
 TOC OAuth Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track J. Bradley

Expires: May 10, 2013 Ping Identity

 N. Sakimura

 NRI

 November 6, 2012

JSON Web Token (JWT)
draft-ietf-oauth-json-web-token-05

Abstract

JSON Web Token (JWT) is a means of representing claims to be transferred between two
parties. The claims in a JWT are encoded as a JavaScript Object Notation (JSON) object that is
digitally signed or MACed using JSON Web Signature (JWS) and/or encrypted using JSON Web
Encryption (JWE).

The suggested pronunciation of JWT is the same as the English word "jot".

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on May 10, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
2. Terminology
3. JSON Web Token (JWT) Overview
 3.1. Example JWT
4. JWT Claims
 4.1. Reserved Claim Names
 4.1.1. "exp" (Expiration Time) Claim
 4.1.2. "nbf" (Not Before) Claim

 TOC

 TOC

 TOC

 4.1.3. "iat" (Issued At) Claim
 4.1.4. "iss" (Issuer) Claim
 4.1.5. "aud" (Audience) Claim
 4.1.6. "prn" (Principal) Claim
 4.1.7. "jti" (JWT ID) Claim
 4.1.8. "typ" (Type) Claim
 4.2. Public Claim Names
 4.3. Private Claim Names
5. JWT Header
 5.1. "typ" (Type) Header Parameter
 5.2. "cty" (Content Type) Header Parameter
6. Plaintext JWTs
 6.1. Example Plaintext JWT
7. Rules for Creating and Validating a JWT
8. Cryptographic Algorithms
9. IANA Considerations
 9.1. JSON Web Token Claims Registry
 9.1.1. Registration Template
 9.1.2. Initial Registry Contents
 9.2. Sub-Namespace Registration of urn:ietf:params:oauth:token-type:jwt
 9.2.1. Registry Contents
 9.3. JSON Web Signature and Encryption Type Values Registration
 9.3.1. Registry Contents
 9.4. Media Type Registration
 9.4.1. Registry Contents
10. Security Considerations
11. References
 11.1. Normative References
 11.2. Informative References
Appendix A. Example Encrypted JWT
Appendix B. Relationship of JWTs to SAML Tokens
Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs)
Appendix D. Acknowledgements
Appendix E. Open Issues
Appendix F. Document History
§ Authors' Addresses

1. Introduction

JSON Web Token (JWT) is a compact token format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. JWTs encode
claims to be transmitted as a JavaScript Object Notation (JSON) object that is
base64url encoded and digitally signed or MACed and/or encrypted. Signing and MACing is
performed using JSON Web Signature (JWS) . Encryption is performed using JSON Web
Encryption (JWE) .

The suggested pronunciation of JWT is the same as the English word "jot".

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels

.

2. Terminology

JSON Web Token (JWT)
A string representing a set of claims as a JSON object that is digitally signed or

[RFC4627]

[JWS]
[JWE]

[RFC2119]

 TOC

MACed and/or encrypted. The string consists of multiple parts, the first being the
Encoded JWT Header, plus additional parts depending upon the contents of the
header, with the parts being separated by period ('.') characters, and each part
containing base64url encoded content.

Base64url Encoding
The URL- and filename-safe Base64 encoding described in [RFC4648],
Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by
Section 3.2. (See Appendix C of for notes on implementing base64url
encoding without padding.)

JWT Header
A string representing a JSON object that describes the cryptographic operations
applied to the JWT. When the JWT is digitally signed or MACed, the JWT Header is a
JWS Header. When the JWT is encrypted, the JWT Header is a JWE Header.

Header Parameter Name
The name of a member of the JSON object representing a JWT Header.

Header Parameter Value
The value of a member of the JSON object representing a JWT Header.

JWT Claims Set
A string representing a JSON object that contains the claims conveyed by the JWT.
When the JWT is digitally signed or MACed, the bytes of the UTF-8 representation of
the JWT Claims Set are base64url encoded to create the Encoded JWS Payload.
When the JWT is encrypted, the bytes of the UTF-8 representation of the JWT Claims
Set are used as the JWE Plaintext.

Claim Name
The name of a member of the JSON object representing a JWT Claims Set.

