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Abstract 
MPA (Marker Protocol data unit Aligned framing) is designed to work 
as an "adaptation layer" between TCP and the Direct Data Placement 
[DDP] protocol, preserving the reliable, in-order delivery of TCP, 
while adding the preservation of higher-level protocol record 
boundaries that DDP requires.  MPA is fully compliant with applicable 
TCP RFCs and can be utilized with existing TCP implementations.  MPA 
also supports integrated implementations that combine TCP, MPA and 
DDP to reduce buffering requirements in the implementation and 
improve performance at the system level. 
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1 Glossary 
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in 
this document are to be interpreted as described in RFC 2119. 

Consumer - the ULPs or applications that lie above MPA and DDP.  The 
Consumer is responsible for making TCP connections, starting MPA 
and DDP connections, and generally controlling operations. 

Delivery - (Delivered, Delivers) - For MPA, Delivery is defined as 
the process of informing DDP that a particular PDU is ordered for 
use.  A PDU is Delivered in the exact order that it was sent by 
the original sender; MPA uses TCP's byte stream ordering to 
determine when Delivery is possible.  This is specifically 
different from "passing the PDU to DDP", which may generally 
occur in any order, while the order of Delivery is strictly 
defined. 

EMSS - Effective Maximum Segment Size.  EMSS is the smaller of the 
TCP maximum segment size (MSS) as defined in RFC 793 [RFC793], 
and the current path Maximum Transfer Unit (MTU) [RFC1191]. 

FPDU - Framed Protocol Data Unit.  The unit of data created by an MPA 
sender. 

FPDU Alignment - the property that an FPDU is Header Aligned with the 
TCP segment, and the TCP segment includes an integer number of 
FPDUs.  A TCP segment with a FPDU Alignment allows immediate 
processing of the contained FPDUs without waiting on other TCP 
segments to arrive or combining with prior segments. 

FPDU Pointer (FPDUPTR) - This field of the Marker is used to indicate 
the beginning of an FPDU. 

Full Operation (Full Operation Phase) - After the completion of the 
Startup Phase MPA begins exchanging FPDUs. 

Header Alignment - the property that a TCP segment begins with an 
FPDU.  The FPDU is Header Aligned when the FPDU header is exactly 
at the start of the TCP segment (right behind the TCP headers on 
the wire). 

Initiator - The endpoint of a connection that sends the MPA Request 
Frame, i.e. the first to actually send data (which may not be the 
one which sends the TCP SYN).  

Marker - A four octet field that is placed in the MPA data stream at 
fixed octet intervals (every 512 octets). 



INTERNET-DRAFT MPA Framing for TCP 30 May 2006 
 

Culley et. al. Expires: November 2006 [Page 8] 
 

MPA-aware TCP - a TCP implementation that is aware of the receiver 
efficiencies of MPA FPDU Alignment and is capable of sending TCP 
segments that begin with an FPDU. 

MPA-enabled - MPA is enabled if the MPA protocol is visible on the 
wire.  When the sender is MPA-enabled, it is inserting framing 
and Markers.  When the receiver is MPA-enabled, it is 
interpreting framing and Markers. 

MPA Request Frame - Data sent from the MPA Initiator to the MPA 
Responder during the Startup Phase. 

MPA Reply Frame - Data sent from the MPA Responder to the MPA 
Initiator during the Startup Phase. 

MPA - Marker-based ULP PDU Aligned Framing for TCP protocol.  This 
document defines the MPA protocol. 

MULPDU - Maximum ULPDU. The current maximum size of the record that 
is acceptable for DDP to pass to MPA for transmission. 

Node - A computing device attached to one or more links of a Network.
A Node in this context does not refer to a specific application 
or protocol instantiation running on the computer. A Node may 
consist of one or more MPA on TCP devices installed in a host 
computer. 

PAD - A 1-3 octet group of zeros used to fill an FPDU to an exact 
modulo 4 size. 

PDU - protocol data unit 
Private Data - A block of data exchanged between MPA endpoints during 

initial connection setup. 
Protection Domain - An RDMA concept (see [VERBS] and [RDMASEC]) that 

tie use of various endpoint resources (memory access etc.) to the 
specific RDMA/DDP/MPA connection. 

RDMA - Remote Direct Memory Access; a protocol that uses DDP and MPA 
to enable applications to transfer data directly from memory 
buffers.  See [RDMAP]. 

Remote Peer - The MPA protocol implementation on the opposite end of 
the connection. Used to refer to the remote entity when 
describing protocol exchanges or other interactions between two 
Nodes. 

Responder - The connection endpoint which responds to an incoming MPA 
connection request (the MAP Request Frame).  This may not be the 
endpoint which awaited the TCP SYN. 
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Startup Phase - The initial exchanges of an MPA connection which 
serves to more fully identify MPA endpoints to each other and 
pass connection specific setup information to each other. 

ULP - Upper Layer Protocol. The protocol layer above the protocol 
layer currently being referenced. The ULP for MPA is DDP [DDP]. 

ULPDU - Upper Layer Protocol Data Unit.  The data record defined by 
the layer above MPA (DDP).  ULPDU corresponds to DDP's DDP 
segment. 

ULPDU_Length - a field in the FPDU describing the length of the 
included ULPDU. 
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2 Introduction 
This section discusses the reason for creating MPA on TCP and a 
general overview of the protocol.  Later sections show the MPA 
headers (see section 4 on page 18), and detailed protocol 
requirements and characteristics (see section 5 on page 20), as well 
as Connection Semantics (section 6 on page 31), Error Semantics 
(section 7 on page 46), and Security Considerations (section 8 on 
page 47). 

2.1 Motivation 
The Direct Data Placement protocol [DDP], when used with TCP [RFC793] 
requires a mechanism to detect record boundaries.  The DDP records 
are referred to as Upper Layer Protocol Data Units by this document.  
The ability to locate the Upper Layer Protocol Data Unit (ULPDU) 
boundary is useful to a hardware network adapter that uses DDP to 
directly place the data in the application buffer based on the 
control information carried in the ULPDU header.  This may be done 
without requiring that the packets arrive in order.  Potential 
benefits of this capability are the avoidance of the memory copy 
overhead and a smaller memory requirement for handling out of order 
or dropped packets. 
Many approaches have been proposed for a generalized framing 
mechanism.  Some are probabilistic in nature and others are 
deterministic.  A probabilistic approach is characterized by a 
detectable value embedded in the octet stream.  It is probabilistic 
because under some conditions the receiver may incorrectly interpret 
application data as the detectable value.  Under these conditions, 
the protocol may fail with unacceptable frequency.  A deterministic 
approach is characterized by embedded controls at known locations in 
the octet stream.  Because the receiver can guarantee it will only 
examine the data stream at locations that are known to contain the 
embedded control, the protocol can never misinterpret application 
data as being embedded control data.  For unambiguous handling of an 
out of order packet, the deterministic approach is preferred. 
The MPA protocol provides a framing mechanism for DDP running over 
TCP using the deterministic approach.  It allows the location of the 
ULPDU to be determined in the TCP stream even if the TCP segments 
arrive out of order. 

2.2 Protocol Overview 
The layering of PDUs with MPA is shown in Figure 1, below. 
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+------------------+ 
 | ULP client   | 
 +------------------+  <- Consumer messages 
 | DDP       | 
 +------------------+  <- ULPDUs 
 | MPA       | 
 +------------------+  <- FPDUs (containing ULPDUs) 
 | TCP*      | 
 +------------------+  <- TCP Segments (containing FPDUs) 
 | IP etc.     |      
 +------------------+ 
 * TCP or MPA-aware TCP. 
 

Figure 1 ULP MPA TCP Layering 
MPA is described as an extra layer above TCP and below DDP.  The 
operation sequence is: 
1. A TCP connection is established by ULP action.  This is done 

using methods not described by this specification.  The ULP may 
exchange some amount of data in streaming mode prior to starting 
MPA, but is not required to do so. 

2. The Consumer negotiates the use of DDP and MPA at both ends of a 
connection.  The mechanisms to do this are not described in this 
specification.  The negotiation may be done in streaming mode, or 
by some other mechanism (such as a pre-arranged port number). 

3. The ULP activates MPA on each end in the Startup Phase, either as 
an Initiator or a Responder, as determined by the ULP.  This mode 
verifies the usage of MPA, specifies the use of CRC and Markers, 
and allows the ULP to communicate some additional data via a 
Private Data exchange.  See section 6.1 Connection setup for more 
details on the startup process. 

4. At the end of the Startup Phase, the ULP puts MPA (and DDP) into 
Full Operation and begins sending DDP data as further described 
below.  In this document, DDP data chunks are called ULPDUs.  For 
a description of the DDP data, see [DDP]. 

Following is a description of data transfer when MPA is in Full 
Operation. 
1. DDP determines the Maximum ULPDU (MULPDU) size by querying MPA 

for this value.  MPA derives this information from TCP or IP, 
when it is available, or chooses a reasonable value. 

2. DDP creates ULPDUs of MULPDU size or smaller, and hands them to 
MPA at the sender. 
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3. MPA creates a Framed Protocol Data Unit (FPDU) by pre-pending a 
header, optionally inserting Markers, and appending a CRC field 
after the ULPDU and PAD (if any).  MPA delivers the FPDU to TCP. 

4. The TCP sender puts the FPDUs into the TCP stream.  If the TCP 
Sender is MPA-aware, it segments the TCP stream in such a way 
that a TCP Segment boundary is also the boundary of an FPDU.  TCP 
then passes each segment to the IP layer for transmission. 

5. The TCP receiver may be MPA-aware or may not be MPA-aware. If it 
is MPA-aware, it may separate passing the TCP payload to MPA from 
passing the TCP payload ordering information to MPA. In either 
case, RFC compliant TCP wire behavior is observed at both the 
sender and receiver. 

6. The MPA receiver locates and assembles complete FPDUs within the 
stream, verifies their integrity, and removes MPA Markers (when 
present), ULPDU_Length, PAD and the CRC field. 

7. MPA then provides the complete ULPDUs to DDP.  MPA may also 
separate passing MPA payload to DDP from passing the MPA payload 
ordering information.   

MPA-aware TCP is a TCP layer which potentially contains some 
additional semantics as defined in this document.  MPA is implemented 
as a data stream ULP for TCP and is therefore RFC compliant.  MPA-
aware TCP is RFC compliant.  
An MPA-aware TCP sender is able to segment the data stream such that 
TCP segments begin with FPDUs (FPDU Alignment).  This has significant 
advantages for receivers.  When segments arrive with aligned FPDUs 
the receiver usually need not buffer any portion of the segment, 
allowing DDP to place it in its destination memory immediately, thus 
avoiding copies from intermediate buffers (DDP's reason for 
existence). 
MPA with an MPA-aware TCP receiver allows a DDP on MPA implementation 
to locate the start of ULPDUs that may be received out of order.  It 
also allows the implementation to determine if the entire ULPDU has 
been received.  As a result, MPA can pass out of order ULPDUs to DDP 
for immediate use.  This enables a DDP on MPA implementation to save 
a significant amount of intermediate storage by placing the ULPDUs in 
the right locations in the application buffers when they arrive, 
rather than waiting until full ordering can be restored. 
The ability of a receiver to recover out of order ULPDUs is optional 
and declared to the transmitter during startup.  When the receiver 
declares that it does not support out of order recovery, the 
transmitter does not add the control information to the data stream 
needed for out of order recovery.  
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If TCP is not MPA-aware, then MPA receives a strictly ordered stream 
of data and does not deal with out of order ULPDUs.  In this case MPA 
passes each ULPDU to DDP when the last bytes arrive from TCP, along 
with the indication that they are in order.  
MPA implementations that support recovery of out of order ULPDUs MUST 
support a mechanism to indicate the ordering of ULPDUs as the sender 
transmitted them and indicate when missing intermediate segments 
arrive.  These mechanisms allow DDP to reestablish record ordering 
and report Delivery of complete messages (groups of records). 
MPA also addresses enhanced data integrity.  Some users of TCP have 
noted that the TCP checksum is not as strong as could be desired (see 
[CRCTCP]).  Studies such as [CRCTCP] have shown that the TCP checksum 
indicates segments in error at a much higher rate than the underlying 
link characteristics would indicate.  With these higher error rates, 
the chance that an error will escape detection, when using only the 
TCP checksum for data integrity, becomes a concern.  A stronger 
integrity check can reduce the chance of data errors being missed. 
MPA includes a CRC check to increase the ULPDU data integrity to the 
level provided by other modern protocols, such as SCTP [RFC2960].  It 
is possible to disable this CRC check, however CRCs MUST be enabled 
unless it is clear that the end to end connection through the network 
has data integrity at least as good as a MPA with CRC enabled (for 
example when IPsec is implemented end to end).  DDP's ULP expects 
this level of data integrity and therefore the ULP does not have to 
provide its own duplicate data integrity and error recovery for lost 
data.    
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3 LLP and DDP requirements 
The following sections describe requirements on TCP and DDP to 
utilize MPA.  The DDP requirements enable the correct operation over 
MPA and TCP (as opposed to DDP over SCTP or other LLPs). 
The TCP requirements are mostly intended to support the MPA-aware TCP 
variation, which allows implementations that require less buffer 
memory and may provide better overall system performance. 

3.1 TCP implementation Requirements to support MPA  
The TCP implementation MUST inform MPA when the TCP connection is 
closed or has begun closing the connection (e.g. received a FIN). 

3.1.1 TCP Transmit side 
To provide optimum performance, an MPA-aware transmit side TCP 
implementation SHOULD be enabled to: 
* With an EMSS large enough to contain the FPDU(s), segment the 

outgoing TCP stream such that the first octet of every TCP 
Segment begins with an FPDU.  Multiple FPDUs MAY be packed into a 
single TCP segment as long as they are entirely contained in the 
TCP segment.  

