
Operations T. Dahm
Internet-Draft A. Ota
Intended status: Informational Google Inc
Expires: October 17, 2018 D. Medway Gash
 Cisco Systems, Inc.
 D. Carrel
 vIPtela, Inc.
 L. Grant
 April 15, 2018

 The TACACS+ Protocol
 draft-ietf-opsawg-tacacs-10

Abstract

 TACACS+ provides Device Administration for routers, network access
 servers and other networked computing devices via one or more
 centralized servers. This document describes the protocol that is
 used by TACACS+.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 17, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Dahm, et al. Expires October 17, 2018 [Page 1]

Internet-Draft The TACACS+ Protocol April 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Technical Definitions . 4
 3. TACACS+ Connections and Sessions 4
 3.1. Connection . 4
 3.2. Session . 5
 3.3. Single Connection Mode 5
 3.4. Session Completion 6
 3.5. Treatment of Enumerated Protocol Values 7
 3.6. Text Encoding . 7
 3.7. Data Obfuscation . 7
 3.8. The TACACS+ Packet Header 9
 3.9. The TACACS+ Packet Body 11
 4. Authentication . 11
 4.1. The Authentication START Packet Body 12
 4.2. The Authentication REPLY Packet Body 14
 4.3. The Authentication CONTINUE Packet Body 16
 4.4. Description of Authentication Process 16
 4.4.1. Version Behaviour 17
 4.4.2. Common Authentication Flows 18
 4.4.3. Aborting an Authentication Session 21
 5. Authorization . 22
 5.1. The Authorization REQUEST Packet Body 22
 5.2. The Authorization REPLY Packet Body 26
 6. Accounting . 27
 6.1. The Account REQUEST Packet Body 28
 6.2. The Accounting REPLY Packet Body 29
 7. Attribute-Value Pairs . 30
 7.1. Value Encoding . 31
 7.2. Authorization Attributes 31

Dahm, et al. Expires October 17, 2018 [Page 2]

Internet-Draft The TACACS+ Protocol April 2018

 7.3. Accounting Attributes 34
 8. Privilege Levels . 35
 9. TACACS+ Security Considerations 36
 9.1. General Security of The Protocol 36
 9.2. Security of Authentication Sessions 38
 9.3. Security of Authorization Sessions 38
 9.4. Security of Accounting Sessions 39
 9.5. TACACS+ Client Implementation Recommendations 39
 9.6. TACACS+ Server Implementation Recommendations 39
 9.7. TACACS+ Deployment Best Practices 40
 10. Acknowledgements . 41
 11. References . 41
 Authors’ Addresses . 42

1. Introduction

 Terminal Access Controller Access-Control System Plus (TACACS+) was
 conceived initially as a general Authentication, Authorization and
 Accounting protocol. It is primarily used today for Device
 Administration: authenticating access to network devices, providing
 central authorization of operations, and audit of those operations.

 A wide range of TACACS+ clients and servers are already deployed in
 the field. The TACACS+ protocol they are based on is defined in a
 draft document that was originally intended for IETF publication.
 This document is known as ‘The Draft’ [TheDraft] .

 It is intended that all implementations which conform to this
 document will conform to ‘The Draft’. However, attention is drawn to
 the following specific adjustments of the protocol specification from
 ’The Draft’:

 This document officially removes SENDPASS for security reasons.

 The normative description of Legacy features such as ARAP and
 outbound authentication has been removed, however, the required
 enumerations are kept.

 The Support for forwarding to an alternative daemon
 (TAC_PLUS_AUTHEN_STATUS_FOLLOW) has been deprecated.

 The TACACS+ protocol separates the functions of Authentication,
 Authorization and Accounting. It allows for arbitrary length and
 content authentication exchanges, to support future authentication
 mechanisms. It is extensible to provide for site customization and
 future development features, and it uses TCP to ensure reliable
 delivery. The protocol allows the TACACS+ client to request very

Dahm, et al. Expires October 17, 2018 [Page 3]

Internet-Draft The TACACS+ Protocol April 2018

 fine-grained access control and allows the server to respond to each
 component of that request.

 The separation of authentication, authorization and accounting was a
 key element of the design of TACACS+ protocol. Essentially it makes
 TACACS+ a suite of three protocols. This document will address each
 one in separate sections. Although TACACS+ defines all three, but an
 implementation or configuration is not required to employ all three.
 Separating the elements is useful for Device Administration use case,
 specifically, for authorization of individual commands in a session.
 Note that there is no provision made at the protocol level for
 association of an authentication to each authorization request.

 This document restricts itself to a description of the protocol that
 is used by TACACS+. It does not cover deployment or best practices.

2. Technical Definitions

 This section provides a few basic definitions that are applicable to
 this document

 Client

 The client is any device, (often a Network Access Server) that
 provides access services. The clients usually provide a character
 mode front end and then allow the user to telnet or rlogin to another
 host.

 Server

 The server receives TACACS+ protocol requests, and replies according
 to its business model, in accordance with the flows defined in this
 document.

 Packet

 All uses of the word packet in this document refer to TACACS+
 protocol packets unless explicitly noted otherwise.

3. TACACS+ Connections and Sessions

3.1. Connection

 TACACS+ uses TCP for its transport. Server port 49 is allocated for
 TACACS+ traffic.

Dahm, et al. Expires October 17, 2018 [Page 4]

Internet-Draft The TACACS+ Protocol April 2018

3.2. Session

 The concept of a session is used throughout this document. A TACACS+
 session is a single authentication sequence, a single authorization
 exchange, or a single accounting exchange.

 An accounting and authorization session will consist of a single pair
 of packets (the request and its reply). An authentication session
 may involve an arbitrary number of packets being exchanged. The
 session is an operational concept that is maintained between the
 TACACS+ client and server. It does not necessarily correspond to a
 given user or user action.

3.3. Single Connection Mode

 Single Connection Mode is intended to improve performance by allowing
 a client to multiplex multiple session on a single TCP connection.

 The packet header contains the TAC_PLUS_SINGLE_CONNECT_FLAG used by
 the client and server to negotiate the use of Single Connect Mode.

 The client sets this flag, to indicate that it supports multiplexing
 TACACS+ sessions over a single TCP connection. The client MUST NOT
 send a second packet on a connection until single-connect status has
 been established.

 To indicate it will support Single Connection Mode, the server sets
 this flag in the first reply packet in response to the first request
 from a client. The server may set this flag even if the client does
 not set it, but the client may ignore the flag and close the
 connection after the session completes.

 The flag is only relevant for the first two packets on a connection,
 to allow the client and server to establish Single Connection Mode.
 No provision is made for changing Single Connection Mode after the
 first two packets: the client and server MUST ignore the flag after
 the second packet on a connection.

 If single Connection Mode has not been established in the first two
 packets of a TCP connection, then both the client and the server
 close the connection at the end of the first session.

 The client negotiates Single Connection Mode to improve efficiency.
 The server may refuse to allow Single Connection Mode for the client.
 For example, it may not be appropriate to allocate a long-lasting TCP
 connection to a specific client in some deployments. Even if the
 server is configured to permit single Connection Mode for a specific
 client, the server may close the connection. For example: a server

Dahm, et al. Expires October 17, 2018 [Page 5]

Internet-Draft The TACACS+ Protocol April 2018

 may be configured to time out a Single Connection Mode TCP Connection
 after a specific period of inactivity to preserve its resources. The
 client MUST accommodate such closures on a TCP session even after
 Single Connection Mode has been established.

3.4. Session Completion

 The REPLY packets defined for the packets types in the sections below
 (Authentication, Authorization and Accounting) contain a status
 field. The complete set of options for this field depend upon the
 packet type, but all three REPLY packet types define values
 representing PASS, ERROR and FAIL, which indicate the last packet of
 a regular session (one which is not aborted).

 The server responds with a PASS or a FAIL to indicate that the
 processing of the request completed and the client can apply the
 result (PASS or FAIL) to control the execution of the action which
 prompted the request to be sent to the server.

 The server responds with an ERROR to indicate that the processing of
 the request did not complete. The client can not apply the result
 and it MUST behave as if the server could not be connected to. For
 example, the client tries alternative methods, if they are available,
 such as sending the request to a backup server, or using local
 configuration to determine whether the action which prompted the
 request should be executed.

 Refer to the section (Section 4.4.3) on Aborting Authentication
 Sessions for details on handling additional status options.

 When the session is complete, then the TCP connection should be
 handled as follows, according to whether Single Connection Mode was
 negotiated:

 If Single Connection Mode was not negotiated, then the connection
 should be closed

 If Single Connection Mode was enabled, then the connection SHOULD be
 left open (see section (Section 3.3)), but may still be closed after
 a timeout period to preserve deployment resources

 If Single Connection Mode was enabled, but an ERROR occurred due to
 connection issues (such as an incorrect secret, see section
 (Section 3.7)), then any further new sessions MUST NOT be accepted
 on the connection. If there are any sessions that have already been
 established then they MAY be completed. Once all active sessions are
 completed then the connection MUST be closed.

