type NORM_OBJECT_STREAM it is RECOMMENDED that the join policy constrain receivers to
start reliable reception at the current FEC coding block for which non-repair content is received.

For typical operation, it is expected that NORM receivers will join a specified multicast group and/or listen on
an specific port number for sender transmissions. As the NORM receiver receives NORM_DATA messages it will
provide content to its application as appropriate.

5.3  Receiver NACK Procedure

When the receiver detects it is missing data from a sender's NORM transmissions, it initiates its NACKing
procedure. The NACKing procedure SHALL be initiated ONLY at FEC coding block boundaries, NormObject
boundaries, upon receipt of a NORM_CMD(FLUSH) message, or upon an "inactivity" timeout when NORM_DATA
or NORM_INFO transmissions are no longer received from a previously active sender. The RECOMMENDED
value of such an inactivity timeout is:

T_inactivity = NORM_ROBUST_FACTOR * 2 * GRTTSender

where the "GRTTsender" value corresponds to the GRTT estimate advertised in the "grtt" field of NORM sender
messages. A minimum "T_inactivity" value of 1 second is RECOMMENDED. The NORM receiver SHOULD
reset this inactivity timer and repeat NACK initiation upon timeout for up to NORM_ROBUST_FACTOR times or
more depending upon the application's need for persistence by its receivers. It is also important that receivers
rescale the "T_inactivity" timeout as the sender's advertised GRTT changes.

The NACKing procedure begins with a random backoff timeout. The duration of the backoff timeout is chosen
using the "RandomBackoff" algorithm described in the Multicast NACK Building Block document  [RFC5401]
using (Ksender*GRTTsender) for the maxTime parameter and the sender advertised group size
(GSIZEsender) as the groupSize parameter. NORM senders provide values for GRTTsender, Ksender
and GSIZEsender via the "grtt", "backoff", and "gsize" fields of transmitted messages. The GRTTsender
value is determined by the sender based on feedback it has received from the group while the Ksender and
GSIZEsender values may determined by application requirements and expectations or ancillary information.
The backoff factor "Ksender" MUST be greater than one to provide for effective feedback suppression. A
value of K = 4 is RECOMMENDED for the Any Source Multicast (ASM) model while a value of K = 6 is
RECOMMENDED for Single Source Multicast (SSM) operation.

Thus:

T_backoff = RandomBackoff(Ksender*GRTTsender, GSIZEsender)

To avoid the possibility of NACK implosion in the case of sender or network failure during SSM operation, the
receiver SHALL automatically suppress its NACK and immediately enter the "holdoff" period described below
when T_backoff is greater than (Ksender-1)*GRTTsender. Otherwise, the backoff period is entered and
the receiver MUST accumulate external pending repair state from NORM_NACK messages and
NORM_CMD(REPAIR_ADV) messages received. At the end of the backoff time, the receiver SHALL generate
a NORM_NACK message only if the following conditions are met:

1. The sender's current transmit position (in terms of objectId::fecPayloadId) exceeds the earliest repair position
of the receiver.

2. The repair state accumulated from NORM_NACK and NORM_CMD(REPAIR_ADV) messages do not equal or
supersede the receiver's repair needs up to the sender transmission position at the time the NACK procedure
(backoff timeout) was initiated.

If these conditions are met, the receiver immediately generates a NORM_NACK message when the backoff timeout
expires. Otherwise, the receiver's NACK is considered to be "suppressed" and the message is not sent. At this
time, the receiver begins a "holdoff" period during which it constrains itself to not re-initiate the NACKing process.
The purpose of this timeout is to allow the sender worst-case time to respond to the repair needs before the receiver
requests repair again. The value of this "holdoff" timeout (T_rcvrHoldoff) as described in [RFC5401] is:
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T_rcvrHoldoff =(Ksender+2)*GRTTsender

The NORM_NACK message contains repair request content beginning with lowest ordinal repair position of the
receiver up through the coding block prior to the most recently heard ordinal transmission position for the sender.
If the size of the NORM_NACK content exceeds the sender's NormSegmentSize, the NACK content is truncated so
that the receiver only generates a single NORM_NACK message per NACK cycle for a given sender. In summary,
a single NACK message is generated containing the receiver's lowest ordinal repair needs.

For each partially-received FEC coding block requiring repair, the receiver SHALL, on its FIRST repair attempt
for the block, request the parity portion of the FEC coding block beginning with the lowest ordinal parity
"encoding_symbol_id" (i.e., "encoding_symbol_id" = "source_block_len") and request the number of FEC symbols
corresponding to its data segment erasure count for the block. On subsequent repair cycles for the same coding
block, the receiver SHALL request only those repair symbols from the first set it has not yet received up to the
remaining erasure count for that applicable coding block. Note that the sender may have provided other different,
additional parity segments for other receivers that could also be used to satisfy the local receiver's erasure-filling
needs. In the case where the erasure count for a partially-received FEC coding block exceeds the maximum number
of parity symbols available from the sender for the block (as indicated by the NORM_DATA "fec_num_parity"
field), the receiver SHALL request all available parity segments plus the ordinally highest missing data segments
required to satisfy its total erasure needs for the block. The goal of this strategy is for the overall receiver set to
request a lowest common denominator set of repair symbols for a given FEC coding block. This allows the sender
to construct the most efficient repair transmission segment set and enables effective NACK suppression among
the receivers even with uncorrelated packet loss. This approach also requires no synchronization among the
receiver set in their repair requests for the sender.

For FEC coding blocks or NormObjects missed in their entirety, the NORM receiver constructs repair requests
with NORM_NACK_BLOCK or NORM_NACK_OBJECT flags set as appropriate. The request for retransmission of
NORM_INFO is accomplished by setting the NORM_NACK_INFO flag in a corresponding repair request.

5.4  Sender NACK Processing and Response

The principle goal of the sender is to make forward progress in the transmission of data its application has enqueued.
However, the sender must occasionally "rewind" its logical transmission point to satisfy the repair needs of
receivers who have NACKed. Aggregation of multiple NACKs is used to determine an optimal repair strategy
when a NACK event occurs. Since receivers initiate the NACK process on coding block or object boundaries,
there is some loose degree of synchronization of the repair process even when receivers experience uncorrelated
data loss.

5.4.1  Sender Repair State Aggregation

When a sender is in its normal state of transmitting new data and receives a NACK, it begins a procedure to
accumulate NACK repair state from NORM_NACK messages before beginning repair transmissions. Note that this
period of aggregating repair state does NOT interfere with its ongoing transmission of new data.

