
Network Working Group M. Ramalho, Ed.
Internet-Draft P. Jones
Intended status: Standards Track Cisco Systems
Expires: September 26, 2015 N. Harada
 NTT
 M. Perumal
 Ericsson
 L. Miao
 Huawei Technologies
 March 25, 2015

 RTP Payload Format for G.711.0
 draft-ietf-payload-g7110-05

Abstract

 This document specifies the Real-Time Transport Protocol (RTP)
 payload format for ITU-T Recommendation G.711.0. ITU-T Rec. G.711.0
 defines a lossless and stateless compression for G.711 packet
 payloads typically used in IP networks. This document also defines a
 storage mode format for G.711.0 and a media type registration for the
 G.711.0 RTP payload format.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 26, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Ramalho, et al. Expires September 26, 2015 [Page 1]

Internet-Draft G.711.0 Payload Format March 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 3
 3. G.711.0 Codec Background 3
 3.1. General Information and Use of the ITU-T G.711.0 Codec . 3
 3.2. Key Properties of G.711.0 Design 4
 3.3. G.711 Input Frames to G.711.0 Output Frames 7
 3.3.1. Multiple G.711.0 Output Frames per RTP Payload
 Considerations 8
 4. RTP Header and Payload 9
 4.1. G.711.0 RTP Header 9
 4.2. G.711.0 RTP Payload 10
 4.2.1. Single G.711.0 Frame per RTP Payload Example 11
 4.2.2. G.711.0 RTP Payload Definition 12
 4.2.2.1. G.711.0 RTP Payload Encoding Process 13
 4.2.3. G.711.0 RTP Payload Decoding Process 14
 4.2.4. G.711.0 RTP Payload for Multiple Channels 16
 5. Payload Format Parameters 18
 5.1. Media Type Registration 18
 5.2. Mapping to SDP Parameters 20
 5.3. Offer/Answer Considerations 21
 5.4. SDP Examples . 21
 5.4.1. SDP Example 1 . 21
 5.4.2. SDP Example 2 . 22
 6. G.711.0 Storage Mode Conventions and Definition 22
 6.1. G.711.0 PLC Frame . 22
 6.2. G.711.0 Erasure Frame 23
 6.3. G.711.0 Storage Mode Definition 24
 7. Acknowledgements . 25
 8. Contributors . 26
 9. IANA Considerations . 26
 10. Security Considerations 26
 11. Congestion Control . 27
 12. References . 28
 12.1. Normative References 28
 12.2. Informative References 29
 Authors’ Addresses . 29

Ramalho, et al. Expires September 26, 2015 [Page 2]

Internet-Draft G.711.0 Payload Format March 2015

1. Introduction

 The International Telecommunication Union (ITU-T) Recommendation
 G.711.0 [G.711.0] specifies a stateless and lossless compression for
 G.711 packet payloads typically used in Voice over IP (VoIP)
 networks. This document specifies the Real-Time Transport Protocol
 (RTP) RFC 3550 [RFC3550] payload format and storage modes for this
 compression.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. G.711.0 Codec Background

 ITU-T Recommendation G.711.0 [G.711.0] is a lossless and stateless
 compression mechanism for ITU-T Recommendation G.711 [G.711] and thus
 is not a "codec" in the sense of "lossy" codecs typically carried by
 RTP. When negotiated end-to-end ITU-T Rec. G.711.0 is negotiated as
 if it were a codec, with the understanding that ITU-T Rec. G.711.0
 losslessly encoded the underlying (lossy) G.711 pulse code modulation
 (PCM) sample representation of an audio signal. For this reason
 ITU-T Rec. G.711.0 will be interchangeably referred to in this
 document as a "lossless data compression algorithm" or a "codec",
 depending on context. Within this document, individual G.711 PCM
 samples will be referred to as "G.711 symbols" or just "symbols" for
 brevity.

 This section describes the ITU-T Recommendation G.711 [G.711] codec,
 its properties, typical uses cases and its key design properties.

3.1. General Information and Use of the ITU-T G.711.0 Codec

 ITU-T Recommendation G.711 is the benchmark standard for narrowband
 telephony. It has been successful for many decades because of its
 proven voice quality, ubiquity and utility. A new ITU-T
 recommendation, G.711.0, has been established for defining a
 stateless and lossless compression for G.711 packet payloads
 typically used in VoIP networks. ITU-T Rec. G.711.0 is also known as
 ITU-T Rec. G.711 Annex A [G.711-A1], as ITU-T Rec. G.711 Annex A is
 effectively a pointer ITU-T Rec. G.711.0. Henceforth in this
 document, ITU-T Rec. G.711.0 will simply be referred to as "G.711.0"
 and ITU-T Rec. G.711 simply as "G.711".

 G.711.0 may be employed end-to-end; in which case the RTP payload
 format specification and use is nearly identical to the G.711 RTP

Ramalho, et al. Expires September 26, 2015 [Page 3]

Internet-Draft G.711.0 Payload Format March 2015

 specification found in RFC 3551 [RFC3551]. The only significant
 difference for G.711.0 is the required use of a dynamic payload type
 (the static PT of 0 or 8 is presently almost always used with G.711
 even though dynamic assignment of other payload types is allowed) and
 the recommendation not to use Voice Activity Detection (see
 Section 4.1).

 G.711.0, being both lossless and stateless, may also be employed as a
 lossless compression mechanism for G.711 payloads anywhere between
 end systems which have negotiated use of G.711. Because the only
 significance between the G.711 RTP payload format header and the
 G.711.0 payload format header defined in this document is the payload
 type, a G.711 RTP packet can be losslessly converted to a G.711.0 RTP
 packet simply by compressing the G.711 payload (thus creating a
 G.711.0 payload), changing the payload type to the dynamic value
 desired and copying all the remaining G.711 RTP header fields into
 the corresponding G.711.0 RTP header. In a similar manner, the
 corresponding decompression of the G.711.0 RTP packet thus created
 back to the original source G.711 RTP packet can be accomplished by
 losslessly decompressing the G.711.0 payload back to the original
 source G.711 payload, changing the payload type back to the payload
 type of the original G.711 RTP packet and copying all the remaining
 G.711.0 RTP header fields into the corresponding G.711 RTP header.
 Negotiation specifics for this lossless G.711 payload compression for
 RTP use case is not in scope for this document.

 It is special to note that G.711.0, being both lossless and
 stateless, can be employed multiple times (e.g., on multiple,
 individual hops or series of hops) of a given flow with no
 degradation of quality relative to end-to-end G.711. Stated another
 way, multiple "lossless transcodes" from/to G.711.0/G.711 do not
 affect voice quality as typically occurs with lossy transcodes to/
 from dissimilar codecs.

 Lastly, it is expected that G.711.0 will be used as an archival
 format for recorded G.711 streams. Therefore, a G.711.0 Storage Mode
 Format is also included in this document.

3.2. Key Properties of G.711.0 Design

 The fundamental design of G.711.0 resulted from the desire to
 losslessly encode and compress frames of G.711 symbols independent of
 what types of signals those G.711 frames contained. The primary
 G.711.0 use case is for G.711 encoded, zero-mean, acoustic signals
 (such as speech and music).

 G.711.0 attributes are below:

Ramalho, et al. Expires September 26, 2015 [Page 4]

Internet-Draft G.711.0 Payload Format March 2015

 A1 Compression for zero-mean acoustic signals: G.711.0 was designed
 as its primary use case for the compression of G.711 payloads
 that contained "speech" or other zero-mean acoustic signals.
 G.711.0 obtains greater than 50% average compression in service
 provider environments [ICASSP].

