Network File System Version 4 T. Myklebust Internet-Draft Hammerspace Updates: 5531 (if approved) C. Lever, Ed. Intended status: Standards Track Oracle Expires: September 26, 2019 March 25, 2019 Remote Procedure Call Encryption By Default draft-ietf-nfsv4-rpc-tls-00 Abstract This document describes a mechanism that enables encryption of in- transit Remote Procedure Call (RPC) transactions with minimal administrative overhead and full interoperation with ONC RPC implementations that do not support this mechanism. This document updates RFC 5531. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on September 26, 2019. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of Myklebust & Lever Expires September 26, 2019 [Page 1] Internet-Draft RPC-Over-TLS March 2019 the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 4 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. RPC-Over-TLS in Operation . . . . . . . . . . . . . . . . . . 4 4.1. Discovering Server-side TLS Support . . . . . . . . . . . 5 4.2. RPC Authentication . . . . . . . . . . . . . . . . . . . 6 4.2.1. Server-only Host Authentication . . . . . . . . . . . 6 4.2.2. Mutual Host Authentication . . . . . . . . . . . . . 7 4.2.3. Advanced Forms of RPC Authentication . . . . . . . . 7 5. TLS Requirements . . . . . . . . . . . . . . . . . . . . . . 7 5.1. Connection Types . . . . . . . . . . . . . . . . . . . . 8 5.1.1. Operation on TCP . . . . . . . . . . . . . . . . . . 8 5.1.2. Operation on UDP . . . . . . . . . . . . . . . . . . 8 5.1.3. Operation on an RDMA Transport . . . . . . . . . . . 8 5.2. TLS Peer Authentication . . . . . . . . . . . . . . . . . 8 5.2.1. X.509 Certificates Using PKIX trust . . . . . . . . . 8 5.2.2. X.509 Certificates Using Fingerprints . . . . . . . . 10 5.2.3. Pre-Shared Keys . . . . . . . . . . . . . . . . . . . 10 5.2.4. Token Binding . . . . . . . . . . . . . . . . . . . . 10 6. Implementation Status . . . . . . . . . . . . . . . . . . . . 10 6.1. Linux NFS server and client . . . . . . . . . . . . . . . 11 6.2. DESY NFS server . . . . . . . . . . . . . . . . . . . . . 11 7. Security Considerations . . . . . . . . . . . . . . . . . . . 11 7.1. Implications for AUTH_SYS . . . . . . . . . . . . . . . . 12 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 13 9.1. Normative References . . . . . . . . . . . . . . . . . . 13 9.2. Informative References . . . . . . . . . . . . . . . . . 14 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 15 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15 Myklebust & Lever Expires September 26, 2019 [Page 2] Internet-Draft RPC-Over-TLS March 2019 1. Introduction In 2014 the IETF published [RFC7258] which recognized that unauthorized observation of network traffic had become widespread and was a subversive threat to all who make use of the Internet at large. It strongly recommended that newly defined Internet protocols make a real effort to mitigate monitoring attacks. Typically this mitigation is done by encrypting data in transit. The Remote Procedure Call version 2 protocol has been a Proposed Standard for three decades (see [RFC5531] and its antecedants). Eisler et al. first introduced an in-transit encryption mechanism for RPC with RPCSEC GSS over twenty years ago [RFC2203]. However, experience has shown that RPCSEC GSS is difficult to deploy: o Per-client deployment and administrative costs are not scalable. Keying material must be provided for each RPC client, including transient clients. o Parts of the RPC header remain in clear-text, and can constitute a significant security exposure. o On-host cryptographic manipulation of data payloads can exact a significant CPU cost on both clients and the server. o Host identity management and user identity management must be carried out in the same security realm. In certain environments, different authorities might be responsible for provisioning client systems versus provisioning new users. However strong a privacy service is, it can not provide any security if the difficulties of deploying and using it result in it not being used at all. An alternative approach is to employ a transport layer security mechanism that can protect the privacy of each RPC connection transparently to RPC and Upper Layer protocols. The Transport Layer Security protocol [RFC8446] (TLS) is a well-established Internet building block that protects many common Internet protocols such as the Hypertext Transport Protocol (http) [RFC2818]. Encrypting at the RPC transport layer enables several significant benefits. Encryption By Default In-transit encryption can be enabled without additional administrative