* Report the current EMSS to the MPA transmit layer. 
An MPA-aware TCP transmit side implementation MUST continue to use 
the method of segmentation expected by non-MPA applications (and 
described in TCP RFCs) when MPA is not enabled on the connection.  
When MPA is enabled above an MPA-aware TCP, it SHOULD specifically 
enable the segmentation rules described above for the DDP segments 
(FPDUs) posted for transmission.  
If the transmit side TCP implementation is not able to segment the 
TCP stream as indicated above, MPA SHOULD make a best effort to 
achieve that result.  For example, using the TCP_NODELAY socket 
option to disable the Nagle algorithm will usually result in many of 
the segments starting with an FPDU. 
If the transmit side TCP implementation is not able to report the 
EMSS, MPA SHOULD use the current MTU value to establish a likely FPDU 
size, taking into account the various expected header sizes. 

3.1.2 TCP Receive side 
When an MPA receive implementation and the MPA-aware receive side TCP 
implementation support handling out of order ULPDUs, the TCP receive 
implementation SHOULD be enabled to: 
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* Pass incoming TCP segments to MPA as soon as they have been 
received and validated, even if not received in order.  The TCP 
layer MUST have committed to keeping each segment before it can 
be passed to the MPA.  This means that the segment must have 
passed the TCP, IP, and lower layer data integrity validation 
(i.e., checksum), must be in the receive window, must not be a 
duplicate, must be part of the same epoch (if timestamps are used 
to verify this) and any other checks required by TCP RFCs.  The 
segment MUST NOT be passed to MPA more than once unless 
explicitly requested (see Section 7). 
 
This is not to imply that the data must be completely ordered 
before use.  An implementation MAY accept out of order segments, 
SACK them [RFC2018], and pass them to DDP immediately, before the 
reception of the segments needed to fill in the gaps arrive.  
Such an implementation MUST "commit" to the data early on, and 
MUST NOT overwrite it even if (or when) duplicate data arrives.  
MPA expects to utilize this "commit" to allow the passing of 
ULPDUs to DDP when they arrive, independent of ordering.  DDP 
uses the passed ULPDU to "place" the DDP segments (see [DDP] for 
more details). 

* Provide a mechanism to indicate the ordering of TCP segments as 
the sender transmitted them.  One possible mechanism might be 
attaching the TCP sequence number to each segment. 

* Provide a mechanism to indicate when a given TCP segment (and the 
prior TCP stream) is complete.  One possible mechanism might be 
to utilize the leading (left) edge of the TCP Receive Window. 
MPA uses the ordering and completion indications to inform DDP 
when a ULPDU is complete; MPA Delivers the FPDU to DDP.  DDP uses 
the indications to "deliver" its messages to the DDP consumer 
(see [DDP] for more details).  
DDP on MPA MUST utilize these two mechanisms to establish the 
Delivery semantics that DDP's consumers agree to.  These 
semantics are described fully in [DDP]. These include 
requirements on DDP's consumer to respect ownership of buffers 
prior to the time that DDP delivers them to the Consumer. 

An MPA-aware TCP receive side implementation MUST continue to buffer 
TCP segments until completely ordered and then deliver them as 
expected by non-MPA applications (and described in TCP RFCs) when MPA 
is not enabled on the connection.  When MPA is enabled above an MPA-
aware TCP, TCP SHOULD enable the in and out of order passing of data, 
and the separate ordering information as described above.  
When an MPA receive implementation is coupled with a TCP receive 
implementation that does not support the preceding mechanisms, TCP 
passes and Delivers incoming stream data to MPA in order. 
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3.2 MPA's interactions with DDP 
DDP requires MPA to maintain DDP record boundaries from the sender to 
the receiver.  When using MPA on TCP to send data, DDP provides 
records (ULPDUs) to MPA.  MPA will use the reliable transmission 
abilities of TCP to transmit the data, and will insert appropriate 
additional information into the TCP stream to allow the MPA receiver 
to locate the record boundary information. 
As such, MPA accepts complete records (ULPDUs) from DDP at the sender 
and returns them to DDP at the receiver. 
MPA combined with an MPA-aware TCP can only ensure FPDU Alignment 
with the TCP Header if the FPDU is less than or equal to TCP's EMSS.  
Since FPDU Alignment is generally desired by the receiver, DDP must 
cooperate with MPA to ensure FPDUs' lengths do not exceed the EMSS 
under normal conditions.  This is done with the MULPDU mechanism. 
MPA provides information to DDP on the current maximum size of the 
record that is acceptable to send (MULPDU).  DDP SHOULD limit each 
record size to MULPDU.  The range of MULPDU values MUST be between 
128 octets and 64768 octets, inclusive. 
The sending DDP MUST NOT post a ULPDU larger than 64768 octets to 
MPA. DDP MAY post a ULPDU of any size between one and 64768 octets, 
however MPA is not REQUIRED to support a ULPDU Length that is greater 
than the current MULPDU.   
While the maximum theoretical length supported by the MPA header 
ULPDU_Length field is 65535, TCP over IP requires the IP datagram 
maximum length to be 65535 octets. To enable MPA to support FPDU 
Alignment, the maximum size of the FPDU must fit within an IP 
datagram. Thus the ULPDU limit of 64768 octets was derived by taking 
the maximum IP datagram length, subtracting from it the maximum total 
length of the sum of the IPv4 header, TCP header, IPv4 options, TCP 
options, and the worst case MPA overhead, and then rounding the 
result down to a 128 octet boundary. 
On receive, MPA MUST pass each ULPDU with its length to DDP when it 
has been validated. 
If an MPA implementation supports passing out of order ULPDUs to DDP, 
the MPA implementation SHOULD: 
* Pass each ULPDU with its length to DDP as soon as it has been 

fully received and validated. 
* Provide a mechanism to indicate the ordering of ULPDUs as the 

sender transmitted them.  One possible mechanism might be 
providing the TCP sequence number for each ULPDU. 
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* Provide a mechanism to indicate when a given ULPDU (and prior 
ULPDUs) are complete (Delivered to DDP).  One possible mechanism 
might be to allow DDP to see the current outgoing TCP Ack 
sequence number. 

* Provide an indication to DDP that the TCP has closed or has begun 
to close the connection (e.g. received a FIN). 

MPA MUST provide the protocol version negotiated with its peer to 
DDP.  DDP will use this version to set the version in its header and 
to report the version to [RDMAP]. 
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4 FPDU Formats 
MPA senders create FPDUs out of ULPDUs.  The format of an FPDU shown 
below MUST be used for all MPA FPDUs.  For purposes of clarity, 
Markers are not shown in Figure 2. 
 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 | ULPDU_Length         |                               | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               + 
 | |

~ ~
~ ULPDU                              ~ 

 | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 | | PAD (0-3 octets)     | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | CRC |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
Figure 2 FPDU Format 

ULPDU_Length: 16 bits (unsigned integer).  This is the number of 
octets of the contained ULPDU.  It does not include the length of the 
FPDU header itself, the pad, the CRC, or of any Markers that fall 
within the ULPDU. The 16-bit ULPDU Length field is large enough to 
support the largest IP datagrams for IPv4 or IPv6. 
PAD: The PAD field trails the ULPDU and contains between zero and 
three octets of data.  The pad data MUST be set to zero by the sender 
and ignored by the receiver (except for CRC checking).  The length of 
the pad is set so as to make the size of the FPDU an integral 
multiple of four. 
CRC: 32 bits, When CRCs are enabled, this field contains a CRC32C 
check value, which is used to verify the entire contents of the FPDU, 
using CRC32C.  See section 5.2 CRC Calculation on page 23.  When CRCs 
are not enabled, this field is still present, may contain any value, 
and MUST NOT be checked. 
The FPDU adds a minimum of 6 octets to the length of the ULPDU.  In 
addition, the total length of the FPDU will include the length of any 
Markers and from 0 to 3 pad octets added to round-up the ULPDU size. 
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4.1 Marker Format 
The format of a Marker MUST be as specified in Figure 3: 
 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 | RESERVED            |            FPDUPTR            | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 3 Marker Format 
RESERVED: The Reserved field MUST be set to zero on transmit and 
ignored on receive (except for CRC calculation). 
FPDUPTR: The FPDU Pointer is a relative pointer, 16-bits long, 
interpreted as an unsigned integer that indicates the number of 
octets in the TCP stream from the beginning of the ULPDU Length field 
to the first octet of the entire Marker.  The least significant two 
bits MUST always be set to zero at the transmitter, and the receivers 
MUST always treat these as zero for calculations. 
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5 Data Transfer Semantics 
This section discusses some characteristics and behavior of the MPA 
protocol as well as implications of that protocol. 

5.1 MPA Markers 
MPA Markers are used to identify the start of FPDUs when packets are 
received out of order.  This is done by locating the Markers at fixed 
intervals in the data stream (which is correlated to the TCP sequence 
number) and using the Marker value to locate the preceding FPDU 
start. 
All MPA Markers are included in the containing FPDU CRC calculation 
(when both CRCs and Markers are in use). 
The MPA receiver's ability to locate out of order FPDUs and pass the 
ULPDUs to DDP is implementation dependent.  MPA/DDP allows those 
receivers that are able to deal with out of order FPDUs in this way 
to require the insertion of Markers in the data stream.  When the 
receiver cannot deal with out of order FPDUs in this way, it may 
disable the insertion of Markers at the sender.  All MPA senders MUST 
be able to generate Markers when their use is declared by the 
opposing receiver (see section 6.1 Connection setup on page 32). 
When Markers are enabled, MPA senders MUST insert a Marker into the 
data stream at a 512 octet periodic interval in the TCP Sequence 
Number Space. The Marker contains a 16 bit unsigned integer referred 
to as the FPDUPTR (FPDU Pointer).  
If the FPDUPTR's value is non-zero, the FPDU Pointer is a 16 bit 
relative back-pointer.  FPDUPTR MUST contain the number of octets in 
the TCP stream from the beginning of the ULPDU Length field to the 
first octet of the Marker, unless the Marker falls between FPDUs.  
Thus the location of the first octet of the previous FPDU header can 
be determined by subtracting the value of the given Marker from the 
current octet-stream sequence number (i.e. TCP sequence number) of 
the first octet of the Marker.  Note that this computation MUST take 
into account that the TCP sequence number could have wrapped between 
the Marker and the header. 
An FPDUPTR value of 0x0000 is a special case - it is used when the 
Marker falls exactly between FPDUs (between the preceding FPDU CRC 
field, and the next FPDU's ULPDU Length field).  In this case, the 
Marker is considered to be contained in the following FPDU; the 
Marker MUST be included in the CRC calculation of the FPDU following 
the Marker (if CRCs are being generated or checked).  Thus an FPDUPTR 
value of 0x0000 means that immediately following the Marker is an 
FPDU header (the ULPDU Length field). 
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Since all FPDUs are integral multiples of 4 octets, the bottom two 
bits of the FPDUPTR as calculated by the sender are zero.  MPA 
reserves these bits so they MUST be treated as zero for computation 
at the receiver. 
When Markers are enabled (see section 6.1 Connection setup on page 
32), the MPA Markers MUST be inserted immediately preceding the first 
FPDU of Full Operation phase, and at every 512th octet of the TCP 
octet stream thereafter.  As a result, the first Marker has an 
FPDUPTR value of 0x0000.  If the first Marker begins at octet 
sequence number SeqStart, then Markers are inserted such that the 
first octet of the Marker is at octet sequence number SeqNum if the 
remainder of (SeqNum - SeqStart) mod 512 is zero.  Note that SeqNum 
can wrap. 
For example, if the TCP sequence number were used to calculate the 
insertion point of the Marker, the starting TCP sequence number is 
unlikely to be zero, and 512 octet multiples are unlikely to fall on 
a modulo 512 of zero.  If the MPA connection is started at TCP 
sequence number 11, then the 1st Marker will begin at 11, and 
subsequent Markers will begin at 523, 1035, etc.  
If an FPDU is large enough to contain multiple Markers, they MUST all 
point to the same point in the TCP stream: the first octet of the 
ULPDU Length field for the FPDU. 
If a Marker interval contains multiple FPDUs (the FPDUs are small), 
the Marker MUST point to the start of the ULPDU Length field for the 
FPDU containing the Marker unless the Marker falls between FPDUs, in 
which case the Marker MUST be zero. 
The following example shows an FPDU containing a Marker. 
 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 | ULPDU Length (0x0010)   |                               | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               + 
 | |

+ +
| ULPDU (octets 0-9)                    | 

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | (0x0000)           |        FPDU ptr (0x000C)      | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | ULPDU (octets 10-15)                   | 
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | | PAD (2 octets:0,0)   | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | CRC |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
Figure 4 Example FPDU Format with Marker 
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MPA Receivers MUST preserve ULPDU boundaries when passing data to 
DDP.  MPA Receivers MUST pass the ULPDU data and the ULPDU Length to 
DDP and not the Markers, headers, and CRC. 
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5.2 CRC Calculation 
An MPA implementation MUST implement CRC support and MUST either: 
(1) always use CRCs; The MPA provider at is not REQUIRED to support 

an administrator's request that CRCs not be used. 
 or 
(2a) only indicate a preference to not use CRCs on the explicit 

request of the system administrator, via an interface not defined 
in this spec.  The default configuration for a connection MUST be 
to use CRCs. 

(2b) disable CRC checking (and possibly generation) if both the local 
and remote endpoints indicate preference to not use CRCs. 

The decision for hosts to request CRC suppression MAY be made on an 
administrative basis for any path that provides equivalent protection 
from undetected errors as an end-to-end CRC32c. 
The process MUST be invisible to the ULP. 
After receipt of an MPA startup declaration indicating that its peer 
requires CRCs, an MPA instance MUST continue generating and checking 
CRCs until the connection terminates.  If an MPA instance has 
declared that it does not require CRCs, it MUST turn off CRC checking 
immediately after receipt of an MPA mode declaration indicating that 
its peer also does not require CRCs.  It MAY continue generating 
CRCs.  See section 6.1 Connection setup on page 32 for details on the 
MPA startup. 
When sending an FPDU, the sender MUST include a CRC field.  When CRCs 
are enabled, the CRC field in the MPA FPDU MUST be computed using the 
CRC32C polynomial in the manner described in the iSCSI Protocol 
[iSCSI] document for Header and Data Digests. 
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The fields which MUST be included in the CRC calculation when sending 
an FPDU are as follows: 
1) If a Marker does not immediately precede the ULPDU Length field, 

the CRC-32c is calculated from the first octet of the ULPDU 
Length field, through all the ULPDU and Markers (if present), to 
the last octet of the PAD (if present), inclusive.  If there is a 
Marker immediately following the PAD, the Marker is included in 
the CRC calculation for this FPDU. 

