NVO3 Working Group G. Mirsky Internet-Draft Ericsson Intended status: Standards Track S. Boutros Expires: 28 February 2025 Ciena D. Black Dell EMC S. Pallagatti VMware 27 August 2024 OAM for use in GENEVE draft-ietf-nvo3-geneve-oam-11 Abstract This document lists a set of general requirements for active OAM protocols in the Geneve overlay network. Based on the requirements, IP encapsulation for active Operations, Administration, and Maintenance protocols in Geneve protocol is defined. Considerations for using ICMP and UDP-based protocols are discussed. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 28 February 2025. Copyright Notice Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights Mirsky, et al. Expires 28 February 2025 [Page 1] Internet-Draft OAM in GENEVE August 2024 and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Conventions used in this document . . . . . . . . . . . . 3 1.1.1. Terminology . . . . . . . . . . . . . . . . . . . . . 3 1.1.2. Requirements Language . . . . . . . . . . . . . . . . 3 1.1.3. Acronyms . . . . . . . . . . . . . . . . . . . . . . 3 2. Active OAM Protocols in Geneve Networks . . . . . . . . . . . 3 2.1. Defect Detection and Troubleshooting in Geneve Network with Active OAM . . . . . . . . . . . . . . . . . . . . . . . 4 2.2. OAM Encapsulation in Geneve . . . . . . . . . . . . . . . 6 3. Echo Request and Echo Reply in Geneve Tunnel . . . . . . . . 7 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 8 5. Security Considerations . . . . . . . . . . . . . . . . . . . 8 6. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 8 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 8 7.1. Normative References . . . . . . . . . . . . . . . . . . 8 7.2. Informative References . . . . . . . . . . . . . . . . . 9 Appendix A. Additional Considerations for OAM Encapsulation Method in Geneve . . . . . . . . . . . . . . . . . . . . . . . . 10 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 11 1. Introduction Geneve [RFC8926] is intended to support various scenarios of network virtualization. In addition to carrying multi-protocol payload, e.g., Ethernet, IPv4/IPv6, the Geneve message includes metadata. Operations, Administration, and Maintenance (OAM) protocols support fault management and performance monitoring functions necessary for comprehensive network operation. Active OAM protocols, as defined in [RFC7799], use specially constructed packets that are injected into the network. To ensure that the measured performance metric or the detected failure of the transport layer are related to a particular Geneve flow, it is critical that these test packets share fate with overlay data packets for that flow when traversing the underlay network. A set of general requirements for active OAM protocols in the Geneve overlay network is listed in Section 2. IP encapsulation conforms to these requirements and is a suitable encapsulation of active OAM protocols in a Geneve overlay network. Active OAM in a Geneve overlay network are exchanged between two Geneve tunnel endpoints, which may be an NVE (Network Virtualization Edge) or another device Mirsky, et al. Expires 28 February 2025 [Page 2] Internet-Draft OAM in GENEVE August 2024 acting as a Geneve tunnel endpoint. For simplicity, NVE is used to represent the Geneve tunnel endpoint. Please refer to [RFC7365] and [RFC8014] for detailed definitions and descriptions of NVE. The IP encapsulation of Geneve OAM defined in this document applies to an overlay service by introducing a Management Virtual Network Identifier (VNI) that could be used in combination with various values of the Protocol Type field in the Geneve header, i.e., Ethertypes for IPv4 or IPv6. Analysis and definition of other types of OAM encapsulation in Geneve are outside the scope of this document. 1.1. Conventions used in this document 1.1.1. Terminology * In-band OAM is an active OAM or hybrid OAM method ([RFC7799]) that traverses the same set of links and interfaces receiving the same QoS treatment as the monitored object, i.e., a Geneve tunnel as a whole or a particular tenant flow within given Geneve tunnel. 