 A2 Lossless for any G.711 payload: G.711.0 was designed to be
 lossless for any valid G.711 payload - even if the payload
 consisted of apparently random G.711 symbols (e.g., a modem or
 FAX payload). G.711.0 could be used for "aggregate 64 kbps
 G.711 channels" carried over IP without explicit concern if a
 subset of these channels happened to be carrying something
 other than voice or general audio. To the extent that a
 particular channel carried something other than voice or
 general audio, G.711.0 ensured that it was carried losslessly,
 if not significantly compressed.

 A3 Stateless: Compression of a frame of G.711 symbols was only to be
 dependent on that frame and not on any prior frame. Although
 greater compression is usually available by observing a longer
 history of past G.711 symbols, it was decided that the
 compression design would be stateless to completely eliminate
 error propagation common in many lossy codec designs (e.g.,
 ITU-T Rec. G.729 [G.729], ITU-T Rec. G.722 [G.722]). That is,
 the decoding process need not be concerned about lost prior
 packets because the decompression of a given G.711.0 frame is
 not dependent on potentially lost prior G.711.0 frames. Owing
 to this stateless property, the frames input to the G.711.0
 encoder may be changed "on-the-fly" (a 5 ms encoding could be
 followed by a 20 ms encoding).

 A4 Self-describing: This property is defined as the ability to
 determine how many source G.711 samples are contained within
 the G.711.0 frame solely by information contained within the
 G.711.0 frame. Generally, the number of source G.711 symbols
 can be determined by decoding the initial octets of the
 compressed G.711.0 frame (these octets are called "prefix
 codes" in the standard). A G.711.0 decoder need not know how
 many symbols are contained in the original G.711 frame (e.g.,
 parameter ptime in Session Description Protocol, SDP,
 [RFC4566]), as it is able to decompress the G.711.0 frame
 presented to it without signaling knowledge.

 A5 Accommodate G.711 payload sizes typically used in IP: G.711 input
 frames of length typically found in VoIP applications represent
 SDP ptime values of 5 ms, 10 ms, 20 ms, 30 ms or 40 ms. Since
 the dominant sampling frequency for G.711 is 8000 samples per

Ramalho, et al. Expires September 26, 2015 [Page 5]

Internet-Draft G.711.0 Payload Format March 2015

 second, G.711.0 was designed to compress G.711 input frames of
 40, 80, 160, 240 or 320 samples.

 A6 Bounded expansion: Since attribute A2 above requires G.711.0 to
 be lossless for any payload (which could consist of any
 combination of octets with each octet spanning the entire space
 of 2^8 values), by definition there exists at least one
 potential G.711 payload which must be "uncompressible". Since
 the quantum of compression is an octet, the minimum expansion
 of such an uncompressible payload was designed to be the
 minimum possible of one octet. Thus G.711.0 "compressed"
 frames can be of length one octet to X+1 octets, where X is the
 size of the input G.711 frame in octets. G.711.0 can therefore
 be viewed as a Variable Bit Rate (VBR) encoding in which the
 size of the G.711.0 output frame is a function of the G.711
 symbols input to it.

 A7 Algorithmic delay: G.711.0 was designed to have the algorithmic
 delay equal to the time represented by the number of samples in
 the G.711 input frame (i.e., no "look-ahead").

 A8 Low Complexity: Less than 1.0 Weighted Million Operations Per
 Second (WMOPS) average and low memory footprint (˜5k octets
 RAM, ˜5.7k octets ROM and ˜3.6 basic operations) [ICASSP]
 [G.711.0].

 A9 Both A-law and mu-law supported: G.711 has two operating laws,
 A-law and mu-law. These two laws are also known as PCMA and
 PCMU in RTP applications RFC 3551 [RFC3551].

 These attributes generally make it trivial to compress a G.711 input
 frame consisting of 40, 80, 160, 240 or 320 samples. After the input
 frame is presented to a G.711.0 encoder, a G.711.0 "self-describing"
 output frame is produced. The number of samples contained within
 this frame is easily determined at the G.711.0 decoder by virtue of
 attribute A4. The G.711.0 decoder can decode the G.711.0 frame back
 to a G.711 frame by using only data within the G.711.0 frame.

 Lastly we note that losing a G.711.0 encoded packet is identical in
 effect of losing a G.711 packet (when using RTP); this is because a
 G.711.0 payload, like the corresponding G.711 payload, is stateless.
 Thus, it is anticipated that existing G.711 PLC mechanisms will be
 employed when a G.711.0 packet is lost and an identical MOS
 degradation relative to G.711 loss will be achieved.

Ramalho, et al. Expires September 26, 2015 [Page 6]

Internet-Draft G.711.0 Payload Format March 2015

3.3. G.711 Input Frames to G.711.0 Output Frames

 G.711.0 is a lossless and stateless compression of G.711 frames. The
 following figure depicts this where "A" is the process of G.711.0
 encoding and "B" is the process of G.711.0 decoding.

 1:1 Mapping from G.711 Input Frame to G.711.0 Output Frame

 |--------------------------| A |------------------------------|
 | G.711 Input Frame |----->| G.711.0 Output Frame |
 | of X Octets | | containing 1 to X+1 Octets |
 | (where X MUST be 40, 80, | | (precise value dependent on |
 | 160, 240 or 320 octets) |<-----| G.711.0 ability to compress) |
 |__________________________| B |______________________________|

 Figure 1

 Note that the mapping is 1:1 (lossless) in both directions, subject
 to two constraints. The first constraint is that the input frame
 provided to the G.711.0 encoder (process "A") has a specific number
 of input G.711 symbols consistent with attribute A5 (40, 80, 160, 240
 or 320 octets). The second constraint is that the companding law
 used to create the G.711 input frame (A-law or mu-law) must be known,
 consistent with attribute A9.

 Subject to these two constraints, the input G.711 frame is processed
 by the G.711.0 encoder ("process A") and produces a "self-describing"
 G.711.0 output frame, consistent with attribute A4. Depending on the
 source G.711 symbols, the G.711.0 output frame can contain anywhere
 from 1 to X+1 octets, where X is the number of input G.711 symbols.
 Compression results for virtually every zero-mean acoustic signal
 encoded by G.711.0.

 Since the G.711.0 output frame is "self-describing", a G.711.0
 decoder (process "B") can losslessly reproduce the original G.711
 input frame with only the knowledge of which companding law was used
 (A-law or mu-law). The first octet of a G.711.0 frame is called the
 "Prefix Code" octet; the information within this octet conveys how
 many G.711 symbols the decoder is to create from a given G.711.0
 input frame (i.e., 0, 40, 80, 160, 240 or 320). The Prefix Code
 value of 0x00 is used to denote zero G.711 source symbols, which
 allows the use of 0x00 as a payload padding octet (to be described
 later in Section 3.3.1).

 Since G.711.0 was designed with typical G.711 payload lengths as a
 design constraint (attribute A5), this lossless encoding can be

Ramalho, et al. Expires September 26, 2015 [Page 7]

Internet-Draft G.711.0 Payload Format March 2015

 performed only with knowledge of the companding law being used. This
 information is anticipated to be signaled in SDP and will be
 described later in this document.

 If the original inputs were known to be from a zero-mean acoustic
 signal coded by G.711, an intelligent G.711.0 encoder could infer the
 G.711 companding law in use (via G.711 input signal amplitude
 histogram statistics). Likewise, an intelligent G.711.0 decoder
 producing G.711 from the G.711.0 frames could also infer which
 encoding law in use. Thus G.711.0 could be designed for use in
 applications that have limited stream signaling between the G.711
 endpoints (i.e., they only know "G.711 at 8k sampling is being used",
 but nothing more). Such usage is not further described in this
 document. Additionally, if the original inputs were known to come
 from zero-mean acoustic signals, an intelligent G.711.0 encoder could
 tell if the G.711.0 payload had been encrypted - as the symbols would
 not have the distribution expected in either companding law and would
 appear random. Such determination is also not further discussed in
 this document.