actions such as identifying the host system to a Myklebust & Lever Expires September 26, 2019 [Page 3] Internet-Draft RPC-Over-TLS March 2019 trust authority, generating additional key material, or provisioning a secure network tunnel. Protection of Existing Protocols The imposition of encryption at the transport layer protects any Upper Layer protocol that employs RPC, without alteration of that protocol. RPC transport layer encryption can protect recent versions of NFS such as NFS version 4.2 [RFC7862] and indeed legacy NFS versions such as NFS version 3 [RFC1813] and NFS side- band protocols such as the MNT protocol [RFC1813]. Decoupled User and Host Identities TLS can be used to authenticate hosts using certificates while other security mechanisms can handle user authentictation. Encryption Offload The use of a well-established transport encryption mechanism that is also employed by other very common network protocols makes it likely that a hardware encryption implementation will be available to offload encryption and decryption. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Terminology This document adopts the terminology introduced in Section 3 of [RFC6973] and assumes a working knowledge of the Remote Procedure Call (RPC) version 2 protocol [RFC5531] and the Transport Layer Security (TLS) version 1.3 protocol [RFC8446]. Note also that the NFS community uses the term "privacy" where other Internet communities use "confidentiality". In this document the two terms are synonymous. 4. RPC-Over-TLS in Operation In this section we cleave to the convention that a "client" is the peer host that actively initiates a connection, and a "server" is the peer host that passively accepts a connection request. Myklebust & Lever Expires September 26, 2019 [Page 4] Internet-Draft RPC-Over-TLS March 2019 4.1. Discovering Server-side TLS Support The mechanism described in this document interoperates fully with RPC implementations that do not support TLS. The use of TLS is automatically disabled in these cases. To achieve this, we introduce a new RPC authentication flavor called AUTH_TLS. This new flavor is used to signal that the client wants to initiate TLS negotiation if the server supports it. Except for the modifications described in this section, the RPC protocol is largely unaware of security encapsulation. enum auth_flavor { AUTH_NONE = 0, AUTH_SYS = 1, AUTH_SHORT = 2, AUTH_DH = 3, AUTH_KERB = 4, AUTH_RSA = 5, RPCSEC_GSS = 6, AUTH_TLS = 7, /* and more to be defined */ }; The length of the opaque data constituting the credential sent in the call message MUST be zero. The verifier accompanying the credential MUST be an AUTH_NONE verifier of length zero. The flavor value of the verifier received in the reply message from the server MUST be AUTH_NONE. The bytes of the verifier's string encode the fixed ASCII characters "STARTTLS". When an RPC client is ready to begin sending traffic to a server, it starts with a NULL RPC request with an auth_flavor of AUTH_TLS. The NULL request is made to the same port as if TLS were not in use. The RPC server can respond in one of three ways: o If the RPC server does not recognise the AUTH_TLS authentication flavor, it responds with a reject_stat of AUTH_ERROR. The RPC client then knows that this server does not support TLS. Myklebust & Lever Expires September 26, 2019 [Page 5] Internet-Draft RPC-Over-TLS March 2019 o If the RPC server accepts the NULL RPC procedure, but fails to return an AUTH_NONE verifier containing the string "STARTTLS", the RPC client knows that this server does not support TLS. o If the RPC server accepts the NULL RPC procedure, and returns an AUTH_NONE verifier containing the string "STARTTLS", the RPC client SHOULD proceed with TLS negotiation. If an RPC client attempts to use AUTH_TLS for anything other than the NULL RPC procedure, the RPC server responds with a reject_stat of AUTH_ERROR. In addition, a client MUST NOT attempt a TLS handshake after the initial exchange. Once the TLS handshake is complete, the RPC client and server will have established a secure channel for communicating and can proceed to use standard security flavors within that channel, presumably after negotiating down the irrelevant RPCSEC_GSS privacy and integrity services and applying channel binding [RFC7861]. If TLS negotiation fails for any reason -- say, the RPC server rejects the certificate presented by the RPC client, or the RPC client fails to authenticate the RPC server -- the RPC client reports this failure to the calling application the same way it would report an AUTH_ERROR rejection from the RPC server. 