
Network File System Version 4 C. Lever
Internet-Draft Oracle
Intended status: Standards Track May 27, 2016
Expires: November 28, 2016

 Bi-directional Remote Procedure Call On RPC-over-RDMA Transports
 draft-ietf-nfsv4-rpcrdma-bidirection-04

Abstract

 Minor versions of NFSv4 newer than NFSv4.0 work best when ONC RPC
 transports can send Remote Procedure Call transactions in both
 directions on the same connection. This document describes how RPC-
 over-RDMA transport endpoints convey RPCs in both directions on a
 single connection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 28, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lever Expires November 28, 2016 [Page 1]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Understanding RPC Direction 3
 2.1. Forward Direction . 3
 2.2. Backward Direction 4
 2.3. Bi-directional Operation 4
 2.4. XID Values . 4
 3. Immediate Uses Of Bi-Directional RPC-over-RDMA 5
 3.1. NFSv4.0 Callback Operation 5
 3.2. NFSv4.1 Callback Operation 6
 4. Flow Control . 6
 4.1. Backward Credits . 7
 4.2. Inline Thresholds . 7
 4.3. Managing Receive Buffers 7
 5. Sending And Receiving Backward Operations 8
 5.1. Sending A Backward Direction Call 9
 5.2. Sending A Backward Direction Reply 9
 5.3. Backward Direction Chunks 9
 5.4. Backward Direction Retransmission 10
 6. In the Absence of Backward Direction Support 11
 7. Considerations For Upper Layer Bindings 11
 8. Security Considerations 12
 9. IANA Considerations . 12
 10. Acknowledgements . 12
 11. Normative References . 12
 Author’s Address . 13

1. Introduction

 The purpose of this document is to enable concurrent operation in
 both directions on a single transport connection using RPC-over-RDMA
 protocol versions that do not have specific facilities for backward
 direction operation.

 Backward direction RPC transactions are necessary for the operation
 of NFSv4.1, and in particular, of pNFS, though any Upper Layer
 Protocol implementation may make use of them. An Upper Layer Binding
 for NFSv4.x callback operation is additionally required (see
 Section 7), but is not provided in this document.

 For example, using the approach described herein, RPC transactions
 can be conveyed in both directions on the same RPC-over-RDMA Version
 One connection without changes to the the XDR description of RPC-
 over-RDMA Version One. This document does not modify the XDR or
 protocol described in [I-D.ietf-nfsv4-rfc5666bis]. Future versions

Lever Expires November 28, 2016 [Page 2]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 of RPC-over-RDMA may adopt the approach described herein, or may
 replace it with a different approach.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Understanding RPC Direction

 The ONC RPC protocol as described in [RFC5531] is architected as a
 message-passing protocol between one server and one or more clients.
 ONC RPC transactions are made up of two types of messages.

 A CALL message, or "Call", requests work. A Call is designated by
 the value CALL in the message’s msg_type field. An arbitrary unique
 value is placed in the message’s xid field. A host that originates a
 Call is referred to in this document as a "Requester."

 A REPLY message, or "Reply", reports the results of work requested by
 a Call. A Reply is designated by the value REPLY in the message’s
 msg_type field. The value contained in the message’s xid field is
 copied from the Call whose results are being returned. A host that
 emits a Reply is referred to as a "Responder."

 Typically, a Call results in a corresponding Reply. A Reply is never
 sent without a corresponding Call.

 RPC-over-RDMA is a connection-oriented RPC transport. In all cases,
 when a connection-oriented transport is used, ONC RPC client
 endpoints are responsible for initiating transport connections, while
 ONC RPC service endpoints passively await incoming connection
 requests.

 RPC direction on connectionless RPC transports is not addressed in
 this document.

2.1. Forward Direction

 Traditionally, an ONC RPC client acts as a Requester, while an ONC
 RPC service acts as a Responder. This form of message passing is
 referred to as "forward direction" operation.

Lever Expires November 28, 2016 [Page 3]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

2.2. Backward Direction

 The ONC RPC specification [RFC5531] does not forbid passing messages
 in the other direction. An ONC RPC service endpoint can act as a
 Requester, in which case an ONC RPC client endpoint acts as a
 Responder. This form of message passing is referred to as "backward
 direction" operation.

 During backward direction operation, the ONC RPC client is
 responsible for establishing transport connections, even though ONC
 RPC Calls come from the ONC RPC server.