 It is easily seen that this process is 1:1 and that G.711.0 based
 lossless compression can be employed multiple times, as the original
 G.711 input symbols are always reproduced with 100% fidelity.

3.3.1. Multiple G.711.0 Output Frames per RTP Payload Considerations

 As a general rule, G.711.0 frames containing more source G.711
 symbols (from a given channel) will typically result in higher
 compression, but there are exceptions to this rule. A G.711.0
 encoder may choose to encode 20 ms of input G.711 symbols as: 1) a
 single 20 ms G.711.0 frame, or 2) as two 10 ms G.711.0 frames, or 3)
 any other combination of 5 ms or 10 ms G.711.0 frames - depending on
 which encoding resulted in fewer bits. As an example, an intelligent
 encoder might encode 20 ms of G.711 symbols as two 10 ms G.711.0
 frames if the first 10 ms was "silence" and two G.711.0 frames took
 fewer bits than any other possible encoding combination of G.711.0
 frame sizes.

 During the process of G.711.0 standardization it was recognized that
 although it is sometimes advantageous to encode integer multiples of
 40 G.711 symbols in whatever input symbol format resulted in the most
 compression (as per above), the simplest choice is to encode the
 entire ptime’s worth of input G.711 symbols into one G.711.0 frame
 (if the ptime supported it). This is especially so since the larger
 number of source G.711 symbols typically resulted in the highest
 compression anyway and there is added complexity in searching for
 other possibilities (involving more G.711.0 frames) which were
 unlikely to produce a more bit efficient result.

Ramalho, et al. Expires September 26, 2015 [Page 8]

Internet-Draft G.711.0 Payload Format March 2015

 The design of ITU-T Rec. G.711.0 [G.711.0] foresaw the possibility of
 multiple G.711.0 input frames in that the decoder was defined to
 decode what it refers to as an incoming "bit stream". For this
 specification, the bit stream is the G.711.0 RTP payload itself.
 Thus, the decoder will take the G.711.0 RTP payload and will produce
 an output frame containing the original G.711 symbols independent of
 how many G.711.0 frames were present in it. Additionally, any number
 of 0x00 padding octets placed between the G.711.0 frames will be
 silently (and safely) ignored by the G.711.0 decoding process
 Section 4.2.3).

 To recap, a G.711.0 encoder may choose to encode incoming G.711
 symbols into one or more than one G.711.0 frames and put the
 resultant frame(s) into the G.711.0 RTP payload. Zero or more 0x00
 padding octets may also be included in the G.711.0 RTP payload. The
 G.711.0 decoder, being insensitive to the number of G.711.0 encoded
 frames that are contained within it, will decode the G.711.0 RTP
 payload into the source G.711 symbols. Although examples of single
 or multiple G.711 frame cases will be illustrated in Section 4.2, the
 multiple G.711.0 frame cases MUST be supported and there is no need
 for negotiation (SDP or otherwise) required for it.

4. RTP Header and Payload

 In this section we describe the precise format for G.711.0 frames
 carried via RTP. We begin with RTP header description relative to
 G.711, then provide two G.711.0 payload examples.

4.1. G.711.0 RTP Header

 Relative to G.711 RTP headers, the utilization of G.711.0 does not
 create any special requirements with respect to the contents of the
 RTP packet header. The only significant difference is that the
 payload type (PT) RTP header field MUST have a value corresponding to
 the dynamic payload type assigned to the flow. This is in contrast
 to most current uses of G.711 which typically use the static payload
 assignment of PT = 0 (PCMU) or PT = 8 (PCMA) [RFC3551] even though
 the negotiation and use of dynamic payload types is allowed for
 G.711. With the exception of rare PT exhaustion cases, the existing
 G.711 PT values of 0 and 8 MUST NOT be used for G.711.0 (helping to
 avoid possible payload confusion with G.711 payloads).

 Voice Activity Detection (VAD) SHOULD NOT be used when G.711.0 is
 negotiated because G.711.0 obtains high compression during "VAD
 silence intervals" and one of the advantages of G.711.0 over G.711
 with VAD is the lack of any VAD-inducing artifacts in the received
 signal. However, if VAD is employed, the Marker bit (M) MUST be set
 in the first packet of a talkspurt (the first packet after a silence

Ramalho, et al. Expires September 26, 2015 [Page 9]

Internet-Draft G.711.0 Payload Format March 2015

 period in which packets have not been transmitted contiguously as per
 rules specified in [RFC3551] for G.711 payloads). This definition,
 being consistent with the G.711 RTP VAD use, further allows lossless
 transcoding between G.711 RTP packets and G.711.0 RTP packets as
 described in Section 3.1.

 With this introduction, the RTP packet header fields are defined as
 follows:

 V - As per [RFC3550]

 P - As per [RFC3550]

 X - As per [RFC3550]

 CC - As per [RFC3550]

 M - As per [RFC3550] and [RFC3551]

 PT - The assignment of an RTP payload type for the format defined
 in this memo is outside the scope of this document. The RTP
 profiles in use currently mandate binding the payload type
 dynamically for this payload format.

 SN - As per [RFC3550]

 timestamp - As per [RFC3550]

 SSRC - As per [RFC3550]

 CSRC - As per [RFC3550]

 Where V (version bits), P (padding bit), X (extension bit), CC (CSRC
 count), M (marker bit), PT (payload type), SN (sequence number),
 timestamp, SSRC (synchronizing source) and CSRC (contributing
 sources) are as defined in [RFC3550] and as typically used with
 G.711. PT (payload type) is as defined in [RFC3551].

4.2. G.711.0 RTP Payload

 This section defines the G.711.0 RTP payload and illustrates it by
 means of two examples.

 The first example, in Section 4.2.1, depicts the case when it is
 desired to carry only one G.711.0 frame in the RTP payload. This
 case is expected to be the dominant use case and is shown separately
 for the purposes of clarity.

Ramalho, et al. Expires September 26, 2015 [Page 10]

Internet-Draft G.711.0 Payload Format March 2015

 The second example, in Section 4.2.2, depicts the general case when
 it is desired to carry one or more G.711.0 frames in the RTP payload.
 This is the actual definition of the G.711.0 RTP payload.

4.2.1. Single G.711.0 Frame per RTP Payload Example

 This example depicts a single G.711.0 frame in the RTP payload. This
 is expected to be the dominant RTP payload case for G.711.0, as the
 G.711.0 encoding process supports the SDP packet times (ptime and
 maxptime, see [RFC4566]) commonly used when G.711 is transported in
 RTP. Additionally, as mentioned previously, larger G.711.0 frames
 generally compress more effectively than a multiplicity of smaller
 G.711.0 frames.

 The following Figure illustrates the single G.711.0 frame per RTP
 payload case.

 Single G.711.0 Frame in RTP Payload Case

 |-------------------|-------------------|
 | One G.711.0 Frame | Zero or more 0x00 |
 | | Padding Octets |
 |___________________|___________________|

 Figure 2

 Encoding Process: A single G.711.0 frame is inserted into the RTP
 payload. The amount of time represented by the G.711 symbols
 compressed in the G.711.0 frame MUST correspond to the ptime signaled
 for applications using SDP. Although generally not desired, padding
 desired in the RTP payload after the G.711.0 frame MAY be created by
 placing one or more 0x00 octets after the G.711.0 frame. Such
 padding may be desired based on security considerations (see
 Section 10).

 Decoding Process: Passing the entire RTP payload to the G.711.0
 decoder is sufficient for the G.711.0 decoder to create the source
 G.711 symbols. Any padding inserted after the G.711.0 frame (i.e.,
 the 0x00 octets) present in the RTP payload is silently ignored by
 the G.711.0 decoding process. The decoding process is fully
 described in Section 4.2.3 below.

