Abstract

In certain networks, such as, but not limited to, financial information networks (e.g. stock market data providers), network performance criteria (e.g. latency) are becoming as critical to data path selection as other metrics.

This document describes extensions to OSPF TE [RFC3630] such that network performance information can be distributed and collected in a scalable fashion. The information distributed using OSPF TE Express Path can then be used to make path selection decisions based on network performance.

Note that this document only covers the mechanisms with which network performance information is distributed. The mechanisms for measuring network performance or acting on that information, once distributed, are outside the scope of this document.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Table of Contents

1. Introduction ..3
2. Conventions used in this document.................................4
3. Express Path Extensions to OSPF TE...............................4
4. Sub TLV Details..6
 4.1. Unidirectional Link Delay Sub-TLV............................6
 4.1.1. Type...6
 4.1.2. Length...6

1. Introduction

In certain networks, such as, but not limited to, financial information networks (e.g. stock market data providers), network performance information (e.g. latency) is becoming as critical to data path selection as other metrics.

In these networks, extremely large amounts of money rest on the ability to access market data in “real time” and to predictably make trades faster than the competition. Because of this, using metrics such as hop count or cost as routing metrics is becoming only
tangentially important. Rather, it would be beneficial to be able to make path selection decisions based on performance data (such as latency) in a cost-effective and scalable way.

This document describes extensions to OSPF TE (hereafter called “OSPF TE Express Path”), that can be used to distribute network performance information (such as link delay, delay variation, packet loss, residual bandwidth, and available bandwidth).

The data distributed by OSPF TE OSPF TE Express Path is meant to be used as part of the operation of the routing protocol (e.g. by replacing cost with latency or considering bandwidth as well as cost), by enhancing CSPF, or for other uses such as supplementing the data used by an Alto server [Alto]. With respect to CSPF, the data distributed by OSPF TE Express Path can be used to setup, fail over, and fail back data paths using protocols such as RSVP-TE [RFC3209].

Note that the mechanisms described in this document only disseminate performance information. The methods for initially gathering that performance information, such as [Frost], or acting on it once it is distributed are outside the scope of this document.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].

In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.

3. Express Path Extensions to OSPF TE

This document proposes new OSPF TE sub-TLVs that can be announced in OSPF TE LSAs to distribute network performance information. The extensions in this document build on the ones provided in OSPF TE [RFC3630] and GMPLS [RFC4203].

OSPF TE LSAs [RFC3630] are opaque LSAs [RFC5250] with area flooding scope. Each TLV has one or more nested sub-TLVs which permit the TE LSA to be readily extended. There are two main types of OSPF TE LSA; the Router Address or Link TE LSA. Like the extensions in GMPLS
(RFC4203), this document proposes several additional sub-TLVs for
the Link TE LSA:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD1</td>
<td>4</td>
<td>Unidirectional Link Delay</td>
</tr>
<tr>
<td>TBD2</td>
<td>4</td>
<td>Unidirectional Delay Variation</td>
</tr>
<tr>
<td>TBD3</td>
<td>4</td>
<td>Unidirectional Packet Loss</td>
</tr>
<tr>
<td>TBD4</td>
<td>4</td>
<td>Unidirectional Residual Bandwidth Sub TLV</td>
</tr>
<tr>
<td>TBD5</td>
<td>4</td>
<td>Unidirectional Available Bandwidth Sub TLV</td>
</tr>
</tbody>
</table>

As can be seen in the list above, the sub-TLVs described in this
document carry different types of network performance information.
Many (but not all) of the sub-TLVs include a bit called the Anomalous
(or “A”) bit. When the A bit is clear (or when the sub-TLV does not
include an A bit), the sub-TLV describes steady state link
performance. This information could conceivably be used to construct
a steady state performance topology for initial tunnel path
computation, or to verify alternative failover paths.

When network performance violates configurable link-local thresholds
a sub-TLV with the A bit set is advertised. These sub-TLVs could be
used by the receiving node to determine whether to fail traffic to a
backup path, or whether to calculate an entirely new path. From an
MPLS perspective, the intent of the A bit is to permit LSP ingress
nodes to:

A) Determine whether the link referenced in the sub-TLV affects any
of the LSPs for which it is ingress. If there are, then:

B) Determine whether those LSPs still meet end-to-end performance
objectives. If not, then:

C) The node could then conceivably move affected traffic to a pre-
established protection LSP or establish a new LSP and place the
traffic in it.

