
 TOC Network Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track D. Hardt

Expires: April 27, 2012 independent

 D. Recordon

 Facebook

 October 25, 2011

The OAuth 2.0 Authorization Protocol: Bearer
Tokens

draft-ietf-oauth-v2-bearer-11
Abstract

This specification describes how to use bearer tokens in HTTP requests to access OAuth 2.0
protected resources. Any party in possession of a bearer token (a "bearer") can use it to get
access to granted resources (without demonstrating possession of a cryptographic key). To
prevent misuse, the bearer token MUST be protected from disclosure in storage and in
transport.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on April 27, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
 1.2. Terminology
 1.3. Overview
2. Authenticated Requests
 2.1. The Authorization Request Header Field
 2.2. Form-Encoded Body Parameter
 2.3. URI Query Parameter

 TOC

 TOC

 TOC

 TOC

3. The WWW-Authenticate Response Header Field
 3.1. Error Codes
4. Security Considerations
 4.1. Security Threats
 4.2. Threat Mitigation
 4.3. Summary of Recommendations
5. IANA Considerations
 5.1. OAuth Access Token Type Registration
 5.1.1. The "Bearer" OAuth Access Token Type
 5.2. Authentication Scheme Registration
 5.2.1. The "Bearer" Authentication Scheme
6. References
 6.1. Normative References
 6.2. Informative References
Appendix A. Acknowledgements
Appendix B. Document History
§ Authors' Addresses

1. Introduction

OAuth enables clients to access protected resources by obtaining an access token, which is
defined in as "a string representing an access authorization issued to
the client", rather than using the resource owner's credentials directly.

Tokens are issued to clients by an authorization server with the approval of the resource
owner. The client uses the access token to access the protected resources hosted by the
resource server. This specification describes how to make protected resource requests when
the OAuth access token is a bearer token.

This specification defines the use of bearer tokens with OAuth over [RFC2616] using
 [RFC5246]. Other specifications may extend it for use with other transport protocols.

1.1. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD
NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in .

This document uses the Augmented Backus-Naur Form (ABNF) notation of
, which is based upon the Augmented Backus-Naur Form

(ABNF) notation of . Additionally, the following rules are included from
: b64token, auth-param, and realm; from

: quoted-string; and from : URI-Reference.

Unless otherwise noted, all the protocol parameter names and values are case sensitive.

1.2. Terminology

Bearer Token
A security token with the property that any party in possession of the token (a
"bearer") can use the token in any way that any other party in possession of it can.
Using a bearer token does not require a bearer to prove possession of
cryptographic key material (proof-of-possession).

All other terms are as defined in .

[I‑D.ietf‑oauth‑v2]

HTTP
TLS

[RFC2119]

[I‑D.ietf‑httpbis‑p1‑messaging]
[RFC5234]

[I‑D.ietf‑httpbis‑p7‑auth]
[I‑D.ietf‑httpbis‑p1‑messaging] [RFC3986]

[I‑D.ietf‑oauth‑v2]

 TOC

 TOC

 TOC

1.3. Overview

OAuth provides a method for clients to access a protected resource on behalf of a resource
owner. In the general case, before a client can access a protected resource, it must first
obtain an authorization grant from the resource owner and then exchange the authorization
grant for an access token. The access token represents the grant's scope, duration, and
other attributes granted by the authorization grant. The client accesses the protected
resource by presenting the access token to the resource server. In some cases, a client can
directly present its own credentials to an authorization server to obtain an access token
without having to first obtain an authorization grant from a resource owner.

The access token provides an abstraction layer, replacing different authorization constructs
(e.g. username and password, assertion) for a single token understood by the resource
server. This abstraction enables issuing access tokens valid for a short time period, as well as
removing the resource server's need to understand a wide range of authentication schemes.

+--------+ +---------------+
	--(A)- Authorization Request ->	Resource
		Owner
	<-(B)-- Authorization Grant ---	
	+---------------+	
	Authorization Grant & +---------------+	
	--(C)--- Client Credentials -->	Authorization
Client		Server
	<-(D)----- Access Token -------	
	+---------------+	
	+---------------+	
	--(E)----- Access Token ------>	Resource
		Server
	<-(F)--- Protected Resource ---	
+--------+ +---------------+

 Figure 1: Abstract Protocol Flow

The abstract flow illustrated in describes the overall OAuth 2.0 protocol
architecture. The following steps are specified within this document:

E) The client makes a protected resource request to the resource server by
presenting the access token.