Ramalho, et al. Expires September 26, 2015 [Page 11]

Internet-Draft G.711.0 Payload Format March 2015

4.2.2. G.711.0 RTP Payload Definition

 This section defines the G.711.0 RTP payload and illustrates the case
 of when one or more G.711.0 frames are to be placed in the payload.
 All G.711.0 RTP decoders MUST support the general case described in
 this section (rationale presented previously in Section 3.3.1).

 Note that since each G.711.0 frame is self-describing (see Attribute
 A4 in Section 3.2), the individual G.711.0 frames in the RTP payload
 need not represent the same duration of time (i.e., a 5 ms G.711.0
 frame could be followed by a 20 ms G.711.0 frame). Owing to this,
 the amount of time represented in the RTP payload MAY be any integer
 multiple of 5 ms (as 5 ms is the smallest interval of time that can
 be represented in a G.711.0 frame).

 The following Figure illustrates the one or more G.711.0 frames per
 RTP payload case where the number of G.711.0 frames placed in the RTP
 payload is N. We note that when N is equal to 1 that this case is
 identical to the previous example.

 One or More G.711.0 Frames in RTP Payload Case

 |----------|---------|----------|---------|----------------|
 | First | Second | | Nth | Zero or more |
 | G.711.0 | G.711.0 | ... | G.711.0 | 0x00 |
 | Frame | Frame | | Frame | Padding Octets |
 |__________|_________|__________|_________|________________|

 Figure 3

 We note here that when we have multiple G.711.0 frames that the
 individual frames can be, and generally are, of different lengths.
 The decoding process described in Section 4.2.3 is used to determine
 the frame boundaries.

 Encoding Process: One or more G.711.0 frames are placed in the RTP
 payload simply by concatenating the G.711.0 frames together. The
 amount of time represented by the G.711 symbols compressed in all the
 G.711.0 frames in the RTP payload MUST correspond to the ptime
 signaled for applications using SDP. Although not generally desired,
 padding in the RTP payload SHOULD be placed after the last G.711.0
 frame in the payload and MAY be created by placing one or more 0x00
 octets after the last G.711.0 frame. Such padding may be desired
 based on security considerations (see Section 10). Additional
 encoding process details and considerations are specified later in
 Section 4.2.2.1.

Ramalho, et al. Expires September 26, 2015 [Page 12]

Internet-Draft G.711.0 Payload Format March 2015

 Decoding Process: As G.711.0 frames can be of varying length, the
 payload decoding process described in Section 4.2.3 is used to
 determine where the individual G.711.0 frame boundaries are. Any
 padding octets inserted before or after any G.711.0 frame in the RTP
 payload is silently (and safely) ignored by the G.711.0 decoding
 process specified in Section 4.2.3.

4.2.2.1. G.711.0 RTP Payload Encoding Process

 ITU-T G.711.0 supports five possible input frame lengths: 40, 80,
 160, 240, and 320 samples per frame and the rationale for choosing
 those lengths was given in the description of property A5 in
 Section 3.2. Assuming 8000 sample per second, these lengths
 correspond to input frames representing 5 ms, 10 ms, 20 ms, 30 ms or
 40 ms. So while the standard assumed the input "bit stream"
 consisted of G.711 symbols of some integer multiple of 5 ms in
 length, it did not specify exactly what frame lengths to use as input
 to the G.711.0 encoder itself. The intent of this section is to
 provide some guidance for the selection.

 Consider a typical IETF use case of 20 ms (160 octets) of G.711 input
 samples represented in a G.711.0 payload and signaled by using the
 SDP parameter ptime. As described in Section 3.3.1, the simplest way
 to encode these 160 octets is to pass the entire 160 octet to the
 G.711.0 encoder, resulting in precisely one G.711.0 compressed frame,
 and put that singular frame into the G.711.0 RTP payload. However,
 neither the ITU-T G.711.0 standard nor this IETF payload format
 mandates this. In fact 20 ms of input G.711 symbols can be encoded
 as 1, 2, 3 or 4 G.711.0 frames in any one of six combinations (i.e.,
 {20ms}, {10ms:10ms}, {10ms:5ms:5ms}, {5ms:10ms:5ms}, {5ms:5ms:10ms},
 {5ms:5ms:5ms:5ms}) and any of these combinations would decompress
 into the same source 160 G.711 octets. As an aside, we note that the
 first octet of any G.711.0 frame will be the prefix code octet and
 information in this octet determines how many G.711 symbols are
 represented in the G.711.0 frame.

 Notwithstanding the above, we expect one of two encodings to be used
 by implementers: the simplest possible (one 160 byte input to the
 G.711.0 encoder which usually results in the highest compression) or
 the combination of possible input frames to a G.711.0 encoder that
 resulted in the highest compression for the payload. The explicit
 mention of this issue in this IETF document was deemed important
 because the ITU-T G.711.0 standard is silent on this issue and there
 is a desire for this issue to be documented in a formal Standards
 Developing Organization (SDO) document (i.e., here).

Ramalho, et al. Expires September 26, 2015 [Page 13]

Internet-Draft G.711.0 Payload Format March 2015

4.2.3. G.711.0 RTP Payload Decoding Process

 The G.711.0 decoding process is a standard part of G.711.0 bit stream
 decoding and is implemented in the ITU-T Rec. G.711.0 reference code.
 The decoding process algorithm described in this section is a slight
 enhancement of the ITU-T reference code to explicitly accommodate RTP
 padding (as described above).

 Before describing the decoding, we note here that the largest
 possible G.711.0 frame is created whenever the largest number of
 G.711 symbols is encoded (320 from Section 3.2, property A5) and
 these 320 symbols are "uncompressible" by the G.711.0 encoder. In
 this case (via property A6 in Section 3.2) the G.711.0 output frame
 will be 321 octets long. We also note that the value 0x00 chosen for
 the optional padding cannot be the first octet of a valid ITU-T Rec.
 G.711.0 frame (see [G.711.0]). We also note that whenever more than
 one G.711.0 frame is contained in the RTP payload, the decoding of
 the individual G.711.0 frames will occur multiple times.

 For the decoding algorithm below, let N be the number of octets in
 the RTP payload (i.e., excluding any RTP padding, but including any
 RTP payload padding), let P equal the number of RTP payload octets
 processed by the G.711.0 decoding process, let K be the number of
 G.711 symbols presently in the output buffer, let Q be the number of
 octets contained in the G.711.0 frame being processed and let "!="
 represent not equal to. The keyword "STOP" is used below to indicate
 the end of the processing of G.711.0 frames in the RTP payload. The
 algorithm below assumes an output buffer for the decoded G.711 source
 symbols of length sufficient to accommodate the expected number of
 G.711 symbols and an input buffer of length 321 octets.

 G.711.0 RTP Payload Decoding Heuristic:

 H1 Initialization of counters: Initialize P, the number of processed
 octets counter, to zero. Initialize K, the counter for how
 many G.711 symbols are in the output buffer, to zero.
 Initialize N to the number of octets in the RTP payload
 (including any RTP payload padding). Go to H2.

 H2 Read internal buffer: Read min{320+1, (N-P)-1} octets into the
 internal buffer from the (P+1) octet of the RTP payload. We
 note at this point, N-P octets have yet to be processed and
 that 320+1 octets is the largest possible G.711.0 frame. Also
 note that in the common case of zero-based array indexing of a
 uint8 array of octets, that this operation will read octets
 from index P through index [min{320+1, (N-P)}] from the RTP
 payload. Go to H3.

Ramalho, et al. Expires September 26, 2015 [Page 14]

Internet-Draft G.711.0 Payload Format March 2015

 H3 Analyze the first octet in the internal buffer: If this octet
 0x00 (a padding octet) go to H4, otherwise go to H5 (process a
 G.711.0 frame).

 H4 Process padding octet (no G.711 symbols generated): Increment the
 processed packets counter by one (set P = P + 1). If the
 result of this increment results in P >= N then STOP (as all
 RTP Payload octets have been processed), otherwise go to H2.