As described in [RFC5401], the period of time during which the sender aggregates NORM_NACK messages is
equal to:

T_sndrAggregate = (Ksender+1)*GRTT

where "Ksender" is the same backoff scaling value used by the receivers, and GRTT is the sender's current
estimate of the group's greatest round-trip time. Note that for NORM unicast sessions the "T_sndrAggregate"
time can be set to ZERO since there is only one receiver. Similarly, the "Ksender" value should be set to ZERO
for NORM unicast sessions to minimize repair latency.

When this period ends, the sender "rewinds" by incorporating the accumulated repair state into its pending
transmission state and begins transmitting repair messages. After pending repair transmissions are completed, the
sender continues with new transmissions of any enqueued data. Also, at this point in time, the sender begins a
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"holdoff" timeout during which time the sender constrains itself from initiating a new repair aggregation cycle,
even if NORM_NACK messages arrive. As described in [RFC5401], the value of this sender "holdoff" period is:

T_sndrHoldoff = (1*GRTT)

If additional NORM_NACK messages are received during this sender "holdoff" period, the sender will immediately
incorporate these late-arriving messages into its pending transmission state ONLY if the NACK content is ordinally
greater than the sender's current transmission position. This "holdoff" time allows worst case time for the sender
to propagate its current transmission sequence position to the group, thus avoiding redundant repair transmissions.
After the holdoff timeout expires, a new NACK accumulation period can be begun (upon arrival of a NACK) in
concert with the pending repair and new data transmission. Recall that receivers are not to initiate the NACK
repair process until the sender's logical transmission position exceeds the lowest ordinal position of their repair
needs. With the new NACK aggregation period, the sender repeats the same process of incorporating accumulated
repair state into its transmission plan and subsequently "rewinding" to transmit the lowest ordinal repair data when
the aggregation period expires. Again, this is conducted in concert with ongoing new data and/or pending repair
transmissions.

5.4.2  Sender FEC Repair Transmission Strategy

The NORM sender should leverage transmission of FEC parity content for repair to the greatest extent possible.
Recall that the receivers use a strategy to request a lowest common denominator of explicit repair (including parity
content) in the formation of their NORM_NACK messages. Before falling back to explicitly satisfying different
receivers' repair needs, the sender can make use of the general erasure-filling capability of FEC-generated parity
segments. The sender can determine the maximum erasure filling needs for individual FEC coding blocks from
the NORM_NACK messages received during the repair aggregation period. Then, if the sender has a sufficient
number (less than or equal to the maximum erasure count) of previously unsent parity segments available for the
applicable coding blocks, the sender can transmit these in lieu of the specific packets the receiver set has requested.
Only after exhausting its supply of "fresh" (unsent) parity segments for a given coding block should the sender
resort to explicit transmission of the receiver set's repair needs. In general, if a sufficiently powerful FEC code is
used, the need for explicit repair will be an exception, and the fulfillment of reliable multicast can be accomplished
quite efficiently. However, the ability to resort to explicit repair allows the protocol to be reliable under even very
extreme circumstances.

NORM_DATA messages sent as repair transmissions SHALL be flagged with the NORM_FLAG_REPAIR flag.
This allows receivers to obey any policies that limit new receivers from joining the reliable transmission when
only repair transmissions have been received. Additionally, the sender SHOULD additionally flag NORM_DATA
transmissions sent as explicit repair with the NORM_FLAG_EXPLICIT flag.

Although NORM end system receivers do not make use of the NORM_FLAG_EXPLICIT flag, this message
transmission status could be leveraged by intermediate systems wishing to "assist" NORM protocol performance.
If such systems are properly positioned with respect to reciprocal reverse-path multicast routing, they need to
sub-cast only a sufficient count of non-explicit parity repairs to satisfy a multicast routing sub-tree's erasure filling
needs for a given FEC coding block. When the sender has resorted to explicit repair, then the intermediate systems
should sub-cast all of the explicit repair packets to those portions of the routing tree still requiring repair for a
given coding block. Note the intermediate systems will be required to conduct repair state accumulation for
sub-routes in a manner similar to the sender's repair state accumulation in order to have sufficient information to
perform the sub-casting. Additionally, the intermediate systems could perform additional NORM_NACK
suppression/aggregation as it conducts this repair state accumulation for NORM repair cycles. The detail of this
type of operation are beyond the scope of this document, but this information is provided for possible future
consideration.

5.4.3  Sender NORM_CMD(SQUELCH) Generation

If the sender receives a NORM_NACK message for repair of data it is no longer supporting, the sender generates
a NORM_CMD(SQUELCH) message to advertise its repair window and squelch any receivers from additional
NACKing of invalid data. The transmission rate of NORM_CMD(SQUELCH) messages is limited to once per
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2*GRTT. The "invalid_object_list" (if applicable) of the NORM_CMD(SQUELCH) message SHALL begin with
the lowest "object_transport_id" from the invalid NORM_NACK messages received since the last
NORM_CMD(SQUELCH) transmission. Lower ordinal invalid "object_transport_ids" should be included only
while the NORM_CMD(SQUELCH) payload is less than the sender's NormSegmentSize parameter.

5.4.4  Sender NORM_CMD(REPAIR_ADV) Generation

When a NORM sender receives NORM_NACK messages from receivers via unicast transmission, it uses
NORM_CMD(REPAIR_ADV) messages to advertise its accumulated repair state to the receiver set since the
receiver set is not directly sharing their repair needs via multicast communication. A NORM sender implementation
MAY use a separate port number from the NormSession port number as the source port for its transmissions. Thus
NORM receivers can direct any unicast feedback messages to this sender port number that is distinct from the
NORM session (or destination) port number. Then, the NORM sender implementation can discriminate unicast
feedback messages from multicast feedback messages when there is a mix of multicast and unicast feedback
receivers. The NORM_CMD(REPAIR_ADV) message is multicast to the receiver set by the sender. The payload
portion of this message has content in the same format as the NORM_NACK receiver message payload. Receivers
are then able to perform feedback suppression in the same manner as with NORM_NACK messages directly received
from other receivers. Note the sender does not merely retransmit NACK content it receives, but instead transmits
a representation of its aggregated repair state. The transmission of NORM_CMD(REPAIR_ADV) messages are
subject to the sender transmit rate limit and NormSegmentSize limitation. When the NORM_CMD(REPAIR_ADV)
message is of maximum size, receivers SHALL consider the maximum ordinal transmission position value
embedded in the message as the senders current transmission position and implicitly suppress requests for ordinally
higher repair. For congestion control operation, the sender may also need to provide information so that dynamic
congestion control feedback can be suppressed as needed among receivers. This document specifies the NORM-CC
Feedback Header Extension that is applied for baseline NORM-CC operation. If other congestion control
mechanisms are used within a NORM implementation, other header extensions may be defined. Whatever content
format is used for this purpose should ensure that maximum possible suppression state is conveyed to the receiver
set.