F) The resource server validates the access token, and if valid, serves the
request.

2. Authenticated Requests

Clients MAY use bearer tokens to make authenticated requests to access protected
resources. This section defines three methods of sending bearer access tokens in resource
requests to resource servers. Clients MUST NOT use more than one method to transmit the
token in each request.

2.1. The Authorization Request Header Field

When sending the access token in the Authorization request header field defined by
, the client uses the Bearer authentication scheme to transmit

the access token.

For example:

Figure 1

[I‑D.ietf‑httpbis‑p7‑auth]

 TOC

 TOC

GET /resource HTTP/1.1
Host: server.example.com
Authorization: Bearer vF9dft4qmT

The Authorization header field uses the framework defined by
follows:

credentials = "Bearer" 1*SP b64token

Clients SHOULD make authenticated requests with a bearer token using the Authorization
request header field with the Bearer HTTP authorization scheme. Resource servers MUST
support this method.

2.2. Form-Encoded Body Parameter

When sending the access token in the HTTP request entity-body, the client adds the access
token to the request body using the access_token parameter. The client MUST NOT use this
method unless all of the following conditions are met:

The HTTP request entity-body is single-part.
The entity-body follows the encoding requirements of the application/x-www-
form-urlencoded content-type as defined by

.
The HTTP request entity-header includes the Content-Type header field set to
application/x-www-form-urlencoded.
The HTTP request method is one for which the request body has defined
semantics. In particular, this means that the GET method MUST NOT be used.

The entity-body MAY include other request-specific parameters, in which case, the
access_token parameter MUST be properly separated from the request-specific
parameters using & character(s) (ASCII code 38).

For example, the client makes the following HTTP request using transport-layer security:

POST /resource HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

access_token=vF9dft4qmT

The application/x-www-form-urlencoded method SHOULD NOT be used except in
application contexts where participating browsers do not have access to the Authorization
request header field. Resource servers MAY support this method.

2.3. URI Query Parameter

When sending the access token in the HTTP request URI, the client adds the access token to
the request URI query component as defined by using the access_token
parameter.

For example, the client makes the following HTTP request using transport-layer security:

GET /resource?access_token=vF9dft4qmT HTTP/1.1
Host: server.example.com

[I‑D.ietf‑httpbis‑p7‑auth]

[W3C.REC‑html401‑19991224]

[RFC3986]

 TOC

The HTTP request URI query can include other request-specific parameters, in which case, the
access_token parameter MUST be properly separated from the request-specific
parameters using & character(s) (ASCII code 38).

For example:

https://server.example.com/resource?x=y&access_token=vF9dft4qmT&p=q

Because of the associated with the URI method, it SHOULD NOT
be used unless it is the only feasible method. Resource servers MAY support this method.

3. The WWW-Authenticate Response Header Field

If the protected resource request does not include authentication credentials or does not
contain an access token that enables access to the protected resource, the resource server
MUST include the HTTP WWW-Authenticate response header field; it MAY include it in
response to other conditions as well. The WWW-Authenticate header field uses the
framework defined by as follows:

challenge = "Bearer" [1*SP 1#param]

param = realm / scope /
 error / error-desc / error-uri /
 auth-param

scope = "scope" "=" DQUOTE scope-val *(SP scope-val) DQUOTE
scope-val = 1*scope-val-char
scope-val-char = %x21 / %x23-5B / %x5D-7E
 ; HTTPbis P1 qdtext except whitespace, restricted to US-ASCII

error = "error" "=" quoted-string
error-desc = "error_description" "=" DQUOTE *error-desc-char DQUOTE
error-desc-char = SP / VCHAR
error-uri = "error_uri" "=" DQUOTE URI-reference DQUOTE

The scope attribute is a space-delimited list of scope values indicating the required scope of
the access token for accessing the requested resource. The scope attribute MUST NOT
appear more than once. The scope value is intended for programmatic use and is not meant
to be displayed to end users.