2) If a Marker immediately precedes the first octet of the ULPDU 
Length field of the FPDU, (i.e. the Marker fell between FPDUs, 
and thus is required to be included in the second FPDU), the CRC-
32c is calculated from the first octet of the Marker, through the 
ULPDU Length header, through all the ULPDU and Markers (if 
present), to the last octet of the PAD (if present), inclusive. 

3) After calculating the CRC-32c, the resultant value is placed into 
the CRC field at the end of the FPDU. 

When an FPDU is received, and CRC checking is enabled, the receiver 
MUST first perform the following: 
1) Calculate the CRC of the incoming FPDU in the same fashion as 

defined above. 
2) Verify that the calculated CRC-32c value is the same as the 

received CRC-32c value found in the FPDU CRC field.  If not, the 
receiver MUST treat the FPDU as an invalid FPDU. 

The procedure for handling invalid FPDUs is covered in the Error 
Section (see section 7 on page 46) 
The following is an annotated hex dump of an example FPDU sent as the 
first FPDU on the stream.  As such, it starts with a Marker.  The 
FPDU contains a 42 octet ULPDU (an example DDP segment) which in turn 
contains 24 octets of the contained ULPDU, which is a data load that 
is all zeros.  The CRC32c has been correctly calculated and can be 
used as a reference.  See the [DDP] and [RDMAP] specification for 
definitions of the DDP Control field, Queue, MSN, MO, and Send Data.  
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Octet Contents Annotation 
 Count 
 

0000 00  Marker: Reserved 
 0001 00 
 0002 00  Marker: FPDUPTR 
 0003 00 
 0004 00  ULPDU Length 
 0005 2a 
 0006 41  DDP Control Field, Send with Last flag set 
 0007 43 
 0008 00  Reserved (DDP STag position with no STag) 

0009 00 
 000a 00 
 000b 00  
 000c 00  DDP Queue = 0 

000d 00 
 000e 00 
 000f 00  
 0010 00  DDP MSN = 1 

0011 00 
 0012 00 
 0013 01  
 0014 00  DDP MO = 0 

0015 00 
 0016 00 
 0017 00  
 0018 00  DDP Send Data (24 octets of zeros) 

...     
 002f 00  
 0030 52  CRC32c 
 0031 23 
 0032 99 
 0033 83  

Figure 5 Annotated Hex Dump of an FPDU 
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The following is an example sent as the second FPDU of the stream 
where the first FPDU (which is not shown here) had a length of 492 
octets and was also a Send to Queue 0 with Last Flag set.  This 
example contains a Marker. 
 

Octet Contents Annotation 
 Count  
 

01ec 00  Length 
 01ed 2a 
 01ee 41  DDP Control Field: Send with Last Flag set 
 01ef 43 
 01f0 00  Reserved (DDP STag position with no STag) 

01f1 00 
 01f2 00 
 01f3 00  
 01f4 00  DDP Queue = 0 

01f5 00 
 01f6 00 
 01f7 00  
 01f8 00  DDP MSN = 2 

01f9 00 
 01fa 00 
 01fb 02  
 01fc 00  DDP MO = 0 

01fd 00 
 01fe 00 
 01ff 00  
 0200 00  Marker: Reserved 
 0201 00 
 0202 00  Marker: FPDUPTR 
 0203 14 
 0204 00  DDP Send Data (24 octets of zeros) 

...     
 021b 00  
 021c 84  CRC32c 
 021d 92 
 021e 58 
 021f 98  

Figure 6 Annotated Hex Dump of an FPDU with Marker 
5.3 MPA on TCP Sender Segmentation 

The various TCP RFCs allow considerable choice in segmenting a TCP 
stream.  In order to optimize FPDU recovery at the MPA receiver, MPA 
specifies additional segmentation rules. 
MPA MUST encapsulate the ULPDU such that there is exactly one ULPDU 
contained in one FPDU.   
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An MPA-aware TCP sender SHOULD, when enabled for MPA, on TCP 
implementations that support this, and with an EMSS large enough to 
contain at least one FPDU, segment the outbound TCP stream such that 
each TCP segment begins with an FPDU, and fully contains all included 
FPDUs. 

Implementation note: To achieve the previous segmentation rule, 
an MPA-aware TCP sender implementation SHOULD disable TCP's 
Nagle [RFC0896] algorithm, communicate the FPDU boundaries to 
TCP, and make other minor changes such as the reporting of EMSS 
to MPA.

There are exceptions to the above rule.  Once an ULPDU is provided to 
MPA, the MPA on TCP sender MUST transmit it or fail the connection; 
it cannot be repudiated.  As a result, during changes in MTU and 
EMSS, or when TCP's Receive Window size (RWIN) becomes too small, it 
may be necessary to send FPDUs that do not conform to the 
segmentation rule above. 
A possible, but less desirable, alternative is to use IP 
fragmentation on accepted FPDUs to deal with MTU reductions or 
extremely small EMSS.   
The sender MUST still format the FPDU according to FPDU format as 
shown in Figure 2. 
On a retransmission, TCP does not necessarily preserve original TCP 
segmentation boundaries.  This can lead to the loss of FPDU Alignment 
and containment within a TCP segment during TCP retransmissions.  An 
MPA-aware TCP sender SHOULD try to preserve original TCP segmentation 
boundaries on a retransmission. 

5.3.1 Effects of MPA on TCP Segmentation 
DDP/MPA senders will fill TCP segments to the EMSS with a single FPDU 
when a DDP message is large enough.  Since the DDP message may not 
exactly fit into TCP segments, a "message tail" often occurs that 
results in an FPDU that is smaller than a single TCP segment.  
Additionally some DDP messages may be considerably shorter than the 
EMSS.  If a small FPDU is sent in a single TCP segment the result is 
a "short" TCP segment. 
Applications expected to see strong advantages from Direct Data 
Placement include transaction-based applications and throughput 
applications.  Request/response protocols typically send one FPDU per 
TCP segment and then wait for a response.  Under these conditions, 
these "short" TCP segments are an appropriate and expected effect of 
the segmentation. 
Another possibility is that the application might be sending multiple 
messages (FPDUs) to the same endpoint before waiting for a response.  
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In this case, the segmentation policy would tend to reduce the 
available connection bandwidth by under-filling the TCP segments. 
TCP implementations often utilize the Nagle [RFC0896] algorithm to 
ensure that segments are filled to the EMSS whenever the round trip 
latency is large enough that the source stream can fully fill 
segments before Acks arrive.  The algorithm does this by delaying the 
transmission of TCP segments until a ULP can fill a segment, or until 
an ACK arrives from the far side.  The algorithm thus allows for 
smaller segments when latencies are shorter to keep the ULP's end to 
end latency to reasonable levels. 
The Nagle algorithm is not mandatory to use [RFC1122]. 
If Nagle or other algorithms for detecting the availability of 
multiple FPDUs for transmission is used, "packing" of multiple FPDUs 
into TCP segments can occur. 
If a "message tail", small DDP messages, or the start of a larger DDP 
message are available, MPA MAY pack multiple FPDUs into TCP segments.  
When this is done, the TCP segments can be more fully utilized, but, 
due to the size constraints of FPDUs, segments may not be filled to 
the EMSS. 

Note that MPA receivers must do more processing of a TCP segment 
that contains multiple FPDUs, this may affect the performance of 
some receiver implementations. 

It is up to the ULP to decide if Nagle is useful with DDP/MPA.  Note 
that many of the applications expected to take advantage of MPA/DDP 
prefer to avoid the extra delays caused by Nagle.  In such scenarios 
it is anticipated there will be minimal opportunity for packing at 
the transmitter and receivers may choose to optimize their 
performance for this anticipated behavior. 
Therefore, the application is expected to set TCP parameters such 
that it can trade off latency and wire efficiency.  This is 
accomplished by setting the TCP_NODELAY socket option (which disables 
Nagle).
When latency is not critical, application is expected to leave Nagle 
enabled.  In this case the TCP implementation may pack any available 
stream data into TCP segments so that the segments are filled to the 
EMSS.  If the amount of data available is not enough to fill the TCP 
segment when it is prepared for transmission, TCP can send the 
segment partly filled, or use the Nagle algorithm to wait for the ULP 
to post more data (discussed below). 
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5.3.2 FPDU Size Considerations 
MPA defines the Maximum Upper Layer Protocol Data Unit (MULPDU) as 
the size of the largest ULPDU fitting in an FPDU.  For an empty TCP 
Segment, MULPDU is EMSS minus the FPDU overhead (6 octets) minus 
space for Markers and pad octets.   

The maximum ULPDU Length for a single ULPDU when Markers are 
present MUST be computed as: 
MULPDU = EMSS - (6 + 4 * Ceiling(EMSS / 512) + EMSS mod 4) 

The formula above accounts for the worst-case number of Markers.   
The maximum ULPDU Length for a single ULPDU when Markers are NOT 
present MUST be computed as: 
MULPDU = EMSS - (6 + EMSS mod 4) 

As a further optimization of the wire efficiency an MPA 
implementation MAY dynamically adjust the MULPDU (see section 5.3.1 
for latency and wire efficiency trade-offs).  When one or more FPDUs 
are already packed into a TCP Segment, MULPDU MAY be reduced 
accordingly. 
DDP SHOULD provide ULPDUs that are as large as possible, but less 
than or equal to MULPDU. 
If the TCP implementation needs to adjust EMSS to support MTU 
changes, the MULPDU value is changed accordingly. 
In certain rare situations, the EMSS may shrink below 128 octets in 
size.  If this occurs, the MPA on TCP sender MUST NOT shrink the 
MULPDU below 128 octets and is not REQUIRED to follow the 
segmentation rules in Section 5.3 MPA on TCP Sender Segmentation on 
page 26. 
If one or more FPDUs are already packed into a TCP segment, such that 
the remaining room is less than 128 octets, MPA MUST NOT provide a 
MULPDU smaller than 128.  In this case, MPA would typically provide a 
MULPDU for the next full sized segment, but may still pack the next 
FPDU into the small remaining room, provide that the next FPDU is 
small enough to fit. 
The value 128 is chosen as to allow DDP designers room for the DDP 
Header and some user data. 
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5.4 MPA Receiver FPDU Identification 
An MPA receiver MUST first verify the FPDU before passing the ULPDU 
to DDP.  To do this, the receiver MUST: 
* locate the start of the FPDU unambiguously, 
* verify its CRC (if CRC checking is enabled). 
If the above conditions are true, the MPA receiver passes the ULPDU 
to DDP.  
To detect the start of the FPDU unambiguously one of the following 
MUST be used: 
1: In an ordered TCP stream, the ULPDU Length field in the current 

FPDU when FPDU has a valid CRC, can be used to identify the 
beginning of the next FPDU. 

2: For receivers that support out of order reception of FPDUs (see 
section 5.1 MPA Markers on page 20) a Marker can always be used 
to locate the beginning of an FPDU (in FPDUs with valid CRCs).  
Since the location of the Marker is known in the octet stream 
(sequence number space), the Marker can always be found. 

3: Having found an FPDU by means of a Marker, following contiguous 
FPDUs can be found by using the ULPDU Length fields (from FPDUs 
with valid CRCs) to establish the next FPDU boundary. 

The ULPDU Length field (see section 4) MUST be used to determine if 
the entire FPDU is present before forwarding the ULPDU to DDP. 
CRC calculation is discussed in section 5.2 on page 23 above. 
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5.4.1 Re-segmenting Middle boxes and non MPA-aware TCP senders 
Since MPA on MPA-aware TCP senders start FPDUs on TCP segment 
boundaries, a receiving DDP on MPA on TCP implementation may be able 
to optimize the reception of data in various ways. 
However, MPA receivers MUST NOT depend on FPDU Alignment on TCP 
segment boundaries.   
Some MPA senders may be unable to conform to the sender requirements 
because their implementation of TCP is not designed with MPA in mind.  
Even if the sender is MPA-aware, the network may contain "middle 
boxes" which modify the TCP stream by changing the segmentation.  
This is generally interoperable with TCP and its users and MPA must 
be no exception. 
The presence of Markers in MPA (when enabled) allows an MPA receiver 
to recover the FPDUs despite these obstacles, although it may be 
necessary to utilize additional buffering at the receiver to do so. 
Some of the cases that a receiver may have to contend with are listed 
below as a reminder to the implementer: 
* A single Aligned and complete FPDU, either in order, or out of 

order:  This can be passed to DDP as soon as validated, and 
Delivered when ordering is established. 

* Multiple FPDUs in a TCP segment, aligned and fully contained, 
either in order, or out of order:  These can be passed to DDP as 
soon as validated, and Delivered when ordering is established. 

* Incomplete FPDU: The receiver should buffer until the remainder 
of the FPDU arrives.  If the remainder of the FPDU is already 
available, this can be passed to DDP as soon as validated, and 
Delivered when ordering is established.   

* Unaligned FPDU start: The partial FPDU must be combined with its 
preceding portion(s).  If the preceding parts are already 
available, and the whole FPDU is present, this can be passed to 
DDP as soon as validated, and Delivered when ordering is 
established.  If the whole FPDU is not available, the receiver 
should buffer until the remainder of the FPDU arrives. 