Claim Value
The value of a member of the JSON object representing a JWT Claims Set.

Encoded JWT Header
Base64url encoding of the bytes of the UTF-8 representation of the
JWT Header.

Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are
highly unlikely to collide with other names. For instance, collision resistance can be
achieved through administrative delegation of portions of the namespace or
through use of collision-resistant name allocation functions. Examples of Collision
Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as
defined in the ITU-T X.660 and X.670 Recommendation series, and Universally
Unique IDentifiers (UUIDs) . When using an administratively delegated
namespace, the definer of a name needs to take reasonable precautions to
ensure they are in control of the portion of the namespace they use to define the
name.

StringOrURI
A JSON string value, with the additional requirement that while arbitrary string
values MAY be used, any value containing a ":" character MUST be a URI

. StringOrURI values are compared as case-sensitive strings with no
transformations or canonicalizations applied.

IntDate
A JSON numeric value representing the number of seconds from 1970-01-
01T0:0:0Z UTC until the specified UTC date/time. See [RFC3339] for
details regarding date/times in general and UTC in particular.

3. JSON Web Token (JWT) Overview

JWTs represent a set of claims as a JSON object that is base64url encoded and digitally
signed or MACed and/or encrypted. The JWT Claims Set represents this JSON object. As per

 [RFC4627] Section 2.2, the JSON object consists of zero or more name/value
pairs (or members), where the names are strings and the values are arbitrary JSON values.
These members are the claims represented by the JWT.

The member names within the JWT Claims Set are referred to as Claim Names. The
corresponding values are referred to as Claim Values.

The bytes of the UTF-8 representation of the JWT Claims Set are digitally signed or MACed in
the manner described in JSON Web Signature (JWS) and/or encrypted in the manner
described in JSON Web Encryption (JWE) .

RFC 4648

[JWS]

[RFC3629]

[RFC4122]

[RFC3986]

RFC 3339

RFC 4627

[JWS]
[JWE]

 TOC

The contents of the JWT Header describe the cryptographic operations applied to the JWT
Claims Set. If the JWT Header is a JWS Header, the claims are digitally signed or MACed. If the
JWT Header is a JWE Header, the claims are encrypted.

A JWT is represented as a JWS or JWE. The number of parts is dependent upon the
representation of the resulting JWS or JWE.

3.1. Example JWT

The following example JWT Header declares that the encoded object is a JSON Web Token
(JWT) and the JWT is MACed using the HMAC SHA-256 algorithm:

 {"typ":"JWT",
 "alg":"HS256"}

Base64url encoding the bytes of the UTF-8 representation of the JWT Header yields this
Encoded JWS Header value, which is used as the Encoded JWT Header:

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

The following is an example of a JWT Claims Set:

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Base64url encoding the bytes of the UTF-8 representation of the JSON Claims Set yields this
Encoded JWS Payload (with line breaks for display purposes only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly
 9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ

Signing the Encoded JWS Header and Encoded JWS Payload with the HMAC SHA-256
algorithm and base64url encoding the signature in the manner specified in , yields this
Encoded JWS Signature:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Concatenating these parts in this order with period ('.') characters between the parts yields
this complete JWT (with line breaks for display purposes only):

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

This computation is illustrated in more detail in Appendix A.1 of . See for
an example of an encrypted JWT.

[JWS]

[JWS] Appendix A

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

4. JWT Claims

The JWT Claims Set represents a JSON object whose members are the claims conveyed by
the JWT. The Claim Names within this object MUST be unique; JWTs with duplicate Claim
Names MUST be rejected. Note however, that the set of claims that a JWT must contain to be
considered valid is context-dependent and is outside the scope of this specification. When
used in a security-related context, implementations MUST understand and support all of the
claims present; otherwise, the JWT MUST be rejected for processing.

There are three classes of JWT Claim Names: Reserved Claim Names, Public Claim Names,
and Private Claim Names.

4.1. Reserved Claim Names

The following claim names are reserved. None of the claims defined below are intended to be
mandatory, but rather, provide a starting point for a set of useful, interoperable claims. All
the names are short because a core goal of JWTs is for the tokens to be compact. Additional
reserved claim names MAY be defined via the IANA JSON Web Token Claims registry

.