5.5  Additional Protocol Mechanisms

In addition to the principal function of data content transmission and repair, there are some other protocol
mechanisms that help NORM to adapt to network conditions and play fairly with other coexistent protocols.

5.5.1  Greatest Round-trip Time Collection

For NORM receivers to appropriately scale backoff timeouts and the senders to use proper corresponding timeouts,
the participants must agree on a common timeout basis. Each NORM sender monitors the round-trip time of active
receivers and determines the group greatest round-trip time (GRTT). The sender advertises this GRTT estimate
in every message it transmits so that receivers have this value available for scaling their timers. To measure the
current GRTT, the sender periodically sends NORM_CMD(CC) messages that contain a locally generated timestamp.
Receivers are expected to record this timestamp along with the time the NORM_CMD(CC) message is received.
Then, when the receivers generate feedback messages to the sender, an adjusted version of the sender timestamp
is embedded in the feedback message (NORM_NACK or NORM_ACK). The adjustment adds the amount of time
the receiver held the timestamp before generating its response. Upon receipt of this adjusted timestamp, the sender
is able to calculate the round-trip time to that receiver.

The round-trip time for each receiver is fed into an algorithm that weights and smoothes the values for a conservative
estimate of the GRTT. The algorithm and methodology are described in the Multicast NACK Building Block
document  [RFC5401] in the section entitled "One-to-Many Sender GRTT Measurement". A conservative estimate
helps guarantee feedback suppression at a small cost in overall protocol repair delay. The sender's current estimate
of GRTT is advertised in the "grtt" field found in all NORM sender messages. The advertised GRTT is also limited
to a minimum of the nominal inter-packet transmission time given the sender's current transmission rate and
system clock granularity. The reason for this additional limit is to keep the receiver somewhat event-driven by
making sure the sender has had adequate time to generate any response to repair requests from receivers given
transmit rate limitations due to congestion control or configuration.
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When the NORM-CC Rate header extension is present in NORM_CMD(CC) messages, the receivers respond to
NORM_CMD(CC) messages as described in Section 5.5.2, "NORM Congestion Control Operation". The
NORM_CMD(CC) messages are periodically generated by the sender as described for congestion control operation.
This provides for proactive, but controlled, feedback from the group in the form of NORM_ACK messages. This
provides for GRTT feedback even if no NORM_NACK messages are being sent. If operating without congestion
control in a closed network, the NORM_CMD(CC) messages may be sent periodically without the NORM-CC
Rate header extension. In this case, receivers will only provide GRTT measurement feedback when NORM_NACK
messages are generated since no NORM_ACK messages are generated. In this case, the NORM_CMD(CC) messages
may be sent less frequently, perhaps as little as once per minute, to conserve network capacity. Note that the
NORM-CC Rate header extension may also be used to proactively solicit RTT feedback from the receiver group
per congestion control operation even though the sender may not be conducting congestion control rate adjustment.
NORM operation without congestion control should be considered only in closed networks.

5.5.2  NORM Congestion Control Operation

This section describes baseline congestion control operation for the NORM protocol (NORM-CC). The supporting
NORM message formats and approach described here are an adaptation of the equation-based TCP-Friendly
Multicast Congestion Control (TFMCC) approach described in [RFC4654]. This congestion control scheme is
REQUIRED for operation within the general Internet unless the NORM implementation is adapted to use another
IETF-sanctioned reliable multicast congestion control mechanism (e.g., PGMCC [PgmccPaper]). With this
TFMCC-based approach, the transmissions of NORM senders are controlled in a rate-based manner as opposed
to window-based congestion control algorithms as in TCP. However, it is possible that the NORM protocol
message set may alternatively be used to support a window-based multicast congestion control scheme such as
PGMCC. The details of that alternative may be described separately or in a future revision of this document. In
either case (rate-based TFMCC or window-based PGMCC), successful control of sender transmission depends
upon collection of sender-to-receiver packet loss estimates and RTTs to identify the congestion control bottleneck
path(s) within the multicast topology and adjust the sender rate accordingly. The receiver with loss and RTT
estimates that correspond to the lowest resulting calculated transmission rate is identified as the "current limiting
receiver" (CLR). In the case of a tie (where candidate CLRs are within 10% of the same calculated rate), the
receiver with the largest RTT value SHOULD be designated as the CLR.

As described in [TcpModel], a steady-state sender transmission rate, to be "friendly" with competing TCP flows
can be calculated as:

                                       S
Rsender = ----------------------------------------------------------
         tRTT*(sqrt((2/3)*p) + 12*sqrt((3/8)*p) * p * (1 + 32*(p^2)))

where

S = nominal transmitted packet size. (In NORM, the "nominal" packet size can be determined by the sender as
an exponentially weighted moving average (EWMA) of transmitted packet sizes to account for variable message
sizes).

tRTT = RTT estimate of the current "current limiting receiver" (CLR).

p = loss event fraction of the CLR.

To support congestion control feedback collection and operation, the NORM sender periodically transmits
NORM_CMD(CC) command messages. NORM_CMD(CC) messages are multiplexed with NORM data and repair
transmissions and serve several purposes:

1. Stimulate explicit feedback from the general receiver set to collect congestion control information.

2. Communicate state to the receiver set on the sender's current congestion control status including details of the
CLR.

3. Initiate rapid (immediate) feedback from the CLR in order to closely track the dynamics of congestion control
for that current worst path in the group multicast topology.
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The format of the NORM_CMD(CC) message is describe in Section 4.2.3 of this document. The NORM_CMD(CC)
message contains information to allow measurement of RTTs, to inform the group of the congestion control CLR,
and to provide feedback of individual RTT measurements to the receivers in the group. The NORM_CMD(CC)
also provides for exciting feedback from OPTIONAL "potential limiting receiver" (PLR) nodes that may be
determined administratively or possibly algorithmically based on congestion control feedback. PLR nodes are
receivers that have been identified to have potential for (perhaps soon) becoming the CLR and thus immediate,
up-to-date feedback is beneficial for congestion control performance. The details of PLR selection are not discussed
in this document.

5.5.2.1  NORM_CMD(CC) Transmission

The NORM_CMD(CC) message is transmitted periodically by the sender along with its normal data transmission.
Note that the repeated transmission of NORM_CMD(CC) messages may be initiated some time before transmission
of user data content at session startup. This may be done to collect some estimation of the current state of the
multicast topology with respect to group and individual RTT and congestion control state.

A NORM_CMD(CC) message is immediately transmitted at sender startup. The interval of subsequent
NORM_CMD(CC) message transmission is determined as follows:

1. By default, the interval is set according to the current sender GRTT estimate. A startup GRTT of 0.5 seconds
is recommended when no feedback has yet been received from the group.