Dahm, et al. Expires October 17, 2018 [Page 6]

Internet-Draft The TACACS+ Protocol April 2018

 It is recommended that client implementations provide robust schemes
 for dealing with servers which cannot be connected to. Options
 include providing a list of servers for redundancy, and an option for
 a local fallback configuration if no servers can be reached. Details
 will be implementation specific.

 The client should manage connections and handle the case of a server
 which establishes a connection, but does not respond. The exact
 behavior is implementation specific. It is recommended that the
 client should close the connection after a configurable timeout.

3.5. Treatment of Enumerated Protocol Values

 This document describes various enumerated values in the packet
 header and the headers for specific packet types. For example in the
 Authentication start packet type, this document defines the action
 field with three values TAC_PLUS_AUTHEN_LOGIN, TAC_PLUS_AUTHEN_CHPASS
 and TAC_PLUS_AUTHEN_SENDAUTH.

 If the server does not implement one of the defined options in a
 packet that it receives, or it encounters an option that is not
 listed in this document for a header field, then it should respond
 with a ERROR and terminate the session. This will allow the client
 to try a different option.

 If an error occurs but the type of the incoming packet cannot be
 determined, a packet with the identical cleartext header but with a
 sequence number incremented by one and the length set to zero MUST be
 returned to indicate an error.

3.6. Text Encoding

 All text fields in TACACS+ MUST be printable US-ASCII, excepting
 special consideration given to user field and data fields used for
 passwords.

 To ensure interoperability of current deployments, the TACACS+ client
 and server MUST handle user fields and those data fields used for
 passwords as 8-bit octet strings. The deployment operator MUST
 ensure that consistent character encoding is applied from the end
 client to the server. The encoding SHOULD be UTF-8, and other
 encodings outside printable US-ASCII SHOULD be deprecated.

3.7. Data Obfuscation

 The body of packets may be obfuscated. The following sections
 describe the obfuscation method that is supported in the protocol.
 In ’The Draft’ this process was actually referred to as Encryption,

Dahm, et al. Expires October 17, 2018 [Page 7]

Internet-Draft The TACACS+ Protocol April 2018

 but the algorithm would not meet modern standards, and so will not be
 termed as encryption in this document.

 The obfuscation mechanism relies on a secret key, a shared secret
 value that is known to both the client and the server. This document
 does not discuss the management and storage of those keys, other than
 to require that the secret keys MUST remain secret.

 Server implementations MUST allow a unique secret key to be
 associated with every client. It is a site-dependent decision as to
 whether the use of separate keys is appropriate.

 The flag field may be set as follows:

 TAC_PLUS_UNENCRYPTED_FLAG = 0x0

 In this case, the packet body is obfuscated by XOR-ing it byte-wise
 with a pseudo-random pad.

 ENCRYPTED {data} = data ^ pseudo_pad

 The packet body can then be de-obfuscated by XOR-ing it byte-wise
 with a pseudo random pad.

 data = ENCRYPTED {data} ^ pseudo_pad

 The pad is generated by concatenating a series of MD5 hashes (each 16
 bytes long) and truncating it to the length of the input data.

 Whenever used in this document, MD5 refers to the "RSA Data Security,
 Inc. MD5 Message-Digest Algorithm" as specified in RFC 1321 [RFC1321]
 .

 pseudo_pad = {MD5_1 [,MD5_2 [... ,MD5_n]]} truncated to len(data)

 The first MD5 hash is generated by concatenating the session_id, the
 secret key, the version number and the sequence number and then
 running MD5 over that stream. All of those input values are
 available in the packet header, except for the secret key which is a
 shared secret between the TACACS+ client and server.

 The version number and session_id are used as extracted from the
 header

 Subsequent hashes are generated by using the same input stream, but
 concatenating the previous hash value at the end of the input stream.

Dahm, et al. Expires October 17, 2018 [Page 8]

Internet-Draft The TACACS+ Protocol April 2018

 MD5_1 = MD5{session_id, key, version, seq_no} MD5_2 = MD5{session_id,
 key, version, seq_no, MD5_1} MD5_n = MD5{session_id, key,
 version, seq_no, MD5_n-1}

 When a server detects that the secret(s) it has configured for the
 device mismatch, it MUST return ERROR. For details of TCP connection
 handling on ERROR, refer to section (Section 3.4)

 TAC_PLUS_UNENCRYPTED_FLAG == 0x1

 In this case, the entire packet body is in cleartext. Obfuscation
 and de-obfuscation are null operations. This method should be
 avoided unless absolutely required for debug purposes, when tooling
 does not permit de-obfuscation.

 If deployment is configured for obfuscating a connection then the
 request MUST be dropped if TAC_PLUS_UNENCRYPTED_FLAG is set to true.

 After a packet body is de-obfuscated, the lengths of the component
 values in the packet are summed. If the sum is not identical to the
 cleartext datalength value from the header, the packet MUST be
 discarded, and an ERROR signaled. For details of TCP connection
 handling on ERROR, refer to section (Section 3.4)

 Commonly such failures are seen when the keys are mismatched between
 the client and the TACACS+ server.

3.8. The TACACS+ Packet Header

 All TACACS+ packets begin with the following 12-byte header. The
 header describes the remainder of the packet:

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 |major | minor | | | |
 |version| version| type | seq_no | flags |
 +----------------+----------------+----------------+----------------+
 | |
 | session_id |
 +----------------+----------------+----------------+----------------+
 | |
 | length |
 +----------------+----------------+----------------+----------------+

 major_version

 This is the major TACACS+ version number.

Dahm, et al. Expires October 17, 2018 [Page 9]

Internet-Draft The TACACS+ Protocol April 2018

 TAC_PLUS_MAJOR_VER := 0xc

 minor_version

 The minor TACACS+ version number.

 TAC_PLUS_MINOR_VER_DEFAULT := 0x0

 TAC_PLUS_MINOR_VER_ONE := 0x1

 type

 This is the packet type. Legal values are:

 TAC_PLUS_AUTHEN := 0x01 (Authentication)

 TAC_PLUS_AUTHOR := 0x02 (Authorization)

 TAC_PLUS_ACCT := 0x03 (Accounting)

 seq_no

 This is the sequence number of the current packet. The first packet
 in a session MUST have the sequence number 1 and each subsequent
 packet will increment the sequence number by one. Thus clients only
 send packets containing odd sequence numbers, and TACACS+ servers
 only send packets containing even sequence numbers.

 The sequence number must never wrap i.e. if the sequence number 2^8-1
 is ever reached, that session must terminate and be restarted with a
 sequence number of 1.

 flags

 This field contains various bitmapped flags.

 The flag bit:

 TAC_PLUS_UNENCRYPTED_FLAG := 0x01

 This flag indicates that the sender did not obfuscate the body of the
 packet. The application of this flag will be covered in the security
 section (Section 9) .

 This flag SHOULD be clear in all deployments. Modern network traffic
 tools support encrypted traffic when configured with the shared
 secret (see section below), so obfuscated mode can and SHOULD be used
 even during test.

Dahm, et al. Expires October 17, 2018 [Page 10]

Internet-Draft The TACACS+ Protocol April 2018

 The single-connection flag:

 TAC_PLUS_SINGLE_CONNECT_FLAG := 0x04

 This flag is used to allow a client and server to negotiate Single
 Connection Mode.

 session_id

 The Id for this TACACS+ session. This field does not change for the
 duration of the TACACS+ session. This number MUST be generated by a
 cryptographically strong random number generation method. Failure to
 do so will compromise security of the session. For more details
 refer to RFC 1750 [RFC1750]

 length

 The total length of the packet body (not including the header).

3.9. The TACACS+ Packet Body

 The TACACS+ body types are defined in the packet header. The next
 sections of this document will address the contents of the different
 TACACS+ bodies. The following general rules apply to all TACACS+
 body types:

 - To signal that any variable length data fields are unused, their
 length value is set to zero. Such fields MUST be ignored, and
 treated as if not present.

 - the lengths of data and message fields in a packet are specified
 by their corresponding length fields, (and are not null
 terminated.)

 - All length values are unsigned and in network byte order.

4. Authentication

 Authentication is the action of determining who a user (or entity)
 is. Authentication can take many forms. Traditional authentication
 employs a name and a fixed password. However, fixed passwords are
 vulnerable security, so many modern authentication mechanisms utilize
 "one-time" passwords or a challenge-response query. TACACS+ is
 designed to support all of these, and be flexible enough to handle
 any future mechanisms. Authentication generally takes place when the
 user first logs in to a machine or requests a service of it.