If the protected resource request included an access token and failed authentication, the
resource server SHOULD include the error attribute to provide the client with the reason
why the access request was declined. The parameter value is described in . In
addition, the resource server MAY include the error_description attribute to provide
developers a human-readable explanation that is not meant to be displayed to end users. It
also MAY include the error_uri attribute with an absolute URI identifying a human-readable
web page explaining the error. The error, error_description, and error_uri attribute
MUST NOT appear more than once.

For example, in response to a protected resource request without authentication:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example"

And in response to a protected resource request with an authentication attempt using an
expired access token:

Security Considerations

[I‑D.ietf‑httpbis‑p7‑auth]

Section 3.1

 TOC

 TOC

 TOC

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example",
 error="invalid_token",
 error_description="The access token expired"

3.1. Error Codes

When a request fails, the resource server responds using the appropriate HTTP status code
(typically, 400, 401, or 403), and includes one of the following error codes in the response:

invalid_request
The request is missing a required parameter, includes an unsupported parameter
or parameter value, repeats the same parameter, uses more than one method
for including an access token, or is otherwise malformed. The resource server
SHOULD respond with the HTTP 400 (Bad Request) status code.

invalid_token
The access token provided is expired, revoked, malformed, or invalid for other
reasons. The resource SHOULD respond with the HTTP 401 (Unauthorized) status
code. The client MAY request a new access token and retry the protected resource
request.

insufficient_scope
The request requires higher privileges than provided by the access token. The
resource server SHOULD respond with the HTTP 403 (Forbidden) status code and
MAY include the scope attribute with the scope necessary to access the protected
resource.

If the request lacks any authentication information (i.e. the client was unaware authentication
is necessary or attempted using an unsupported authentication method), the resource
server SHOULD NOT include an error code or other error information.

For example:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example"

4. Security Considerations

This section describes the relevant security threats regarding token handling when using
bearer tokens and describes how to mitigate these threats.

4.1. Security Threats

The following list presents several common threats against protocols utilizing some form of
tokens. This list of threats is based on NIST Special Publication 800-63 . Since
this document builds on the OAuth 2.0 specification, we exclude a discussion of threats that
are described there or in related documents.

Token manufacture/modification:
An attacker may generate a bogus token or modify the token contents (such as
the authentication or attribute statements) of an existing token, causing the
resource server to grant inappropriate access to the client. For example, an
attacker may modify the token to extend the validity period; a malicious client
may modify the assertion to gain access to information that they should not be
able to view.

Token disclosure:
Tokens may contain authentication and attribute statements that include sensitive
information.

Token redirect:

[NIST800‑63]

 TOC

 TOC

An attacker uses a token generated for consumption by one resource server to
gain access to a different resource server that mistakenly believes the token to be
for it.

Token replay:
An attacker attempts to use a token that has already been used with that
resource server in the past.

4.2. Threat Mitigation

A large range of threats can be mitigated by protecting the contents of the token by using a
digital signature or a Message Authentication Code (MAC). Alternatively, a bearer token can
contain a reference to authorization information, rather than encoding the information
directly. Such references MUST be infeasible for an attacker to guess; using a reference may
require an extra interaction between a server and the token issuer to resolve the reference
to the authorization information. The mechanics of such an interaction are not defined by this
specification.

This document does not specify the encoding or the contents of the token; hence detailed
recommendations for token integrity protection are outside the scope of this document. We
assume that the token integrity protection is sufficient to prevent the token from being
modified.

To deal with token redirect, it is important for the authorization server to include the identity
of the intended recipients (the audience), typically a single resource server (or a list of
resource servers), in the token. Restricting the use of the token to a specific scope is also
recommended.

To provide protection against token disclosure, confidentiality protection is applied via
[RFC5246] with a ciphersuite that offers confidentiality protection. This requires that the
communication interaction between the client and the authorization server, as well as the
interaction between the client and the resource server, utilize confidentiality protection. Since
TLS is mandatory to implement and to use with this specification, it is the preferred approach
for preventing token disclosure via the communication channel. For those cases where the
client is prevented from observing the contents of the token, token encryption MUST be
applied in addition to the usage of TLS protection.