2. Until a CLR has been identified (based on previous receiver feedback) or when no data transmission is pending,
the NORM_CMD(CC) interval is doubled up from its current interval to a maximum of once per 30 seconds.
This results in a low duty cycle for NORM_CMD(CC) probing when no CLR is identified or there is no pending
data to transmit.

3. When a CLR has been identified (based on receiver feedback) and data transmission is pending, the probing
interval is set to the RTT between the sender and the CLR (RTT_clr).

4. Additionally, when the data transmission rate is low with respect to the RTT_clr interval used for probing,
the implementation should ensure that no more than one NORM_CMD(CC) message is sent per NORM_DATA
message when there is data pending transmission. This ensures that the transmission of this control message
is not done to the exclusion of user data transmission.

The NORM_CMD(CC) "cc_sequence" field is incremented with each transmission of a NORM_CMD(CC) command.
The greatest "cc_sequence" recently received by receivers is included in their feedback to the sender. This allows
the sender to determine the age of feedback to assist in congestion avoidance.

The NORM-CC Rate Header Extension is applied to the NORM_CMD(CC) message and the sender advertises its
current transmission rate in the "send_rate" field. The rate information is used by receivers to initialize loss
estimation during congestion control startup or restart.

The "cc_node_list" contains a list of entries identifying receivers and their current congestion control state (status
"flags", "rtt" and "loss" estimates). The list may be empty if the sender has not yet received any feedback from
the group. If the sender has received feedback, the list will minimally contain an entry identifying the CLR. A
NORM_FLAG_CC_CLR flag value is provided for the "cc_flags" field to identify the CLR entry. It is
RECOMMENDED that the CLR entry be the first in the list for implementation efficiency. Additional entries in
the list are used to provide sender-measured individual RTT estimates to receivers in the group. The number of
additional entries in this list is dependent upon the percentage of control traffic the sender application is willing
to send with respect to user data message transmissions. More entries in the list may allow the sender to be more
responsive to congestion control dynamics. The length of the list may be dynamically determined according to
the current transmission rate and scheduling of NORM_CMD(CC) messages. The maximum length of the list
corresponds to the sender's NormSegmentSize parameter for the session. The inclusion of additional entries in the
list based on receiver feedback are prioritized with following rules:

1. Receivers that have not yet been provided a RTT measurement get first priority. Of these, those with the
greatest loss fraction receive precedence for list inclusion.

2. Secondly, receivers that have previously been provided a RTT measurement are included with receivers
yielding the lowest calculated congestion rate getting precedence.
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There are "cc_flag" values in addition to NORM_FLAG_CC_CLR that are used for other congestion control
functions. The NORM_FLAG_CC_PLR flag value is used to mark additional receivers from that the sender would
like to have immediate, non-suppressed feedback. These may be receivers that the sender algorithmically identified
as potential future CLRs or that have been pre-configured as potential congestion control points in the network.
The NORM_FLAG_CC_RTT indicates the validity of the "cc_rtt" field for the associated receiver node. Normally,
this flag will be set since the receivers in the list will typically be receivers from which the sender has received
feedback. However, in the case that the NORM sender has been pre-configured with a set of PLR nodes, feedback
from those receivers may not yet have been collected and thus the "cc_rtt" field does not contain a valid value
when this flag is not set. Similarly, a value of ZERO for the "cc_rate" field here should be treated as an invalid
value and be ignored for the purposes of feedback suppression, etc.

5.5.2.2  NORM_CMD(CC) Feedback Response

Receivers explicitly respond to NORM_CMD(CC) messages in the form of a NORM_ACK(RTT) message. The
goal of the congestion control feedback is to determine the receivers with the lowest congestion control rates.
Receivers that are marked as CLR or PLR nodes in the NORM_CMD(CC) "cc_node_list" immediately provide
feedback in the form of a NORM_ACK to this message. When a NORM_CMD(CC) is received, non-CLR or non-PLR
nodes initiate random feedback backoff timeouts similar to that used when the receiver initiates a repair cycle
(see Section 5.3) in response to detection of data loss. The backoff timeout for the congestion control response is
generated as follows:

T_backoff = RandomBackoff(K*GRTTsender, GSIZEsender)

The "RandomBackoff()" algorithm provides a truncated exponentially distributed random number and is
described in the Multicast NACK Building Block document  [RFC5401]. The same backoff factor K = Ksender
MAY be used as with NORM_NACK suppression. However, in cases where the application purposefully specifies
a very small Ksender backoff factor to minimize the NACK repair process latency (trading off group size
scalability), it is RECOMMENDED that a larger backoff factor for congestion control feedback is maintained,
since there may often be a larger volume of congestion control feedback than NACKs in many cases and some
congestion control feedback latency may be tolerable where reliable delivery latency is not. As previously noted,
a backoff factor value of K = 4 is generally recommended for ASM operation and K = 6 for SSM operation.
A receiver SHALL cancel the backoff timeout and thus its pending transmission of a NORM_ACK(RTT) message
under the following conditions:

1. The receiver generates another feedback message (NORM_NACK or other NORM_ACK) before the congestion
control feedback timeout expires (these messages will convey the current congestion control feedback
information),

2. A NORM_CMD(CC) or other receiver feedback with an ordinally greater "cc_sequence" field value is received
before the congestion control feedback timeout expires (this is similar to the TFMCC feedback round number),

3. When the T_backoff is greater than 1*GRTTsender. This prevents NACK implosion in the event of
sender or network failure,

4. "Suppressing" congestion control feedback is heard from another receiver (in a NORM_ACK or NORM_NACK)
or via a NORM_CMD(REPAIR_ADV) message from the sender. The local receiver's feedback is "suppressed"
if the rate of the competing feedback (Rfb) is sufficiently close to or less than the local receiver's calculated
rate (Rcalc). The local receiver's feedback is canceled when Rcalc > (0.9 * Rfb). Also note receivers
that have not yet received an RTT measurement from the sender are suppressed only by other receivers that
have not yet measured RTT. Additionally, receivers whose RTT estimate has aged considerably (i.e., they
haven't been included in the NORM_CMD(CC) "cc_node_list" in a long time) may wish to compete as a receiver
with no prior RTT measurement after some long term expiration period.

When the backoff timer expires, the receiver SHALL generate a NORM_ACK(RTT) message to provide feedback
to the sender and group. This message may be multicast to the group for most effective suppression in ASM
topologies or unicast to the sender depending upon how the NORM protocol is deployed and configured.

Whenever any feedback is generated (including this NORM_ACK(RTT) message), receivers include an adjusted
version of the sender timestamp from the most recently received NORM_CMD(CC) message and the "cc_sequence"
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value from that command in the applicable NORM_ACK or NORM_NACK message fields. For NORM-CC operation,
any generated feedback message SHALL also contain the NORM-CC Feedback header extension. The receiver
provides its current "cc_rate" estimate, "cc_loss" estimate, "cc_rtt" if known, and any applicable "cc_flags" via
this header extension.