4.1.1. "exp" (Expiration Time) Claim

The exp (expiration time) claim identifies the expiration time on or after which the token
MUST NOT be accepted for processing. The processing of the exp claim requires that the
current date/time MUST be before the expiration date/time listed in the exp claim.
Implementers MAY provide for some small leeway, usually no more than a few minutes, to
account for clock skew. Its value MUST be a number containing an IntDate value. This claim is
OPTIONAL.

4.1.2. "nbf" (Not Before) Claim

The nbf (not before) claim identifies the time before which the token MUST NOT be accepted
for processing. The processing of the nbf claim requires that the current date/time MUST be
after or equal to the not-before date/time listed in the nbf claim. Implementers MAY provide
for some small leeway, usually no more than a few minutes, to account for clock skew. Its
value MUST be a number containing an IntDate value. This claim is OPTIONAL.

4.1.3. "iat" (Issued At) Claim

The iat (issued at) claim identifies the time at which the JWT was issued. This claim can be
used to determine the age of the token. Its value MUST be a number containing an IntDate
value. This claim is OPTIONAL.

4.1.4. "iss" (Issuer) Claim

The iss (issuer) claim identifies the principal that issued the JWT. The processing of this claim
is generally application specific. The iss value is a case sensitive string containing a
StringOrURI value. This claim is OPTIONAL.

4.1.5. "aud" (Audience) Claim

Section 9.1

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

The aud (audience) claim identifies the audience that the JWT is intended for. The principal
intended to process the JWT MUST be identified with the value of the audience claim. If the
principal processing the claim does not identify itself with the identifier in the aud claim value
then the JWT MUST be rejected. The interpretation of the audience value is generally
application specific. The aud value is a case sensitive string containing a StringOrURI value.
This claim is OPTIONAL.

4.1.6. "prn" (Principal) Claim

The prn (principal) claim identifies the subject of the JWT. The processing of this claim is
generally application specific. The prn value is a case sensitive string containing a
StringOrURI value. This claim is OPTIONAL.

4.1.7. "jti" (JWT ID) Claim

The jti (JWT ID) claim provides a unique identifier for the JWT. The identifier value MUST be
assigned in a manner that ensures that there is a negligible probability that the same value
will be accidentally assigned to a different data object. The jti claim can be used to prevent
the JWT from being replayed. The jti value is a case sensitive string. This claim is OPTIONAL.

4.1.8. "typ" (Type) Claim

The typ (type) claim is used to declare a type for the contents of this JWT Claims Set. The
typ value is a case sensitive string. This claim is OPTIONAL.

The values used for the typ claim come from the same value space as the typ header
parameter, with the same rules applying.

4.2. Public Claim Names

Claim names can be defined at will by those using JWTs. However, in order to prevent
collisions, any new claim name SHOULD either be registered in the IANA JSON Web Token
Claims registry or be a URI that contains a Collision Resistant Namespace.

4.3. Private Claim Names

A producer and consumer of a JWT may agree to any claim name that is not a Reserved
Name or a Public Name . Unlike Public Names, these private
names are subject to collision and should be used with caution.

5. JWT Header

The members of the JSON object represented by the JWT Header describe the cryptographic
operations applied to the JWT and optionally, additional properties of the JWT. The member
names within the JWT Header are referred to as Header Parameter Names. These names
MUST be unique; JWTs with duplicate Header Parameter Names MUST be rejected. The
corresponding values are referred to as Header Parameter Values.

Implementations MUST understand the entire contents of the header; otherwise, the JWT
MUST be rejected for processing.

Section 9.1

Section 4.1 Section 4.2

 TOC

 TOC

 TOC

 TOC

JWS Header Parameters are defined by . JWE Header Parameters are defined by .
This specification further specifies the use of the following header parameter in both the
cases where the JWT is a JWS and where it is a JWE.

5.1. "typ" (Type) Header Parameter

The typ (type) header parameter is used to declare the type of this object. If present, it is
RECOMMENDED that its value be either "JWT" or "urn:ietf:params:oauth:token-type:jwt" to
indicate that this object is a JWT. The typ value is a case sensitive string. This header
parameter is OPTIONAL.