* Combinations of Unaligned or incomplete FPDUs (and potentially 
other complete FPDUs) in the same TCP segment:  If any FPDU is 
present in its entirety, or can be completed with portions 
already available, it can be passed to DDP as soon as validated, 
and Delivered when ordering is established. 
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6 Connection Semantics 
6.1 Connection setup 

MPA requires that the Consumer MUST activate MPA, and any TCP 
enhancements for MPA, on a TCP half connection at the same location 
in the octet stream at both the sender and the receiver.  This is 
required in order for the Marker scheme to correctly locate the 
Markers (if enabled) and to correctly locate the first FPDU. 
MPA, and any TCP enhancements for MPA are enabled by the ULP in both 
directions at once at an endpoint. 
This can be accomplished several ways, and is left up to DDP's ULP: 
* DDP's ULP MAY require DDP on MPA startup immediately after TCP 

connection setup.  This has the advantage that no streaming mode 
negotiation is needed.  An example of such a protocol is shown in 
Figure 9: Example Immediate Startup negotiation on page 42. 
This may be accomplished by using a well-known port, or a service 
locator protocol to locate an appropriate port on which DDP on 
MPA is expected to operate. 

* DDP's ULP MAY negotiate the start of DDP on MPA sometime after a 
normal TCP startup, using TCP streaming data exchanges on the 
same connection.  The exchange establishes that DDP on MPA (as 
well as other ULPs) will be used, and exactly locates the point 
in the octet stream where MPA is to begin operation.  Note that 
such a negotiation protocol is outside the scope of this 
specification.  A simplified example of such a protocol is shown 
in Figure 8: Example Delayed Startup negotiation on page 39. 

An MPA endpoint operates in two distinct phases. 
The Startup Phase is used to verify correct MPA setup, exchange CRC 
and Marker configuration, and optionally pass Private Data between 
endpoints prior to completing a DDP connection.  During this phase, 
specifically formatted frames are exchanged as TCP byte streams 
without using CRCs or Markers.  During this phase a DDP endpoint need 
not be "bound" to the MPA connection.  In fact, the choice of DDP 
endpoint and its operating parameters may not be known until the 
Consumer supplied Private Data (if any) has been examined by the 
Consumer. 
The second distinct phase is Full Operation during which FPDUs are 
sent using all the rules that pertain (CRCs, Markers, MULPDU 
restrictions etc.).  A DDP endpoint MUST be "bound" to the MPA 
connection at entry to this phase. 
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When Private Data is passed between ULPs in the Startup Phase, the 
ULP is responsible for interpreting that data, and then placing MPA 
into Full Operation. 
Note: The following text differentiates the two endpoints by calling 

them Initiator and Responder.  This is quite arbitrary and is NOT 
related to the TCP startup (SYN, SYN/ACK sequence).  The 
Initiator is the side that sends first in the MPA startup 
sequence (the MPA Request Frame). 

Note: The possibility that both endpoints would be allowed to make a 
connection at the same time, sometimes called an active/active 
connection, was considered by the work group and rejected.  There 
were several motivations for this decision.  One was that 
applications needing this facility were few (none other than 
theoretical at the time of this draft).  Another was that the 
facility created some implementation difficulties, particularly 
with the "dual stack" designs described later on.  A last issue 
was that dealing with rejected connections at startup would have 
required at least an additional frame type, and more recovery 
actions, complicating the protocol.  While none of these issues 
was overwhelming, the group and implementers were not motivated 
to do the work to resolve these issues.  The protocol includes a 
method of detecting these active/active startup attempts so that 
they can be rejected and an error reported. 

The ULP is responsible for determining which side is Initiator or 
Responder.  For client/server type ULPs this is easy.  For peer-peer 
ULPs (which might utilize a TCP style active/active startup), some 
mechanism (not defined by this specification) must be established, or 
some streaming mode data exchanged prior to MPA startup to determine 
the side which starts in Initiator and which starts in Responder MPA 
mode.   
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6.1.1 MPA Request and Reply Frame Format 
 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

0 | |
+ Key (16 bytes containing "MPA ID Req Frame")          + 

4 | (4D 50 41 20 49 44 20 52 65 71 20 46 72 61 6D 65)        | 
 + Or (16 bytes containing "MPA ID Rep Frame")          + 
8 | (4D 50 41 20 49 44 20 52 65 70 20 46 72 61 6D 65)        | 
 + +
12 |                                                               | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
16 |M|C|R| Res     |     Rev       |          PD_Length            | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 | |

~ ~
~ Private Data                                ~ 

 | |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 7 MPA Request/Reply Frame 
Key: This field contains the "key" used to validate that the sender 

is an MPA sender.  Initiator mode senders MUST set this field to 
the fixed value "MPA ID Req frame" or (in byte order) 4D 50 41 20 
49 44 20 52 65 71 20 46 72 61 6D 65 (in hexadecimal).  Responder 
mode receivers MUST check this field for the same value, and 
close the connection and report an error locally if any other 
value is detected.  Responder mode senders MUST set this field to 
the fixed value "MPA ID Rep frame" or (in byte order) 4D 50 41 20 
49 44 20 52 65 70 20 46 72 61 6D 65 (in hexadecimal).  Initiator 
mode receivers MUST check this field for the same value, and 
close the connection and report an error locally if any other 
value is detected. 

M: This bit, when sent in an MPA Request Frame or an MPA Reply Frame, 
declares a receiver's requirement for Markers.  When in a 
received MPA Request Frame or MPA Reply Frame and the value is 
'0', Markers MUST NOT be added to the data stream by the sender.  
When '1' Markers MUST be added as described in section 5.1 MPA 
Markers on page 20. 

C: This bit declares an endpoint's preferred CRC usage.  When this 
field is '0' in the MPA Request Frame and the MPA Reply Frame, 
CRCs MUST not be checked and need not be generated by either 
endpoint.  When this bit is '1' in either the MPA Request Frame 
or MPA Reply Frame, CRCs MUST be generated and checked by both 
endpoints.  Note that even when not in use, the CRC field remains 
present in the FPDU.  When CRCs are not in use, the CRC field 
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MUST be considered valid for FPDU checking regardless of its 
contents. 

R: This bit is set to zero, and not checked on reception in the MPA 
Request Frame.  In the MPA Reply Frame, this bit is the Rejected 
Connection bit, set by the Responders ULP to indicate acceptance 
'0', or rejection '1', of the connection parameters provided in 
the Private Data.   

Res: This field is reserved for future use.  It MUST be set to zero 
when sending, and not checked on reception. 

Rev: This field contains the Revision of MPA.  For this version of 
the specification senders MUST set this field to one.  MPA 
receivers compliant with this version of the specification MUST 
check this field.  If the MPA receiver cannot interoperate with 
the received version, then it MUST close the connection and 
report an error locally.  Otherwise, the MPA receiver should 
report the received version to the ULP. 

PD_Length: This field MUST contain the length in Octets of the 
Private Data field.  A value of zero indicates that there is no 
Private Data field present at all.  If the receiver detects that 
the PD_Length field does not match the length of the Private Data 
field, or if the length of the Private Data field exceeds 512 
octets, the receiver MUST close the connection and report an 
error locally.  Otherwise, the MPA receiver should pass the 
PD_Length value and Private Data to the ULP. 

Private Data: This field may contain any value defined by ULPs or may 
not be present.  The Private Data field MUST between 0 and 512 
octets in length.  ULPs define how to size, set, and validate 
this field within these limits. 

6.1.2 Connection Startup Rules 
The following rules apply to MPA connection Startup Phase: 
1. When MPA is started in the Initiator mode, the MPA implementation 

MUST send a valid MPA Request Frame.  The MPA Request Frame MAY 
include ULP supplied Private Data. 

2. When MPA is started in the Responder mode, the MPA implementation 
MUST wait until a MPA Request Frame is received and validated 
before entering full MPA/DDP operation.   
If the MPA Request Frame is improperly formatted, the 
implementation MUST close the TCP connection and exit MPA.   
If the MPA Request Frame is properly formatted but the Private 
Data is not acceptable, the implementation SHOULD return an MPA 
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Reply Frame with the Rejected Connection bit set to '1'; the MPA 
Reply Frame MAY include ULP supplied Private Data; the 
implementation MUST exit MPA, leaving the TCP connection open.  
The ULP may close TCP or use the connection for other purposes.  
If the MPA Request Frame is properly formatted and the Private 
Data is acceptable, the implementation SHOULD return an MPA Reply 
Frame with the Rejected Connection bit set to '0'; the MPA Reply 
Frame MAY include ULP supplied Private Data; and the Responder 
SHOULD prepare to interpret any data received as FPDUs and pass 
any received ULPDUs to DDP. 
Note: Since the receiver's ability to deal with Markers is 

unknown until the Request and Reply frames have been 
received, sending FPDUs before this occurs is not possible. 

Note: The requirement to wait on a Request Frame before sending a 
Reply frame is a design choice, it makes for well ordered 
sequence of events at each end, and avoids having to specify 
how to deal with situations where both ends start at the same 
time. 

3. MPA Initiator mode implementations MUST receive and validate a 
MPA Reply Frame.   
If the MPA Reply Frame is improperly formatted, the 
implementation MUST close the TCP connection and exit MPA.   
If the MPA Reply Frame is properly formatted but is the Private 
Data is not acceptable, or if the Rejected Connection bit set to 
'1', the implementation MUST exit MPA, leaving the TCP connection 
open.  The ULP may close TCP or use the connection for other 
purposes. 
If the MPA Reply Frame is properly formatted and the Private Data 
is acceptable, and the Reject Connection bit is set to '0', the 
implementation SHOULD enter full MPA/DDP operation mode; 
interpreting any received data as FPDUs and sending DDP ULPDUs as 
FPDUs.  

4. MPA Responder mode implementations MUST receive and validate at 
least one FPDU before sending any FPDUs or Markers. 
Note: this requirement is present to allow the Initiator time to 

get its receiver into Full Operation before an FPDU arrives, 
avoiding potential race conditions at the Initiator.  This 
was also subject to some debate in the work group before 
rough consensus was reached.  Eliminating this requirement 
would allow faster startup in some types of applications.  
However, that would also make certain implementations 
(particularly "dual stack") much harder. 
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5. If a received "Key" does not match the expected value, (See 6.1.1 
MPA Request and Reply Frame Format above) the TCP/DDP connection 
MUST be closed, and an error returned to the ULP. 

6. The received Private Data fields may be used by Consumers at 
either end to further validate the connection, and set up DDP or 
other ULP parameters.  The Initiator ULP MAY close the 
TCP/MPA/DDP connection as a result of validating the Private Data 
fields.  The Responder SHOULD return a MPA Reply Frame with the 
"Reject Connection" Bit set to '1' if the validation of the 
Private Data is not acceptable to the ULP.  

7. When the first FPDU is to be sent, then if Markers are enabled, 
the first octets sent are the special Marker 0x00000000, followed 
by the start of the FPDU (the FPDU's ULPDU Length field).  If 
Markers are not enabled, the first octets sent are the start of 
the FPDU (the FPDU's ULPDU Length field). 

8. MPA implementations MUST use the difference between the MPA 
Request Frame and the MPA Reply Frame to check for incorrect 
"Initiator/Initiator" startups.  Implementations SHOULD put a 
timeout on waiting for the MPA Request Frame when started in 
Responder mode, to detect incorrect "Responder/Responder" 
startups. 

9.  MPA implementations MUST validate the PD_Length field.  The 
buffer that receives the Private Data field MUST be large enough 
to receive that data; the amount of Private Data MUST not exceed 
the PD_Length, or the application buffer.  If any of the above 
fails, the startup frame MUST be considered improperly formatted. 

10. MPA implementations SHOULD implement a reasonable timeout while 
waiting for the entire startup frames; this prevents certain 
denial of service attacks.  ULPs SHOULD implement a reasonable 
timeout while waiting for FPDUs, ULPDUs and application level 
messages to guard against application failures and certain denial 
of service attacks.   
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6.1.3 Example Delayed Startup sequence 
A variety of startup sequences are possible when using MPA on TCP.  
Following is an example of an MPA/DDP startup that occurs after TCP 
has been running for a while and has exchanged some amount of 
streaming data.  This example does not use any Private Data (an 
example that does is shown later in 6.1.4.2 Example Immediate Startup 
using Private Data on page 42), although it is perfectly legal to 
include the Private Data.  Note that since the example does not use 
any Private Data, there are no ULP interactions shown between 
receiving "Startup frames" and putting MPA into Full Operation.
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Initiator                                 Responder 
+---------------------------+ 
|ULP streaming mode         | 
| <Hello> request to        | 
| transition to DDP/MPA     |           +--------------------------+ 
| mode (optional)           | --------> |ULP gets request;         | 
+---------------------------+           |enables MPA Responder mode|  
 |with last (optional)      | 
 |streaming mode <Hello Ack>| 
 |for MPA to send.          | 
+---------------------------+           |MPA waits for incoming    | 
|ULP receives streaming     | <-------- |  <MPA Request frame>     | 
| <Hello Ack>;              |           +--------------------------+ 
|Enters MPA Initiator mode; | 
|MPA sends                  | 
| <MPA Request Frame>;     | 
|MPA waits for incoming     |           +--------------------------+ 
| <MPA Reply Frame         | - - - - > |MPA receives              | 
+---------------------------+           |  <MPA Request Frame>     | 
 |Consumer binds DDP to MPA,| 
 |MPA sends the             | 
 | <MPA Reply Frame>.      | 
 |DDP/MPA enables FPDU      | 
+---------------------------+           |decoding, but does not    | 
|MPA receives the           | < - - - - |send any FPDUs.           | 
| <MPA Reply Frame>        |           +--------------------------+ 
|Consumer binds DDP to MPA, | 
|DDP/MPA begins full        | 
|operation.                 | 
|MPA sends first FPDU (as   |           +--------------------------+ 
|DDP ULPDUs become          | ========> |MPA Receives first FPDU.  | 
|available).                |           |MPA sends first FPDU (as  | 
+---------------------------+           |DDP ULPDUs become         | 
 <====== |available.                | 
 +--------------------------+ 

Figure 8: Example Delayed Startup negotiation 
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An example Delayed Startup sequence is described below: 
* Active and passive sides start up a TCP connection in the 

usual fashion, probably using sockets APIs.  They exchange 
some amount of streaming mode data.  At some point one side 
(the MPA Initiator) sends streaming mode data that 
effectively says "Hello, Lets go into MPA/DDP mode." 