1.1.2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 1.1.3. Acronyms Geneve Generic Network Virtualization Encapsulation NVO3 Network Virtualization Overlays OAM Operations, Administration, and Maintenance VNI Virtual Network Identifier 2. Active OAM Protocols in Geneve Networks OAM protocols, whether part of fault management or performance monitoring, are intended to provide reliable information that can be used to detect a failure, identify the defect and localize it, thus helping to identify and apply corrective actions to minimize the negative impact on service. Several OAM protocols are used to perform these functions; these protocols require demultiplexing at the receiving instance of Geneve. To improve the accuracy of the correlation between the condition experienced by the monitored Geneve Mirsky, et al. Expires 28 February 2025 [Page 3] Internet-Draft OAM in GENEVE August 2024 tunnel and the state of the OAM protocol the OAM encapsulation is required to comply with the following requirements: REQ#1: Geneve OAM test packets MUST share the fate with data traffic of the monitored Geneve tunnel, i.e., be in-band (Section 1.1.1) with the monitored traffic, follow the same overlay and transport path as packets with data payload, in the forward direction, i.e. from ingress toward egress endpoint(s) of the OAM test. An OAM protocol MAY be used to monitor the particular Geneve tunnel as a whole. In that case, test packets could be in-band relative to a sub-set of tenant flows transported over the Geneve tunnel. If the goal is to monitor the condition experienced by the flow of a particular tenant, the test packets MUST be in-band with that specific flow in the Geneve tunnel. Both scenarios are discussed in detail in Section 2.1. REQ#2: Encapsulation of OAM control message and data packets in underlay network MUST be indistinguishable from the underlay network IP forwarding point of view. REQ#3: Presence of OAM control message in Geneve packet MUST be unambiguously identifiable to Geneve functionality, e.g., at endpoints of Geneve tunnels. REQ#4: OAM test packets MUST NOT be forwarded to a tenant system. A test packet generated by an active OAM protocol, either for a defect detection or performance measurement, according to REQ#1, MUST be in-band (Section 1.1.1) with the tunnel or data flow being monitored. In an environment where multiple paths through the domain are available, underlay transport nodes can be programmed to use characteristic information to balance the load across known paths. It is essential that test packets follow the same route, i.e., traverses the same set of nodes and links, as a data packet of the monitored flow. Thus, the following requirement to support OAM packet fate-sharing with the data flow: REQ#5: It MUST be possible to express entropy for underlay Equal Cost Multipath in the Geneve encapsulation of OAM packets. 2.1. Defect Detection and Troubleshooting in Geneve Network with Active OAM Figure 1 presents an example of a Geneve domain. In this section, we consider two scenarios of active OAM being used to detect and localize defects in the Geneve network. Mirsky, et al. Expires 28 February 2025 [Page 4] Internet-Draft OAM in GENEVE August 2024 +--------+ +--------+ | Tenant +--+ +----| Tenant | | VNI 28 | | | | VNI 35 | +--------+ | ................ | +--------+ | +----+ . . +----+ | | | NVE|--. .--| NVE| | +--| A | . . | B |---+ +----+ . . +----+ / . . / . Geneve . +--------+ / . Network . | Tenant +--+ . . | VNI 35 | . . +--------+ ................ | +----+ | NVE| | C | +----+ | | ===================== | | +--------+ +--------+ | Tenant | | Tenant | | VNI 28 | | VNI 35 | +--------+ +--------+ Figure 1: An example of a Geneve domain In the first case, consider when a communication problem between Network Virtualization Edge (NVE) device A and NVE C exists. Upon the investigation, the operator discovers that the forwarding in the underlay, e.g., the IP network, is working well. Still, the Geneve connection is unstable for all NVE A and NVE C tenants. Detection, troubleshooting, and localization of the problem can be done irrespective of the VNI value. In the second case, traffic on VNI 35 between NVE A and NVE B has no problems, as on VNI 28 between NVE A and NVE C. But traffic on VNI 35 between NVE A and NVE C experiences problems, for example, excessive packet loss. The first case can be detected and investigated using any VNI value, whether it connects tenant systems or not; however, to conform to REQ#4 (Section 2) OAM test packets SHOULD be transmitted on a VNI that doesn't have any tenants. Such a Geneve tunnel is dedicated to Mirsky, et al. Expires 28 February 2025 [Page 5] Internet-Draft OAM in GENEVE August 2024 carrying only control