 H5 Process an individual G.711.0 frame (produce G.711 samples in the
 output frame): Pass the internal buffer to the G.711.0 decoder.
 The G.711.0 decoder will read the first octet (called the
 "prefix code" octet in ITU-T Rec. G.711.0 [G.711.0]) to
 determine the number of source G.711 samples M are contained in
 this G.711.0 frame. The G.711.0 decoder will produce exactly M
 G.711 source symbols (M can only have values of 0, 40, 80, 160,
 240 or 320). If K = 0, these M symbols will be the first in
 the output buffer and are placed at the beginning of the output
 buffer. If K != 0, concatenate these M symbols with the prior
 symbols in the output buffer (there are K prior symbols in the
 buffer). Set K = K + M (as there are now this many G.711
 source symbols in the output buffer). The G.711.0 decoder will
 have consumed some number of octets, Q, in the internal buffer
 to produce the M G.711 symbols. Increment the number of
 payload octet processed counter by this quantity (set P = P +
 Q). If the result of this increment results in P >= N then
 STOP (as all RTP Payload octets have been processed), otherwise
 go to H2.

 At this point, the output buffer will contain precisely K G.711
 source symbols which should correspond to the ptime signaled if SDP
 was used and the encoding process was without error. If ptime was
 signaled via SDP and the number of G.711 symbols in the output buffer
 is other than what corresponds to ptime, the packet MUST be discarded
 unless other system design knowledge allows for otherwise (e.g.,
 occasional 5 ms clock slips causing one more or one less G.711.0
 frame than nominal to be in the payload). Lastly, due to the buffer
 reads in H2 being bounded (to 321 octets or less), N being bounded to
 the size of the G.711.0 RTP payload, and M being bounded to the
 number of source G.711 symbols, there is no buffer overrun risk.

 We also note, as an aside, that the algorithm above (and the ITU-T
 G.711.0 reference code) accommodates padding octets (0x00) placed
 anywhere between G.711.0 frames in the RTP payload as well as prior
 to or after any or all G.711.0 frames. The ITU-T G.711.0 reference
 code does not have Step H3 and H4 as separate steps (i.e., Step H5
 immediately follows H2) at the added computational cost of some
 additional buffer passing to/from the G.711.0 frame decoder

Ramalho, et al. Expires September 26, 2015 [Page 15]

Internet-Draft G.711.0 Payload Format March 2015

 functions. That is the G.711.0 decoder in the reference code
 "silently ignores" 0x00 padding octets at the beginning of what it
 believes to be a G.711.0 encoded frame boundary. Thus Step H3 and
 Step H4 above are an optimization over the reference code shown for
 clarity.

 If the decoder is at a playout endpoint location, this G.711 buffer
 SHOULD be used in the same manner as a received G.711 RTP payload
 would have been used (passed to a playout buffer, to a PLC
 implementation, etc.).

4.2.4. G.711.0 RTP Payload for Multiple Channels

 In this section we describe the use of multiple "channels" of G.711
 data encoded by G.711.0 compression.

 The dominant use of G.711 in RTP transport has been for single
 channel use cases. For this case, the above G.711.0 encoding and
 decoding process is used. However, the multiple channel case for
 G.711.0 (a frame-based compression) is different from G.711 (a
 sample-based encoding) and is described separately here.

 RFC 3551 [RFC3551] provides guidelines for encoding audio channels
 (Section 4) and for the ordering of the channels within the RTP
 payload (Section 4.1). The ordering guidelines in RFC 3551,
 Section 4.1 SHOULD be used unless an application-specific channel
 ordering is more appropriate.

 An implicit assumption in RFC 3551 is that all the channel data
 multiplexed into a RTP payload MUST represent the same physical time
 span. The case for G.711.0 is no different; the underlying G.711
 data for all channels in a G.711.0 RTP payload MUST span the same
 interval in time (e.g., the same "ptime" for a SDP-specified codec
 negotiation).

 RFC 3551 provides guidelines for sample-based encodings such as G.711
 in Section 4.2. This guidance is tantamount to interleaving the
 individual samples in that they SHOULD be packed in consecutive
 octets.

 RFC 3551 provides guidelines for frame-based encodings in which the
 frames are interleaved. However, this guidance stems from the
 assumption that "the frame size for frame-oriented codecs is a
 given". However, this assumption is not valid for G.711.0 in that
 individual consecutive G.711.0 frames (as per Section 4.2.2) can:

 1) represent different time spans (e.g., two 5 ms G.711.0 frames
 in lieu of one 10 ms G.711.0 frame), and

Ramalho, et al. Expires September 26, 2015 [Page 16]

Internet-Draft G.711.0 Payload Format March 2015

 2) be of different lengths in octets (and typically are).

 Therefore a different, but also simple, concatenation-based approach
 is specified in this RFC.

 For the multiple channel G.711.0 case, each G.711 channel is
 independently encoded into one or more G.711.0 frames defined here as
 a "G.711.0 channel superframe". Each one of these superframes is
 identical to the multiple G.711.0 frame case illustrated in Figure 3
 of Section 4.2.2 in which each superframe can have one or more
 individual G.711.0 frames within it. Then each G.711.0 channel
 superframe is concatenated - in channel order - into a G.711.0 RTP
 payload. Then, if optional G.711.0 padding octets (0x00) are
 desired, it is RECOMMENDED that these octets are placed after the
 last G.711.0 channel superframe. As per above, such padding may be
 desired based on security considerations (see Section 10). This is
 depicted in the following Figure 4 below.

 Multiple G.711.0 Channel Superframes in RTP Payload

 |----------|---------|----------|---------|---------|
 | First | Second | | Nth | Zero |
 | G.711.0 | G.711.0 | ... | G.711.0 | or more |
 | Channel | Channel | | Channel | 0x00 |
 | Super- | Super- | | Super | Padding |
 | Frame | Frame | | Frame | Octets |
 |__________|_________|__________|_________|_________|

 Figure 4

 We note that although the individual superframes can be of different
 lengths in octets (and usually are), that the number of G.711 source
 symbols represented - in compressed form - in each channel superframe
 is identical (since all the channels represent the identically same
 time interval).

 The G.711.0 decoder at the receiving end simply decodes the entire
 G.711.0 (multiple channel) payload into individual G.711 symbols. If
 M such G.711 symbols result and there were N channels, then the first
 M/N G.711 samples would be from the first channel, the second M/N
 G.711 samples would be from the second channel, and so on until the
 Nth set of G.711 samples are found. Similarly, if the number of
 channels was not known, but the payload "ptime" was known, one could
 infer (knowing the sampling rate) how many G.711 symbols each channel
 contained; then with this knowledge determine how many channels of
 data were contained in the payload. When SDP is used, the number of

Ramalho, et al. Expires September 26, 2015 [Page 17]

Internet-Draft G.711.0 Payload Format March 2015

 channels is known because the optional parameter is a MUST when there
 is more than one channel negotiated (see Section 5.1). Additionally,
 when SDP is used the parameter ptime is a RECOMMENDED optional
 parameter. We note that if both parameters channels and ptime are
 known that one could provide a check for the other and the converse.
 Whichever algorithm is used to determine the number of channels, if
 the length of the source G.711 symbols in the payload (M) is not an
 integer multiple of the number of channels (N), then the packet
 SHOULD be discarded.

 Lastly we note that although any padding for the multiple channel
 G.711.0 payload is RECOMMENDED to be placed at the end of the
 payload, the G.711.0 decoding algorithm described in Section 4.2.3
 will successfully decode the payload in Figure 4 if the 0x00 padding
 octet is placed anywhere before or after any individual G.711.0 frame
 in the RTP payload. The number of padding octets introduced at any
 G.711.0 frame boundary therefore does not affect the number M of the
 source G.711 symbols produced. Thus the decision for padding MAY be
 made on a per-superframe basis.