To deal with token capture and replay, the following recommendations are made: First, the
lifetime of the token MUST be limited by putting a validity time field inside the protected part
of the token. Note that using short-lived (one hour or less) tokens reduces the impact of
them being leaked. Second, confidentiality protection of the exchanges between the client
and the authorization server and between the client and the resource server MUST be
applied, for instance, through the use of [RFC5246]. As a consequence, no eavesdropper
along the communication path is able to observe the token exchange. Consequently, such
an on-path adversary cannot replay the token. Furthermore, when presenting the token to a
resource server, the client MUST verify the identity of that resource server, as per

. Note that the client MUST validate the TLS certificate chain when making these
requests to protected resources. Presenting the token to an unauthenticated and
unauthorized resource server or failing to validate the certificate chain will allow adversaries
to steal the token and gain unauthorized access to protected resources.

4.3. Summary of Recommendations

Safeguard bearer tokens
Client implementations MUST ensure that bearer tokens are not leaked to
unintended parties, as they will be able to use them to gain access to protected
resources. This is the primary security consideration when using bearer tokens and
underlies all the more specific recommendations that follow.

Validate SSL certificate chains
The client MUST validate the TLS certificate chain when making requests to
protected resources. Failing to do so may enable DNS hijacking attacks to steal
the token and gain unintended access.

Always use TLS (https)
Clients MUST always use [RFC5246] (https) or equivalent transport security

TLS

TLS

[RFC2818]

TLS

 TOC

 TOC

 TOC

 TOC

 TOC

when making requests with bearer tokens. Failing to do so exposes the token to
numerous attacks that could give attackers unintended access.

Don't store bearer tokens in cookies
Implementations MUST NOT store bearer tokens within cookies that can be sent in
the clear (which is the default transmission mode for cookies). Implementations
that do store bearer tokens in cookies MUST take precautions against cross site
request forgery.

Issue short-lived bearer tokens
Token servers SHOULD issue short-lived (one hour or less) bearer tokens,
particularly when issuing tokens to clients that run within a web browser or other
environments where information leakage may occur. Using short-lived bearer
tokens can reduce the impact of them being leaked.

Issue scoped bearer tokens
Token servers SHOULD issue bearer tokens that contain an audience restriction,
scoping their use to the intended relying party or set of relying parties.

Don't pass bearer tokens in page URLs
Bearer tokens SHOULD NOT be passed in page URLs (for example as query string
parameters). Instead, bearer tokens SHOULD be passed in HTTP message
headers or message bodies for which confidentiality measures are taken.
Browsers, web servers, and other software may not adequately secure URLs in the
browser history, web server logs, and other data structures. If bearer tokens are
passed in page URLs, attackers might be able to steal them from the history data,
logs, or other unsecured locations.

5. IANA Considerations

5.1. OAuth Access Token Type Registration

This specification registers the following access token type in the OAuth Access Token Type
Registry.

5.1.1. The "Bearer" OAuth Access Token Type

Type name:
Bearer

Additional Token Endpoint Response Parameters:
(none)

HTTP Authentication Scheme(s):
Bearer

Change controller:
IETF

Specification document(s):
[[this document]]

5.2. Authentication Scheme Registration

This specification registers the following authentication scheme in the Authentication Scheme
Registry defined in .

5.2.1. The "Bearer" Authentication Scheme

Authentication Scheme Name:
Bearer

Pointer to specification text:

[I‑D.ietf‑httpbis‑p7‑auth]

 TOC

 TOC

 TOC

 TOC

 TOC

[[this document]]
Notes (optional):

(none)

6. References

6.1. Normative References

[I-D.ietf-
httpbis-p1-
messaging]

Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L., Leach, P., Berners-Lee, T., Reschke, J., and Y. Lafon,
“HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” draft-ietf-httpbis-p1-messaging-16 (work in
progress), August 2011 (TXT).

[I-D.ietf-
httpbis-p7-
auth]

Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L., Leach, P., Berners-Lee, T., Reschke, J., and Y. Lafon,
“HTTP/1.1, part 7: Authentication,” draft-ietf-httpbis-p7-auth-16 (work in progress), August 2011 (TXT).