During slow start (when the receiver has not yet detected loss from the sender), the receiver uses a value equal
to two times its measured rate from the sender in the "cc_rate" field. For steady-state congestion control operation,
the receiver "cc_rate" value is from the equation-based value using its current loss event estimate and
sender<->receiver RTT information. (The GRTT is used when the receiver has not yet measured its individual
RTT).

The "cc_loss" field value reflects the receiver's current loss event estimate with respect to the sender in question.

When the receiver has a valid individual RTT measurement, it SHALL include this value in the "cc_rtt" field.
The NORM_FLAG_CC_RTT MUST be set when the "cc_rtt" field is valid.

After a congestion control feedback message is generated or when the feedback is suppressed, a non-CLR receiver
begins a "holdoff" timeout period during which it will restrain itself from providing congestion control feedback,
even if NORM_CMD(CC) messages are received from the sender (unless the receive becomes marked as a CLR
or PLR node). The value of this holdoff timeout (T_ccHoldoff) period is:

T_ccHoldoff = (K*GRTT)

Thus, non-CLR receivers are constrained to providing explicit congestion control feedback once per K*GRTT
intervals. Note, however, that as the session progresses, different receivers will be responding to different
NORM_CMD(CC) messages and there will be relatively continuous feedback of congestion control information
while the sender is active.

5.5.2.3  Congestion Control Rate Adjustment

During steady-state operation, the sender will directly adjust its transmission rate to the rate indicated by the
feedback from its currently selected CLR. As noted in [TfmccPaper], the estimation of parameters (loss and RTT)
for the CLR will generally constrain the rate changes possible within acceptable bounds. For rate increases, the
sender SHALL observe a maximum rate of increase of one packet per RTT at all times during steady-state
operation.

The sender processes congestion control feedback from the receivers and selects the CLR based on the lowest
rate receiver. Receiver rates are either determined directly from the slow start "cc_rate" provided by the receiver
in the NORM-CC Feedback header extension or by performing the equation-based calculation using individual
RTT and loss estimates ("cc_loss") as feedback is received.

The sender can calculate a current RTT for a receiver (RTT_rcvrNew) using the "grtt_response" timestamp
included in feedback messages. When the "cc_rtt" value in a response is not valid, the sender simply uses this
RTT_rcvrNew value as the receiver's current RTT (RTT_rcvr). For non-CLR and non-PLR receivers, the
sender can use the "cc_rtt" value provided in the NORM-CC Feedback header extension as the receiver's previous
RTT measurement (RTT_rcvrPrev) to smooth according to:

RTT_rcvr = 0.5 * RTT_rcvrPrev + 0.5 * RTT_rcvrNew

For CLR receivers where feedback is received more regularly, the sender SHOULD maintain a more smoothed
RTT estimate upon new feedback from the CLR where:

RTT_clr = 0.9 * RTT_clr + 0.1 * RTT_clrNew

"RTT_clrNew" is the new RTT calculated from the timestamp in the feedback message received from the CLR.
The RTT_clr is initialized to RTT_clrNew on the first feedback message received. Note that the same procedure
is observed by the sender for PLR receivers and that if a PLR is "promoted" to CLR status, the smoothed estimate
can be continued.
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There are some additional periods besides steady-state operation that need to be considered in NORM-CC operation.
These periods are:

1. during session startup,

2. when no feedback is received from the CLR, and

3. when the sender has a break in data transmission.

During session startup, the congestion control operation SHALL observe a "slow start" procedure to quickly
approach its fair bandwidth share. An initial sender startup rate is assumed where:

Rinitial = MIN(NormSegmentSize / GRTT, NormSegmentSize) bytes/second.

The rate is increased only when feedback is received from the receiver set. The "slow start" phase proceeds until
any receiver provides feedback indicating that loss has occurred. Rate increase during slow start is applied as:

Rnew = Rrecv_min

where Rrecv_min is the minimum reported receiver rate in the "cc_rate" field of congestion control feedback
messages received from the group. Note that during slow start, receivers use two times their measured rate from
the sender in the "cc_rate" field of their feedback. Rate increase adjustment is limited to once per GRTT during
slow start.

If the CLR or any receiver intends to leave the group, it will set the NORM_FLAG_CC_LEAVE in its congestion
control feedback message as an indication that the sender should not select it as the CLR. When the CLR changes
to a lower rate receiver, the sender should immediately adjust to the new lower rate. The sender is limited to
increasing its rate at one additional packet per RTT towards any new, higher CLR rate.

The sender should also track the age of the feedback it has received from the CLR by comparing its current
"cc_sequence" value (Seq_sender) to the last "cc_sequence" value received from the CLR (Seq_clr). As
the age of the CLR feedback increases with no new feedback, the sender SHALL begin reducing its rate once per
RTT_clr as a congestion avoidance measure. The following algorithm is used to determine the decrease in
sender rate (Rsender bytes/sec) as the CLR feedback, unexpectedly, excessively ages:

Age = Seq_sender - Seq_clr;
if (Age > 4) Rsender = Rsender * 0.5;

This rate reduction is limited to the lower bound on NORM transmission rate. After NORM_ROBUST_FACTOR
consecutive NORM_CMD(CC) rounds without any feedback from the CLR, the sender SHOULD assume the CLR
has left the group and pick the receiver with the next lowest rate as the new CLR. Note this assumes that the
sender does not have explicit knowledge that the CLR intentionally left the group. If no receiver feedback is
received, the sender MAY wish to withhold further transmissions of NORM_DATA segments and maintain
NORM_CMD(CC) transmissions only until feedback is detected. After such a CLR timeout, the sender will be
transmitting with a minimal rate and should return to slow start as described here for a break in data transmission.