If link performance then improves beyond a configurable minimum
value (reuse threshold), that sub-TLV can be re-advertised with the
Anomalous bit cleared. In this case, a receiving node can
conceivably do whatever re-optimization (or failback) it wishes to
do (including nothing).
Note that when a sub-TLV does not include the A bit, that sub-TLV cannot be used for failover purposes. The A bit was intentionally omitted from some sub-TLVs to help mitigate oscillations. See section 7. 1. for more information.

Consistent with existing OSPF TE specifications (RFC3630), the bandwidth advertisements defined in this draft MUST be encoded as IEEE floating point values. The delay and delay variation advertisements defined in this draft MUST be encoded as integer values. Delay values MUST be quantified in units of microseconds, packet loss MUST be quantified as a percentage of packets sent, and bandwidth MUST be sent as bytes per second. All values (except residual bandwidth) MUST be calculated as rolling averages where the averaging period MUST be a configurable period of time. See section 5. for more information.

4. Sub TLV Details

4.1. Unidirectional Link Delay Sub-TLV

This sub-TLV advertises the average link delay between two directly connected OSPF neighbors. The delay advertised by this sub-TLV MUST be the delay from the local neighbor to the remote one (i.e. the forward path latency). The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1                   +-------------------+
|                     |                   |                    |   |                     |
|---------------------|                   |                    |   |---------------------|
|                     |                   |                    |   |                     |
|                     |                   |                    |   |                     |
|                     |                   |                    |   |                     |
|                     |                   |                    |   |                     |
|                     |                   |                    |   |                     |
```

4.1.1. Type

This sub-TLV has a type of TBD1.

4.1.2. Length

The length is 4.
4.1.3. A bit

This field represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

4.1.4. Reserved

This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.

4.1.5. Delay Value

This 24-bit field carries the average link delay over a configurable interval in micro-seconds, encoded as an integer value. When set to 0, it has not been measured. When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value and may be larger.

4.2. Unidirectional Delay Variation Sub-TLV

This sub-TLV advertises the average link delay variation between two directly connected OSPF neighbors. The delay variation advertised by this sub-TLV MUST be the delay from the local neighbor to the remote one (i.e. the forward path latency). The format of this sub-TLV is shown in the following diagram:

```
<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+-------------------------------------------+</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

4.2.1. Type

This sub-TLV has a type of TBD2.

4.2.2. Length

The length is 4.
4.2.3. Reserved

This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.

4.2.4. Delay Variation

This 24-bit field carries the average link delay variation over a configurable interval in micro-seconds, encoded as an integer value. When set to 0, it has not been measured. When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value and may be larger.

4.3. Unidirectional Link Loss Sub-TLV

This sub-TLV advertises the loss (as a packet percentage) between two directly connected OSPF neighbors. The link loss advertised by this sub-TLV MUST be the packet loss from the local neighbor to the remote one (i.e. the forward path loss). The format of this sub-TLV is shown in the following diagram:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| TBD3 | 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|A| RESERVED | Link Loss |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

4.3.1. Type

This sub-TLV has a type of TBD3

4.3.2. Length

The length is 4

4.3.3. A bit

This field represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below
its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

4.3.4. Reserved

This field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.

4.3.5. Link Loss

This 24-bit field carries link packet loss as a percentage of the total traffic sent over a configurable interval. The basic unit is 0.000003%, where \((2^{24} - 2) \) is 50.331642%. This value is the highest packet loss percentage that can be expressed (the assumption being that precision is more important on high speed links than the ability to advertise loss rates greater than this, and that high speed links with over 50% loss are unusable). Therefore, measured values that are larger than the field maximum SHOULD be encoded as the maximum value. When set to a value of all 1s \((2^{24} - 1) \), the link packet loss has not been measured.

4.4. Unidirectional Residual Bandwidth Sub-TLV

This TLV advertises the residual bandwidth (defined in section 4.4.3. between two directly connected OSPF neighbors. The residual bandwidth advertised by this sub-TLV MUST be the residual bandwidth from the system originating the LSA to its neighbor.