 ONC RPC clients and services are optimized to perform and scale well
 while handling traffic in the forward direction, and may not be
 prepared to handle operation in the backward direction. Not until
 NFSv4.1 [RFC5661] has there been a strong need to handle backward
 direction operation.

2.3. Bi-directional Operation

 A pair of connected RPC endpoints may choose to use only forward or
 only backward direction operations on a particular transport. Or,
 these endpoints may send Calls in both directions concurrently on the
 same transport.

 "Bi-directional operation" occurs when both transport endpoints act
 as a Requester and a Responder at the same time.

 Bi-directionality is an extension of RPC transport connection
 sharing. Two RPC endpoints wish to exchange independent RPC messages
 over a shared connection, but in opposite directions. These messages
 may or may not be related to the same workloads or RPC Programs.

2.4. XID Values

 Section 9 of [RFC5531] introduces the ONC RPC transaction identifier,
 or "xid" for short. The value of an xid is interpreted in the
 context of the message’s msg_type field.

 o The xid of a Call is arbitrary but is unique among outstanding
 Calls from that Requester.

 o The xid of a Reply always matches that of the initiating Call.

 When receiving a Reply, a Requester matches the xid value in the
 Reply with a Call it previously sent.

Lever Expires November 28, 2016 [Page 4]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

2.4.1. XID Generation

 During bi-directional operation, forward and backward direction XIDs
 are typically generated on distinct hosts by possibly different
 algorithms. There is no co-ordination between forward and backward
 direction XID generation.

 Therefore, a forward direction Requester MAY use the same xid value
 at the same time as a backward direction Requester on the same
 transport connection. Though such concurrent requests use the same
 xid value, they represent distinct ONC RPC transactions.

3. Immediate Uses Of Bi-Directional RPC-over-RDMA

3.1. NFSv4.0 Callback Operation

 An NFSv4.0 client employs a traditional ONC RPC client to send NFS
 requests to an NFSv4.0 server’s traditional ONC RPC service
 [RFC7530]. NFSv4.0 requests flow in the forward direction on a
 connection established by the client. This connection is referred to
 as a "forechannel" connection.

 An NFSv4 "delegation" is simply a promise made by a server that it
 will notify a client before another client or program running on the
 server is allowed access to a file. With this guarantee, that client
 can operate as sole accessor of the file. In particular, it can
 manage the file’s data and metadata caches aggressively.

 To administer file delegations, NFSv4.0 introduces the use of
 callback operations, or "callbacks", in Section 10.2 of [RFC7530].
 An NFSv4.0 server sets up a traditional ONC RPC client, and an
 NFSv4.0 client sets up a traditional ONC RPC service. Callbacks flow
 in the forward direction on a connection established between the
 server’s callback client, and the client’s callback server. This
 connection is distinct from connections being used as forechannels,
 and is referred to as a "backchannel connection."

 When an RDMA transport is used as a forechannel, an NFSv4.0 client
 typically provides a TCP callback service. The client’s SETCLIENTID
 operation advertises the callback service endpoint with a "tcp" or
 "tcp6" netid. The server then connects to this service using a TCP
 socket.

 NFSv4.0 implementations can function without a backchannel in place.
 In this case, the server does not grant file delegations. This might
 result in a negative performance effect, but correctness is not
 affected.

Lever Expires November 28, 2016 [Page 5]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

3.2. NFSv4.1 Callback Operation

 NFSv4.1 supports file delegation in a similar fashion to NFSv4.0, and
 extends the callback mechanism to manage pNFS layouts, as discussed
 in Section 12 of [RFC5661].

 To facilitate operation through NAT routers, all NFSv4.1 transport
 connections are initiated by NFSv4.1 clients. Therefore NFSv4.1
 servers send callbacks to clients in the backward direction on
 connections established by NFSv4.1 clients.

 NFSv4.1 clients and servers indicate to their peers that a
 backchannel capability is available on a given transport in the
 arguments and results of NFS CREATE_SESSION or BIND_CONN_TO_SESSION
 operations.

 NFSv4.1 clients may establish distinct transport connections for
 forechannel and backchannel operation, or they may combine
 forechannel and backchannel operation on one transport connection
 using bi-directional operation.

 Without a backward direction RPC-over-RDMA capability, an NFSv4.1
 client must additionally connect using a transport with backward
 direction capability to use as a backchannel. TCP is the only choice
 for an NFSv4.1 backchannel connection in this case.