5. Payload Format Parameters

 This section defines the parameters that may be used to configure
 optional features in the G.711.0 RTP transmission.

 The parameters defined here are a part of the media subtype
 registration for the G.711.0 codec. Mapping of the parameters into
 Session Description Protocol (SDP) RFC 4566 [RFC4566] is also
 provided for those applications that use SDP.

5.1. Media Type Registration

 Type name: audio

 Subtype name: G711-0

 Required parameters:

 clock rate: The RTP timestamp clock rate, which is equal to the
 sampling rate. The typical rate used with G.711 encoding is 8000,
 but other rates may be specified. The default rate is 8000.

 complaw: This format specific parameter, specified on the "a=fmtp:
 line", indicates the companding law (A-law or mu-law) employed.
 This format specific parameter, as per RFC 4566 [RFC4566], is
 given unchanged to the media tool using this format. The case-
 insensitive values are "complaw=al" or "complaw=mu" are used for
 A-law and mu-law, respectively.

Ramalho, et al. Expires September 26, 2015 [Page 18]

Internet-Draft G.711.0 Payload Format March 2015

 Optional parameters:

 channels: See RFC 4566 [RFC4566] for definition. Specifies how
 many audio streams are represented in the G.711.0 payload and MUST
 be present if the number of channels is greater than one. This
 parameter defaults to 1 if not present (as per RFC 4566) and is
 typically a non-zero small-valued positive integer. It is
 expected that implementations that specify multiple channels will
 also define a mechanism to map the channels appropriately within
 their system design, otherwise the channel order specified in RFC
 3551 [RFC3551] Section 4.1 will be assumed (e.g., left, right,
 center, ...). Similar to the usual interpretation in RFC 3551
 [RFC3551], the number of channels SHALL be a non-zero positive
 integer.

 maxptime: See RFC 4566 [RFC4566] for definition.

 ptime: See RFC 4566 [RFC4566] for definition. The inclusion of
 "ptime" is RECOMMENDED and SHOULD be in the SDP unless there is an
 application specific reason not to include it (e.g., an
 application that has a variable ptime on a packet-by-packet
 basis). For constant ptime applications, it is considered good
 form to include "ptime" in the SDP for session diagnostic
 purposes. For the constant ptime multiple channel case described
 in Section 4.2.2, the inclusion of "ptime" can provide a desirable
 payload check.

 Encoding considerations:

 This media type is framed binary data (see Section 4.8 in RFC 6838
 [RFC6838]) compressed as per ITU-T Rec. G.711.0.

 Security considerations:

 See Section 10.

 Interoperability considerations: none

 Published specification:

 ITU-T Rec. G.711.0 and RFC XXXX.

 [RFC Editor: please replace XXXXX with a reference to this RFC]

 Applications that use this media type:

 Although initially conceived for VoIP, the use of G.711.0, like
 G.711 before it, may find use within audio and video streaming

Ramalho, et al. Expires September 26, 2015 [Page 19]

Internet-Draft G.711.0 Payload Format March 2015

 and/or conferencing applications for the audio portion of those
 applications.

 Additional information:

 The following applies to stored-file transfer methods:

 Magic numbers: #!G7110A\n or #!G7110M\n (for A-law or MU-law
 encodings respectively, see Section 6).

 File Extensions: None

 Macintosh file type code: None

 Object identifier or OIL: None

 Person & email address to contact for further information:

 Michael A. Ramalho <mramalho@cisco.com> or <mar42@cornell.edu>

 Intended usage: COMMON

 Restrictions on usage:

 This media type depends on RTP framing, and hence is only defined
 for transfer via RTP [RFC3550]. Transport within other framing
 protocols is not defined at this time.

 Author: Michael A. Ramalho

 Change controller:

 IETF Payload working group delegated from the IESG.

5.2. Mapping to SDP Parameters

 The information carried in the media type specification has a
 specific mapping to fields in the Session Description Protocol (SDP),
 which is commonly used to describe a RTP session. When SDP is used
 to specify sessions employing G.711.0, the mapping is as follows:

 o The media type ("audio") goes in SDP "m=" as the media name.

 o The media subtype ("G711-0") goes in SDP "a=rtpmap" as the
 encoding name.

 o The required parameter "rate" also goes in "a=rtpmap" as the clock
 rate.

Ramalho, et al. Expires September 26, 2015 [Page 20]

Internet-Draft G.711.0 Payload Format March 2015

 o The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
 "a=maxptime" attributes, respectively.

 o Remaining parameters go in the SDP "a=fmtp" attribute by copying
 them directly from the media type string as a semicolon-separated
 list of parameter=value pairs.

5.3. Offer/Answer Considerations

 The following considerations apply when using the SDP offer/answer
 RFC 3264 [RFC3264] mechanism to negotiate the "channels" attribute.

 o If the offering endpoint specifies a value for the optional
 channels parameter greater than one and the answering endpoint
 both understands the parameter and cannot support that value
 requested, the answer MUST contain the optional channels parameter
 with the highest value it can support.

 o If the offering endpoint specifies a value for the optional
 channels parameter the answer MUST contain the optional channels
 parameter unless the only value the answering endpoint can support
 is one, in which case the answer MAY contain the optional channels
 parameter with value of 1.

 o If the offering endpoint specifies a value for the ptime parameter
 that the answering endpoint cannot support, the answer MUST
 contain the optional ptime parameter.

 o If the offering endpoint specifies a value for the maxptime
 parameter that the answering endpoint cannot support, the answer
 MUST contain the optional maxptime parameter.

5.4. SDP Examples

 The following examples illustrate how to signal G.711.0 via SDP.

5.4.1. SDP Example 1

 m=audio RTP/AVP 98
 a=rtpmap:98 G711-0/8000
 a=fmtp:98 complaw=mu

 In the above example the dynamic payload type 98 is mapped to G.711.0
 via the "a=rtpmap" parameter. The mandatory "complaw" is on the
 "a=fmtp" parameter line. Note that neither optional parameters
 "ptime" nor "channels" is present; although it is generally good form
 to include "ptime" in the SDP if the session is a constant ptime
 session for diagnostic purposes.

Ramalho, et al. Expires September 26, 2015 [Page 21]

Internet-Draft G.711.0 Payload Format March 2015

5.4.2. SDP Example 2

 The following example illustrates an offering endpoint requesting 2
 channels, but the answering endpoint can only support (or render) one
 channel.

 Offer:

 m=audio RTP/AVP 98
 a=rtpmap:98 G711-0/8000/2
 a=ptime:20
 a=fmtp:98 complaw=al

 Answer:

 m=audio RTP/AVP 98
 a=rtpmap: 98 G711-0/8000/1
 a=ptime: 20
 a=fmtp:98 complaw=al

 In this example the offer had an optional channels parameter. The
 answer must have the optional channels parameter also unless the
 value in the answer is one. Shown here is when the answer explicitly
 contains the channels parameter (it need not have and it would be
 interpreted as one channel). As mentioned previously, it is
 considered good form to include "ptime" in the SDP for session
 diagnostic purposes if the session is a constant ptime session.

6. G.711.0 Storage Mode Conventions and Definition

 The G.711.0 storage mode definition in this section is similar to
 many other IETF codecs (e.g., iLBC, EVRC-NW) and is essentially a
 concatenation of individual G.711.0 frames.

 We note that something must be stored for any G.711.0 frames that are
 not received at the receiving endpoint, no matter what the cause. In
 this section we describe two mechanisms, a "G.711.0 PLC Frame" and a
 "G.711.0 Erasure Frame". These G.711.0 PLC and G.711.0 Erasure
 Frames are described prior to the G.711.0 storage mode definition for
 clarity.