4.2. RPC Authentication Both RPC and TLS have their own variants of authentication, and there is some overlap in capability. The goal of interoperability with implementations that do not support TLS requires that we limit the combinations that are allowed and precisely specify the role that each layer plays. We also want to handle TLS such that an RPC implementation can make the use of TLS invisible to existing RPC consumer applications. Toward these ends, there are two deployment modes. 4.2.1. Server-only Host Authentication In a basic deployment, a server possesses a unique global identity (e.g., a certificate that is self-signed or signed by a well-known trust anchor) while its clients are anonymous (i.e., present no identifier). In this situation, the client SHOULD authenticate the server host using the presented TLS identity, but the server cannot authenticate connecting clients. Here, a TLS session is established and the RPC requests in transit carry user and group identities according to the conventions of the RPC protocol. Myklebust & Lever Expires September 26, 2019 [Page 6] Internet-Draft RPC-Over-TLS March 2019 4.2.2. Mutual Host Authentication In this type of deployment, both the server and its clients possess unique identities (e.g., certificates). As part of the TLS handshake, both peer hosts SHOULD authenticate using the presented TLS identities. Should authentication of either peer fail, or should authorization based on those identities block access to the server, the connection MAY be rejected. However, once a TLS session is established, the server MUST NOT utilize TLS identity for the purpose of authorizing RPC requests. In some cases, a client might choose to present a certificate that represents a user rather than one that is bound to the client host. As above, the server MUST NOT utilize this identity for the purpose of authorizing RPC requests. The TLS identities of the peer hosts are fully independent of RPC user identities. 4.2.3. Advanced Forms of RPC Authentication RPCSEC GSS can provide integrity or privacy (also known as confidentiality) services. When operating over a TLS session, these services become redundant. Each RPC implementation is responsible for using channel binding for detecting when GSS integrity or privacy is unnecessary and can therefore be disabled. See Section 2.5 of [RFC7861] for details. Note that a GSS service principal is still required on the server, and mutual GSS authentication of server and client still occurs after the TLS session is established. 5. TLS Requirements When a TLS session is negotiated for the purpose of transporting RPC, the following restrictions apply: o Implementations MUST NOT negotiate TLS versions prior to v1.3 [RFC8446]. Support for mandatory-to-implement ciphersuites for the negotiated TLS version is REQUIRED. o Implementations MUST support certificate-based mutual authentication. Support for TLS-PSK mutual authentication [RFC4279] is OPTIONAL. See Section 4.2 for further details. o Negotiation of a ciphersuite providing for confidentiality as well as integrity protection is REQUIRED. Support for and negotiation of compression is OPTIONAL. Myklebust & Lever Expires September 26, 2019 [Page 7] Internet-Draft RPC-Over-TLS March 2019 5.1. Connection Types 5.1.1. Operation on TCP RPC over TCP is protected by using TLS [RFC8446]. As soon as a client completes the TCP handshake, it uses the mechanism described in Section 4.1 to discover TLS support and then negotiate a TLS session. 5.1.2. Operation on UDP RPC over UDP is protected using DTLS [RFC6347]. As soon as a client initializes a socket for use with an unfamiliar server, it uses the mechanism described in Section 4.1 to discover DTLS support and then negotiate a DTLS session. Connected operation is RECOMMENDED. Using a DTLS transport does not introduce reliable or in-order semantics to RPC on UDP. Also, DTLS does not support fragmentation of RPC messages. One RPC message fits in a single DTLS datagram. DTLS encapsulation has overhead which reduces the effective Path MTU (PMTU) and thus the maximum RPC payload size. 5.1.3. Operation on an RDMA Transport RPC-over-RDMA can make use of Transport Layer Security below the RDMA transport layer [RFC8166]. The exact mechanism is not within the scope of this document. 