5.2. "cty" (Content Type) Header Parameter

The cty (content type) header parameter is used to declare structural information about the
JWT. Its value MUST be a string.

In the normal case where nested signing or encryption operations are not employed, the use
of this header parameter is NOT RECOMMENDED. In the case that nested signing or
encryption is employed, the use of this header parameter is REQUIRED; in this case, the
value MUST be "JWT", to indicate that a nested JWT is carried in this JWT.

The values used for the cty header parameter come from the same value space as the typ
header parameter, with the same rules applying.

6. Plaintext JWTs

To support use cases where the JWT content is secured by a means other than a signature
and/or encryption contained within the token (such as a signature on a data structure
containing the token), JWTs MAY also be created without a signature or encryption. A plaintext
JWT is a JWS using the none JWS alg header parameter value defined in JSON Web Algorithms
(JWA) ; it is a JWS with an empty JWS Signature value.

6.1. Example Plaintext JWT

The following example JWT Header declares that the encoded object is a Plaintext JWT:

 {"alg":"none"}

Base64url encoding the bytes of the UTF-8 representation of the JWT Header yields this
Encoded JWT Header:

 eyJhbGciOiJub25lIn0

The following is an example of a JWT Claims Set:

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

Base64url encoding the bytes of the UTF-8 representation of the JSON Claims Set yields this
Encoded JWS Payload (with line breaks for display purposes only):

[JWS] [JWE]

[JWA]

 TOC

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

The Encoded JWS Signature is the empty string.

Concatenating these parts in this order with period ('.') characters between the parts yields
this complete JWT (with line breaks for display purposes only):

 eyJhbGciOiJub25lIn0
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .

7. Rules for Creating and Validating a JWT

To create a JWT, one MUST perform these steps. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Create a JWT Claims Set containing the desired claims. Note that white space is
explicitly allowed in the representation and no canonicalization is performed
before encoding.

2. Let the Message be the bytes of the UTF-8 representation of the JWT Claims Set.
3. Create a JWT Header containing the desired set of header parameters. The JWT

MUST conform to either the or specifications. Note that white
space is explicitly allowed in the representation and no canonicalization is
performed before encoding.

4. Base64url encode the bytes of the UTF-8 representation of the JWT Header. Let
this be the Encoded JWT Header.

5. Depending upon whether the JWT is a JWS or JWE, there are two cases:
If the JWT is a JWS, create a JWS using the JWT Header as the
JWS Header and the Message as the JWS Payload; all steps
specified in for creating a JWS MUST be followed.
Else, if the JWT is a JWE, create a JWE using the JWT Header
as the JWE Header and the Message as the JWE Plaintext; all
steps specified in for creating a JWE MUST be
followed.

6. If a nested signing or encryption operation will be performed, let the Message be
the JWS or JWE, and return to Step 3, using a cty (content type) value of "JWT" in
the new JWT Header created in that step.

7. Otherwise, let the resulting JWT be the JWS or JWE.

When validating a JWT the following steps MUST be taken. The order of the steps is not
significant in cases where there are no dependencies between the inputs and outputs of the
steps. If any of the listed steps fails then the token MUST be rejected for processing.

1. The JWT MUST contain at least one period ('.') character.
2. Let the Encoded JWT Header be the portion of the JWT before the first period ('.')

character.
3. The Encoded JWT Header MUST be successfully base64url decoded following the

restriction given in this specification that no padding characters have been used.
4. The resulting JWT Header MUST be completely valid JSON syntax conforming to

 [RFC4627].
5. The resulting JWT Header MUST be validated to only include parameters and

values whose syntax and semantics are both understood and supported.
6. Determine whether the JWT is a JWS or a JWE by examining the alg (algorithm)

header value and optionally, the enc (encryption method) header value, if
present.

7. Depending upon whether the JWT is a JWS or JWE, there are two cases:
If the JWT is a JWS, all steps specified in for validating
a JWS MUST be followed. Let the Message be the result of

[JWS] [JWE]

[JWS]

[JWE]

RFC 4627

[JWS]

 TOC

 TOC

 TOC

base64url decoding the JWS Payload.
Else, if the JWT is a JWE, all steps specified in for
validating a JWE MUST be followed. Let the Message be the
JWE Plaintext.