* When the remote side (the MPA Responder) gets this streaming mode 
message, the Consumer would send a last streaming mode message 
that effectively says "I Acknowledge your Hello, and am now in 
MPA Responder Mode".  The exchange of these messages establishes 
the exact point in the TCP stream where MPA is enabled.  The 
Responding Consumer enables MPA in the Responder mode and waits 
for the initial MPA startup message. 
* The Initiating Consumer would enable MPA startup in the 

Initiator mode which then sends the MPA Request Frame.  It is 
assumed that no Private Data messages are needed for this 
example, although it is possible to do so.  The Initiating 
MPA (and Consumer) would also wait for the MPA connection to 
be accepted. 

* The Responding MPA would receive the initial MPA Request Frame 
and would inform the Consumer that this message arrived.  The 
Consumer can then accept the MPA/DDP connection or close the TCP 
connection. 

* To accept the connection request, the Responding Consumer would 
use an appropriate API to bind the TCP/MPA connections to a DDP 
endpoint, thus enabling MPA/DDP into Full Operation.  In the 
process of going to Full Operation, MPA sends the MPA Reply 
Frame.  MPA/DDP waits for the first incoming FPDU before sending 
any FPDUs. 

* If the initial TCP data was not a properly formatted MPA Request 
Frame MPA will close or reset the TCP connection immediately. 
* The Initiating MPA would receive the MPA Reply Frame and 

would report this message to the Consumer.  The Consumer can 
then accept the MPA/DDP connection, or close or reset the TCP 
connection to abort the process. 

* On determining that the Connection is acceptable, the 
Initiating Consumer would use an appropriate API to bind the 
TCP/MPA connections to a DDP endpoint thus enabling MPA/DDP 
into Full Operation.  MPA/DDP would begin sending DDP 
messages as MPA FPDUs. 
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6.1.4 Use of Private Data 
This section is advisory in nature, in that it suggests a method that 
a ULP can deal with pre-DDP connection information exchange. 

6.1.4.1 Motivation 
Prior RDMA protocols have been developed that provide Private Data 
via out of band mechanisms.  As a result, many applications now 
expect some form of Private Data to be available for application use 
prior to setting up the DDP/RDMA connection.  Following are some 
examples of the use of Private Data.  
An RDMA Endpoint (referred to as a Queue Pair, or QP, in InfiniBand 
and the [VERBS]) must be associated with a Protection Domain.  No 
receive operations may be posted to the endpoint before it is 
associated with a Protection Domain.  Indeed under both the 
InfiniBand and proposed RDMA/DDP verbs [VERBS] an endpoint/QP is 
created within a Protection Domain. 
There are some applications where the choice of Protection Domain is 
dependent upon the identity of the remote ULP client.  For example, 
if a user session requires multiple connections, it is highly 
desirable for all of those connections to use a single Protection 
Domain.  Note: use of Protection Domains is further discussed in 
[RDMASEC]. 
InfiniBand, the DAT APIs [DAT-API] and the [IT-API] all provide for 
the active side ULP to provide Private Data when requesting a 
connection.  This data is passed to the ULP to allow it to determine 
whether to accept the connection, and if so with which endpoint (and 
implicitly which Protection Domain). 
The Private Data can also be used to ensure that both ends of the 
connection have configured their RDMA endpoints compatibly on such 
matters as the RDMA Read capacity (see [RDMAP]).  Further ULP-
specific uses are also presumed, such as establishing the identity of 
the client. 
Private Data is also allowed for when accepting the connection, to 
allow completion of any negotiation on RDMA resources and for other 
ULP reasons. 
There are several potential ways to exchange this Private Data.  For 
example, the InfiniBand specification includes a connection 
management protocol that allows a small amount of Private Data to be 
exchanged using datagrams before actually starting the RDMA 
connection. 
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This draft allows for small amounts of Private Data to be exchanged 
as part of the MPA startup sequence.  The actual Private Data fields 
are carried in the MPA Request Frame, and the MPA Reply Frame. 
If larger amounts of Private Data or more negotiation is necessary, 
TCP streaming mode messages may be exchanged prior to enabling MPA. 

6.1.4.2 Example Immediate Startup using Private Data 
 Initiator                                 Responder 
+---------------------------+ 
|TCP SYN sent               |           +--------------------------+ 
+---------------------------+ --------> |TCP gets SYN packet;      | 
+---------------------------+           |  Sends SYN-Ack           | 
|TCP gets SYN-Ack           | <-------- +--------------------------+ 
| Sends Ack                |  
+---------------------------+ --------> +--------------------------+ 
+---------------------------+           |Consumer enables MPA      | 
|Consumer enables MPA       |           |Responder Mode, waits for | 
|Initiator mode with        |           |  <MPA Request frame>     | 
|Private Data; MPA sends    |           +--------------------------+ 
| <MPA Request Frame>;     | 
|MPA waits for incoming     |           +--------------------------+ 
| <MPA Reply Frame         | - - - - > |MPA receives              | 
+---------------------------+           |  <MPA Request Frame>     | 
 |Consumer examines Private | 
 |Data, provides MPA with   | 
 |return Private Data,      | 
 |binds DDP to MPA, and     | 
 |enables MPA to send an    | 
 | <MPA Reply Frame>.      | 
 |DDP/MPA enables FPDU      | 
+---------------------------+           |decoding, but does not    | 
|MPA receives the           | < - - - - |send any FPDUs.           | 
| <MPA Reply Frame>        |           +--------------------------+ 
|Consumer examines Private  | 
|Data, binds DDP to MPA,    | 
|and enables DDP/MPA to     | 
|begin Full Operation.      | 
|MPA sends first FPDU (as   |           +--------------------------+ 
|DDP ULPDUs become          | ========> |MPA Receives first FPDU.  | 
|available).                |           |MPA sends first FPDU (as  | 
+---------------------------+           |DDP ULPDUs become         | 
 <====== |available.                | 
 +--------------------------+ 

Figure 9: Example Immediate Startup negotiation 
Note: the exact order of when MPA is started in the TCP connection 

sequence is implementation dependent; the above diagram shows one 
possible sequence.  Also, the Initiator "Ack" to the Responder's 
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"SYN-Ack" may be combined into the same TCP segment containing 
the MPA Request Frame (as is allowed by TCP RFCs). 

The example immediate startup sequence is described below: 
* The passive side (Responding Consumer) would listen on the TCP 

destination port, to indicate its readiness to accept a 
connection. 
* The active side (Initiating Consumer) would request a 

connection from a TCP endpoint (that expected to upgrade to 
MPA/DDP/RDMA and expected the Private Data) to a destination 
address and port. 

* The Initiating Consumer would initiate a TCP connection to 
the destination port.  Acceptance/rejection of the connection 
would proceed as per normal TCP connection establishment.   

* The passive side (Responding Consumer) would receive the TCP 
connection request as usual allowing normal TCP gatekeepers, such 
as INETD and TCPserver, to exercise their normal 
safeguard/logging functions.  On acceptance of the TCP 
connection, the Responding Consumer would enable MPA in the 
Responder mode and wait for the initial MPA startup message. 
* The Initiating Consumer would enable MPA startup in the 

Initiator mode to send an initial MPA Request Frame with its 
included Private Data message to send.  The Initiating MPA 
(and Consumer) would also wait for the MPA connection to be 
accepted, and any returned Private Data. 

* The Responding MPA would receive the initial MPA Request Frame 
with the Private Data message and would pass the Private Data 
through to the Consumer.  The Consumer can then accept the 
MPA/DDP connection, close the TCP connection, or reject the MPA 
connection with a return message. 

* To accept the connection request, the Responding Consumer would 
use an appropriate API to bind the TCP/MPA connections to a DDP 
endpoint, thus enabling MPA/DDP into Full Operation.  In the 
process of going to Full Operation, MPA sends the MPA Reply Frame 
which includes the Consumer supplied Private Data containing any 
appropriate Consumer response.  MPA/DDP waits for the first 
incoming FPDU before sending any FPDUs. 

* If the initial TCP data was not a properly formatted MPA Request 
Frame, MPA will close or reset the TCP connection immediately. 

* To reject the MPA connection request, the Responding Consumer 
would send an MPA Reply Frame with any ULP supplied Private Data 
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(with reason for rejection), with the "Rejected Connection" bit 
set to '1', and may close the TCP connection. 
* The Initiating MPA would receive the MPA Reply Frame with the 

Private Data message and would report this message to the 
Consumer, including the supplied Private Data.   

 If the "rejected Connection" bit is set to a '1', MPA will 
close the TCP connection and exit.   

 If the "Rejected Connection" bit is set to a '0', and on 
determining from the MPA Reply Frame Private Data that the 
Connection is acceptable, the Initiating Consumer would use 
an appropriate API to bind the TCP/MPA connections to a DDP 
endpoint thus enabling MPA/DDP into Full Operation.  MPA/DDP 
would begin sending DDP messages as MPA FPDUs. 

 
6.1.5 "Dual stack" implementations 

MPA/DDP implementations are commonly expected to be implemented as 
part of a "dual stack" architecture.  One "stack" is the traditional 
TCP stack, usually with a sockets interface API (Application 
Programming Interface). The second stack is the MPA/DDP "stack" with 
its own API, and potentially separate code or hardware to deal with 
the MPA/DDP data.  Of course, implementations may vary, so the 
following comments are of an advisory nature only. 
The use of the two "stacks" offers advantages: 

TCP connection setup is usually done with the TCP stack.  This 
allows use of the usual naming and addressing mechanisms.  It 
also means that any mechanisms used to "harden" the connection 
setup against security threats are also used when starting 
MPA/DDP. 
Some applications may have been originally designed for TCP, but 
are "enhanced" to utilize MPA/DDP after a negotiation reveals 
the capability to do so.  The negotiation process takes place in 
TCP's streaming mode, using the usual TCP APIs. 
Some new applications, designed for RDMA or DDP, still need to 
exchange some data prior to starting MPA/DDP.  This exchange can 
be of arbitrary length or complexity, but often consists of only 
a small amount of Private Data, perhaps only a single message.  
Using the TCP streaming mode for this exchange allows this to be 
done using well understood methods. 
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The main disadvantage of using two stacks is the conversion of an 
active TCP connection between them.  This process must be done with 
care to prevent loss of data. 
To avoid some of the problems when using a "dual stack" architecture 
the following additional restrictions may be required by the 
implementation: 
1. Enabling the DDP/MPA stack SHOULD be done only when no incoming 

stream data is expected.  This is typically managed by the ULP 
protocol.  When following the recommended startup sequence, the 
Responder side enters DDP/MPA mode, sends the last streaming mode 
data, and then waits for the MPA Request Frame.  No additional 
streaming mode data is expected.  The Initiator side ULP receives 
the last streaming mode data, and then enters DDP/MPA mode.  
Again, no additional streaming mode data is expected. 

2. The DDP/MPA MAY provide the ability to send a "last streaming 
message" as part of its Responder DDP/MPA enable function.  This 
allows the DDP/MPA stack to more easily manage the conversion to 
DDP/MPA mode (and avoid problems with a very fast return of the 
MPA Request Frame from the Initiator side). 

Note: Regardless of the "stack" architecture used, TCP's rules MUST 
be followed.  For example, if network data is lost, re-segmented 
or re-ordered, TCP MUST recover appropriately even when this 
occurs while switching stacks. 

6.2 Normal Connection Teardown 
Each half connection of MPA terminates when DDP closes the 
corresponding TCP half connection. 
A mechanism SHOULD be provided by MPA to DDP for DDP to be made aware 
that a graceful close of the LLP connection has been received by the 
LLP (e.g. FIN is received). 
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7 Error Semantics 
The following errors MUST be detected by MPA and the codes SHOULD be 
provided to DDP or other Consumer: 
Code Error 
1 TCP connection closed, terminated or lost.  This includes lost 

by timeout, too many retries, RST received or FIN received. 
2 Received MPA CRC does not match the calculated value for the 

FPDU. 
3 In the event that the CRC is valid, received MPA Marker (if 

enabled) and ULPDU Length fields do not agree on the start of 
a FPDU.  If the FPDU start determined from previous ULPDU 
Length fields does not match with the MPA Marker position, MPA 
SHOULD deliver an error to DDP.  It may not be possible to 
make this check as a segment arrives, but the check SHOULD be 
made when a gap creating an out of order sequence is closed 
and any time a Marker points to an already identified FPDU.  
It is OPTIONAL for a receiver to check each Marker, if 
multiple Markers are present in an FPDU, or if the segment is 
received in order. 

4 Invalid MPA Request Frame or MPA Response Frame received.  In 
this case, the TCP connection MUST be immediately closed.  DDP 
and other ULPs should treat this similar to code 1, above. 

When conditions 2 or 3 above are detected, an MPA-aware TCP 
implementation MAY choose to silently drop the TCP segment rather 
than reporting the error to DDP.  In this case, the sending TCP will 
retry the segment, usually correcting the error, unless the problem 
was at the source.  In that case, the source will usually exceed the 
number of retries and terminate the connection. 
Once MPA delivers an error of any type, it MUST NOT pass or deliver 
any additional FPDUs on that half connection. 
For Error codes 2 and 3, MPA MUST NOT close the TCP connection 
following a reported error.  Closing the connection is the 
responsibility of DDP's ULP. 

Note that since MPA will not Deliver any FPDUs on a half 
connection following an error detected on the receive side of 
that connection, DDP's ULP is expected to tear down the 
connection.  This may not occur until after one or more last 
messages are transmitted on the opposite half connection.  This 
allows a diagnostic error message to be sent. 
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8 Security Considerations 
This section discusses the security considerations for MPA. 