6.1. G.711.0 PLC Frame

 When G.711 RTP payloads not received by a rendering endpoint a Packet
 Loss Concealment (PLC) mechanism is typically employed to "fill in"
 the missing G.711 symbols with something that is auditorially
 pleasing and thus the loss may be not noticed by a listener. Such a

Ramalho, et al. Expires September 26, 2015 [Page 22]

Internet-Draft G.711.0 Payload Format March 2015

 PLC mechanism for G.711 is specified in ITU-T Rec. G.711 - Appendix 1
 [G.711-AP1].

 An natural extension when creating G.711.0 frames for storage
 environments is to employ such a PLC mechanism to create G.711
 symbols for the span of time in which G.711.0 payloads were not
 received - and then to compress the resulting "G.711 PLC symbols" via
 G.711.0 compression. The G.711.0 frame(s) created by such a process
 are called "G.711.0 PLC Frames".

 Since PLC mechanisms are designed to render missing audio data with
 the best fidelity and intelligibility, G.711.0 frames created via
 such processing is likely best for most recording situations (such as
 voicemail storage) unless there is a requirement not to fabricate
 (audio) data not actually received.

 After such PLC G.711 symbols have been generated and then encoded by
 a G.711.0 encoder, the resulting frames may be stored in G.711.0
 frame format. As a result, there is nothing to specify here - the
 G.711.0 PLC Frames are stored as if they were received by the
 receiving endpoint. In other words, PLC-generated G.711.0 frames
 appear as "normal" or "ordinary" G.711.0 frames in the storage mode
 file.

6.2. G.711.0 Erasure Frame

 "Erasure Frames", or equivalently "Null Frames", have been designed
 for many frame-based codecs since G.711 was standardized. These
 null/erasure frames explicitly represent data from incoming audio
 that were either not received by the receiving system or represent
 data that a transmitting system decided not to send. Transmitting
 systems may choose not to send data for a variety of reasons (e.g.,
 not enough wireless link capacity in radio-based systems) and can
 choose to send a "null frame" in lieu of the actual audio. It is
 also envisioned that erasure frames would be used in storage mode
 applications for specific archival purposes where there is a
 requirement not to fabricate audio data that was not actually
 received.

 Thus, a G.711.0 erasure frame is a representation of the amount of
 time in G.711.0 frames that were not received or not encoded by the
 transmitting system.

 Prior to defining a G.711.0 erasure frame it is beneficial to note
 what many G.711 RTP systems send when the endpoint is "muted". When
 muted, many of these systems will send an entire G.711 payload of
 either 0+ or 0- (i.e., one of the two levels closest to "analog zero"
 in either G.711 companding law). Next we note that a desirable

Ramalho, et al. Expires September 26, 2015 [Page 23]

Internet-Draft G.711.0 Payload Format March 2015

 property for a G.711.0 erasure frame is for "non G.711.0 Erasure
 Frame aware" endpoints to be able to playback a G.711.0 erasure frame
 with the existing G.711.0 ITU-T reference code.

 A G.711.0 Erasure Frame is defined as any G.711.0 frame for which the
 corresponding G.711 sample values are either the value 0++ or the
 value 0-- for the entirety of the G.711.0 frame. The levels of 0++
 and 0-- are defined to be the two levels above or below analog zero,
 respectively. An entire frame of value 0++ or 0-- is expected to be
 extraordinarily rare when the frame was in fact generated by a
 natural signal, as analog inputs such as speech and music are zero-
 mean and are typically acoustically coupled to digital sampling
 systems. Note that the playback of a G.711.0 frame characterized as
 an erasure frame is auditorially equivalent to a muted signal (a very
 low value constant).

 These G.711.0 erasure frames can be reasonably characterized as null
 or erasure frames while meeting the desired playback goal of being
 decoded by the G.711.0 ITU-T reference code. Thus, similarly to
 G.711 PLC frames, the G.711.0 erasure frames appear as "normal" or
 "ordinary" G.711.0 frames in the storage mode format.

6.3. G.711.0 Storage Mode Definition

 The storage format is used for storing G.711.0 encoded frames. The
 format for the G.711.0 storage mode file defined by this RFC is shown
 below.

 G.711.0 Storage Mode Format

 |---------------------------|----------|--------------|
 | Magic Number | | |
 | | Version | Concatenated |
 | "#!G7110A\n" (for A-law) | Octet | G.711.0 |
 | or | | Frames |
 | "#!G7110M\n" (for mu-law) | "0x00" | |
 |___________________________|__________|______________|

 Figure 5

 The storage mode file consists of a magic number and a version octet
 followed by the individual G.711.0 frames concatenated together.

 The magic number for G.711.0 A-law corresponds to the ASCII character
 string "#!G7110A\n", i.e., "0x23 0x21 0x47 0x37 0x31 0x31 0x30 0x41
 0x0A". Likewise, the magic number for G.711.0 MU-law corresponds to

Ramalho, et al. Expires September 26, 2015 [Page 24]

Internet-Draft G.711.0 Payload Format March 2015

 the ASCII character string "#!G7110M\n", i.e., "0x23 0x21 0x47 0x37
 0x31 0x31 0x4E 0x4D 0x0A".

 The version number octet allows for the future specification of other
 G.711.0 storage mode formats. The specification of other storage
 mode formats may be desirable as G.711.0 frames are of variable
 length and a future format may include an indexing methodology that
 would enable playout far into a long G.711.0 recording without the
 necessity of decoding all the G.711.0 frames since the beginning of
 the recording. Other future format specification may include support
 for multiple channels, metadata and the like. For these reasons it
 was determined that a versioning strategy was desirable for the
 G.711.0 storage mode definition specified by this RFC. This RFC only
 specifies Version 0 and thus the value of "0x00" MUST be used for the
 storage mode defined by this RFC.

 The G.711.0 codec data frames, including any necessary erasure or PLC
 frames, are stored in consecutive order concatenated together as
 shown in Section 4.2.2. As the Version 0 storage mode only supports
 a single channel, the RTP payload format supporting multiple channels
 defined in Section 4.2.4 is not supported in this storage mode
 definition.

 To decode the individual G.711.0 frames, the algorithm presented in
 Section 4.2.2 may be used to decode the individual G.711.0 frames.
 If the version octet is determined not to be zero, the remainder of
 the payload MUST NOT be passed to the G.711.0 decoder, as the ITU-T
 G.711.0 reference decoder can only decode concatenated G.711.0 frames
 and has not been designed to decode elements in yet to be specified
 future storage mode formats.

7. Acknowledgements

 There have been many people contributing to G.711.0 in the course of
 its development. The people listed here deserve special mention:
 Takehiro Moriya, Claude Lamblin, Herve Taddei, Simao Campos, Yusuke
 Hiwasaki, Jacek Stachurski, Lorin Netsch, Paul Coverdale, Patrick
 Luthi, Paul Barrett, Jari Hagqvist, Pengjun (Jeff) Huang, John Gibbs,
 Yutaka Kamamoto, and Csaba Kos. The review and oversight by the IETF
 Payload Working Group chairs Ali Begen and Roni Even during the
 development of this RFC is appreciated. Additionally, the careful
 review by Richard Barnes and extensive review by David Black and the
 rest of the IESG is likewise very much appreciated.

Ramalho, et al. Expires September 26, 2015 [Page 25]

Internet-Draft G.711.0 Payload Format March 2015

8. Contributors

 The authors thank everyone who have contributed to this document.
 The people listed here deserve special mention: Ali Begen, Roni Even,
 and Hadriel Kaplan.

9. IANA Considerations

 One media type (audio/G711-0) has been defined and requires IANA
 registration in the media types registry. See Section 5.1 for
 details.