8. If the JWT Header contains a cty (content type) value of "JWT", then the Message
contains a JWT that was the subject of nested signing or encryption operations. In
this case, return to Step 1, using the Message as the JWT.

9. Otherwise, let the JWT Claims Set be the Message.
10. The JWT Claims Set MUST be completely valid JSON syntax conforming to

 [RFC4627].
11. When used in a security-related context, the JWT Claims Set MUST be validated

to only include claims whose syntax and semantics are both understood and
supported.

Processing a JWT inevitably requires comparing known strings to values in the token. For
example, in checking what the algorithm is, the Unicode string encoding alg will be checked
against the member names in the JWT Header to see if there is a matching header
parameter name. A similar process occurs when determining if the value of the alg header
parameter represents a supported algorithm.

Comparisons between JSON strings and other Unicode strings MUST be performed as
specified below:

1. Remove any JSON applied escaping to produce an array of Unicode code points.
2. [USA15] MUST NOT be applied at any point to either

the JSON string or to the string it is to be compared against.
3. Comparisons between the two strings MUST be performed as a Unicode code

point to code point equality comparison.

8. Cryptographic Algorithms

JWTs use JSON Web Signature (JWS) and JSON Web Encryption (JWE) to sign
and/or encrypt the contents of the JWT.

Of the JWS signing algorithms, only HMAC SHA-256 and none MUST be implemented by
conforming JWT implementations. It is RECOMMENDED that implementations also support the
RSA SHA-256 and ECDSA P-256 SHA-256 algorithms. Support for other algorithms and key
sizes is OPTIONAL.

If an implementation provides encryption capabilities, of the JWE encryption algorithms, only
RSA-PKCS1-1.5 with 2048 bit keys, AES-128-KW, AES-256-KW, AES-128-CBC, and AES-256-
CBC MUST be implemented by conforming implementations. It is RECOMMENDED that
implementations also support ECDH-ES with 256 bit keys, AES-128-GCM, and AES-256-GCM.
Support for other algorithms and key sizes is OPTIONAL.

9. IANA Considerations

9.1. JSON Web Token Claims Registry

This specification establishes the IANA JSON Web Token Claims registry for reserved JWT
Claim Names. The registry records the reserved Claim Name and a reference to the
specification that defines it. This specification registers the Claim Names defined in

.

Values are registered with a Specification Required after a two-week review
period on the [TBD]@ietf.org mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a specification will be published.

Registration requests must be sent to the [TBD]@ietf.org mailing list for review and

[JWE]

RFC
4627

Unicode Normalization

[JWS] [JWE]

Section 4.1

[RFC5226]

 TOC

 TOC

 TOC

comment, with an appropriate subject (e.g., "Request for access token type: example"). [[
Note to RFC-EDITOR: The name of the mailing list should be determined in consultation with
the IESG and IANA. Suggested name: claims-reg-review.]]

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

9.1.1. Registration Template

Claim Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.

9.1.2. Initial Registry Contents

Claim Name: exp
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: nbf
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: iat
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: iss
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: aud
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: prn
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: jti
Change Controller: IETF
Specification Document(s): of [[this document]]

Claim Name: typ
Change Controller: IETF
Specification Document(s): of [[this document]]

Section 4.1.1

Section 4.1.2

Section 4.1.3

Section 4.1.4

Section 4.1.5

Section 4.1.6

Section 4.1.7

Section 4.1.8

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

9.2. Sub-Namespace Registration of urn:ietf:params:oauth:token-type:jwt

9.2.1. Registry Contents

This specification registers the value token-type:jwt in the IANA urn:ietf:params:oauth
registry established in [RFC6755].

URN: urn:ietf:params:oauth:token-type:jwt
Common Name: JSON Web Token (JWT) Token Type
Change Controller: IETF
Specification Document(s): [[this document]]

9.3. JSON Web Signature and Encryption Type Values Registration

9.3.1. Registry Contents

This specification registers the JWT type value in the IANA JSON Web Signature and
Encryption Type Values registry :

"typ" Header Parameter Value: JWT
Abbreviation for MIME Type: application/jwt
Change Controller: IETF
Specification Document(s): of [[this document]]

9.4. Media Type Registration

9.4.1. Registry Contents

This specification registers the application/jwt Media Type in the MIME Media
Type registry to indicate that the content is a JWT.