8.1 Protocol-specific Security Considerations 
The vulnerabilities of MPA to third-party attacks are no greater than 
any other protocol running over TCP.  A third party, by sending 
packets into the network that are delivered to an MPA receiver, could 
launch a variety of attacks that take advantage of how MPA operates.  
For example, a third party could send random packets that are valid 
for TCP, but contain no FPDU headers.  An MPA receiver reports an 
error to DDP when any packet arrives that cannot be validated as an 
FPDU when properly located on an FPDU boundary.  A third party could 
also send packets that are valid for TCP, MPA, and DDP, but do not 
target valid buffers.  These types of attacks ultimately result in 
loss of connection and thus become a type of DOS (Denial Of Service) 
attack.  Communication security mechanisms such as IPsec [RFC2401] 
may be used to prevent such attacks. 
Independent of how MPA operates, a third party could use ICMP 
messages to reduce the path MTU to such a small size that performance 
would likewise be severely impacted.  Range checking on path MTU 
sizes in ICMP packets may be used to prevent such attacks. 
[RDMAP] and [DDP] are used to control, read and write data buffers 
over IP networks.  Therefore, the control and the data packets of 
these protocols are vulnerable to the spoofing, tampering and 
information disclosure attacks listed below.  In addition, Connection 
to/from an unauthorized or unauthenticated endpoint is a potential 
problem with most applications using RDMA, DDP, and MPA.  

8.1.1 Spoofing 
Spoofing attacks can be launched by the Remote Peer, or by a network 
based attacker.  A network based spoofing attack applies to all 
Remote Peers.  Because the MPA Stream requires a TCP Stream in the 
ESTABLISHED state, certain types of traditional forms of wire attacks 
do not apply -- an end-to-end handshake must have occurred to 
establish the MPA Stream.  So, the only form of spoofing that applies 
is one when a remote node can both send and receive packets.  Yet 
even with this limitation the Stream is still exposed to the 
following spoofing attacks. 

8.1.1.1 Impersonation 
A network based attacker can impersonate a legal MPA/DDP/RDMAP peer 
(by spoofing a legal IP address), and establish an MPA/DDP/RDMAP 
Stream with the victim.  End to end authentication (i.e. IPsec or ULP 
authentication) provides protection against this attack. 
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8.1.1.2 Stream Hijacking 
Stream hijacking happens when a network based attacker follows the 
Stream establishment phase, and waits until the authentication phase 
(if such a phase exists) is completed successfully.  He can then 
spoof the IP address and re-direct the Stream from the victim to its 
own machine.  For example, an attacker can wait until an iSCSI 
authentication is completed successfully, and hijack the iSCSI 
Stream. 
The best protection against this form of attack is end-to-end 
integrity protection and authentication, such as IPsec to prevent 
spoofing.  Another option is to provide physical security.  
Discussion of physical security is out of scope for this document. 

8.1.1.3 Man in the Middle Attack 
If a network based attacker has the ability to delete, inject replay, 
or modify packets which will still be accepted by MPA (e.g., TCP 
sequence number is correct, FPDU is valid etc.) then the Stream can 
be exposed to a man in the middle attack.  The attacker could 
potentially use the services of [DDP] and [RDMAP] to read the 
contents of the associated data buffer, modify the contents of the 
associated data buffer, or to disable further access to the buffer.  
The only countermeasure for this form of attack is to either secure 
the MPA/DDP/RDMAP Stream (i.e. integrity protect) or attempt to 
provide physical security to prevent man-in-the-middle type attacks.  
The best protection against this form of attack is end-to-end 
integrity protection and authentication, such as IPsec, to prevent 
spoofing or tampering.  If Stream or session level authentication and 
integrity protection are not used, then a man-in-the-middle attack 
can occur, enabling spoofing and tampering.  
Another approach is to restrict access to only the local subnet/link, 
and provide some mechanism to limit access, such as physical security 
or 802.1.x.  This model is an extremely limited deployment scenario, 
and will not be further examined here. 

8.1.2 Eavesdropping 
Generally speaking, Stream confidentiality protects against 
eavesdropping.  Stream and/or session authentication and integrity 
protection is a counter measurement against various spoofing and 
tampering attacks.  The effectiveness of authentication and integrity 
against a specific attack, depend on whether the authentication is 
machine level authentication (as the one provided by IPsec), or ULP 
authentication.   
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8.2 Introduction to Security Options  
The following security services can be applied to an MPA/DDP/RDMAP 
Stream:  
1.  Session confidentiality - protects against eavesdropping.  
2.  Per-packet data source authentication - protects against the     
following spoofing attacks: network based impersonation, Stream 
hijacking, and man in the middle.  
3.  Per-packet integrity - protects against tampering done by     
network based modification of FPDUs (indirectly affecting buffer 
content through DDP services).  
4.  Packet sequencing - protects against replay attacks, which is     
a special case of the above tampering attack.  
If an MPA/DDP/RDMAP Stream may be subject to impersonation attacks, 
or Stream hijacking attacks, it is recommended that the Stream be 
authenticated, integrity protected, and protected from replay 
attacks; it may use confidentiality protection to protect from 
eavesdropping (in case the MPA/DDP/RDMAP Stream traverses a public 
network).  
IPsec is capable of providing the above security services for IP and 
TCP traffic. 
ULP protocols may be able to provide part of the above security 
services.  See [NFSv4CHANNEL] for additional information on a 
promising approach called "channel binding".  From [NFSv4CHANNEL]:  

"The concept of channel bindings allows applications to prove 
that the end-points of two secure channels at different network 
layers are the same by binding authentication at one channel to 
the session protection at the other channel.  The use of channel 
bindings allows applications to delegate session protection to 
lower layers, which may significantly improve performance for 
some applications." 

8.3 Using IPsec With MPA 
IPsec can be used to protect against the packet injection attacks 
outlined above.  Because IPsec is designed to secure individual IP 
packets, MPA can run above IPsec without change.  IPsec packets are 
processed (e.g., integrity checked and decrypted) in the order they 
are received, and an MPA receiver will process the decrypted FPDUs 
contained in these packets in the same manner as FPDUs contained in 
unsecured IP packets. 
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MPA Implementations MUST implement IPsec as described in Section 8.4 
below.  The use of IPsec is up to ULPs and administrators. 

8.4 Requirements for IPsec Encapsulation of MPA/DDP  
The IP Storage working group has spent significant time and effort to 
define the normative IPsec requirements for IP Storage [RFC3723].  
Portions of that specification are applicable to a wide variety of 
protocols, including the RDDP protocol suite.  In order to not 
replicate this effort, an MPA ON TCP implementation MUST follow the 
requirements defined in RFC3723 Section 2.3 and Section 5, including 
the associated normative references for those sections.  
Additionally, since IPsec acceleration hardware may only be able to 
handle a limited number of active IKE Phase 2 SAs, Phase 2 delete 
messages MAY be sent for idle SAs, as a means of keeping the number 
of active Phase 2 SAs to a minimum.  The receipt of an IKE Phase 2 
delete message MUST NOT be interpreted as a reason for tearing down 
an DDP/RDMA Stream.  Rather, it is preferable to leave the Stream up, 
and if additional traffic is sent on it, to bring up another IKE 
Phase 2 SA to protect it.  This avoids the potential for continually 
bringing Streams up and down.  
Note that there are serious security issues if IPsec is not 
implemented end-to-end.  For example, if IPsec is implemented as a 
tunnel in the middle of the network, any hosts between the peer and 
the IPsec tunneling device can freely attack the unprotected Stream. 
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9 IANA Considerations 
No IANA actions are required by this document. 
If a well-known port is chosen as the mechanism to identify a DDP on 
MPA on TCP, the well-known port must be registered with IANA.  
Because the use of the port is DDP specific, registration of the port 
with IANA is left to DDP. 
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11 Appendix  
This appendix is for information only and is NOT part of the 
standard. 
The appendix covers three topics;  
Section 11.1 is an analysis of MPA on TCP and why it is useful to 
integrate MPA with TCP (with modifications to typical TCP 
implementations) to reduce overall system buffering and overhead. 
Section 11.2 covers some MPA receiver implementation notes. 
Section 11.3 covers methods of making MPA implementations 
interoperate with both IETF and RDMA Consortium versions of the 
protocols. 

11.1 Analysis of MPA over TCP Operations 
This appendix analyzes the impact of MPA on the TCP sender, receiver, 
and wire protocol.  
One of MPA's high level goals is to provide enough information, when 
combined with the Direct Data Placement Protocol [DDP], to enable 
out-of-order placement of DDP payload into the final Upper Layer 
Protocol (ULP) buffer.  Note that DDP separates the act of placing 
data into a ULP buffer from that of notifying the ULP that the ULP 
buffer is available for use.  In DDP terminology, the former is 
defined as "Placement", and the later is defined as "Delivery".  MPA 
supports in-order Delivery of the data to the ULP, including support 
for Direct Data Placement in the final ULP buffer location when TCP 
segments arrive out-of-order.  Effectively, the goal is to use the 
pre-posted ULP buffers as the TCP receive buffer, where the 
reassembly of the ULP Protocol Data Unit (PDU) by TCP (with MPA and 
DDP) is done in place, in the ULP buffer, with no data copies. 
This Appendix walks through the advantages and disadvantages of the 
TCP sender modifications proposed by MPA: 
1) that MPA prefers that the TCP sender to do Header Alignment, where 
a TCP segment should begin with an MPA Framing Protocol Data Unit 
(FPDU) (if there is payload present). 
2) that there be an integral number of FPDUs in a TCP segment (under 
conditions where the Path MTU is not changing). 
This Appendix concludes that the scaling advantages of FPDU Alignment 
are strong, based primarily on fairly drastic TCP receive buffer 
reduction requirements and simplified receive handling.  The analysis 
also shows that there is little effect to TCP wire behavior. 
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11.1.1 Assumptions 
11.1.1.1 MPA is layered beneath DDP [DDP] 

MPA is an adaptation layer between DDP and TCP.  DDP requires 
preservation of DDP segment boundaries and a CRC32C digest covering 
the DDP header and data.   MPA adds these features to the TCP stream 
so that DDP over TCP has the same basic properties as DDP over SCTP. 

11.1.1.2 MPA preserves DDP message framing 
MPA was designed as a framing layer specifically for DDP and was not 
intended as a general-purpose framing layer for any other ULP using 
TCP.   
A framing layer allows ULPs using it to receive indications from the 
transport layer only when complete ULPDUs are present.  As a framing 
layer, MPA is not aware of the content of the DDP PDU, only that it 
has received and, if necessary, reassembled a complete PDU for 
Delivery to the DDP.   

11.1.1.3 The size of the ULPDU passed to MPA is less than EMSS under 
normal conditions  

To make reception of a complete DDP PDU on every received segment 
possible, DDP passes to MPA a PDU that is no larger than the EMSS of 
the underlying fabric.  Each FPDU that MPA creates contains 
sufficient information for the receiver to directly place the ULP 
payload in the correct location in the correct receive buffer.  
Edge cases when this condition does not occur are dealt with, but do 
not need to be on the fast path 

11.1.1.4 Out-of-order placement but NO out-of-order Delivery 
DDP receives complete DDP PDUs from MPA.  Each DDP PDU contains the 
information necessary to place its ULP payload directly in the 
correct location in host memory. 
Because each DDP segment is self-describing, it is possible for DDP 
segments received out of order to have their ULP payload placed 
immediately in the ULP receive buffer.  
Data delivery to the ULP is guaranteed to be in the order the data 
was sent.  DDP only indicates data delivery to the ULP after TCP has 
acknowledged the complete byte stream.   
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11.1.2 The Value of FPDU Alignment 
Significant receiver optimizations can be achieved when Header 
Alignment and complete FPDUs are the common case.  The optimizations 
allow utilizing significantly fewer buffers on the receiver and less 
computation per FPDU.  The net effect is the ability to build a 
"flow-through" receiver that enables TCP-based solutions to scale to 
10G and beyond in an economical way.  The optimizations are 
especially relevant to hardware implementations of receivers that 
process multiple protocol layers - Data Link Layer (e.g., Ethernet), 
Network and Transport Layer (e.g., TCP/IP), and even some ULP on top 
of TCP (e.g., MPA/DDP).  As network speed increases, there is an 
increasing desire to use a hardware based receiver in order to 
achieve an efficient high performance solution.  
A TCP receiver, under worst case conditions, has to allocate buffers 
(BufferSizeTCP) whose capacities are a function of the bandwidth-
delay product.  Thus: 
 BufferSizeTCP = K * bandwidth [octets/Second] * Delay [Seconds].  
Where bandwidth is the end-to-end bandwidth of the connection, delay 
is the round trip delay of the connection, and K is an implementation 
dependent constant. 
Thus BufferSizeTCP scales with the end-to-end bandwidth (10x more 
buffers for a 10x increase in end-to-end bandwidth).  As this 
buffering approach may scale poorly for hardware or software 
implementations alike, several approaches allow reduction in the 
amount of buffering required for high-speed TCP communication.  
The MPA/DDP approach is to enable the ULP's buffer to be used as the 
TCP receive buffer.  If the application pre-posts a sufficient amount 
of buffering, and each TCP segment has sufficient information to 
place the payload into the right application buffer, when an out-of-
order TCP segment arrives it could potentially be placed directly in 
the ULP buffer.  However, placement can only be done when a complete 
FPDU with the placement information is available to the receiver, and 
the FPDU contents contain enough information to place the data into 
the correct ULP buffer (e.g., there is a DDP header available).  
For the case when the FPDU is not aligned with the TCP segment, it 
may take, on average, 2 TCP segments to assemble one FPDU.  
Therefore, the receiver has to allocate BufferSizeNAF (Buffer Size, 
Non-Aligned FPDU) octets: 
 BufferSizeNAF = K1* EMSS * number_of_connections + K2 * EMSS 
Where K1 and K2 are implementation dependent constants and EMSS is 
the effective maximum segment size.  
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For example, a 1 Gbps link with 10,000 connections and an EMSS of 
1500B would require 15 MB of memory.  Often the number of connections 
used scales with the network speed, aggravating the situation for 
higher speeds.  
FPDU Alignment would allow the receiver to allocate BufferSizeAF 
(Buffer Size, Aligned FPDU) octets:  
 BufferSizeAF = K2 * EMSS  
for the same conditions.  A FPDU Aligned receiver may require memory 
in the range of ~100s of KB - which is feasible for an on-chip memory 
and enables a "flow-through" design, in which the data flows through 
the NIC and is placed directly in the destination buffer.  Assuming 
most of the connections support FPDU Alignment, the receiver buffers 
no longer scale with number of connections.  
Additional optimizations can be achieved in a balanced I/O sub-system 
-- where the system interface of the network controller provides 
ample bandwidth as compared with the network bandwidth.  For almost 
twenty years this has been the case and the trend is expected to 
continue - while Ethernet speeds have scaled by 1000 (from 10 
megabit/sec to 10 gigabit/sec), I/O bus bandwidth of volume CPU 
architectures has scaled from ~2 MB/sec to ~2 GB/sec (PC-XT bus to 
PCI-X DDR).  Under these conditions, the FPDU Alignment approach 
allows BufferSizeAF to be indifferent to network speed.  It is 
primarily a function of the local processing time for a given frame.  
Thus when the FPDU Alignment approach is used, receive buffering is 
expected to scale gracefully (i.e. less than linear scaling) as 
network speed is increased. 
 