and management data between the tunnel endpoints, hence it is referred to as a Geneve control channel and that VNI is referred to as the Management VNI. A configured VNI MAY be used to identify the control channel, but it is RECOMMENDED that the default value 1 be used as the Management VNI. Encapsulation of test packets using the Management VNI is discussed in Section 2.2. The control channel of a Geneve tunnel MUST NOT carry tenant data. As no tenants are connected using the control channel, a system that supports this specification, MUST NOT forward a packet received over the control channel to any tenant. A packet received over the control channel MAY be forwarded if and only if it is sent onto the control channel of the a concatenated Geneve tunnel. The Management VNI SHOULD be terminated on the tenant-facing side of the Geneve encap/decap functionality, not the DC-network-facing side (per definitions in Section 4 of [RFC8014]) so that Geneve encap/decap functionality is included in its scope. This approach causes an active OAM packet, e.g., an ICMP echo request, to be decapsulated in the same fashion as any other received Geneve packet. In this example, the resulting ICMP packet is handed to NVE's local management functionality for the processing which generates an ICMP echo reply. The ICMP echo reply is encapsulated in Geneve as specified in Section 2.2. for forwarding back to the NVE that sent the echo request. One advantage of this approach is that a repeated ping test could detect an intermittent problem in Geneve encap/decap hardware, which would not be tested if the Management VNI were handled as a "special case" at the DC-network-facing interface. The second case is when a test packet is transmitted using the VNI value associated with the monitored service flow. By doing that, the test packet experiences network treatment as the tenant's packets. Details of that use case are outside the scope of this specification. 2.2. OAM Encapsulation in Geneve Active OAM over a Management VNI in the Geneve network uses an IP encapsulation. Protocols such as BFD [RFC5880] or STAMP [RFC8762] use UDP transport. The destination UDP port number in the inner UDP header (Figure 2) identifies the OAM protocol. This approach is well-known and has been used, for example, in MPLS networks [RFC8029]. To use IP encapsulation for an active OAM protocol the Protocol Type field of the Geneve header MUST be set to the IPv4 (0x0800) or IPv6 (0x86DD) value. Mirsky, et al. Expires 28 February 2025 [Page 6] Internet-Draft OAM in GENEVE August 2024 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Outer IPvX Header ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Outer UDP Header ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Geneve Header ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Inner IPvX Header ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Inner UDP Header ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Active OAM Packet ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: An Example of Geneve IP/UDP Encapsulation of an Active OAM Packet Inner IP header: Destination IP: The IP address MUST be set to the loopback address 127.0.0.1/32 for IPv4, or the loopback address ::1/128 for IPv6 [RFC4291]. Source IP: IP address of the NVE. TTL or Hop Limit: MUST be set to 255 per [RFC5082]. 3. Echo Request and Echo Reply in Geneve Tunnel ICMP and ICMPv6 ([RFC0792] and [RFC4443] respectively) provide required on-demand defect detection and failure localization. ICMP control messages immediately follow the inner IP header encapsulated in Geneve. ICMP extensions for Geneve networks use mechanisms defined in [RFC4884]. Mirsky, et al. Expires 28 February 2025 [Page 7] Internet-Draft OAM in GENEVE August 2024 4. IANA Considerations This document has no requirements for IANA. This section can be removed before the publication. 5. Security Considerations As part of a Geneve network, active OAM inherits the security considerations discussed in [RFC8926]. Additionally, a system MUST provide control to limit the rate of Geneve OAM packets punted to the Geneve control plane for processing in order to avoid overloading that control plane. OAM in GENEVE packets uses the General TTL Security Mechanism [RFC5082] and any packet received with an inner TTL / Hop Count other than 255 MUST be discarded. 6. Acknowledgments The authors express their appreciation to Donald E. Eastlake 3rd for his suggestions that improved the readability of the document. 