Type Name: application
Subtype Name: jwt
Required Parameters: n/a
Optional Parameters: n/a
Encoding considerations: JWT values are encoded as a series of base64url
encoded values (some of which may be the empty string) separated by period
('.') characters
Security Considerations: See the Security Considerations section of this
document
Interoperability Considerations: n/a
Published Specification: [[this document]]
Applications that use this media type: OpenID Connect, Mozilla Browser ID,
Salesforce, Google, numerous others
Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a
Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com
Intended Usage: COMMON
Restrictions on Usage: none
Author: Michael B. Jones, mbj@microsoft.com
Change Controller: IETF

An IETF URN Sub-Namespace for OAuth

[JWS]

Section 5.1

[RFC2046]
[RFC4288]

 TOC

 TOC

 TOC

 TOC

 TOC

10. Security Considerations

All of the security issues faced by any cryptographic application must be faced by a
JWT/JWS/JWE/JWK agent. Among these issues are protecting the user's private key, preventing
various attacks, and helping the user avoid mistakes such as inadvertently encrypting a
message for the wrong recipient. The entire list of security considerations is beyond the
scope of this document, but some significant concerns are listed here.

All the security considerations in the JWS specification also apply to JWT, as do the JWE
security considerations when encryption is employed. In particular, the JWS JSON Security
Considerations and Unicode Comparison Security Considerations apply equally to the JWT
Claims Set in the same manner that they do to the JWS Header.

11. References

11.1. Normative References

[JWA] Jones, M., “JSON Web Algorithms (JWA),” November 2012.

[JWE] Jones, M., Rescorla, E., and J. Hildebrand, “JSON Web Encryption (JWE),” November 2012.

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” November 2012.

[RFC2046] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,”
RFC 2046, November 1996 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC3339] Klyne, G., Ed. and C. Newman, “Date and Time on the Internet: Timestamps,” RFC 3339, July 2002 (TXT,
HTML, XML).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4288] Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” BCP 13, RFC 4288,
December 2005 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26,
RFC 5226, May 2008 (TXT).

[RFC6755] Campbell, B. and H. Tschofenig, “An IETF URN Sub-Namespace for OAuth,” RFC 6755, October 2012 (TXT).

[USA15] Davis, M., Whistler, K., and M. Dürst, “Unicode Normalization Forms,” Unicode Standard Annex 15, 09 2009.

11.2. Informative References

[CanvasApp] Facebook, “Canvas Applications,” 2010.

[JSS] Bradley, J. and N. Sakimura (editor), “JSON Simple Sign,” September 2010.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” January 2011.

[OASIS.saml-core-
2.0-os]

Cantor, S., Kemp, J., Philpott, R., and E. Maler, “Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V2.0,” OASIS Standard saml-core-2.0-os, March 2005.

[RFC3275] Eastlake, D., Reagle, J., and D. Solo, “(Extensible Markup Language) XML-Signature Syntax and
Processing,” RFC 3275, March 2002 (TXT).

[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,”
RFC 4122, July 2005 (TXT, HTML, XML).

[SWT] Hardt, D. and Y. Goland, “Simple Web Token (SWT),” Version 0.9.5.1, November 2009.

[W3C.CR-xml11-
20021015]

Cowan, J., “Extensible Markup Language (XML) 1.1,” W3C CR CR-xml11-20021015, October 2002.

Appendix A. Example Encrypted JWT

This example encrypts the same claims as used in to the recipient usingSection 3.1

mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://www.rfc-editor.org/rfc/rfc3339.txt
http://xml.resource.org/public/rfc/html/rfc3339.html
http://xml.resource.org/public/rfc/xml/rfc3339.xml
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4288
http://www.rfc-editor.org/rfc/rfc4288.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc6755
http://www.rfc-editor.org/rfc/rfc6755.txt
mailto:markdavis@google.com
mailto:ken@unicode.org
http://developers.facebook.com/docs/authentication/canvas
http://jsonenc.info/jss/1.0/
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://tools.ietf.org/html/rfc3275
http://www.rfc-editor.org/rfc/rfc3275.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://msdn.microsoft.com/en-us/library/windowsazure/hh781551.aspx
http://www.w3.org/TR/2002/CR-xml11-20021015

 TOC

 TOC

RSAES-PKCS1-V1_5 and AES CBC. AES CBC does not have an integrated integrity check, so
a separate integrity check calculation is performed using HMAC SHA-256, with separate
encryption and integrity keys being derived from a master key using the Concat KDF with the
SHA-256 digest function.