When the sender has a break in its data transmission, it can continue to probe the group with NORM_CMD(CC)
messages to maintain RTT collection from the group. This will enable the sender to quickly determine an appropriate
CLR upon data transmission restart. However, the sender should exponentially reduce its target rate to be used
for transmission restart as time since the break elapses. The target rate SHOULD be recalculated once per RTT_clr
as:

Rsender = Rsender * 0.5;

If the minimum NORM rate is reached, the sender should set the NORM_FLAG_START flag in its NORM_CMD(CC)
messages upon restart and the group should observer slow start congestion control procedures until any receiver
experiences a new loss event.
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5.5.3  NORM Positive Acknowledgment Procedure

NORM provides options for the source application to request positive acknowledgment (ACK) of
NORM_CMD(FLUSH) and NORM_CMD(ACK_REQ) messages from members of the group. There are some
specific acknowledgment requests defined for the NORM protocol and a range of acknowledgment request types
that are left to be defined by the application. One predefined acknowledgment type is the NORM_ACK_FLUSH
type. This acknowledgment is used to determine if receivers have achieved completion of reliable reception up
through a specific logical transmission point with respect to the sender's sequence of transmission. The
NORM_ACK_FLUSH acknowledgment may be used to assist in application flow control when the sender has
information on a portion of the receiver set. Another predefined acknowledgment type is NORM_ACK(CC), which
is used to explicitly provide congestion control feedback in response to NORM_CMD(CC) messages transmitted
by the sender for NORM-CC operation. Note the NORM_ACK(CC) response does NOT follow the positive
acknowledgment procedure described here. The NORM_CMD(ACK_REQ) and NORM_ACK messages contain an
"ack_type" field to identify the type of acknowledgment requested and provided. A range of "ack_type" values
is provided for application-defined use. While the application is responsible for initiating the acknowledgment
request and interprets application-defined "ack_type" values, the acknowledgment procedure SHOULD be
conducted within the protocol implementation to take advantage of timing and transmission scheduling information
available to the NORM transport.

The NORM positive acknowledgment procedure uses polling by the sender to query the receiver group for
response. Note this polling procedure is not intended to scale to very large receiver groups, but could be used in
large group setting to query a critical subset of the group. Either the NORM_CMD(ACK_REQ), or when applicable,
the NORM_CMD(FLUSH) message is used for polling and contains a list of NormNodeIds for receivers that should
respond to the command. The list of receivers providing acknowledgment is determined by the source application
with a priori knowledge of participating nodes or via some other application-level mechanism.

The ACK process is initiated by the sender that generates NORM_CMD(FLUSH) or NORM_CMD(ACK_REQ)
messages in periodic rounds. For NORM_ACK_FLUSH requests, the NORM_CMD(FLUSH) contain a
"object_transport_id" and "fec_payload_id" denoting the watermark transmission point for which acknowledgment
is requested. This watermark transmission point is echoed in the corresponding fields of the NORM_ACK(FLUSH)
message sent by the receiver in response. NORM_CMD(ACK_REQ) messages contain an "ack_id" field which is
similarly echoed in response so that the sender may match the response to the appropriate request.

In response to the NORM_CMD(ACK_REQ), the listed receivers randomly spread NORM_ACK messages uniformly
in time over a window of (1*GRTT). These NORM_ACK messages are typically unicast to the sender. (Note that
NORM_ACK(CC) messages SHALL be multicast or unicast in the same manner as NORM_NACK messages).

The ACK process is self-limiting and avoids ACK implosion in that:

1. Only a single NORM_CMD(ACK_REQ) message is generated once per (2*GRTT), and,

2. The size of the "acking_node_list" of NormNodeIds from which acknowledgment is requested is limited to a
maximum of the sender NormSegmentSize setting per round of the positive acknowledgment process.

Because the size of the included list is limited to the sender's NormSegmentSize setting, multiple
NORM_CMD(ACK_REQ) rounds may be required to achieve responses from all receivers specified. The content
of the attached NormNodeId list will be dynamically updated as this process progresses and NORM_ACK responses
are received from the specified receiver set. As the sender receives valid responses (i.e., matching watermark
point or "ack_id") from receivers, it SHALL eliminate those receivers from the subsequent NORM_CMD(ACK_REQ)
message "acking_node_list" and add in any pending receiver NormNodeIds while keeping within the
NormSegmentSize limitation of the list size. Each receiver is queried a maximum number of times
(NORM_ROBUST_FACTOR, by default). Receivers not responding within this number of repeated requests are
removed from the payload list to make room for other potential receivers pending acknowledgment. The
transmission of the NORM_CMD(ACK_REQ) is repeated until no further responses are required or until the repeat
threshold is exceeded for all pending receivers. The transmission of NORM_CMD(ACK_REQ) or
NORM_CMD(FLUSH) messages to conduct the positive acknowledgment process is multiplexed with ongoing
sender data transmissions. However, the NORM_CMD(FLUSH) positive acknowledgment process may be interrupted
in response to negative acknowledgment repair requests (NACKs) received from receivers during the
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acknowledgment period. The NORM_CMD(FLUSH) positive acknowledgment process is restarted for receivers
pending acknowledgment once any the repairs have been transmitted.

In the case of NORM_CMD(FLUSH) commands with an attached "acking_node_list", receivers will not ACK
until they have received complete transmission of all data up to and including the given watermark transmission
point. All receivers SHALL interpret the watermark point provided in the request NACK for repairs if needed as
for NORM_CMD(FLUSH) commands with no attached "acking_node_list".

5.5.4  Group Size Estimate

NORM sender messages contain a "gsize" field that is a representation of the group size and is used in scaling
random backoff timer ranges. The use of the group size estimate within the NORM protocol does not require a
precise estimation and works reasonably well if the estimate is within an order of magnitude of the actual group
size. By default, the NORM sender group size estimate may be administratively configured. Also, given the
expected scalability of the NORM protocol for general use, a default value of 10,000 is RECOMMENDED for
use as the group size estimate.

It is possible that group size may be algorithmically approximated from the volume of congestion control feedback
messages which follow the exponentially weighted random backoff. However, the specification of such an
algorithm is currently beyond the scope of this document.
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6.  Security Considerations

The same security considerations that apply to the NORM, TFMCC, and FEC Building Blocks also apply to the
NORM protocol. In addition to vulnerabilities that any IP and IP multicast protocol implementation may be
generally subject to, the NACK-based feedback of NORM may be exploited by replay attacks which force the
NORM sender to unnecessarily transmit repair information. This MAY be addressed by network layer IP security
implementations that guard against this potential security exploitation. The NORM protocol is compatible with
the use of the IP security (IPsec) architecture described in [RFC4301] and the IPsec Encapsulating Security
Payload (ESP) protocol or Authentication Header (AF) extension MAY be used to secure IP packets transmitted
by NORM participants.

Alternatively, a header extension may be applied to the NORM protocol to provide authentication of NORM
messages. For this purpose the EXT_AUTH header extension (HET = 1) is defined. The format of this header
extension and its processing is outside the scope of this document and is to be communicated out-of-band as part
of the session description. It is possible that an EXT_AUTH implementation of MAY also provide for encryption
of NORM message payloads as well as authentication. The use of this approach as compared to IPsec can allow
for header compression techniques to be applied jointly to IP and NORM protocol headers. In cases where security
analysis deems that encryption of NORM protocol header content is beneficial or necessary, the aforementioned
use of IPsec ESP may be more appropriate. If EXT_AUTH is present, whatever packet authentication checks that
can be performed immediately upon reception of the packet SHOULD be performed before accepting the packet
and performing any congestion control-related action on it. Some packet authentication schemes impose a delay
of several seconds between when a packet is received and when the packet is fully authenticated. Any congestion
control related action that is appropriate MUST NOT be postponed by any such full packet authentication.
Consideration SHOULD also be given to the potential for replay-attacks that would transplant authenticated
packets from one NORM session to another to disrupt service. To avoid this potential, unique keys SHOULD be
used on a per-session basis or NORM sender nodes SHOULD use unique "instance_id" identifiers that are managed
as part of the security association for the sessions.