11.1.2.1 Impact of lack of FPDU Alignment on the receiver computational 
load and complexity 

The receiver must perform IP and TCP processing, and then perform 
FPDU CRC checks, before it can trust the FPDU header placement 
information.  For simplicity of the description, the assumption is 
that a FPDU is carried in no more than 2 TCP segments.  In reality, 
with no FPDU Alignment, an FPDU can be carried by more than 2 TCP 
segments (e.g., if the PMTU was reduced). 
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----++-----------------------------++-----------------------++----- 
+---||---------------+    +--------||--------+   +----------||----+ 
| TCP Seg X-1      |    |     TCP Seg X    |   |  TCP Seg X+1   | 
+---||---------------+    +--------||--------+   +----------||----+ 
----++-----------------------------++-----------------------++----- 
 FPDU #N-1                  FPDU #N 

Figure 10: Non-aligned FPDU freely placed in TCP octet stream 
The receiver algorithm for processing TCP segments (e.g., TCP segment 
#X in Figure 10: Non-aligned FPDU freely placed in TCP octet stream) 
carrying non-aligned FPDUs (in-order or out-of-order) includes: 
 

Data Link Layer processing (whole frame) - typically including a 
CRC calculation. 

1. Network Layer processing (assuming not an IP fragment, the 
whole Data Link Layer frame contains one IP datagram.  IP 
fragments should be reassembled in a local buffer.  This is 
not a performance optimization goal) 

2. Transport Layer processing -- TCP protocol processing, header 
and checksum checks.  
a. Classify incoming TCP segment using the 5 tuple (IP SRC, 

IP DST, TCP SRC Port, TCP DST Port, protocol) 
3. Find FPDU message boundaries.  

a. Get MPA state information for the connection 
If the TCP segment is in-order, use the receiver managed 

MPA state information to calculate where the previous 
FPDU message (#N-1) ends in the current TCP segment X. 
(previously, when the MPA receiver processed the first 
part of FPDU #N-1, it calculated the number of bytes 
remaining to complete FPDU #N-1 by using the MPA 
Length field).  
Get the stored partial CRC for FPDU #N-1  
Complete CRC calculation for FPDU #N-1 data (first 

portion of TCP segment #X) 
Check CRC calculation for FPDU #N-1  
If no FPDU CRC errors, placement is allowed 
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Locate the local buffer for the first portion of 
FPDU#N-1, CopyData(local buffer of first portion 
of FPDU #N-1, host buffer address, length) 

Compute host buffer address for second portion of FPDU 
#N-1 

CopyData (local buffer of second portion of FPDU #N-1, 
host buffer address for second portion, length)  

Calculate the octet offset into the TCP segment for 
the next FPDU #N. 

Start Calculation of CRC for available data for FPDU 
#N 

Store partial CRC results for FPDU #N 
Store local buffer address of first portion of FPDU #N 
No further action is possible on FPDU #N, before it is 

completely received 
If TCP out-of-order, receiver must buffer the data until 

at least one complete FPDU is received.  Typically 
buffering for more than one TCP segment per connection 
is required.  Use the MPA based Markers to calculate 
where FPDU boundaries are.  
When a complete FPDU is available, a similar procedure 

to the in-order algorithm above is used.  There is 
additional complexity, though, because when the 
missing segment arrives, this TCP segment must be 
run through the CRC engine after the CRC is 
calculated for the missing segment.  

If we assume FPDU Alignment, the following diagram and the algorithm 
below apply.  Note that when using MPA, the receiver is assumed to 
actively detect presence or loss of FPDU Alignment for every TCP 
segment received. 
 

+--------------------------+      +--------------------------+ 
+--|--------------------------+   +--|--------------------------+ 
| | TCP Seg X          |   |  |         TCP Seg X+1      | 
+--|--------------------------+   +--|--------------------------+ 
 +--------------------------+      +--------------------------+ 
 FPDU #N                          FPDU #N+1 

Figure 11: Aligned FPDU placed immediately after TCP header 
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The receiver algorithm for FPDU Aligned frames (in-order or out-of-
order) includes: 
 

1) Data Link Layer processing (whole frame) - typically 
including a CRC calculation. 

2) Network Layer processing (assuming not an IP fragment, the 
whole Data Link Layer frame contains one IP datagram.  IP 
fragments should be reassembled in a local buffer.  This is 
not a performance optimization goal) 

3) Transport Layer processing -- TCP protocol processing, header 
and checksum checks.  
a. Classify incoming TCP segment using the 5 tuple (IP SRC, 

IP DST, TCP SRC Port, TCP DST Port, protocol) 
4) Check for Header Alignment. (Described in detail in Section 

5.4).  Assuming Header Alignment for the rest of the 
algorithm below.  
a. If the header is not aligned, see the algorithm defined 

in the prior section. 
5) If TCP is in-order or out-of-order the MPA header is at the 

beginning of the current TCP payload.  Get the FPDU length 
from the FPDU header.  

6) Calculate CRC over FPDU 
7) Check CRC calculation for FPDU #N 
8) If no FPDU CRC errors, placement is allowed 
9) CopyData(TCP segment #X, host buffer address, length) 
10) Loop to #5 until all the FPDUs in the TCP segment are 

consumed in order to handle FPDU packing. 
Implementation note: In both cases the receiver has to classify the 
incoming TCP segment and associate it with one of the flows it 
maintains.  In the case of no FPDU Alignment, the receiver is forced 
to classify incoming traffic before it can calculate the FPDU CRC.  
In the case of FPDU Alignment the operations order is left to the 
implementer. 
The FPDU Aligned receiver algorithm is significantly simpler.  There 
is no need to locally buffer portions of FPDUs.  Accessing state 
information is also substantially simplified - the normal case does 
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not require retrieving information to find out where a FPDU starts 
and ends or retrieval of a partial CRC before the CRC calculation can 
commence.  This avoids adding internal latencies, having multiple 
data passes through the CRC machine, or scheduling multiple commands 
for moving the data to the host buffer.  
The aligned FPDU approach is useful for in-order and out-of-order 
reception.  The receiver can use the same mechanisms for data storage 
in both cases, and only needs to account for when all the TCP 
segments have arrived to enable Delivery.  The Header Alignment, 
along with the high probability that at least one complete FPDU is 
found with every TCP segment, allows the receiver to perform data 
placement for out-of-order TCP segments with no need for intermediate 
buffering.  Essentially the TCP receive buffer has been eliminated 
and TCP reassembly is done in place within the ULP buffer. 
In case FPDU Alignment is not found, the receiver should follow the 
algorithm for non aligned FPDU reception which may be slower and less 
efficient. 

11.1.2.2 FPDU Alignment effects on TCP wire protocol 
An MPA-aware TCP exposes its EMSS to MPA.  MPA uses the EMSS to 
calculate its MULPDU, which it then exposes to DDP, its ULP.  DDP 
uses the MULPDU to segment its payload so that each FPDU sent by 
MPA fits completely into one TCP segment.  This has no impact on 
wire protocol and exposing this information is already supported 
on many TCP implementations, including all modern flavors of BSD 
networking, through the TCP_MAXSEG socket option. 

In the common case, the ULP (i.e. DDP over MPA) messages provided to 
the TCP layer are segmented to MULPDU size.  It is assumed that the 
ULP message size is bounded by MULPDU, such that a single ULP message 
can be encapsulated in a single TCP segment.  Therefore, in the 
common case, there is no increase in the number of TCP segments 
emitted.  For smaller ULP messages, the sender can also apply 
packing, i.e. the sender packs as many complete FPDUs as possible 
into one TCP segment.  The requirement to always have a complete FPDU 
may increase the number of TCP segments emitted.  Typically, a ULP 
message size varies from few bytes to multiple EMSS (e.g., 64 
Kbytes).  In some cases the ULP may post more than one message at a 
time for transmission, giving the sender an opportunity for packing.  
In the case where more than one FPDU is available for transmission 
and the FPDUs are encapsulated into a TCP segment and there is no 
room in the TCP segment to include the next complete FPDU, another 
TCP segment is sent.  In this corner case some of the TCP segments 
are not full size.  In the worst case scenario, the ULP may choose a 
FPDU size that is EMSS/2 +1 and has multiple messages available for 
transmission.  For this poor choice of FPDU size, the average TCP 
segment size is therefore about 1/2 of the EMSS and the number of TCP 
segments emitted is approaching 2x of what is possible without the 
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requirement to encapsulate an integer number of complete FPDUs in 
every TCP segment.  This is a dynamic situation that only lasts for 
the duration where the sender ULP has multiple non-optimal messages 
for transmission and this causes a minor impact on the wire 
utilization.  
However, it is not expected that requiring FPDU Alignment will have a 
measurable impact on wire behavior of most applications.  Throughput 
applications with large I/Os are expected to take full advantage of 
the EMSS.  Another class of applications with many small outstanding 
buffers (as compared to EMSS) is expected to use packing when 
applicable.  Transaction oriented applications are also optimal. 
TCP retransmission is another area that can affect sender behavior.  
TCP supports retransmission of the exact, originally transmitted 
segment (see [RFC793] section 2.6, [RFC793] section 3.7 "managing the 
window" and [RFC1122] section 4.2.2.15).  In the unlikely event that 
part of the original segment has been received and acknowledged by 
the remote peer (e.g., a re-segmenting middle box, as documented in 
5.4.1 Re-segmenting Middle boxes and non MPA-aware TCP senders on 
page 31), a better available bandwidth utilization may be possible by 
re-transmitting only the missing octets.  If an MPA-aware TCP 
retransmits complete FPDUs, there may be some marginal bandwidth 
loss. 
Another area where a change in the TCP segment number may have impact 
is that of Slow Start and Congestion Avoidance.  Slow-start 
exponential increase is measured in segments per second, as the 
algorithm focuses on the overhead per segment at the source for 
congestion that eventually results in dropped segments.  Slow-start 
exponential bandwidth growth for MPA-aware TCP is similar to any TCP 
implementation.  Congestion Avoidance allows for a linear growth in 
available bandwidth when recovering after a packet drop.  Similar to 
the analysis for slow-start, MPA-aware TCP doesn't change the 
behavior of the algorithm.  Therefore the average size of the segment 
versus EMSS is not a major factor in the assessment of the bandwidth 
growth for a sender.  Both Slow Start and Congestion Avoidance for an 
MPA-aware TCP will behave similarly to any TCP sender and allow an 
MPA-aware TCP to enjoy the theoretical performance limits of the 
algorithms. 
In summary, the ULP messages generated at the sender (e.g., the 
amount of messages grouped for every transmission request) and 
message size distribution has the most significant impact over the 
number of TCP segments emitted.  The worst case effect for certain 
ULPs (with average message size of EMSS/2+1 to EMSS), is bounded by 
an increase of up to 2x in the number of TCP segments and 
acknowledges.  In reality the effect is expected to be marginal.  
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11.2 Receiver implementation 
Transport & Network Layer Reassembly Buffers: 
The use of reassembly buffers (either TCP reassembly buffers or IP 
fragmentation reassembly buffers) is implementation dependent.  When 
MPA is enabled, reassembly buffers are needed if out of order packets 
arrive and Markers are not enabled.  Buffers are also needed if FPDU 
Alignment is lost or if IP fragmentation occurs.  This is because the 
incoming out of order segment may not contain enough information for 
MPA to process all of the FPDU.  For cases where a re-segmenting 
middle box is present, or where the TCP sender is not MPA-aware, the 
presence of Markers significantly reduces the amount of buffering 
needed. 
Recovery from IP Fragmentation must be transparent to the MPA 
Consumers. 

11.2.1 Network Layer Reassembly Buffers 
Most IP implementations set the IP Don't Fragment bit.  Thus upon a 
path MTU change, intermediate devices drop the IP datagram if it is 
too large and reply with an ICMP message which tells the source TCP 
that the path MTU has changed.  This causes TCP to emit segments 
conformant with the new path MTU size.  Thus IP fragments under most 
conditions should never occur at the receiver.  But it is possible. 
There are several options for implementation of network layer 
reassembly buffers: 
1. drop any IP fragments, and reply with an ICMP message according 

to [RFC792] (fragmentation needed and DF set) to tell the Remote 
Peer to resize its TCP segment 

2. support an IP reassembly buffer, but have it of limited size 
(possibly the same size as the local link's MTU).  The end Node 
would normally never advertise a path MTU larger than the local 
link MTU.  It is recommended that a dropped IP fragment cause an 
ICMP message to be generated according to RFC792. 

3. multiple IP reassembly buffers, of effectively unlimited size. 
4. support an IP reassembly buffer for the largest IP datagram (64 

KB). 
5. support for a large IP reassembly buffer which could span 

multiple IP datagrams. 
An implementation should support at least 2 or 3 above, to avoid 
dropping packets that have traversed the entire fabric.  
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There is no end-to-end ACK for IP reassembly buffers, so there is no 
flow control on the buffer.  The only end-to-end ACK is a TCP ACK, 
which can only occur when a complete IP datagram is delivered to TCP.  
Because of this, under worst case, pathological scenarios, the 
largest IP reassembly buffer is the TCP receive window (to buffer 
multiple IP datagrams that have all been fragmented).  
Note that if the Remote Peer does not implement re-segmentation of 
the data stream upon receiving the ICMP reply updating the path MTU, 
it is possible to halt forward progress because the opposite peer 
would continue to retransmit using a transport segment size that is 
too large.  This deadlock scenario is no different than if the fabric 
MTU (not last hop MTU) was reduced after connection setup, and the 
remote Node's behavior is not compliant with [RFC1122]. 