Dahm, et al. Expires October 17, 2018 [Page 11]

Internet-Draft The TACACS+ Protocol April 2018

 Authentication is not mandatory; it is a site-configured option.
 Some sites do not require it. Others require it only for certain
 services (see authorization below). Authentication may also take
 place when a user attempts to gain extra privileges, and must
 identify himself or herself as someone who possesses the required
 information (passwords, etc.) for those privileges.

4.1. The Authentication START Packet Body

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | action | priv_lvl | authen_type | authen_service |
 +----------------+----------------+----------------+----------------+
 | user_len | port_len | rem_addr_len | data_len |
 +----------------+----------------+----------------+----------------+
 | user ...
 +----------------+----------------+----------------+----------------+
 | port ...
 +----------------+----------------+----------------+----------------+
 | rem_addr ...
 +----------------+----------------+----------------+----------------+
 | data...
 +----------------+----------------+----------------+----------------+

 Packet fields are as follows:

 action

 This indicates the authentication action. Legal values are listed
 below.

 TAC_PLUS_AUTHEN_LOGIN := 0x01

 TAC_PLUS_AUTHEN_CHPASS := 0x02

 TAC_PLUS_AUTHEN_SENDAUTH := 0x04

 priv_lvl

 This indicates the privilege level that the user is authenticating
 as. Please refer to the Privilege Level section (Section 8) below.

 authen_type

 The type of authentication. Legal values are:

 TAC_PLUS_AUTHEN_TYPE_ASCII := 0x01

Dahm, et al. Expires October 17, 2018 [Page 12]

Internet-Draft The TACACS+ Protocol April 2018

 TAC_PLUS_AUTHEN_TYPE_PAP := 0x02

 TAC_PLUS_AUTHEN_TYPE_CHAP := 0x03

 TAC_PLUS_AUTHEN_TYPE_ARAP := 0x04 (deprecated)

 TAC_PLUS_AUTHEN_TYPE_MSCHAP := 0x05

 TAC_PLUS_AUTHEN_TYPE_MSCHAPV2 := 0x06

 authen_service

 This is the service that is requesting the authentication. Legal
 values are:

 TAC_PLUS_AUTHEN_SVC_NONE := 0x00

 TAC_PLUS_AUTHEN_SVC_LOGIN := 0x01

 TAC_PLUS_AUTHEN_SVC_ENABLE := 0x02

 TAC_PLUS_AUTHEN_SVC_PPP := 0x03

 TAC_PLUS_AUTHEN_SVC_ARAP := 0x04

 TAC_PLUS_AUTHEN_SVC_PT := 0x05

 TAC_PLUS_AUTHEN_SVC_RCMD := 0x06

 TAC_PLUS_AUTHEN_SVC_X25 := 0x07

 TAC_PLUS_AUTHEN_SVC_NASI := 0x08

 TAC_PLUS_AUTHEN_SVC_FWPROXY := 0x09

 The TAC_PLUS_AUTHEN_SVC_NONE option is intended for the authorization
 application of this field that indicates that no authentication was
 performed by the device.

 The TAC_PLUS_AUTHEN_SVC_LOGIN option indicates regular login (as
 opposed to ENABLE) to a client device.

 The TAC_PLUS_AUTHEN_SVC_ENABLE option identifies the ENABLE
 authen_service, which refers to a service requesting authentication
 in order to grant the user different privileges. This is comparable
 to the Unix "su(1)" command, which substitutes the current user’s
 identity with another. An authen_service value of NONE is only to be
 used when none of the other authen_service values are appropriate.

Dahm, et al. Expires October 17, 2018 [Page 13]

Internet-Draft The TACACS+ Protocol April 2018

 ENABLE may be requested independently, no requirements for previous
 authentications or authorizations are imposed by the protocol.

 Other options are included for legacy/backwards compatibility.

 user, user_len

 The username is optional in this packet, depending upon the class of
 authentication. If it is absent, the client MUST set user_len to 0.
 If included, the user_len indicates the length of the user field, in
 bytes.

 port, port_len

 The printable US-ASCII name of the client port on which the
 authentication is taking place, and its length in bytes. The value
 of this field is client specific. (For example, Cisco uses "tty10"
 to denote the tenth tty line and "Async10" to denote the tenth async
 interface). The port_len indicates the length of the port field, in
 bytes.

 rem_addr, rem_addr_len

 A printable US-ASCII string indicating the remote location from which
 the user has connected to the client. It is intended to hold a
 network address if the user is connected via a network, a caller ID
 is the user is connected via ISDN or a POTS, or any other remote
 location information that is available. This field is optional
 (since the information may not be available). The rem_addr_len
 indicates the length of the user field, in bytes.

 data, data_len

 This field is used to send data appropriate for the action and
 authen_type. It is described in more detail in the section Common
 Authentication flows (Section 4.4.2) . The data_len indicates the
 length of the data field, in bytes.

4.2. The Authentication REPLY Packet Body

 The TACACS+ server sends only one type of authentication packet (a
 REPLY packet) to the client.

Dahm, et al. Expires October 17, 2018 [Page 14]

Internet-Draft The TACACS+ Protocol April 2018

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | status | flags | server_msg_len |
 +----------------+----------------+----------------+----------------+
 | data_len | server_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+----------------+

 status

 The current status of the authentication. Legal values are:

 TAC_PLUS_AUTHEN_STATUS_PASS := 0x01

 TAC_PLUS_AUTHEN_STATUS_FAIL := 0x02

 TAC_PLUS_AUTHEN_STATUS_GETDATA := 0x03

 TAC_PLUS_AUTHEN_STATUS_GETUSER := 0x04

 TAC_PLUS_AUTHEN_STATUS_GETPASS := 0x05

 TAC_PLUS_AUTHEN_STATUS_RESTART := 0x06

 TAC_PLUS_AUTHEN_STATUS_ERROR := 0x07

 TAC_PLUS_AUTHEN_STATUS_FOLLOW := 0x21

 flags

 Bitmapped flags that modify the action to be taken. The following
 values are defined:

 TAC_PLUS_REPLY_FLAG_NOECHO := 0x01

 server_msg, server_msg_len

 A message to be displayed to the user. This field is optional. The
 printable US-ASCII charset MUST be used. The server_msg_len
 indicates the length of the server_msg field, in bytes.

 data, data_len

 This field holds data that is a part of the authentication exchange
 and is intended for the client, not the user. Examples of its use
 are shown in the section Common Authentication flows (Section 4.4.2)
 . The data_len indicates the length of the data field, in bytes.

Dahm, et al. Expires October 17, 2018 [Page 15]

Internet-Draft The TACACS+ Protocol April 2018

4.3. The Authentication CONTINUE Packet Body

 This packet is sent from the client to the server following the
 receipt of a REPLY packet.

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | user_msg len | data_len |
 +----------------+----------------+----------------+----------------+
 | flags | user_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+

 user_msg, user_msg_len

 This field is the string that the user entered, or the client
 provided on behalf of the user, in response to the server_msg from a
 REPLY packet. The user_len indicates the length of the user field,
 in bytes.

 data, data_len

 This field carries information that is specific to the action and the
 authen_type for this session. Valid uses of this field are described
 below. The data_len indicates the length of the data field, in
 bytes.

 flags

 This holds the bitmapped flags that modify the action to be taken.
 The following values are defined:

 TAC_PLUS_CONTINUE_FLAG_ABORT := 0x01

4.4. Description of Authentication Process

 The action, authen_type and authen_service fields (described above)
 combine to indicate what kind of authentication is to be performed.
 Every authentication START, REPLY and CONTINUE packet includes a data
 field. The use of this field is dependent upon the kind of the
 Authentication.

 This document defines a core set of authentication flows to be
 supported by TACACS+. Each authentication flow consists of a START
 packet. The server responds either with a request for more
 information (GETDATA, GETUSER or GETPASS) or a termination PASS,

Dahm, et al. Expires October 17, 2018 [Page 16]

Internet-Draft The TACACS+ Protocol April 2018

 FAIL, ERROR or RESTART. The actions and meanings when the server
 sends a RESTART or ERROR are common and are described further below.

 When the REPLY status equals TAC_PLUS_AUTHEN_STATUS_GETDATA,
 TAC_PLUS_AUTHEN_STATUS_GETUSER or TAC_PLUS_AUTHEN_STATUS_GETPASS,
 then authentication continues and the server SHOULD provide
 server_msg content for the client to prompt the user for more
 information. The client MUST then return a CONTINUE packet
 containing the requested information in the user_msg field.

 The client should interpret TAC_PLUS_AUTHEN_STATUS_GETUSER as a
 request for username and TAC_PLUS_AUTHEN_STATUS_GETPASS as a request
 for password. The TAC_PLUS_AUTHEN_STATUS_GETDATA is the generic
 request for more information to flexibly support future requirements.

 If the information being requested by the server form the client is
 sensitive, then the server should set the TAC_PLUS_REPLY_FLAG_NOECHO
 flag. When the client queries the user for the information, the
 response MUST NOT be echoed as it is entered.