The following example JWE Header (with line breaks for display purposes only) declares that:

the Content Master Key is encrypted to the recipient using the RSAES-PKCS1-
V1_5 algorithm to produce the JWE Encrypted Key and
the Plaintext is encrypted using the AES CBC algorithm with a 128 bit key to
produce the Ciphertext, with the integrity of the Ciphertext and the parameters
used to create it being secured using the HMAC SHA-256 algorithm.

 {"alg":"RSA1_5","enc":"A128CBC+HS256"}

Other than using the bytes of the UTF-8 representation of the JSON Claims Set from
 as the plaintext value, the computation of this JWT is identical to the

computation of the JWE in Appendix A.2 of , including the keys used.

The final result in this example (with line breaks for display purposes only) is:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDK0hTMjU2In0.
 pwaFh7yJPivLjjPkzC-GeAyHuy7AinGcS51AZ7TXnwkC80Ow1aW47kcT_UV54ubo
 nONbeArwOVuR7shveXnwPmucwrk_3OCcHrCbE1HR-Jfme2mF_WR3zUMcwqmU0RlH
 kwx9txo_sKRasjlXc8RYP-evLCmT1XRXKjtY5l44Gnh0A84hGvVfMxMfCWXh38hi
 2h8JMjQHGQ3mivVui5lbf-zzb3qXXxNO1ZYoWgs5tP1-T54QYc9Bi9wodFPWNPKB
 kY-BgewG-Vmc59JqFeprk1O08qhKQeOGCWc0WPC_n_LIpGWH6spRm7KGuYdgDMkQ
 bd4uuB0uPPLx_euVCdrVrA.
 AxY8DCtDaGlsbGljb3RoZQ.
 7MI2lRCaoyYx1HclVXkr8DhmDoikTmOp3IdEmm4qgBThFkqFqOs3ivXLJTku4M0f
 laMAbGG_X6K8_B-0E-7ak-Olm_-_V03oBUUGTAc-F0A.
 OwWNxnC-BMEie-GkFHzVWiNiaV3zUHf6fCOGTwbRckU

Appendix B. Relationship of JWTs to SAML Tokens

 [OASIS.saml‑core‑2.0‑os] provides a standard for creating tokens with much
greater expressivity and more security options than supported by JWTs. However, the cost of
this flexibility and expressiveness is both size and complexity. In addition, SAML's use of
[W3C.CR‑xml11‑20021015] and [RFC3275] only contributes to the size of SAML
tokens.

JWTs are intended to provide a simple token format that is small enough to fit into HTTP
headers and query arguments in URIs. It does this by supporting a much simpler token
model than SAML and using the [RFC4627] object encoding syntax. It also supports
securing tokens using Message Authentication Codes (MACs) and digital signatures using a
smaller (and less flexible) format than XML DSIG.

Therefore, while JWTs can do some of the things SAML tokens do, JWTs are not intended as a
full replacement for SAML tokens, but rather as a compromise token format to be used when
space is at a premium.

Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs)

Both JWTs and Simple Web Tokens [SWT], at their core, enable sets of claims to be
communicated between applications. For SWTs, both the claim names and claim values are
strings. For JWTs, while claim names are strings, claim values can be any JSON type. Both
token types offer cryptographic protection of their content: SWTs with HMAC SHA-256 and
JWTs with a choice of algorithms, including HMAC SHA-256, RSA SHA-256, and ECDSA P-256
SHA-256.

Section 3.1
[JWE]

SAML 2.0

XML
XML DSIG

JSON

SWT

 TOC

 TOC

 TOC

Appendix D. Acknowledgements

The authors acknowledge that the design of JWTs was intentionally influenced by the design
and simplicity of [SWT] and ideas for JSON tokens that Dick Hardt
discussed within the OpenID community.