 Implementations often find it more convenient to use a single
 combined transport (ie. a transport that is capable of bi-directional
 operation). This simplifies connection establishment and recovery
 during network partitions or when one endpoint restarts. This can
 also enable better scaling by using fewer transport connections to
 perform the same work.

 As with NFSv4.0, if a backchannel is not in use, an NFSv4.1 server
 does not grant delegations. Because NFSv4.1 relies on callbacks to
 manage pNFS layout state, pNFS operation is not possible without a
 backchannel.

4. Flow Control

 For an RDMA Send operation to work properly, the receiving peer must
 have posted a receive buffer in which to accept the incoming message.
 If a receiver hasn’t posted enough buffers to accommodate each
 incoming Send operation, the receiving RDMA provider is allowed to
 terminate the RDMA connection.

 RPC-over-RDMA transport protocols provide built-in send flow control
 to prevent overrunning the number of pre-posted receive buffers on a

Lever Expires November 28, 2016 [Page 6]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 connection’s receive endpoint. For RPC-over-RDMA Version One, this
 is discussed in Section 4.3 of [I-D.ietf-nfsv4-rfc5666bis].

4.1. Backward Credits

 Credits work the same way in the backward direction as they do in the
 forward direction. However, forward direction credits and backward
 direction credits are accounted separately.

 In other words, the forward direction credit value is the same
 whether or not there are backward direction resources associated with
 an RPC-over-RDMA transport connection. The backward direction credit
 value MAY be different than the forward direction credit value. The
 rdma_credit field in a backward direction RPC-over-RDMA message MUST
 NOT contain the value zero.

 A backward direction Requester (ie, an RPC-over-RDMA service
 endpoint) requests credits from the Responder (ie, an RPC-over-RDMA
 client endpoint). The Responder reports how many credits it has
 granted. This is the number of backward direction Calls the
 Responder is prepared to handle at once.

 When message direction is not fully determined by context or by an
 accompanying RPC message with a call direction field, it is not
 possible to tell whether the header credit value is a request or
 grant, or whether the value applies to the forward direction or
 backward direction. In such cases, the receiver MUST NOT use the
 header’s credit value.

4.2. Inline Thresholds

 Forward and backward operation on the same connection share the same
 receive buffers. Therefore the inline threshold values for the
 forward direction and the backward direction are the same. The call
 inline threshold for the backward direction is the same as the reply
 inline threshold for the forward direction, and vice versa. For more
 information, see Section 4.3.2 of [I-D.ietf-nfsv4-rfc5666bis].

4.3. Managing Receive Buffers

 An RPC-over-RDMA transport endpoint must pre-post receive buffers
 before it can receive and process incoming RPC-over-RDMA messages.
 If a sender transmits a message for a receiver which has no posted
 receive buffer, the RDMA provider is allowed to drop the RDMA
 connection.

Lever Expires November 28, 2016 [Page 7]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

4.3.1. Client Receive Buffers

 Typically an RPC-over-RDMA Requester posts only as many receive
 buffers as there are outstanding RPC Calls. A client endpoint
 without backward direction support might therefore at times have no
 pre-posted receive buffers.

 To receive incoming backward direction Calls, an RPC-over-RDMA client
 endpoint must pre-post enough additional receive buffers to match its
 advertised backward direction credit value. Each outstanding forward
 direction RPC requires an additional receive buffer above this
 minimum.

 When an RDMA transport connection is lost, all active receive buffers
 are flushed and are no longer available to receive incoming messages.
 When a fresh transport connection is established, a client endpoint
 must re-post a receive buffer to handle the Reply for each
 retransmitted forward direction Call, and a full set of receive
 buffers to handle backward direction Calls.

4.3.2. Server Receive Buffers

 A forward direction RPC-over-RDMA service endpoint posts as many
 receive buffers as it expects incoming forward direction Calls. That
 is, it posts no fewer buffers than the number of credits granted in
 the rdma_credit field of forward direction RPC replies.

 To receive incoming backward direction replies, an RPC-over-RDMA
 server endpoint must pre-post a receive buffer for each backward
 direction Call it sends.

 When the existing transport connection is lost, all active receive
 buffers are flushed and are no longer available to receive incoming
 messages. When a fresh transport connection is established, a server
 endpoint must re-post a receive buffer to handle the Reply for each
 retransmitted backward direction Call, and a full set of receive
 buffers for receiving forward direction Calls.