 The data field is only used in the REPLY where explicitly defined
 below.

4.4.1. Version Behaviour

 The TACACS+ protocol is versioned to allow revisions while
 maintaining backwards compatibility. The version number is in every
 packet header. The changes between minor_version 0 and 1 apply only
 to the authentication process, and all deal with the way that CHAP
 and PAP authentications are handled. minor_version 1 may only be used
 for authentication kinds that explicitly call for it in the table
 below:

 LOGIN CHPASS SENDAUTH
 ASCII v0 v0 -
 PAP v1 - v1
 CHAP v1 - v1
 MS-CHAPv1/2 v1 - v1

 The ’-’ symbol represents that the option is not valid.

 All authorisation and accounting and ASCII authentication use
 minor_version number of 0.

 PAP, CHAP and MS-CHAP login use minor_version 1. The normal exchange
 is a single START packet from the client and a single REPLY from the
 server.

Dahm, et al. Expires October 17, 2018 [Page 17]

Internet-Draft The TACACS+ Protocol April 2018

 The removal of SENDPASS was prompted by security concerns, and is no
 longer considered part of the TACACS+ protocol.

4.4.2. Common Authentication Flows

 This section describes common authentication flows. If the server
 does not implement an option, it MUST respond with
 TAC_PLUS_AUTHEN_STATUS_FAIL.

4.4.2.1. ASCII Login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_ASCII
 minor_version = 0x0

 This is a standard ASCII authentication. The START packet MAY
 contain the username. If the user does not include the username then
 the server MUST obtain it from the client with a CONTINUE
 TAC_PLUS_AUTHEN_STATUS_GETUSER. If the user does not provide a
 username then the server can send another
 TAC_PLUS_AUTHEN_STATUS_GETUSER request, but the server MUST limit the
 number of retries that are permitted, recommended limit is three
 attempts. When the server has the username, it will obtain the
 password using a continue with TAC_PLUS_AUTHEN_STATUS_GETPASS. ASCII
 login uses the user_msg field for both the username and password.
 The data fields in both the START and CONTINUE packets are not used
 for ASCII logins, any content MUST be ignored. The session is
 composed of a single START followed by zero or more pairs of REPLYs
 and CONTINUEs, followed by a final REPLY indicating PASS, FAIL or
 ERROR.

4.4.2.2. PAP Login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_PAP
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain a username and the data
 field MUST contain the PAP ASCII password. A PAP authentication only
 consists of a username and password RFC 1334 [RFC1334] . The REPLY
 from the server MUST be either a PASS, FAIL or ERROR.

Dahm, et al. Expires October 17, 2018 [Page 18]

Internet-Draft The TACACS+ Protocol April 2018

4.4.2.3. CHAP login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_CHAP
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain the username in the user
 field and the data field is a concatenation of the PPP id, the
 challenge and the response.

 The length of the challenge value can be determined from the length
 of the data field minus the length of the id (always 1 octet) and the
 length of the response field (always 16 octets).

 To perform the authentication, the server calculates the PPP hash as
 defined in the PPP Authentication RFC RFC 1334 [RFC1334] and then
 compare that value with the response. The MD5 algorithm option is
 always used. The REPLY from the server MUST be a PASS, FAIL or
 ERROR.

 In cases where the client conducts the exchange with the endstation
 and then sends the resulting materials (challenge and response) to
 the server, the selection of the challenge and its length are not an
 aspect of the TACACS+ protocol. However, it is strongly recommended
 that the client/endstation interaction is configured with a secure
 challenge. The TACACS+ server can help by rejecting authentications
 where the challenge is below a minimum length (Minimum recommended is
 8 bytes).

 In cases where the TACACS+ Server generates the challenge then it
 MUST change for every request and MUST be derived from a strong
 cryptographic source.

4.4.2.4. MS-CHAP v1 login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_MSCHAP
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain the username in the user
 field and the data field will be a concatenation of the PPP id, the
 MS-CHAP challenge and the MS-CHAP response.

Dahm, et al. Expires October 17, 2018 [Page 19]

Internet-Draft The TACACS+ Protocol April 2018

 The length of the challenge value can be determined from the length
 of the data field minus the length of the id (always 1 octet) and the
 length of the response field (always 49 octets).

 To perform the authentication, the server will use a combination of
 MD4 and DES on the user’s secret and the challenge, as defined in RFC
 2433 [RFC2433] and then compare the resulting value with the
 response. The REPLY from the server MUST be a PASS or FAIL.

 For best practices, please refer to RFC 2433 [RFC2433] . The TACACS+
 server MUST reject authentications where the challenge deviates from
 8 bytes as defined in the RFC.

4.4.2.5. MS-CHAP v2 login

 action = TAC_PLUS_AUTHEN_LOGIN
 authen_type = TAC_PLUS_AUTHEN_TYPE_MSCHAPV2
 minor_version = 0x1

 The entire exchange MUST consist of a single START packet and a
 single REPLY. The START packet MUST contain the username in the user
 field and the data field will be a concatenation of the PPP id, the
 MS-CHAP challenge and the MS-CHAP response.

 The length of the challenge value can be determined from the length
 of the data field minus the length of the id (always 1 octet) and the
 length of the response field (always 49 octets).

 To perform the authentication, the server will use the algorithm
 specified RFC 2759 [RFC2759] on the user’s secret and challenge and
 then compare the resulting value with the response. The REPLY from
 the server MUST be a PASS or FAIL.

 For best practices for MS-CHAP v2, please refer to RFC2759 [RFC2759]
 . The TACACS+ server MUST rejects authentications where the challenge
 deviates from 16 bytes as defined in the RFC.

4.4.2.6. Enable Requests

 action = TAC_PLUS_AUTHEN_LOGIN
 priv_lvl = implementation dependent
 authen_type = not used
 service = TAC_PLUS_AUTHEN_SVC_ENABLE

 This is an ENABLE request, used to change the current running
 privilege level of a user. The exchange MAY consist of multiple

Dahm, et al. Expires October 17, 2018 [Page 20]

Internet-Draft The TACACS+ Protocol April 2018

 messages while the server collects the information it requires in
 order to allow changing the principal’s privilege level. This
 exchange is very similar to an ASCII login (Section 4.4.2.1) .

 In order to readily distinguish enable requests from other types of
 request, the value of the authen_service field MUST be set to
 TAC_PLUS_AUTHEN_SVC_ENABLE when requesting an ENABLE. It MUST NOT be
 set to this value when requesting any other operation.

4.4.2.7. ASCII change password request

 action = TAC_PLUS_AUTHEN_CHPASS
 authen_type = TAC_PLUS_AUTHEN_TYPE_ASCII

 This exchange consists of multiple messages while the server collects
 the information it requires in order to change the user’s password.
 It is very similar to an ASCII login. The status value
 TAC_PLUS_AUTHEN_STATUS_GETPASS MUST only be used when requesting the
 "new" password. It MAY be sent multiple times. When requesting the
 "old" password, the status value MUST be set to
 TAC_PLUS_AUTHEN_STATUS_GETDATA.

4.4.3. Aborting an Authentication Session

 The client may prematurely terminate a session by setting the
 TAC_PLUS_CONTINUE_FLAG_ABORT flag in the CONTINUE message. If this
 flag is set, the data portion of the message may contain an ASCII
 message explaining the reason for the abort. This information will
 be handled by the server according to the requirements of the
 deployment. The session is terminated, for more details about
 session termination, refer to section (Section 3.4)

 In the case of PALL, FAIL or ERROR, the server can insert a message
 into server_msg to be displayed to the user.

 The Draft ‘The Draft’ [TheDraft] defined a mechanism to direct
 authentication requests to an alternative server. This mechanism is
 regarded as insecure, is deprecated, and not covered here. The
 client should treat TAC_PLUS_AUTHEN_STATUS_FOLLOW as
 TAC_PLUS_AUTHEN_STATUS_FAIL

 If the status equals TAC_PLUS_AUTHEN_STATUS_ERROR, then the host is
 indicating that it is experiencing an unrecoverable error and the
 authentication will proceed as if that host could not be contacted.
 The data field may contain a message to be printed on an
 administrative console or log.

Dahm, et al. Expires October 17, 2018 [Page 21]

Internet-Draft The TACACS+ Protocol April 2018

 If the status equals TAC_PLUS_AUTHEN_STATUS_RESTART, then the
 authentication sequence is restarted with a new START packet from the
 client, with new session Id, and seq_no set to 1. This REPLY packet
 indicates that the current authen_type value (as specified in the
 START packet) is not acceptable for this session. The client may try
 an alternative authen_type.

 If a client does not implement TAC_PLUS_AUTHEN_STATUS_RESTART option,
 then it MUST process the response as if the status was
 TAC_PLUS_AUTHEN_STATUS_FAIL.