[I-D.ietf-
oauth-v2]

Hammer-Lahav, E., Recordon, D., and D. Hardt, “The OAuth 2.0 Authorization Protocol,” draft-ietf-oauth-
v2-22 (work in progress), September 2011 (TXT, PDF).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC5234] Crocker, D. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” STD 68, RFC 5234,
January 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[W3C.REC-
html401-
19991224]

Raggett, D., Hors, A., and I. Jacobs, “HTML 4.01 Specification,” World Wide Web Consortium
Recommendation REC-html401-19991224, December 1999 (HTML).

6.2. Informative References

[NIST800-
63]

Burr, W., Dodson, D., Perlner, R., Polk, T., Gupta, S., and E. Nabbus, “NIST Special Publication 800-63-1,
INFORMATION SECURITY,” December 2008.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,” RFC 2617, June 1999 (TXT, HTML, XML).

Appendix A. Acknowledgements

The following people contributed to preliminary versions of this document: Blaine Cook (BT),
Brian Eaton (Google), Yaron Y. Goland (Microsoft), Brent Goldman (Facebook), Raffi Krikorian
(Twitter), Luke Shepard (Facebook), and Allen Tom (Yahoo!). The content and concepts within
are a product of the OAuth community, the WRAP community, and the OAuth Working Group.

The OAuth Working Group has dozens of very active contributors who proposed ideas and
wording for this document, including: Michael Adams, Amanda Anganes, Andrew Arnott, Dirk
Balfanz, Brian Campbell, Leah Culver, Bill de hÓra, Brian Ellin, Igor Faynberg, George Fletcher,
Tim Freeman, Evan Gilbert, Justin Hart, John Kemp, Eran Hammer-Lahav, Chasen Le Hara,
Michael B. Jones, Torsten Lodderstedt, Eve Maler, James Manger, Laurence Miao, Chuck
Mortimore, Anthony Nadalin, Justin Richer, Peter Saint-Andre, Nat Sakimura, Rob Sayre,
Marius Scurtescu, Naitik Shah, Justin Smith, Jeremy Suriel, Christian Stübner, Paul Tarjan, and
Franklin Tse.

Appendix B. Document History

[[to be removed by the RFC editor before publication as an RFC]]

http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-16
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-16.txt
http://tools.ietf.org/html/draft-ietf-httpbis-p7-auth-16
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p7-auth-16.txt
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-22.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc5234
http://www.rfc-editor.org/rfc/rfc5234.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-63-Rev. 1
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml

-11

Replaced uses of <"> with DQUOTE to pass ABNF syntax check.

-10

Removed the #auth-param option from Authorization header syntax (leaving
only the b64token syntax).
Restricted the scope value character set to %x21 / %x23-5B / %x5D-7E
(printable ASCII characters excluding double-quote and backslash). Indicated
that scope is intended for programmatic use and is not meant to be displayed to
end users.
Restricted the character set for error_description strings to SP / VCHAR and
indicated that they are not meant to be displayed to end users.
Included more description in the Abstract, since Hannes Tschofenig indicated
that the RFC editor would require this.
Changed "Access Grant" to "Authorization Grant", as was done in the core spec.
Simplified the introduction to the Authenticated Requests section.

-09

Incorporated working group last call comments. Specific changes were:
Use definitions from rather than .
Update credentials definition to conform to .
Further clarified that query parameters may occur in any order.
Specify that error_description is UTF-8 encoded (matching the core
specification).
Registered "Bearer" Authentication Scheme in Authentication Scheme Registry
defined by .
Updated references to oauth-v2, httpbis-p1-messaging, and httpbis-p7-auth
drafts.
Other wording improvements not introducing normative changes.

-08

Updated references to oauth-v2 and httpbis drafts.

-07

Added missing comma in error response example.

-06

Changed parameter name bearer_token to access_token, per working group
consensus.
Changed HTTP status code for invalid_request error code from HTTP 401
(Unauthorized) back to HTTP 400 (Bad Request), per input from HTTP working
group experts.