5. Sending And Receiving Backward Operations

 The operation of RPC-over-RDMA transports in the forward direction is
 defined in [RFC5531] and [I-D.ietf-nfsv4-rfc5666bis]. In this
 section, a mechanism for backward direction operation on RPC-over-
 RDMA is defined. Backward operation used in combination with forward
 operation enables bi-directional communication on a common RPC
 transport connection.

Lever Expires November 28, 2016 [Page 8]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 Certain fields in the RPC-over-RDMA header are fixed for all versions
 of RPC-over-RDMA. The XDR description of these fields is contained
 in Section 5.1 of [I-D.ietf-nfsv4-rfc5666bis].

5.1. Sending A Backward Direction Call

 To form a backward direction RPC-over-RDMA Call message, an ONC RPC
 service endpoint constructs an RPC-over-RDMA header containing a
 fresh RPC XID in the rdma_xid field (see Section 2.4 for full
 requirements).

 The rdma_vers field MUST contain the same value in backward and
 forward direction Call messages on the same connection.

 The number of requested backward direction credits is placed in the
 rdma_credit field (see Section 4).

 Whether presented inline or as a separate chunk, the ONC RPC Call
 header MUST start with the same XID value that is present in the RPC-
 over-RDMA header, and the RPC header’s msg_type field MUST contain
 the value CALL.

5.2. Sending A Backward Direction Reply

 To form a backward direction RPC-over-RDMA Reply message, an ONC RPC
 client endpoint constructs an RPC-over-RDMA header containing a copy
 of the matching ONC RPC Call’s RPC XID in the rdma_xid field (see
 Section 2.4 for full requirements).

 The rdma_vers field MUST contain the same value in a backward
 direction Reply message as in the matching Call message.

 The number of granted backward direction credits is placed in the
 rdma_credit field (see Section 4).

 Whether presented inline or as a separate chunk, the ONC RPC Reply
 header MUST start with the same XID value that is present in the RPC-
 over-RDMA header, and the RPC header’s msg_type field MUST contain
 the value REPLY.

5.3. Backward Direction Chunks

 Chunks MAY be used in the backward direction. They operate the same
 way as in the forward direction (see [I-D.ietf-nfsv4-rfc5666bis] for
 details).

 An implementation might not support any Upper Layer Protocol that has
 DDP-eligible data items. The Upper Layer Protocol may also use only

Lever Expires November 28, 2016 [Page 9]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 small messages, or it may have a native mechanism for restricting the
 size of backward direction RPC messages, obviating the need to handle
 Long Messages in the backward direction.

 When there is no Upper Layer Protocol requirement for chunks,
 implementers can choose not to provide support for chunks in the
 backward direction. This avoids the complexity of adding support for
 performing RDMA Reads and Writes in the backward direction.

 When chunks are not implemented, RPC messages in the backward
 direction are always sent using RDMA_MSG, and therefore can be no
 larger than what can be sent inline (that is, without chunks).
 Sending an inline message larger than the inline threshold can result
 in loss of connection.

 If a backward direction requester provides a non-empty chunk list to
 a responder that does not support chunks, the responder MUST reply
 with an RDMA_ERROR message with rdma_err field set to ERR_CHUNK.

5.4. Backward Direction Retransmission

 In rare cases, an ONC RPC transaction cannot be completed within a
 certain time. This can be because the transport connection was lost,
 the Call or Reply message was dropped, or because the Upper Layer
 consumer delayed or dropped the ONC RPC request. Typically, the
 Requester sends the transaction again, reusing the same RPC XID.
 This is known as an "RPC retransmission".

 In the forward direction, the Requester is the ONC RPC client. The
 client is always responsible for establishing a transport connection
 before sending again.

 In the backward direction, the Requester is the ONC RPC server.
 Because an ONC RPC server does not establish transport connections
 with clients, it cannot send a retransmission if there is no
 transport connection. It must wait for the ONC RPC client to re-
 establish the transport connection before it can retransmit ONC RPC
 transactions in the backward direction.

 If an ONC RPC client has no work to do, it may be some time before it
 re-establishes a transport connection. Backward direction Requesters
 must be prepared to wait indefinitely for a connection to be
 established before a pending backward direction ONC RPC Call can be
 retransmitted.