5. Authorization

 In the TACACS+ Protocol, authorization is the action of determining
 what a user is allowed to do. Generally authentication precedes
 authorization, though it is not mandatory that a client use the same
 service for authentication that it will use for authorization. An
 authorization request may indicate that the user is not authenticated
 (we don’t know who they are). In this case it is up to the server to
 determine, according to its configuration, if an unauthenticated user
 is allowed the services in question.

 Authorization does not merely provide yes or no answers, but it may
 also customize the service for the particular user. A common use of
 authorization is to provision a shell session when a user first logs
 into a device to administer it. The TACACS+ server might respond to
 the request by allowing the service, but placing a time restriction
 on the login shell. For a list of common attributes used in
 authorization, see the Authorization Attributes section (Section 7.2)
 .

 In the TACACS+ protocol an authorization is always a single pair of
 messages: a REQUEST from the client followed by a REPLY from the
 server.

 The authorization REQUEST message contains a fixed set of fields that
 indicate how the user was authenticated and a variable set of
 arguments that describe the services and options for which
 authorization is requested.

 The REPLY contains a variable set of response arguments (attribute-
 value pairs) that can restrict or modify the client’s actions.

5.1. The Authorization REQUEST Packet Body

Dahm, et al. Expires October 17, 2018 [Page 22]

Internet-Draft The TACACS+ Protocol April 2018

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | authen_method | priv_lvl | authen_type | authen_service |
 +----------------+----------------+----------------+----------------+
 | user_len | port_len | rem_addr_len | arg_cnt |
 +----------------+----------------+----------------+----------------+
 | arg_1_len | arg_2_len | ... | arg_N_len |
 +----------------+----------------+----------------+----------------+
 | user ...
 +----------------+----------------+----------------+----------------+
 | port ...
 +----------------+----------------+----------------+----------------+
 | rem_addr ...
 +----------------+----------------+----------------+----------------+
 | arg_1 ...
 +----------------+----------------+----------------+----------------+
 | arg_2 ...
 +----------------+----------------+----------------+----------------+
 | ...
 +----------------+----------------+----------------+----------------+
 | arg_N ...
 +----------------+----------------+----------------+----------------+

 authen_method

 This indicates the authentication method used by the client to
 acquire the user information. As this information is not always
 subject to verification, it is recommended that this field is
 ignored.

 TAC_PLUS_AUTHEN_METH_NOT_SET := 0x00

 TAC_PLUS_AUTHEN_METH_NONE := 0x01

 TAC_PLUS_AUTHEN_METH_KRB5 := 0x02

 TAC_PLUS_AUTHEN_METH_LINE := 0x03

 TAC_PLUS_AUTHEN_METH_ENABLE := 0x04

 TAC_PLUS_AUTHEN_METH_LOCAL := 0x05

 TAC_PLUS_AUTHEN_METH_TACACSPLUS := 0x06

 TAC_PLUS_AUTHEN_METH_GUEST := 0x08

 TAC_PLUS_AUTHEN_METH_RADIUS := 0x10

Dahm, et al. Expires October 17, 2018 [Page 23]

Internet-Draft The TACACS+ Protocol April 2018

 TAC_PLUS_AUTHEN_METH_KRB4 := 0x11

 TAC_PLUS_AUTHEN_METH_RCMD := 0x20

 KRB5 and KRB4 are Kerberos version 5 and 4. LINE refers to a fixed
 password associated with the terminal line used to gain access.
 LOCAL is a client local user database. ENABLE is a command that
 authenticates in order to grant new privileges. TACACSPLUS is, of
 course, TACACS+. GUEST is an unqualified guest authentication, such
 as an ARAP guest login. RADIUS is the Radius authentication
 protocol. RCMD refers to authentication provided via the R-command
 protocols from Berkeley Unix.

 priv_lvl

 This field is used in the same way as the priv_lvl field in
 authentication request and is described in the Privilege Level
 section (Section 8) below. It indicates the users current privilege
 level.

 authen_type

 This field coresponds to the authen_type field in the authentication
 section (Section 4) above. It indicates the type of authentication
 that was performed. If this information is not available, then the
 client will set authen_type to: TAC_PLUS_AUTHEN_TYPE_NOT_SET := 0x00.
 This value is valid only in authorization and accounting requests.

 authen_service

 This field is the same as the authen_service field in the
 authentication section (Section 4) above. It indicates the service
 through which the user authenticated.

 user, user_len

 This field contains the user’s account name. The user_len MUST
 indicate the length of the user field, in bytes.

 port, port_len

 This field matches the port field in the authentication section
 (Section 4) above. The port_len indicates the length of the port
 field, in bytes.

 rem_addr, rem_addr_len

Dahm, et al. Expires October 17, 2018 [Page 24]

Internet-Draft The TACACS+ Protocol April 2018

 This field matches the rem_addr field in the authentication section
 (Section 4) above. The rem_addr_len indicates the length of the port
 field, in bytes.

 arg_cnt

 The number of authorization arguments to follow

 arg_1 ... arg_N, arg_1_len arg_N_len

 The arguments are the primary elements of the authorization
 interaction. In the request packet they describe the specifics of
 the authorization that is being requested. Each argument is encoded
 in the packet as a single arg filed (arg_1... arg_N) with a
 corresponding length fields (which indicates the length of each
 argument in bytes).

 The authorization arguments in both the REQUEST and the REPLY are
 attribute-value pairs. The attribute and the value are in a single
 printable US-ASCII string and are separated by either a "=" (0X3D) or
 a "*" (0X2A). The equals sign indicates a mandatory argument. The
 asterisk indicates an optional one.

 It is not legal for an attribute name to contain either of the
 separators. It is legal for attribute values to contain the
 separators. This means that the arguments must be parsed until the
 first separator is encountered, all characters in the argument, after
 this separator, are interpreted as the argument value.

 Optional arguments are ones that may be disregarded by either client
 or server. Mandatory arguments require that the receiving side can
 handle the attribute, that is: its implementation and configuration
 includes the details of how to act on it. If the client receives a
 mandatory argument that it cannot handle, it MUST consider the
 authorization to have failed. It is legal to send an attribute-value
 pair with a zero length value.

 Attribute-value strings are not NULL terminated, rather their length
 value indicates their end. The maximum length of an attribute-value
 string is 255 characters. The minimum is two characters (one name-
 value character and the separator)

 Though the attributes allow extensibility, a common core set of
 authorization attributes SHOULD be supported by clients and servers,
 these are listed in the Authorization Attributes (Section 7.2)
 section below.

Dahm, et al. Expires October 17, 2018 [Page 25]

Internet-Draft The TACACS+ Protocol April 2018

5.2. The Authorization REPLY Packet Body

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | status | arg_cnt | server_msg len |
 +----------------+----------------+----------------+----------------+
 + data_len | arg_1_len | arg_2_len |
 +----------------+----------------+----------------+----------------+
 | ... | arg_N_len | server_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+----------------+----------------+----------------+
 | arg_1 ...
 +----------------+----------------+----------------+----------------+
 | arg_2 ...
 +----------------+----------------+----------------+----------------+
 | ...
 +----------------+----------------+----------------+----------------+
 | arg_N ...
 +----------------+----------------+----------------+----------------+

 status This field indicates the authorization status

 TAC_PLUS_AUTHOR_STATUS_PASS_ADD := 0x01

 TAC_PLUS_AUTHOR_STATUS_PASS_REPL := 0x02

 TAC_PLUS_AUTHOR_STATUS_FAIL := 0x10

 TAC_PLUS_AUTHOR_STATUS_ERROR := 0x11

 TAC_PLUS_AUTHOR_STATUS_FOLLOW := 0x21

 server_msg, server_msg_len

 This is a printable US-ASCII string that may be presented to the
 user. The server_msg_len indicates the length of the server_msg
 field, in bytes.

 data, data_len

 This is a printable US-ASCII string that may be presented on an
 administrative display, console or log. The decision to present this
 message is client specific. The data_len indicates the length of the
 data field, in bytes.

 arg_cnt

Dahm, et al. Expires October 17, 2018 [Page 26]

Internet-Draft The TACACS+ Protocol April 2018

 The number of authorization arguments to follow.

 arg_1 ... arg_N, arg_1_len arg_N_len

 The arguments describe the specifics of the authorization that is
 being requested. For details of the content of the args, refer to:
 Authorization Attributes (Section 7.2) section below. Each argument
 is encoded in the packet as a single arg field (arg_1... arg_N) with
 a corresponding length fields (which indicates the length of each
 argument in bytes).

 If the status equals TAC_PLUS_AUTHOR_STATUS_FAIL, then the requested
 authorization MUST be denied.

 If the status equals TAC_PLUS_AUTHOR_STATUS_PASS_ADD, then the
 arguments specified in the request are authorized and the arguments
 in the response MUST be applied according to the rules described
 above.