It is RECOMMENDED that such security mechanisms be used when available. It should be noted that NORM
participants can use the "sequence" field from the NORM Common Message Header to detect replay attacks. This
can be accomplished if the NORM sender is willing to maintain state on receivers which are NACKing. A cache
of such receiver state can be used to provide protection against NACK replay attacks. NORM receivers SHOULD
also maintain similar state for protection against possible replay of other receiver messages in ASM operation as
well. For example, a receiver could be suppressed from providing NACK or congestion control feedback by replay
of certain receiver messages. For these reasons, authentication of NORM messages (e.g., via IPsec) is
RECOMMENDED for protection against similar attacks that might use fabricated messages. Also, encryption of
messages to provide confidentiality of application data and protect privacy of users MAY also be applied using
IPsec or similar mechanisms. When any such cryptographic measures are used, it is RECOMMENDED that an
approach such as described in the Group Domain of Interpretation (GDOI) [RFC3547], Multimedia Internet
KEYing (MIKEY) [RFC3830] or Group Secure Association Key Management Protocol (GSAKMP) [RFC4535]
specifications for automated key management is applied.

It is also important to note that while NORM does leverage FEC-based repair for scalability, this alone does not
guarantee integrity of received data. Application-level integrity-checking of data content is highly
RECOMMENDED.

6.1  Baseline Secure NORM Operation

This section describes a baseline mode of secure NORM protocol operation based on application of the IPsec
security protocol. This approach is documented here to provide a reference, interoperable secure mode of operation.
However, additional approaches to NORM security, including other forms of IPsec application, MAY be specified
in the future. For example, the use of the EXT_AUTH header extension could enable NORM-specific authentication
or security encapsulation headers similar to those of IPsec to be specified and inserted into the NORM protocol
message headers. This would allow header compression techniques to be applied to IP and NORM protocol
headers when needed in a similar fashion to that of RTP [RFC1889] and as preserved in the specification for
Secure Real Time Protocol (SRTP) [RFC3711].
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The baseline approach described is applicable to NORM operation configured for SSM (or SSM-like) operation
where there is a single sender and the receivers are providing unicast feedback. This form of NORM operation
allows for IPsec to be used with a manageable number of security associations (SA).

6.1.1  IPsec Approach

For NORM one-to-many SSM operation with unicast feedback from receivers, each node SHALL be configured
with two transport mode IPsec security associations and corresponding Security Policy Database (SPD) entries.
One entry will be used for sender-to-group multicast packet authentication and optionally encryption while the
other entry will be used to provide security for the unicast feedback messaging from the receiver(s) to the sender.

The NORM sender SHALL use an IPsec SA configured for ESP protocol [RFC4303] operation with the option
for data origination authentication enabled. It is also RECOMMENDED that this IPsec ESP SA be also configured
to provide confidentiality protection for IP packets containing NORM protocol messages. This is suggested to
make the realization of complex replay attacks much more difficult. The encryption key for this SA SHALL be
preplaced at the sender and receiver(s) prior to NORM protocol operation. Use of automated key management is
RECOMMENDED as a rekey SHALL be required prior to expiration of the sequence space for the SA. This is
necessary so that receivers may use the built-in IPsec replay attack protection possible for an IPsec SA with a
single source (the NORM sender). Thus the receivers SHALL enable replay attack protection for this SA used to
secure NORM sender traffic. An IPsec SPD entry MUST be configured to process outbound packets to the session
(destination) address and UDP port number of the applicable (NormSession).

The NORM receiver(s) MUST be configured with the SA and SPD entry to properly process the IPsec-secured
packets from the sender. The NORM receiver(s) SHALL also use a common, second IPsec SA (common Security
Parameter Index (SPI) and encryption key) configured for ESP operation with the option for data origination
authentication enabled. Similar to the NORM sender, is RECOMMENDED this IPsec ESP SA be also configured
to provide confidentiality protection for IP packets containing NORM protocol messages. The receivers MUST
have an IPsec SPD entry configured to process outbound NORM/UDP packets directed to the NORM sender
source address and port number using this second SA. As noted for NORM unicast feedback, the sender's
transmission port number SHOULD be distinct from the multicast session port number to allow discrimination
between unicast and multicast feedback messages when access to the IP destination address is not possible (e.g.,
a user-space NORM implementation). For processing of packets from receivers, the NORM sender SHALL be
configured with this common, second SA (and the corresponding SPD entry needed) in order to properly process
messages from the receiver. Note that built-in IPsec replay attack protection for this second SA at the sender
MUST be disabled.

Multiple receivers using a common IPsec SA for traffic directed to the NORM sender (i.e., many-to-one) prevents
the use of built-in IPsec replay attack protection by the NORM sender with current IPsec implementations. So,
to support a fully secure mode of operation, the NORM sender implementation MUST provide replay attack
protection based upon the "sequence" field of NORM protocol messages from receivers. This can be accomplished
with high assurance of security, even with the limited size (16-bits) of this field, because

1. NORM receiver NACK and non-CLR ACK feedback messages are sparse.

2. The more frequent NORM_ACK feedback from CLR or PLR nodes are only a small set of receivers for which
the sender must keep more persistent replay attack state.

3. NORM_NACK feedback messages that precede the sender's current repair window do not significantly impact
protocol operation (generation of NORM_CMD(SQUELCH) is limited) and could be in fact ignored. This means
the sender can prune any replay attack state for receivers that precede the current repair window.

4. NORM_ACK messages correspond to either a specific sender "ack_id", the sender "cc_sequence" for ACKs
sent in response to NORM_CMD(CC), or the sender's current repair window in the case of ACKs sent in
response to NORM_CMD(FLUSH). Thus, the sender can prune any replay attack state for receivers that precede
the current applicable sequence or repair window space.

Note that use of ESP confidentiality, as RECOMMENDED, for secure NORM protocol operation makes it more
difficult for adversaries to conduct effective replay attacks. Additionally, it should be noted that a NORM sender
implementation with access to the full ESP protocol header could also use the ESP sequence information to make
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this form of replay attack protection even more robust. The design of this baseline security approach for NORM
intentionally places any more complex processing state or processing (e.g. replay attack protection given multiple
receivers) at the NORM sender since NORM receiver implementations may need to have a more light-weight
realization in many cases.