The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
+-------------------+-------------------+-------------------+-------------------+
|                   |                   |                   |                   |
|                   |                   |                   |                   |
|                   |                   |                   |                   |
|                   |                   |                   |                   |
|                   |                   |                   |                   |
|                   |                   |                   |                   |
|                   |                   |                   |                   |
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
```

4.4.1. Type

This sub-TLV has a type of TBD4.
4.4.2. Length

The length is 4.

4.4.3. Residual Bandwidth

This field carries the residual bandwidth on a link, forwarding adjacency [RFC4206], or bundled link in IEEE floating point format with units of bytes per second. For a link or forwarding adjacency, residual bandwidth is defined to be Maximum Bandwidth [RFC3630] minus the bandwidth currently allocated to RSVP-TE LSPs. For a bundled link, residual bandwidth is defined to be the sum of the component link residual bandwidths.

Note that although it may seem possible to calculate Residual Bandwidth using the existing sub-TLVs in RFC 3630, this is not a consistently reliable approach and hence the Residual Bandwidth sub-TLV has been added here. For example, because the Maximum Reservable Bandwidth [RFC3630] can be larger than the capacity of the link, using it as part of an algorithm to determine the value of the Maximum Bandwidth [RFC3630] minus the bandwidth currently allocated to RSVP-TE LSPs cannot be considered reliably accurate.

4.5. Unidirectional Available Bandwidth Sub-TLV

This TLV advertises the available bandwidth (defined in section 4.4.6.) between two directly connected OSPF neighbors. The available bandwidth advertised by this sub-TLV MUST be the available bandwidth from the system originating the LSA to its neighbor. The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TBD5                  | 4                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Available Bandwidth     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

4.4.4. Type

This sub-TLV has a type of TBD5.
4.4.5. Length

The length is 4.

4.4.6. Available Bandwidth

This field carries the available bandwidth on a link, forwarding adjacency, or bundled link in IEEE floating point format with units of bytes per second. For a link or forwarding adjacency, available bandwidth is defined to be residual bandwidth (see section 4.4) minus the measured bandwidth used for the actual forwarding of non-RSVP-TE LSP packets. For a bundled link, available bandwidth is defined to be the sum of the component link available bandwidths.

5. Announcement Thresholds and Filters

The values advertised in all sub-TLVs MUST be controlled using an exponential filter (i.e. a rolling average) with a configurable measurement interval and filter coefficient.

Implementations are expected to provide separately configurable advertisement thresholds. All thresholds MUST be configurable on a per sub-TLV basis.

The announcement of all sub-TLVs that do not include the A bit SHOULD be controlled by variation thresholds that govern when they are sent.

Sub-TLV that include the A bit are governed by several thresholds. Firstly, a threshold SHOULD be implemented to govern the announcement of sub-TLVs that advertise a change in performance, but not an SLA violation (i.e. when the A bit is not set). Secondly, implementations MUST provide configurable thresholds that govern the announcement of sub-TLVs with the A bit set (for the indication of a performance violation). Thirdly, implementations SHOULD provide reuse thresholds. These thresholds govern sub-TLV re-announcement with the A bit cleared to permit fail back.

6. Announcement Suppression

When link performance average values change, but fall under the threshold that would cause the announcement of a sub-TLV with the A bit set, implementations MAY suppress or throttle sub-TLV
announcements. All suppression features and thresholds SHOULD be configurable.

7. Network Stability and Announcement Periodicity

To mitigate concerns about stability, all values (except residual bandwidth) MUST be calculated as rolling averages where the averaging period MUST be a configurable period of time, rather than instantaneous measurements.

Announcements MUST also be able to be throttled using configurable inter-update throttle timers. The minimum announcement periodicity is 1 announcement per second.

8. Compatibility

As per (RFC3630), unrecognized TLVs should be silently ignored.

9. Security Considerations

This document does not introduce security issues beyond those discussed in [RFC3630] and [RFC5329].

10. IANA Considerations

IANA maintains the registry for the sub-TLVs. OSPF TE Express Path will require one new type code per sub-TLV defined in this document.

11. References

11.1. Normative References

Giacalone, et al Expires November 18, 2012

11.2. Informative References

12. Acknowledgments

The authors would like to recognize Ayman Soliman for his contributions.

This document was prepared using 2-Word-v2.0.template.dot.
13. Author’s Addresses

Spencer Giacalone
Thomson Reuters
195 Broadway
New York, NY 10007, USA

Email: Spencer.giacalone@thomsonreuters.com

Dave Ward
Cisco Systems
170 West Tasman Dr.
San Jose, CA 95134, USA

Email: dward@cisco.com

John Drake
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089, USA

Email: jdrake@juniper.net

Alia Atlas
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089, USA

Email: akatlas@juniper.net

Stefano Previdi
Cisco Systems
Via Del Serafico 200
00142 Rome
Italy

Email: sprevidi@cisco.com