 If the status equals TAC_PLUS_AUTHOR_STATUS_PASS_REPL then the client
 MUST use the authorization attribute-value pairs (if any) in the
 response, instead of the authorization attribute-value pairs from the
 request.

 To approve the authorization with no modifications, the server sets
 the status to TAC_PLUS_AUTHOR_STATUS_PASS_ADD and the arg_cnt to 0.

 A status of TAC_PLUS_AUTHOR_STATUS_ERROR indicates an error occurred
 on the server. For the differences between ERROR and FAIL, refer to
 section Session Completion (Section 3.4) . None of the arg values
 have any relevance if an ERROR is set, and must be ignored.

 When the status equals TAC_PLUS_AUTHOR_STATUS_FOLLOW, then the
 arg_cnt MUST be 0. In that case, the actions to be taken and the
 contents of the data field are identical to the
 TAC_PLUS_AUTHEN_STATUS_FOLLOW status for Authentication.

6. Accounting

 Accounting is typically the third action after authentication and
 authorization. But again, neither authentication nor authorization
 is required. Accounting is the action of recording what a user is
 doing, and/or has done. Accounting in TACACS+ can serve two
 purposes: It may be used as an auditing tool for security services.
 It may also be used to account for services used, such as in a
 billing environment. To this end, TACACS+ supports three types of
 accounting records. Start records indicate that a service is about
 to begin. Stop records indicate that a service has just terminated,

Dahm, et al. Expires October 17, 2018 [Page 27]

Internet-Draft The TACACS+ Protocol April 2018

 and Update records are intermediate notices that indicate that a
 service is still being performed. TACACS+ accounting records contain
 all the information used in the authorization records, and also
 contain accounting specific information such as start and stop times
 (when appropriate) and resource usage information. A list of
 accounting attributes is defined in the accounting section
 (Section 6) .

6.1. The Account REQUEST Packet Body

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | flags | authen_method | priv_lvl | authen_type |
 +----------------+----------------+----------------+----------------+
 | authen_service | user_len | port_len | rem_addr_len |
 +----------------+----------------+----------------+----------------+
 | arg_cnt | arg_1_len | arg_2_len | ... |
 +----------------+----------------+----------------+----------------+
 | arg_N_len | user ...
 +----------------+----------------+----------------+----------------+
 | port ...
 +----------------+----------------+----------------+----------------+
 | rem_addr ...
 +----------------+----------------+----------------+----------------+
 | arg_1 ...
 +----------------+----------------+----------------+----------------+
 | arg_2 ...
 +----------------+----------------+----------------+----------------+
 | ...
 +----------------+----------------+----------------+----------------+
 | arg_N ...
 +----------------+----------------+----------------+----------------+

 flags

 This holds bitmapped flags.

 TAC_PLUS_ACCT_FLAG_START := 0x02

 TAC_PLUS_ACCT_FLAG_STOP := 0x04

 TAC_PLUS_ACCT_FLAG_WATCHDOG := 0x08

 All other fields are defined in the authorization and authentication
 sections above and have the same semantics. They provide details for
 the conditions on the client, and authentication context, so that
 these details may be logged for accounting purposes.

Dahm, et al. Expires October 17, 2018 [Page 28]

Internet-Draft The TACACS+ Protocol April 2018

 See section 12 Accounting Attribute-value Pairs for the dictionary of
 attributes relevant to accounting.

6.2. The Accounting REPLY Packet Body

 The purpose of accounting is to record the action that has occurred
 on the client. The server MUST reply with success only when the
 accounting request has been recorded. If the server did not record
 the accounting request then it MUST reply with ERROR.

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 +----------------+----------------+----------------+----------------+
 | server_msg len | data_len |
 +----------------+----------------+----------------+----------------+
 | status | server_msg ...
 +----------------+----------------+----------------+----------------+
 | data ...
 +----------------+

 status

 This is the return status. Values are:

 TAC_PLUS_ACCT_STATUS_SUCCESS := 0x01

 TAC_PLUS_ACCT_STATUS_ERROR := 0x02

 TAC_PLUS_ACCT_STATUS_FOLLOW := 0x21

 server_msg, server_msg_len

 This is a printable US-ASCII string that may be presented to the
 user. The server_msg_len indicates the length of the server_msg
 field, in bytes.

 data, data_len

 This is a printable US-ASCII string that may be presented on an
 administrative display, console or log. The decision to present this
 message is client specific. The data_len indicates the length of the
 data field, in bytes.

 When the status equals TAC_PLUS_ACCT_STATUS_FOLLOW, then the actions
 to be taken and the contents of the data field are identical to the
 TAC_PLUS_AUTHEN_STATUS_FOLLOW status for Authentication.

 TACACS+ accounting is intended to record various types of events on
 clients, for example: login sessions, command entry, and others as

Dahm, et al. Expires October 17, 2018 [Page 29]

Internet-Draft The TACACS+ Protocol April 2018

 required by the client implementation. These events are collectively
 referred to in ‘The Draft’ [TheDraft] as "tasks".

 The TAC_PLUS_ACCT_FLAG_START flag indicates that this is a start
 accounting message. Start messages will only be sent once when a
 task is started. The TAC_PLUS_ACCT_FLAG_STOP indicates that this is
 a stop record and that the task has terminated. The
 TAC_PLUS_ACCT_FLAG_WATCHDOG flag means that this is an update record.

 Summary of Accounting Packets

 +----------+-------+-------+-------------+-------------------------+
 | Watchdog | Stop | Start | Flags & 0xE | Meaning |
 +----------+-------+-------+-------------+-------------------------+
0	0	0	0	INVALID
0	0	1	2	Start Accounting Record
0	1	0	4	Stop Accounting Record
0	1	1	6	INVALID
1	0	0	8	Watchdog, no update
1	0	1	A	Watchdog, with update
1	1	0	C	INVALID
1	1	1	E	INVALID
 +----------+-------+-------+-------------+-------------------------+

 The START and STOP flags are mutually exclusive.

 The WATCHDOG flag is used by the client to communicate ongoing status
 of a long-running task. Update records are sent at the client’s
 discretion. The frequency of the update depends upon the intended
 application: A watchdog to provide progress indication will require
 higher frequency than a daily keep-alive. When the WATCHDOG flag is
 set along with the START flag, it indicates that the update record
 provides additional or updated arguments from the original START
 record. If the START flag is not set, then this indicates only that
 task is still running, and no new information is provided (servers
 MUST ignore any arguments). The STOP flag MUST NOT be set in
 conjunction with the WATCHDOG flag.

 The Server MUST respond with TAC_PLUS_ACCT_STATUS_ERROR if the client
 requests an INVALID option.

7. Attribute-Value Pairs

 TACACS+ is intended to be an extensible protocol. The attributes
 used in Authorization and Accounting are not limited by this
 document. Some attributes are defined below for common use cases,
 clients MUST use these attributes when supporting the corresponding
 use cases.

Dahm, et al. Expires October 17, 2018 [Page 30]

Internet-Draft The TACACS+ Protocol April 2018

7.1. Value Encoding

 All attribute values are encoded as printable US-ASCII strings. The
 following type representations SHOULD be followed

 Numeric

 All numeric values in an attribute-value string are provided as
 decimal printable US-ASCII numbers, unless otherwise stated.

 Boolean

 All boolean attributes are encoded as printable US-ASCII with values
 "true" or "false".

 IP-Address

 It is recommended that hosts be specified as a IP address so as to
 avoid any ambiguities. IPV4 address are specified as US-ASCII octet
 numerics separated by dots (’.’), IPV6 address text representation
 defined in RFC 4291.

 Date Time

 Absolute date/times are specified in seconds since the epoch, 12:00am
 Jan 1 1970. The timezone MUST be UTC unless a timezone attribute is
 specified. Stardate is canonically inconsistent and so SHOULD NOT be
 used.

 String

 Many values have no specific type representation and so are
 interpreted as plain strings.

 Empty Values

 Attributes may be submitted with no value, in which case they consist
 of the name and the mandatory or optional separator. For example,
 the attribute "cmd" which has no value is transmitted as a string of
 four characters "cmd="

7.2. Authorization Attributes

 service (String)

 The primary service. Specifying a service attribute indicates that
 this is a request for authorization or accounting of that service.

Dahm, et al. Expires October 17, 2018 [Page 31]

Internet-Draft The TACACS+ Protocol April 2018

 For example: "shell", "tty-server", "connection", "system" and
 "firewall". This attribute MUST always be included.

 protocol (String)

 the protocol field may be used to indicate a subset of a service.

 cmd (String)

 a shell (exec) command. This indicates the command name of the
 command that is to be run. The "cmd" attribute MUST be specified if
 service equals "shell".

 Authorization of shell commands is a common use-case for the TACACS+
 protocol. Command Authorization generally takes one of two forms:
 session-based and command-based.