-05

Removed OAuth Errors Registry, per design team input.
Changed HTTP status code for invalid_request error code from HTTP 400
(Bad Request) to HTTP 401 (Unauthorized) to match HTTP usage [[change
pending working group consensus]].
Added missing quotation marks in error-uri definition.
Added note to add language and encoding information to error_description if the
core specification does.
Explicitly reference the Augmented Backus-Naur Form (ABNF) defined in

.
Use auth-param instead of repeating its definition, which is (token "=" (token /
quoted-string)).
Clarify security considerations about including an audience restriction in the
token and include a recommendation to issue scoped bearer tokens in the
summary of recommendations.

-04

Edits responding to working group last call feedback on -03. Specific edits

[I‑D.ietf‑httpbis‑p7‑auth] [RFC2617]
[I‑D.ietf‑httpbis‑p7‑auth]

[I‑D.ietf‑httpbis‑p7‑auth]

[RFC5234]

 TOC

enumerated below.
Added Bearer Token definition in Terminology section.
Changed parameter name oauth_token to bearer_token.
Added realm parameter to WWW-Authenticate response to comply with

.
Removed "[RWS 1#auth-param]" from credentials definition since it did not
comply with the ABNF in .
Removed restriction that the bearer_token (formerly oauth_token) parameter
be the last parameter in the entity-body and the HTTP request URI query.
Do not require WWW-Authenticate Response in a reply to a malformed request,
as an HTTP 400 Bad Request response without a WWW-Authenticate header is
likely the right response in some cases of malformed requests.
Removed OAuth Parameters registry extension.
Numerous editorial improvements suggested by working group members.

-03

Restored the WWW-Authenticate response header functionality deleted from the
framework specification in draft 12 based upon the specification text from draft
11.
Augmented the OAuth Parameters registry by adding two additional parameter
usage locations: "resource request" and "resource response".
Registered the "oauth_token" OAuth parameter with usage location "resource
request".
Registered the "error" OAuth parameter.
Created the OAuth Error registry and registered errors.
Changed the "OAuth2" OAuth access token type name to "Bearer".

-02

Incorporated feedback received on draft 01. Most changes were to the security
considerations section. No normative changes were made. Specific changes
included:
Changed terminology from "token reuse" to "token capture and replay".
Removed sentence "Encrypting the token contents is another alternative" from
the security considerations since it was redundant and potentially confusing.
Corrected some references to "resource server" to be "authorization server" in
the security considerations.
Generalized security considerations language about obtaining consent of the
resource owner.
Broadened scope of security considerations description for recommendation
"Don't pass bearer tokens in page URLs".
Removed unused reference to OAuth 1.0.
Updated reference to framework specification and updated David Recordon's e-
mail address.
Removed security considerations text on authenticating clients.
Registered the "OAuth2" OAuth access token type and "oauth_token" parameter.

-01

First public draft, which incorporates feedback received on -00 including
enhanced Security Considerations content. This version is intended to
accompany OAuth 2.0 draft 11.

-00

Initial draft based on preliminary version of OAuth 2.0 draft 11.

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 Dick Hardt
 independent

[RFC2617]

[I‑D.ietf‑httpbis‑p7‑auth]

mailto:mbj@microsoft.com
http://self-issued.info/

Email: dick.hardt@gmail.com
URI: http://dickhardt.org/

 David Recordon
 Facebook

Email: dr@fb.com
URI: http://www.davidrecordon.com/

mailto:dick.hardt@gmail.com
http://dickhardt.org/
mailto:dr@fb.com
http://www.davidrecordon.com/

	The OAuth 2.0 Authorization Protocol: Bearer Tokens draft-ietf-oauth-v2-bearer-11
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Overview
	2. Authenticated Requests
	2.1. The Authorization Request Header Field
	2.2. Form-Encoded Body Parameter
	2.3. URI Query Parameter
	3. The WWW-Authenticate Response Header Field
	3.1. Error Codes
	4. Security Considerations
	4.1. Security Threats
	4.2. Threat Mitigation
	4.3. Summary of Recommendations
	5. IANA Considerations
	5.1. OAuth Access Token Type Registration
	5.1.1. The "Bearer" OAuth Access Token Type
	5.2. Authentication Scheme Registration
	5.2.1. The "Bearer" Authentication Scheme
	6. References
	6.1. Normative References
	6.2. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Authors' Addresses