10. Security Considerations

 RTP packets using the payload format defined in this specification
 are subject to the security considerations discussed in the RTP
 specification [RFC3550], and in any appropriate RTP profile (for
 example RFC 3551 [RFC3551] or [RFC4585]). This implies that
 confidentiality of the media streams is achieved by encryption; for
 example, through the application of SRTP [RFC3711]. Because the data
 compression used with this payload format is applied end-to-end, any
 encryption needs to be performed after compression.

 Note that the appropriate mechanism to ensure confidentiality and
 integrity of RTP packets and their payloads is very dependent on the
 application and on the transport and signaling protocols employed.
 Thus, although SRTP is given as an example above, other possible
 choices exist.

 Note that end-to-end security with either authentication, integrity
 or confidentiality protection will prevent a network element not
 within the security context from performing media-aware operations
 other than discarding complete packets. To allow any (media-aware)
 intermediate network element to perform its operations, it is
 required to be a trusted entity which is included in the security
 context establishment.

 G.711.0 has no known denial-of-service attacks due to decoding, as
 data posing as a desired G711.0 payload will be decoded into
 something (as per the decoding algorithm) with a finite amount of
 computation. This is due to the decompression algorithm having a
 finite worst-case processing path (no infinite computational loops
 are possible). We also note that the data read by the G.711.0
 decoder is controlled by the length of the individual encoded G.711.0
 frame(s) contained in the RTP payload. The decoding algorithm
 specified in Section 4.2.3 above ensures that the G.711.0 decoder
 will not read beyond the length of the internal buffer specified
 (which is in turn specified to be no greater than the largest

Ramalho, et al. Expires September 26, 2015 [Page 26]

Internet-Draft G.711.0 Payload Format March 2015

 possible G.711.0 frame of 321 octets). Therefore a G.711.0 payload
 does not carry "active content" that could impose malicious side-
 effects upon the receiver.

 G.711.0 is a variable bit rate (VBR) audio codec. There have been
 recent concerns with VBR speech codecs where a passive observer can
 identify phrases from a standard speech corpus by means of the
 lengths produced by the encoder even when the payload is encrypted
 [IEEE]. In this paper, it was determined that some code excited
 linear prediction (CELP) codecs would produce discrete packet lengths
 for some phonemes. And furthermore with the use of appropriately
 designed Hidden Markov Models (HMMs) that such a system could predict
 phrases with unexpected accuracy. One CELP codec studied, SPEEX, had
 the property that it produced 21 different packet lengths in its
 wideband mode and that these packet lengths probabilistically mapped
 to phonemes that a HMM system could be trained on. In this paper it
 was determined that a mitigation technique would be to pad the output
 of the encoder with random padding lengths to the effect: 1) that
 more discrete payload sizes would result, and 2) that the
 probabilistic mapping to phonemes would become less clear. As G.711
 is not a speech model based codec, neither is G.711.0. A G.711.0
 encoding, during talking periods, produces frames of varying frame
 lengths which are not likely to have a strong mapping to phonemes.
 Thus G.711.0 is not expected to have this same vulnerability. It
 should be noted that "silence" (only one value of G.711 in the entire
 G.711 input frame)" or "near silence" (only a few G.711 values) is
 easily detectable as G.711.0 frame lengths or one or a few octets.
 If one desires to mitigate for silence/non-silence detection,
 statistically variable padding should be added to G.711.0 frames that
 resulted in very small G.711.0 frames (less than about 20% of the
 symbols of the corresponding G.711 input frame). Methods of
 introducing padding in the G.711.0 payloads have been provided in the
 G.711.0 RTP payload definition in Section 4.2.2.

11. Congestion Control

 The G.711 codec is a Constant Bit Rate (CBR) codec which does not
 have a means to regulate the bitrate. The G.711.0 lossless
 compression algorithm typically compresses the G.711 CBR stream into
 a lower bandwidth VBR stream. However, being lossless, it does not
 possess means of further reducing the bitrate beyond the
 G.711.0-based compression result. The G.711.0 RTP payloads can be
 made arbitrarily large by means of adding optional padding bytes
 (subject only to MTU limitations).

 Therefore, there are no explicit ways to regulate the bit-rate of the
 transmissions outlined in this RTP Payload format except by means of
 modulating the number of optional padding bytes in the RTP payload.

Ramalho, et al. Expires September 26, 2015 [Page 27]

Internet-Draft G.711.0 Payload Format March 2015

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC
 6838, January 2013.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
 Video Conferences with Minimal Control", STD 65, RFC 3551,
 July 2003.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July
 2006.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [G.711.0] ITU-T G.711.0, , "Recommendation ITU-T G.711.0 - Lossless
 Compression of G.711 Pulse Code Modulation", September
 2009.

 [G.711] ITU-T G.711.0, , "Recommendation ITU-T G.711: Pulse Code
 Modulation (PCM) of Voice Frequencies", November 1988.

 [G.711-AP1]
 ITU-T G.711 Appendix 1, , "Recommendation G.711
 Appendix 1: A high quality low-complexity algorithm for
 packet loss concealment with G.711", September 1999.

Ramalho, et al. Expires September 26, 2015 [Page 28]

Internet-Draft G.711.0 Payload Format March 2015

 [G.711-A1]
 ITU-T G.711 Amendment 1, , "Recommendation ITU-T G.711
 Amendment 1 - Amendment 1: New Annex A on Lossless
 Encoding of PCM Frames", September 2009.

12.2. Informative References

 [G.729] ITU-T G.729, , "Recommendation ITU-T G.729 - Coding of
 speech at 8 kbit/s using conjugate-structure algebraic-
 code-excited linear prediction (CS-ACELP)", January 2007.

 [G.722] ITU-T G.722, , "Recommendation ITU-T G.722 - 7 kHz audio-
 coding within 64 kbit/s", November 1988.

 [ICASSP] N. Harada, , Y. Yamamoto, , T. Moriya, , Y. Hiwasaki, , M.
 A. Ramalho, , L. Netsch, , Y. Stachurski, , Miao Lei, , H.
 Taddei, , and Q. Fengyan, "Emerging ITU-T Standard G.711.0
 - Lossless Compression of G.711 Pulse Code Modulation,
 International Conference on Acoustics Speech and Signal
 Processing (ICASSP), 2010, ISBN 978-1-4244-4244-4295-9",
 March 2010.

 [IEEE] C.V. Wright, , L. Ballard, , S.E. Coull, , F. Monrose, ,
 and G.M. Masson, "Spot Me if You Can: Uncovering Spoken
 Phrases in Encrypted VoIP Conversations, IEEE Symposium on
 Security and Privacy, 2008, ISBN: 978-0-7695-3168-7", May
 2008.

Authors’ Addresses

 Michael A. Ramalho (editor)
 Cisco Systems, Inc.
 6310 Watercrest Way Unit 203
 Lakewood Ranch, FL 34202
 USA

 Phone: +1 919 476 2038
 Email: mramalho@cisco.com

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com

Ramalho, et al. Expires September 26, 2015 [Page 29]

Internet-Draft G.711.0 Payload Format March 2015

 Noboru Harada
 NTT Communications Science Labs.
 3-1 Morinosato-Wakamiya
 Atsugi, Kanagawa 243-0198
 JAPAN

 Phone: +81 46 240 3676
 Email: harada.noboru@lab.ntt.co.jp

 Muthu Arul Mozhi Perumal
 Ericsson
 Ferns Icon
 Doddanekundi, Mahadevapura
 Bangalore, Karnataka 560037
 India

 Phone: +91 9449288768
 Email: muthu.arul@gmail.com

 Lei Miao
 Huawei Technologies Co. Ltd
 Q22-2-A15R, Enviroment Protection Park
 No. 156 Beiqing Road
 HaiDian District
 Beijing 100095
 China

 Phone: +86 1059728300
 Email: lei.miao@huawei.com

Ramalho, et al. Expires September 26, 2015 [Page 30]