11.2.2 TCP Reassembly buffers 
A TCP reassembly buffer is also needed.  TCP reassembly buffers are 
needed if FPDU Alignment is lost when using TCP with MPA or when the 
MPA FPDU spans multiple TCP segments.  Buffers are also needed if 
Markers are disabled and out of order packets arrive. 
Since lost FPDU Alignment often means that FPDUs are incomplete, an 
MPA on TCP implementation must have a reassembly buffer large enough 
to recover an FPDU that is less than or equal to the MTU of the 
locally attached link (this should be the largest possible advertised 
TCP path MTU).  If the MTU is smaller than 140 octets, the buffer 
MUST be at least 140 octets long to support the minimum FPDU size.  
The 140 octets allows for the minimum MULPDU of 128, 2 octets of pad, 
2 of ULPDU_Length, 4 of CRC, and space for a possible Marker.  As 
usual, additional buffering may provide better performance. 
Note that if the TCP segment were not stored, it is possible to 
deadlock the MPA algorithm.  If the path MTU is reduced, FPDU 
Alignment requires the source TCP to re-segment the data stream to 
the new path MTU.  The source MPA will detect this condition and 
reduce the MPA segment size, but any FPDUs already posted to the 
source TCP will be re-segmented and lose FPDU Alignment.  If the 
destination does not support a TCP reassembly buffer, these segments 
can never be successfully transmitted and the protocol deadlocks. 
When a complete FPDU is received, processing continues normally. 
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11.3 IETF Implementation Interoperability with RDMA Consortium Protocols 
The RDMA Consortium created early specifications of the MPA/DDP/RDMA 
protocols and some manufacturers created implementations of those 
protocols before the IETF versions were finalized.  These protocols 
and are very similar to the IETF versions making it possible for 
implementations to be created or modified to support either set of 
specifications.  For those interested, the RDMA Consortium protocol 
documents can be obtained at http://www.rdmaconsortium.org. 
In this section, implementations of MPA/DDP/RDMA that conform to the 
RDMAC specifications are called RDMAC RNICs.  Implementations of 
MPA/DDP/RDMA that conform to the IETF RFCs are called IETF RNICs. 
Without the exchange of MPA Request/Reply Frames, there is no 
standard mechanism for enabling RDMAC RNICs to interoperate with IETF 
RNICs.  Even if a ULP uses a well-known port to start an IETF RNIC 
immediately in RDMA mode (i.e., without exchanging the MPA 
Request/Reply messages), there is no reason to believe an IETF RNIC 
will interoperate with an RDMAC RNIC because of the differences in 
the version number in the DDP and RDMAP headers on the wire. 
Therefore, the ULP or other supporting entity at the RDMAC RNIC must 
implement MPA Request/Reply Frames on behalf of the RNIC in order to 
negotiate the connection parameters.  The following section describes 
the results following the exchange of the MPA Request/Reply Frames 
before the conversion from streaming to RDMA mode.   

11.3.1 Negotiated Parameters 
Three types of RNICs are considered: 
Upgraded RDMAC RNIC - an RNIC implementing the RDMAC protocols which 

has a ULP or other supporting entity that exchanges the MPA 
Request/Reply Frames in streaming mode before the conversion to 
RDMA mode.  

Non-permissive IETF RNIC - an RNIC implementing the IETF protocols 
which is not capable of implementing the RDMAC protocols.  Such 
an RNIC can only interoperate with other IETF RNICs. 

Permissive IETF RNIC - an RNIC implementing the IETF protocols which 
is capable of implementing the RDMAC protocols on a per 
connection basis. 

The Permissive IETF RNIC is recommended for those implementers that 
want maximum interoperability with other RNIC implementations. 
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The values used by these three RNIC types for the MPA, DDP, and RDMAP 
versions as well as MPA Markers and CRC are summarized in Figure 12.  
+----------------++-----------+-----------+-----------+-----------+ 
| RNIC TYPE      || DDP/RDMAP |    MPA    |    MPA    |    MPA    | 
| || Version  | Revision  |  Markers  |    CRC    | 
+----------------++-----------+-----------+-----------+-----------+ 
+----------------++-----------+-----------+-----------+-----------+ 
| RDMAC          ||     0     |     0     |     1     |     1     | 
| || | | | |
+----------------++-----------+-----------+-----------+-----------+ 
| IETF           ||     1     |     1     |  0 or 1   |  0 or 1   | 
| Non-permissive ||           |           |           |           | 
+----------------++-----------+-----------+-----------+-----------+ 
| IETF           ||  1 or 0   |  1 or 0   |  0 or 1   |  0 or 1   | 
| permissive     ||           |           |           |           | 
+----------------++-----------+-----------+-----------+-----------+ 

Figure 12.  Connection Parameters for the RNIC Types. 
For MPA Markers and MPA CRC, enabled=1, disabled=0. 

It is assumed there is no mixing of versions allowed between MPA, DDP 
and RDMAP.  The RNIC either generates the RDMAC protocols on the wire 
(version is zero) or the IETF protocols (version is one). 
During the exchange of the MPA Request/Reply Frames, each peer 
provides its MPA Revision, Marker preference (M: 0=disabled, 
1=enabled), and CRC preference.  The MPA Revision provided in the MPA 
Request Frame and the MPA Reply Frame may differ. 
From the information in the MPA Request/Reply Frames, each side sets 
the Version field (V: 0=RDMAC, 1=IETF) of the DDP/RDMAP protocols as 
well as the state of the Markers for each half connection.  Between 
DDP and RDMAP, no mixing of versions is allowed.  Moreover, the DDP 
and RDMAP version MUST be identical in the two directions.  The RNIC 
either generates the RDMAC protocols on the wire (version is zero) or 
the IETF protocols (version is one).    
In the following sections, the figures do not discuss CRC negotiation 
because there is no interoperability issue for CRCs.  Since the RDMAC 
RNIC will always request CRC use, then, according to the IETF MPA 
specification, both peers MUST generate and check CRCs. 

11.3.2 RDMAC RNIC and Non-permissive IETF RNIC 
Figure 13 shows that a Non-permissive IETF RNIC cannot interoperate 
with an RDMAC RNIC, despite the fact that both peers exchange MPA 
Request/Reply Frames.  For a Non-permissive IETF RNIC, the MPA 
negotiation has no effect on the DDP/RDMAP version and it is unable 
to interoperate with the RDMAC RNIC.  
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The rows in the figure show the state of the Marker field in the MPA 
Request Frame sent by the MPA Initiator.  The columns show the state 
of the Marker field in the MPA Reply Frame sent by the MPA Responder.  
Each type of RNIC is shown as an Initiator and a Responder.  The 
connection results are shown in the lower right corner, at the 
intersection of the different RNIC types, where V=0 is the RDMAC 
DDP/RDMAP version, V=1 is the IETF DDP/RDMAC version, M=0 means MPA 
Markers are disabled and M=1 means MPA Markers are enabled.  The 
negotiated Marker state is shown as X/Y, for the receive direction of 
the Initiator/Responder. 

+---------------------------++-----------------------+ 
| MPA || MPA          | 
| CONNECT                   ||       Responder       | 
| MODE +-----------------++-------+---------------+ 
| | RNIC          || RDMAC |     IETF      | 
| | TYPE          ||       | Non-permissive| 
| | +------++-------+-------+-------+ 
| | |MARKER|| M=1   | M=0   |  M=1  | 
+---------+----------+------++-------+-------+-------+ 
+---------+----------+------++-------+-------+-------+ 
| | RDMAC  | M=1  || V=0   | close | close | 
| | | || M=1/1 | | |
| +----------+------++-------+-------+-------+ 
| MPA | | M=0  || close | V=1   | V=1   | 
|Initiator|   IETF   |      ||       | M=0/0 | M=0/1 | 
| |Non-perms.+------++-------+-------+-------+ 
| | | M=1  || close | V=1   | V=1   | 
| | | || | M=1/0 | M=1/1 | 
+---------+----------+------++-------+-------+-------+ 

Figure 13: MPA negotiation between an RDMAC RNIC and a Non-permissive 
IETF RNIC. 

11.3.2.1 RDMAC RNIC Initiator 
If the RDMAC RNIC is the MPA Initiator, its ULP sends an MPA Request 
Frame with Rev field set to zero and the M and C bits set to one.  
Because the Non-permissive IETF RNIC cannot dynamically downgrade the 
version number it uses for DDP and RDMAP, it would send an MPA Reply 
Frame with the Rev field equal to one and then gracefully close the 
connection.   

11.3.2.2 Non-Permissive IETF RNIC Initiator 
If the Non-permissive IETF RNIC is the MPA Initiator, it sends an MPA 
Request Frame with Rev field equal to one.  The ULP or supporting 
entity for the RDMAC RNIC responds with an MPA Reply Frame that has 
the Rev field equal to zero and the M bit set to one.  The Non-
permissive IETF RNIC will gracefully close the connection after it 
reads the incompatible Rev field in the MPA Reply Frame. 
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11.3.3 RDMAC RNIC and Permissive IETF RNIC 
Figure 14 shows that a Permissive IETF RNIC can interoperate with an 
RDMAC RNIC regardless of its Marker preference.  The figure uses the 
same format as shown with the Non-permissive IETF RNIC.   

+---------------------------++-----------------------+ 
| MPA || MPA          | 
| CONNECT                   ||       Responder       | 
| MODE +-----------------++-------+---------------+ 
| | RNIC          || RDMAC |     IETF      | 
| | TYPE          ||       |  Permissive   | 
| | +------++-------+-------+-------+ 
| | |MARKER|| M=1   | M=0   | M=1   | 
+---------+----------+------++-------+-------+-------+ 
+---------+----------+------++-------+-------+-------+ 
| | RDMAC  | M=1  || V=0   | N/A   | V=0   | 
| | | || M=1/1 | | M=1/1 | 
| +----------+------++-------+-------+-------+ 
| MPA | | M=0  || V=0   | V=1   | V=1   | 
|Initiator|   IETF   |      || M=1/1 | M=0/0 | M=0/1 | 
| |Permissive+------++-------+-------+-------+ 
| | | M=1  || V=0   | V=1   | V=1   | 
| | | || M=1/1 | M=1/0 | M=1/1 | 
+---------+----------+------++-------+-------+-------+ 

Figure 14: MPA negotiation between an RDMAC RNIC and a Permissive 
IETF RNIC. 

A truly Permissive IETF RNIC will recognize an RDMAC RNIC from the 
Rev field of the MPA Req/Rep Frames and then adjust its receive 
Marker state and DDP/RDMAP version to accommodate the RDMAC RNIC.  As 
a result, as an MPA Responder, the Permissive IETF RNIC will never 
return an MPA Reply Frame with the M bit set to zero.  This case is 
shown as a not applicable (N/A) in Figure 14. 

11.3.3.1 RDMAC RNIC Initiator 
When the RDMAC RNIC is the MPA Initiator, its ULP or other supporting 
entity prepares an MPA Request message and sets the revision to zero 
and the M bit and C bit to one.   
The Permissive IETF Responder receives the MPA Request message and 
checks the revision field.  Since it is capable of generating RDMAC 
DDP/RDMAP headers, it sends an MPA Reply message with revision set to 
zero and the M and C bits set to one.  The Responder must inform its 
ULP that it is generating version zero DDP/RDMAP messages.  

11.3.3.2 Permissive IETF RNIC Initiator 
If the Permissive IETF RNIC is the MPA Initiator, it prepares the MPA 
Request Frame setting the Rev field to one.  Regardless of the value 
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of the M bit in the MPA Request Frame, the ULP or other supporting 
entity for the RDMAC RNIC will create an MPA Reply Frame with Rev 
equal to zero and the M bit set to one.  
When the Initiator reads the Rev field of the MPA Reply Frame and 
finds that its peer is an RDMAC RNIC, it must inform its ULP that it 
should generate version zero DDP/RDMAP messages and enable MPA 
Markers and CRC. 

11.3.4 Non-Permissive IETF RNIC and Permissive IETF RNIC 
For completeness, Figure 15 shows the results of MPA negotiation 
between a Non-permissive IETF RNIC and a Permissive IETF RNIC.  The 
important point from this figure is that an IETF RNIC cannot detect 
whether its peer is a Permissive or Non-permissive RNIC.  

+---------------------------++-------------------------------+ 
| MPA                     ||              MPA              | 
| CONNECT                   ||            Responder          | 
| MODE  +-----------------++---------------+---------------+ 
| | RNIC          ||     IETF      |     IETF      | 
| | TYPE          || Non-permissive|  Permissive   | 
| | +------++-------+-------+-------+-------+ 
| | |MARKER|| M=0   | M=1   | M=0   | M=1   | 
+---------+----------+------++-------+-------+-------+-------+ 
+---------+----------+------++-------+-------+-------+-------+ 
| | | M=0  || V=1   | V=1   | V=1   | V=1   | 
| | IETF   |      || M=0/0 | M=0/1 | M=0/0 | M=0/1 | 
| |Non-perms.+------++-------+-------+-------+-------+ 
| | | M=1  || V=1   | V=1   | V=1   | V=1   | 
| | | || M=1/0 | M=1/1 | M=1/0 | M=1/1 | 
| MPA   +----------+------++-------+-------+-------+-------+ 
|Initiator|          | M=0  || V=1   | V=1   | V=1   | V=1   | 
| | IETF   |      || M=0/0 | M=0/1 | M=0/0 | M=0/1 | 
| |Permissive+------++-------+-------+-------+-------+ 
| | | M=1  || V=1   | V=1   | V=1   | V=1   | 
| | | || M=1/0 | M=1/1 | M=1/0 | M=1/1 | 
+---------+----------+------++-------+-------+-------+-------+ 

Figure 15: MPA negotiation between a Non-permissive IETF RNIC and a 
Permissive IETF RNIC. 
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