 Forward direction Requesters are responsible for maintaining a
 transport connection as long as there is the possibility of backward
 direction requests. For example, an NFSv4.1 client with open

Lever Expires November 28, 2016 [Page 10]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 delegated files or active pNFS layouts should maintain a transport
 connection so the server can send callback operations.

6. In the Absence of Backward Direction Support

 An RPC-over-RDMA transport endpoint might not support backward
 direction operation (and thus bi-directional operation). There might
 be no mechanism in the transport implementation to do so. Or in an
 implementation that can support operation in the backward direction,
 the Upper Layer Protocol consumer might not yet have configured or
 enabled the transport to handle backward direction traffic.

 If an endpoint is not prepared to receive an incoming backward
 direction message, loss of the RDMA connection might result. Thus
 denial of service could result if a sender continues to send backward
 direction messages after every transport reconnect to an endpoint
 that is not prepared to receive them.

 When dealing with the possibility that the remote peer has no
 transport level support for backward direction operation, the Upper
 Layer Protocol becomes responsible for informing peers when backward
 direction operation is supported. Otherwise even a simple backward
 direction NULL probe from a peer could result in a lost connection.

 Therefore, an Upper Layer Protocol consumer MUST NOT perform backward
 direction ONC RPC operations unless the peer consumer has indicated
 it is prepared to handle them. A description of Upper Layer Protocol
 mechanisms used for this indication is outside the scope of this
 document.

 For example, an NFSv4.1 server does not send backchannel messages to
 an NFSv4.1 client before the NFSv4.1 client has sent a CREATE_SESSION
 or a BIND_CONN_TO_SESSION operation. As long as an NFSv4.1 client
 has prepared appropriate backchannel resources before sending one of
 these operations announcing support for backchannel operation, denial
 of service is avoided.

7. Considerations For Upper Layer Bindings

 An Upper Layer Protocol that operates on RPC-over-RDMA transports may
 have procedures that include DDP-eligible data items. DDP-
 eligibility is specified in an Upper Layer Binding. Direction of
 operation does not obviate the need for DDP-eligibility statements.

 Backward-only operation requires the client endpoint to establish a
 fresh connection. The Upper Layer Binding can specify appropriate
 RPC binding parameters for such connections.

Lever Expires November 28, 2016 [Page 11]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 Bi-directional operation occurs on an already-established connection.
 Specification of RPC binding parameters is usually not necessary in
 this case.

 For bi-directional operation, other considerations about sharing an
 RPC-over-RDMA transport with another ULP may apply. Consult
 Section 7 of [I-D.ietf-nfsv4-rfc5666bis] for details about what else
 may be contained in an Upper Layer Binding.

8. Security Considerations

 Security considerations for operation on RPC-over-RDMA transports are
 outlined in Section 9 of [I-D.ietf-nfsv4-rfc5666bis].

9. IANA Considerations

 This document does not require actions by IANA.

10. Acknowledgements

 Tom Talpey was an indispensable resource, in addition to creating the
 foundation upon which this work is based. Our warmest regards go to
 him for his help and support.

 Dave Noveck provided excellent review, constructive suggestions, and
 navigational guidance throughout the process of drafting this
 document.

 Dai Ngo was a solid partner and collaborator. Together we
 constructed and tested independent prototypes of the changes
 described in this document.

 The author wishes to thank Bill Baker for his unwavering support of
 this work. In addition, the author gratefully acknowledges the
 expert contributions of Karen Deitke, Chunli Zhang, Mahesh
 Siddheshwar, Steve Wise, and Tom Tucker.

 Special thanks go to the nfsv4 Working Group Chair Spencer Shepler
 and the nfsv4 Working Group Secretary Tom Haynes for their support.

11. Normative References

 [I-D.ietf-nfsv4-rfc5666bis]
 Lever, C., Simpson, W., and T. Talpey, "Remote Direct
 Memory Access Transport for Remote Procedure Call", draft-
 ietf-nfsv4-rfc5666bis-04 (work in progress), March 2016.

Lever Expires November 28, 2016 [Page 12]

Internet-Draft Bidirectional RPC-over-RDMA May 2016

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol", RFC
 5661, January 2010.

 [RFC7530] Haynes, T. and D. Noveck, "Network File System (NFS)
 Version 4 Protocol", RFC 7530, March 2015.

Author’s Address

 Charles Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 USA

 Phone: +1 734 274 2396
 Email: chuck.lever@oracle.com

Lever Expires November 28, 2016 [Page 13]