Solutions for signing JSON content were previously explored by
[MagicSignatures], [JSS], and [CanvasApp], all of
which influenced this draft. Dirk Balfanz, Yaron Y. Goland, John Panzer, and Paul Tarjan all
made significant contributions to the design of this specification.

Hannes Tschofenig and Derek Atkins chaired the OAuth working group and Sean Turner and
Stephen Farrell served as Security area directors during the creation of this specification.

Appendix E. Open Issues

[[to be removed by the RFC editor before publication as an RFC]]

The following items remain to be considered or done in this draft:

Track changes to the underlying JOSE specifications.

Appendix F. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-05

Updated values for example AES CBC calculations.

-04

Promoted Initialization Vector from being a header parameter to being a top-
level JWE element. This saves approximately 16 bytes in the compact
serialization, which is a significant savings for some use cases. Promoting the
Initialization Vector out of the header also avoids repeating this shared value in
the JSON serialization.
Applied changes made by the RFC Editor to RFC 6749's registry language to this
specification.
Reference RFC 6755 -- An IETF URN Sub-Namespace for OAuth.

-03

Added statement that "StringOrURI values are compared as case-sensitive
strings with no transformations or canonicalizations applied".
Indented artwork elements to better distinguish them from the body text.

-02

Added an example of an encrypted JWT.
Added this language to Registration Templates: "This name is case sensitive.
Names that match other registered names in a case insensitive manner
SHOULD NOT be accepted."
Applied editorial suggestions.

-01

Added the cty (content type) header parameter for declaring type information
about the secured content, as opposed to the typ (type) header parameter,
which declares type information about this object. This significantly simplified
nested JWTs.

Simple Web Tokens

Magic Signatures
JSON Simple Sign Canvas Applications

 TOC

Moved description of how to determine whether a header is for a JWS or a JWE
from the JWT spec to the JWE spec.
Changed registration requirements from RFC Required to Specification Required
with Expert Review.
Added Registration Template sections for defined registries.
Added Registry Contents sections to populate registry values.
Added "Collision Resistant Namespace" to the terminology section.
Numerous editorial improvements.

-00

Created the initial IETF draft based upon draft-jones-json-web-token-10 with no
normative changes.

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 John Bradley
 Ping Identity

Email: ve7jtb@ve7jtb.com

 Nat Sakimura
 Nomura Research Institute

Email: n-sakimura@nri.co.jp

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp

	JSON Web Token (JWT) draft-ietf-oauth-json-web-token-05
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Web Token (JWT) Overview
	3.1. Example JWT
	4. JWT Claims
	4.1. Reserved Claim Names
	4.1.1. "exp" (Expiration Time) Claim
	4.1.2. "nbf" (Not Before) Claim
	4.1.3. "iat" (Issued At) Claim
	4.1.4. "iss" (Issuer) Claim
	4.1.5. "aud" (Audience) Claim
	4.1.6. "prn" (Principal) Claim
	4.1.7. "jti" (JWT ID) Claim
	4.1.8. "typ" (Type) Claim
	4.2. Public Claim Names
	4.3. Private Claim Names
	5. JWT Header
	5.1. "typ" (Type) Header Parameter
	5.2. "cty" (Content Type) Header Parameter
	6. Plaintext JWTs
	6.1. Example Plaintext JWT
	7. Rules for Creating and Validating a JWT
	8. Cryptographic Algorithms
	9. IANA Considerations
	9.1. JSON Web Token Claims Registry
	9.1.1. Registration Template
	9.1.2. Initial Registry Contents
	9.2. Sub-Namespace Registration of urn:ietf:params:oauth:token-type:jwt
	9.2.1. Registry Contents
	9.3. JSON Web Signature and Encryption Type Values Registration
	9.3.1. Registry Contents
	9.4. Media Type Registration
	9.4.1. Registry Contents
	10. Security Considerations
	11. References
	11.1. Normative References
	11.2. Informative References
	Appendix A. Example Encrypted JWT
	Appendix B. Relationship of JWTs to SAML Tokens
	Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs)
	Appendix D. Acknowledgements
	Appendix E. Open Issues
	Appendix F. Document History
	Authors' Addresses