7. References 7.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson, "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN", RFC 4385, DOI 10.17487/RFC4385, February 2006, . [RFC5586] Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed., "MPLS Generic Associated Channel", RFC 5586, DOI 10.17487/RFC5586, June 2009, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . Mirsky, et al. Expires 28 February 2025 [Page 8] Internet-Draft OAM in GENEVE August 2024 [RFC8926] Gross, J., Ed., Ganga, I., Ed., and T. Sridhar, Ed., "Geneve: Generic Network Virtualization Encapsulation", RFC 8926, DOI 10.17487/RFC8926, November 2020, . 7.2. Informative References [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, DOI 10.17487/RFC0792, September 1981, . [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006, . [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", STD 89, RFC 4443, DOI 10.17487/RFC4443, March 2006, . [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro, "Extended ICMP to Support Multi-Part Messages", RFC 4884, DOI 10.17487/RFC4884, April 2007, . [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C. Pignataro, "The Generalized TTL Security Mechanism (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007, . [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, . [RFC7365] Lasserre, M., Balus, F., Morin, T., Bitar, N., and Y. Rekhter, "Framework for Data Center (DC) Network Virtualization", RFC 7365, DOI 10.17487/RFC7365, October 2014, . [RFC7799] Morton, A., "Active and Passive Metrics and Methods (with Hybrid Types In-Between)", RFC 7799, DOI 10.17487/RFC7799, May 2016, . Mirsky, et al. Expires 28 February 2025 [Page 9] Internet-Draft OAM in GENEVE August 2024 [RFC8014] Black, D., Hudson, J., Kreeger, L., Lasserre, M., and T. Narten, "An Architecture for Data-Center Network Virtualization over Layer 3 (NVO3)", RFC 8014, DOI 10.17487/RFC8014, December 2016, . [RFC8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N., Aldrin, S., and M. Chen, "Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures", RFC 8029, DOI 10.17487/RFC8029, March 2017, . [RFC8762] Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple Two-Way Active Measurement Protocol", RFC 8762, DOI 10.17487/RFC8762, March 2020, . Appendix A. Additional Considerations for OAM Encapsulation Method in Geneve Several other options for OAM encapsulation were considered. Those are listed in the Appendix solely for informational purposes. These options were discarded in favor of the approach described in the main body of this document. A Protocol Type field might be used to demultiplex active OAM protocols directly. Such method avoids the use of additional intermediate header but requires that each active OAM protocol be assigned unique identifier from the Ether Types registry maintained by IANA. The alternative to using the Protocol Type directly is to use a shim that, in turn, identifies the OAM Protocol and, optionally, includes additional information. [RFC5586] defines how the Generic Associated Channel Label (GAL) can be used to identify that the Associated Channel Header (ACH), defined in [RFC4385], immediately follows the Bottom-of-the-Stack label. Thus, the MPLS Generic Associated Channel can be identified, and protocols are demultiplexed based on the Channel Type field's value. Number of channel types, e.g., for continuity check and performance monitoring, already have been defined and are listed in IANA MPLS Generalized Associated Channel Types (including Pseudowire Associated Channel Types) registry. The value of the Protocol Type field in the Geneve header MUST be set to MPLS to use this approach. The Geneve header MUST be immediately followed by the GAL label with the S flag set to indicate that GAL is the Bottom-of-the-stack label. Then ACH MUST follow the GAL label and the value of the Channel Type identifies which of active OAM protocols being encapsulated in the packet. Mirsky, et al. Expires 28 February 2025 [Page 10] Internet-Draft OAM in GENEVE August 2024 Authors' Addresses Greg Mirsky Ericsson Email: gregimirsky@gmail.com Sami Boutros Ciena Email: sboutros@ciena.com David Black Dell EMC 176 South Street Hopkinton, MA, 01748 United States of America Email: david.black@dell.com Santosh Pallagatti VMware Email: santosh.pallagatti@gmail.com Mirsky, et al. Expires 28 February 2025 [Page 11]