This baseline approach can be used for NORM protocol sessions with multiple senders if the SA pairs described
are established for each sender. For small-sized groups, it is even possible that many-to-many (ASM) IPsec
configuration could be achieved where each participant uses a unique SA (with a unique SPI). This does not scale
to larger group sizes given the complex set of SA and SPD entries each participant would need to maintain.

It is anticipated in early deployments of this baseline approach to NORM security that key management will be
conducted out-of-band with respect to NORM protocol operation. In the case of one-to-many NORM operation,
it is possible that receivers may retrieve keying information from a central server as needed or otherwise conduct
group key updates with a similar centralized approach. However, it may be possible with some key management
schemes for rekey messages to be transmitted to the group as a message or transport object within the NORM
reliable transfer session. Similarly, for group-wise communication sessions it is possible that potential group
participants may request keying and/or rekeying as part of NORM communications. Additional specification is
necessary to define an in-band key management scheme for NORM sessions perhaps using the mechanisms of
the automated group key management specifications cited in this document.

6.1.2  IPsec Requirements

In order to implement this secure mode of NORM protocol operation, the following IPsec capabilities are required.

6.1.2.1  Selectors

The implementation MUST be able to use the source address, destination address, protocol (UDP), and UDP port
numbers as selectors in the SPD.

6.1.2.2  Mode

IPsec in transport mode MUST be supported. The use of IPsec [RFC4301] processing for secure NORM traffic
SHOULD also be REQUIRED such that unauthenticated packets are not received by the NORM protocol
implementation .

6.1.2.3  Key Management

An automated key management scheme for group key distribution and rekeying such as GDOI [RFC3547],
GSAKMP [RFC4535], or MIKEY [RFC3830] SHOULD be used. Relatively short-lived NORM sessions MAY
be able to use Manual Keying with a single, preplaced key, particularly if Extended Sequence Numbering (ESN)
[RFC4303] is available in the IPsec implementation used. It should also be noted that it may be possible for key
update messages (e.g., the GDOI GROUPKEY-PUSH message) to be included in the NORM application reliable
data transmission if appropriate interfaces were available between the NORM application and the key management
daemon.

6.1.2.4  Security Policy

Receivers SHOULD accept connections only from the designated, authorized sender(s). It is expected that
appropriate key management will provide encryption keys only to receivers authorized to participate in a designated
session. The approach outlined here allows receiver sets to be controlled on a per-sender basis.

6.1.2.5  Authentication and Encryption

Large NORM group sizes will necessitate some form of key management that does rely upon shared secrets. The
GDOI and GSAKMP protocols mentioned here allow for certificate-based authentication. These certificates
SHOULD use IP addresses for authentication although it may alternatively possible to have authentication
associated with pre-assigned NormNodeId values. However, it is likely that available group key management
implementations will not be NORM-specific.
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6.1.2.6  Availability

The IPsec requirements profile outlined here is commonly available on many potential NORM hosts. The principal
issue is that configuration and operation of IPsec typically requires privileged user authorization. Automated key
management implementations are typically configured with the privileges necessary to effect system IPsec
configuration needed.
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7.  IANA Considerations

Header extension identifiers for the NORM protocol are subject to IANA registration. Additionally, building
blocks components used by this NORM Protocol specification may introduce additional IANA considerations.
In particular, the FEC Building Block used by NORM does require IANA registration of the FEC codecs used.
The registration instructions for FEC codecs are provided in [RFC5052].

7.1  Explicit IANA Assignment Guidelines

This document defines a name-space for NORM Header Extensions named:

ietf:rmt:norm:extensions

These values represent extended header fields that allow the protocol functionality to be expanded to include
additional optional features and operating modes. The values that can be assigned within the
ietf:rmt:norm:extension name-space are numeric indexes in the range {0, 255}, boundaries included.
Values in the range {0,127} indicate variable length extended header fields while values in the range {128,255}
indicate extension of a fixed 4-byte length. NORM header extension identifier value assignment requests are
granted on a "Specification Required" basis as defined in [RFC2434]. Additional header extension specifications
MUST include a description of protocol actions to be taken when the extended header is encountered by a protocol
implementation not supporting that specific option. For example, it may be possible for protocol implementations
to ignore unknown header extensions in many cases.

This specification registers the following NORM Header Extension types in namespace
ietf:rmt:norm:extensions:

ReferenceNameValue
This specificationEXT_AUTH1
This specificationEXT_CC3
This specificationEXT_FTI64
This specificationEXT_RATE128
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8.  Suggested Use

The present NORM protocol is seen as useful tool for the reliable data transfer over generic IP multicast services.
It is not the intention of the authors to suggest it is suitable for supporting all envisioned multicast reliability
requirements. NORM provides a simple and flexible framework for multicast applications with a degree of concern
for network traffic implosion and protocol overhead efficiency. NORM-like protocols have been successfully
demonstrated within the MBone for bulk data dissemination applications, including weather satellite compressed
imagery updates servicing a large group of receivers and a generic web content reliable "push" application.

In addition, this framework approach has some design features making it attractive for bulk transfer in asymmetric
and wireless internetwork applications. NORM is capable of successfully operating independent of network
structure and in environments with high packet loss, delay, and out-of-order delivery. Hybrid proactive/reactive
FEC-based repairing improve protocol performance in some multicast scenarios. A sender-only repair approach
often makes additional engineering sense in asymmetric networks. NORM's unicast feedback capability may be
suitable for use in asymmetric networks or in networks where only unidirectional multicast routing/delivery
service exists. Asymmetric architectures supporting multicast delivery are likely to make up an important portion
of the future Internet structure (e.g., DBS/cable/PSTN hybrids) and efficient, reliable bulk data transfer will be
an important capability for servicing large groups of subscribed receivers.
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9.  Changes from RFC3940

This section lists the changes between the Experimental version of this specification, [RFC3940], and this version:

1. Removal of the NORM_FLAG_MSG_START for NORM_OBJECT_STREAM, replacing it with the
"payload_msg_start" field in the FEC-encoded preamble of the NORM_OBJECT_STREAM NORM_DATA
payload,

2. Definition of IANA namespace for header extension assignment,

3. Removal of file blocking scheme description that is now specified in the FEC Building Block document
[RFC5052],

4. Removal of restriction of NORM receiver feedback message rate to local NORM sender rate (This caused
congestion control failures in high speed operation. The extremely low feedback rate of the NORM protocol
as compared to TCP avoids any resultant impact to the network as shown in [Mdpcc]),

5. Correction of errors in some message format descriptions, and

6. Correction of inconsistency in specification of the inactivity timeout.

7. Addition of IPsec secure mode description with IPsec requirements.

8. Clarification of interpretation of "Source Block Length" when FEC codes are arbitrarily shortened by the
sender.
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