 For session-based shell authorization, the "cmd" argument will have
 an empty value. The client determines which commands are allowed in
 a session according to the arguments present in the authorization.

 In command-based authorization, the client requests that the server
 determine whether a command is allowed by making an authorization
 request for each command. The "cmd" argument will have the command
 name as its value.

 cmd-arg (String)

 an argument to a shell (exec) command. This indicates an argument
 for the shell command that is to be run. Multiple cmd-arg attributes
 may be specified, and they are order dependent.

 acl (Numeric)

 printable US-ASCII number representing a connection access list.
 Applicable only to session-based shell authorization.

 inacl (String)

 printable US-ASCII identifier for an interface input access list.

 outacl (String)

 printable US-ASCII identifier for an interface output access list.

 addr (IP-Address)

 a network address

Dahm, et al. Expires October 17, 2018 [Page 32]

Internet-Draft The TACACS+ Protocol April 2018

 addr-pool (String)

 The identifier of an address pool from which the client can assign an
 address.

 routing (Boolean)

 Specifies whether routing information is to be propagated to, and
 accepted from this interface.

 route (String)

 Indicates a route that is to be applied to this interface. Values
 MUST be of the form "<dst_address> <mask> [<routing_addr>]". If a
 <routing_addr> is not specified, the resulting route is via the
 requesting peer.

 timeout (Numeric)

 an absolute timer for the connection (in minutes). A value of zero
 indicates no timeout.

 idletime (Numeric)

 an idle-timeout for the connection (in minutes). A value of zero
 indicates no timeout.

 autocmd (String)

 an auto-command to run. Applicable only to session-based shell
 authorization.

 noescape (Boolean)

 Prevents user from using an escape character. Applicable only to
 session-based shell authorization.

 nohangup (Boolean)

 Boolean. Do not disconnect after an automatic command. Applicable
 only to session-based shell authorization.

 priv-lvl (Numeric)

 privilege level to be assigned. Please refer to the Privilege Level
 section (Section 8) below.

 remote_user (String)

Dahm, et al. Expires October 17, 2018 [Page 33]

Internet-Draft The TACACS+ Protocol April 2018

 remote userid (authen_method must have the value
 TAC_PLUS_AUTHEN_METH_RCMD). In the case of rcmd authorizations, the
 authen_method will be set to TAC_PLUS_AUTHEN_METH_RCMD and the
 remote_user and remote_host attributes will provide the remote user
 and host information to enable rhost style authorization. The
 response may request that a privilege level be set for the user.

 remote_host (String)

 remote host (authen_method must have the value
 TAC_PLUS_AUTHEN_METH_RCMD)

7.3. Accounting Attributes

 The following attributes are defined for TACACS+ accounting only.
 They MUST precede any attribute-value pairs that are defined in the
 authorization section (Section 5) above.

 task_id (String)

 Start and stop records for the same event MUST have matching task_id
 attribute values. The client MUST ensure that active task_ids are
 not duplicated: a client MUST NOT reuse a task_id a start record
 until it has sent a stop record for that task_id. Servers MUST not
 make assumptions about the format of a task_id.

 start_time (Date Time)

 The time the action started (in seconds since the epoch.).

 stop_time (Date Time)

 The time the action stopped (in seconds since the epoch.)

 elapsed_time (Numeric)

 The elapsed time in seconds for the action.

 timezone (String)

 The timezone abbreviation for all timestamps included in this packet.

 event (String)

 Used only when "service=system". Current values are "net_acct",
 "cmd_acct", "conn_acct", "shell_acct" "sys_acct" and "clock_change".
 These indicate system-level changes. The flags field SHOULD indicate
 whether the service started or stopped.

Dahm, et al. Expires October 17, 2018 [Page 34]

Internet-Draft The TACACS+ Protocol April 2018

 reason (String)

 Accompanies an event attribute. It describes why the event occurred.

 bytes (Numeric)

 The number of bytes transferred by this action

 bytes_in (Numeric)

 The number of bytes transferred by this action from the endstation to
 the client port

 bytes_out (Numeric)

 The number of bytes transferred by this action from the client to the
 endstation port

 paks (Numeric)

 The number of packets transferred by this action.

 paks_in (Numeric)

 The number of input packets transferred by this action from the
 endstation to the client port.

 paks_out (Numeric)

 The number of output packets transferred by this action from the
 client port to the endstation.

 err_msg (String)

 A printable US-ASCII string describing the status of the action.

8. Privilege Levels

 The TACACS+ Protocol supports flexible authorization schemes through
 the extensible attributes.

 One scheme is built into the protocol and has been extensively used
 for Session-based shell authorization: Privilege Levels. Privilege
 Levels are ordered values from 0 to 15 with each level being a
 superset of the next lower value. Configuration and implementation
 of the client will map actions (such as the permission to execute of
 specific commands) to different privilege levels. Pre-defined values
 are:

Dahm, et al. Expires October 17, 2018 [Page 35]

Internet-Draft The TACACS+ Protocol April 2018

 TAC_PLUS_PRIV_LVL_MAX := 0x0f

 TAC_PLUS_PRIV_LVL_ROOT := 0x0f

 TAC_PLUS_PRIV_LVL_USER := 0x01

 TAC_PLUS_PRIV_LVL_MIN := 0x00

 A Privilege level can be assigned to a shell (EXEC) session when it
 starts (for example, TAC_PLUS_PRIV_LVL_USER). The client will permit
 the actions associated with this level to be executed. This
 privilege level is returned by the Server in a session-based shell
 authorization (when "service" equals "shell" and "cmd" is empty).
 When a user required to perform actions that are mapped to a higher
 privilege level, then an ENABLE type reauthentication can be
 initiated by the client. The client will insert the required
 privilege level into the authentication header for enable
 authentication request.

 The use of Privilege levels to determine session-based access to
 commands and resources is not mandatory for clients. Although the
 privilege level scheme is widely supported, its lack of flexibility
 in requiring a single monotonic hierarchy of permissions means that
 other session-based command authorization schemes have evolved, and
 so it is no longer mandatory for clients to use it. However, it is
 still common enough that it SHOULD be supported by servers.

9. TACACS+ Security Considerations

 The original TACACS+ Draft[1] from 1998 did not address all of the
 key security concerns which are considered when designing modern
 standards. This section addresses known limitations and concerns
 which will impact overall security of the protocol and systems where
 this protocol is deployed to manage central authentication,
 authorization or accounting for network device administration.

 Multiple implementations of the protocol described in the draft[1]
 have been deployed. As the protocol was never standardized, current
 implementations may be incompatible in non-obvious ways, giving rise
 to additional security risks. This section does not claim to
 enumerate all possible security vulnerabilities.

9.1. General Security of The Protocol

 TACACS+ protocol does not include a security mechanism that would
 meet modern-day requirements. Support for MD5-based crypto pad
 encryption fails to provide any kind of transport integrity, which
 presents at least the following risks:

Dahm, et al. Expires October 17, 2018 [Page 36]

Internet-Draft The TACACS+ Protocol April 2018

 Accounting information may be modified by the man-in-the-middle
 attacker, making such logs unsuitable and untrustable for auditing
 purposes.

 Only the body of the request is encrypted which leaves all header
 fields open to trivial modification by the man-in-the-middle
 attacker. For this reason, connections with
 TAC_PLUS_UNENCRYPTED_FLAG are disallowed, as mentioned in the
 recommendations section.

 Invalid or misleading values may be inserted by the man-in-the-
 middle attacker in various fields at known offsets to try and
 circumvent the authentication or authorization checks even inside
 the encrypted body.

 While the protocol provides some measure of transport privacy, it is
 vulnerable to at least the following attacks:

 Brute force attacks exploiting increased efficiency of MD5 digest
 computation.

 Known plaintext attacks which may decrease the cost of brute force
 attack.

 Chosen plaintext attacks which may decrease the cost of a brute
 force attack.

 No forward secrecy.

 Even though, to the best knowledge of authors, this method of
 encryption wasn’t rigorously tested, enough information is available
 that it is best referred to as "obfuscation" and not "encryption".

 For these reasons, users deploying TACACS+ protocol in their
 environments MUST limit access to known clients and MUST control the
 security of the entire transmission path. Attacks who can guess the
 key or otherwise break the obfuscation will gain unrestricted and
 undetected access to all TACACS+ traffic. Ensuring that a
 centralized AAA system like TACACS+ is deployed on a secured
 transport is essential to managing security risk of such an attack.

 The following parts of this section enumerate only the session-
 specific risks which are in addition to general risk associated with
 bare obfuscation and lack of integrity checking.

Dahm, et al. Expires October 17, 2018 [Page 37]

Internet-Draft The TACACS+ Protocol April 2018

9.2. Security of Authentication Sessions

 Authentication sessions SHOULD NOT be used via insecure transport as
 the man-in-the-middle attack may completely subvert them. Even CHAP,
 which may be considered resistant to password interception, is unsafe
 as it does not protect the username from a trivial man-in-the-middle
 attack.

 This document deprecates the redirection mechanism using the
 TAC_PLUS_AUTHEN_STATUS_FOLLOW option which was included in the
 original draft. As part of this process, the secret key for a new
 server was sent to the client. This public exchange of secret keys
 means that once one session is broken, it may be possible to leverage
 that key to attacking connections to other servers. This mechanism
 SHOULD NOT be used in modern deployments. It MUST NOT be used
 outside a secured deployment.

9.3. Security of Authorization Sessions

 Authorization sessions MUST be used via secure transport only as it’s
 trivial to execute a successful man-in-the-middle attacks that
 changes well-known plaintext in either requests or responses.

 As an example, take the field "authen_method". It’s not unusual in
 actual deployments to authorize all commands received via the device
 local serial port (a console port) as that one is usually considered
 secure by virtue of the device located in a physically secure
 location. If an administrator would configure the authorization
 system to allow all commands entered by the user on a local console
 to aid in troubleshooting, that would give all access to all commands
 to any attacker that would be able to change the "authen_method" from
 TAC_PLUS_AUTHEN_METH_TACACSPLUS to TAC_PLUS_AUTHEN_METH_LINE. In
 this regard, the obfuscation provided by the protocol itself wouldn’t
 help much, because:

 Lack of integrity means that any byte in the payload may be
 changed without either side detecting the change.

 Known plaintext means that an attacker would know with certainty
 which octet is the target of the attack (in this case, 1st octet
 after the header).

 In combination with known plaintext, the attacker can determine
 with certainty the value of the crypto-pad octet used to obfuscate
 the original octet.

Dahm, et al. Expires October 17, 2018 [Page 38]

Internet-Draft The TACACS+ Protocol April 2018

9.4. Security of Accounting Sessions

 Accounting sessions are not directly involved in authentication or
 authorizing operations on the device. However, man-in-the-middle
 attacker may do any of the following:

 Replace accounting data with new valid or garbage which prevents
 to provide distraction or hide information related to their
 authentication and/or authorization attack attempts.

 Try and poison accounting log with entries designed to make
 systems behave in unintended ways (which includes TACACS+ server
 and any other systems that would manage accounting entries).

 In addition to these direct manipulations, different client
 implementations pass different fidelity of accounting data. Some
 vendors have been observed in the wild that pass sensitive data like
 passwords, encryption keys and similar as part of the accounting log.
 Due to lack of strong encryption with perfect forward secrecy, this
 data may be revealed in future, leading to a security incident.

9.5. TACACS+ Client Implementation Recommendations

 The following recommendations are made when implementing a TACACS+
 client:

 Clients SHOULD not use TAC_PLUS_UNENCRYPTED_FLAG, even on networks
 that are considered secure.

 Treat TAC_PLUS_AUTHEN_STATUS_FOLLOW as
 TAC_PLUS_AUTHEN_STATUS_FAIL.

 If receiving an unknown mandatory authorization attribute, behave
 as if it had received TAC_PLUS_AUTHOR_STATUS_FAIL.

9.6. TACACS+ Server Implementation Recommendations

 The following recommendations are made when implementing a TACACS+
 server:

 The Server SHOULD NOT accept any connections which have the
 TAC_PLUS_UNENCRYPTED_FLAG set and SHOULD reject those packets with
 applicable ERROR response for type of packet.

 The configuration of dedicated secret keys per individual client MUST
 be supported by the Server implementation. It is also recommended
 that Servers SHOULD warn administrators if secret keys are not unique
 per client.

Dahm, et al. Expires October 17, 2018 [Page 39]

Internet-Draft The TACACS+ Protocol April 2018

 If an invalid shared secret is detected, Servers MUST NOT accept any
 new sessions on a connection, and terminate the connection on
 completion of any sessions previously established with a valid shared
 secret.

 The Server implementation must allow the administrator to mandate:

 TAC_PLUS_AUTHEN_TYPE_CHAP for authen_type

 TAC_PLUS_AUTHEN_METH_TACACSPLUS for authen_method in authorization

 Minimum length for shared secrets.

9.7. TACACS+ Deployment Best Practices

 Due to above observations about the TACACS+ protocol, it is critical
 to only deploy it using secure transport. A secure transport for
 TACACS+ is defined as any means that ensure privacy and integrity of
 all data passed between clients and servers. There are multiple
 means of achieving this, all of them beyond the scope of this
 document.

 Symmetric encryption key represents a possible attack vector at the
 protocol itself. For this reason, servers SHOULD accept only those
 network connection attempts that arrive from known clients. This
 limits the exposure and prevents remote brute force attacks from
 unknown clients.

 Due to the security deficiencies of the protocol, it is critical that
 it be deployed in a secure manner. The following recommendations are
 made for those deploying and configuring TACACS+ as a solution for
 device administration:

 Secure the Deployment: TACACS+ MUST BE deployed over networks
 which ensure an appropriate privacy and integrity of the
 communication. The way this is ensured will depend upon the
 organizational means: a dedicated and secure management network
 where available in enterprise deployments, or IPsec where
 dedicated networks are not available.

 Do not use the TAC_PLUS_UNENCRYPTED_FLAG option.

 Always configure a secret key (recommended minimum 16 characters)
 on the server for each client.

 Consider shared secrets to be sensitive data, and manage securely
 on server and client.

Dahm, et al. Expires October 17, 2018 [Page 40]

Internet-Draft The TACACS+ Protocol April 2018

 Change secret keys at regular intervals.

 Do not use TAC_PLUS_AUTHEN_SENDAUTH or TAC_PLUS_AUTHEN_SENDPASS
 options.

 Use TAC_PLUS_AUTHEN_TYPE_CHAP or MS_CHAP options for authen_type
 where possible. Use other options only when unavoidable due to
 requirements of identity/password systems.

 Require TACACS+ authentication for authorization requests (i.e.
 TAC_PLUS_AUTHEN_METH_TACACSPLUS is used).

 Do not use the redirection mechanism
 (TAC_PLUS_AUTHEN_STATUS_FOLLOW). Specifically avoid the option to
 send secret keys in the server list.

 Take case when applying extensions to the dictionary of
 authorization/accounting arguments. Ensure that the client and
 server use of new argument names are consistent.

 In summary: It is strongly advised that TACACS+ MUST be used within a
 secure deployment. Failure to do so may impact overall network
 security.

10. Acknowledgements

 The authors would like to thank the following reviewers whose
 comments and contributions made considerable improvements to the
 document: Alan DeKok, Alexander Clouter, Chris Janicki, Tom Petch,
 Robert Drake, among many others.

 The authors would particularly like to thank Alan DeKok, who provided
 significant insights and recommendations on all aspects of the
 document and the protocol. Alan DeKok has dedicated considerable
 effort to identify weaknesses and provide remedies to help improve
 the document.

 The authors would also like to thanks the support from the OPSAWG
 Chairs and advisors.

11. References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1334] Lloyd, B. and W. Simpson, "PPP Authentication Protocols",
 RFC 1334, DOI 10.17487/RFC1334, October 1992,
 <http://www.rfc-editor.org/info/rfc1334>.

Dahm, et al. Expires October 17, 2018 [Page 41]

Internet-Draft The TACACS+ Protocol April 2018

 [RFC1750] Eastlake 3rd, D., Crocker, S., and J. Schiller,
 "Randomness Recommendations for Security", RFC 1750,
 DOI 10.17487/RFC1750, December 1994,
 <http://www.rfc-editor.org/info/rfc1750>.

 [RFC2433] Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions",
 RFC 2433, DOI 10.17487/RFC2433, October 1998,
 <http://www.rfc-editor.org/info/rfc2433>.

 [RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2",
 RFC 2759, DOI 10.17487/RFC2759, January 2000,
 <http://www.rfc-editor.org/info/rfc2759>.

 [TheDraft]
 Carrel, D. and L. Grant, "The TACACS+ Protocol Version
 1.78", June 1997,
 <https://tools.ietf.org/html/draft-grant-tacacs-02>.

Authors’ Addresses

 Thorsten Dahm
 Google Inc
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 US

 EMail: thorstendlux@google.com

 Andrej Ota
 Google Inc
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 US

 EMail: aota@google.com

 Douglas C. Medway Gash
 Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose, CA 95134
 US

 Phone: +44 0208 8244508
 EMail: dcmgash@cisco.com

Dahm, et al. Expires October 17, 2018 [Page 42]

Internet-Draft The TACACS+ Protocol April 2018

 David Carrel
 vIPtela, Inc.
 1732 North First St.
 San Jose, CA 95112
 US

 EMail: dcarrel@viptela.com

 Lol Grant

 EMail: lol.grant@gmail.com

Dahm, et al. Expires October 17, 2018 [Page 43]