5.2. TLS Peer Authentication Peer authentication can be performed by TLS using any of the following mechanisms: 5.2.1. X.509 Certificates Using PKIX trust Implementations are REQUIRED to support this mechanism. In this mode, an RPC client is uniquely identified by the tuple (serial number of presented client certificate;Issuer). o Implementations MUST allow the configuration of a list of trusted Certification Authorities for incoming connections. o Certificate validation MUST include the verification rules as per [RFC5280]. o Implementations SHOULD indicate their trusted Certification Authorities (CAs). Myklebust & Lever Expires September 26, 2019 [Page 8] Internet-Draft RPC-Over-TLS March 2019 o Peer validation always includes a check on whether the locally configured expected DNS name or IP address of the server that is contacted matches its presented certificate. DNS names and IP addresses can be contained in the Common Name (CN) or subjectAltName entries. For verification, only one of these entries is to be considered. The following precedence applies: for DNS name validation, subjectAltName:DNS has precedence over CN; for IP address validation, subjectAltName:iPAddr has precedence over CN. Implementors of this specification are advised to read Section 6 of [RFC6125] for more details on DNS name validation. o Implementations MAY allow the configuration of a set of additional properties of the certificate to check for a peer's authorization to communicate (e.g., a set of allowed values in subjectAltName:URI or a set of allowed X509v3 Certificate Policies). o When the configured trust base changes (e.g., removal of a CA from the list of trusted CAs; issuance of a new CRL for a given CA), implementations MAY renegotiate the TLS session to reassess the connecting peer's continued authorization. Having identified a connecting entity does not mean the RPC server necessarily wants to communicate with that client. For example, if the Issuer is not in a trusted set of Issuers, the RPC server may decline to perform RPC transactions with this client. Implementations that want to support a wide variety of trust models should expose as many details of the presented certificate to the administrator as possible so that the trust model can be implemented by the administrator. As a suggestion, at least the following parameters of the X.509 client certificate should be exposed: o Originating IP address o Certificate Fingerprint o Issuer o Subject o all X509v3 Extended Key Usage o all X509v3 Subject Alternative Name o all X509v3 Certificate Policies Myklebust & Lever Expires September 26, 2019 [Page 9] Internet-Draft RPC-Over-TLS March 2019 5.2.2. X.509 Certificates Using Fingerprints This mechanism is OPTIONAL to implement. In this mode, an RPC client is uniquely identified by the fingerprint of the presented client certificate. Implementations SHOULD allow the configuration of a list of trusted certificates, identified via fingerprint of the DER encoded certificate octets. Implementations MUST support SHA-1 as the hash algorithm for the fingerprint. To prevent attacks based on hash collisions, support for a more contemporary hash function, such as SHA-256, is RECOMMENDED. 5.2.3. Pre-Shared Keys This mechanism is OPTIONAL to implement. In this mode, an RPC client is uniquely identified by its TLS identifier. At least the following parameters of the TLS connection should be exposed: o Originating IP address o TLS Identifier 5.2.4. Token Binding This mechanism is OPTIONAL to implement. In this mode, an RPC client is uniquely identified by a token. Versions of TLS subsequent to TLS 1.2 feature a token binding mechanism which is nominally more secure than using certificates. This is discussed in further detail in [RFC8471]. 6. Implementation Status This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist. Myklebust & Lever Expires September 26, 2019 [Page 10] Internet-Draft RPC-Over-TLS March 2019 6.1. Linux NFS server and client Organization: The Linux Foundation URL: https://www.kernel.org Maturity: Prototype software based on early versions of this document. Coverage: The bulk of this specification is implemented. The use of DTLS functionality is not implemented. Licensing: GPLv2 Implementation experience: No comments from implementors. 6.2. DESY NFS server Organization: DESY URL: https://desy.de Maturity: Prototype software based on early versions of this document. Coverage: The bulk of this specification is implemented. The use of DTLS functionality is not implemented. Licensing: Freely distributable with acknowledgment. Implementation experience: No comments from implementors. 7. Security Considerations One purpose of the mechanism described in this document is to protect RPC-based applications against threats to the privacy of RPC transactions and RPC user identities. A taxonomy of these threats appears in Section 5 of [RFC6973]. In addition, Section 6 of [RFC7525] contains a detailed discussion of technologies used in conjunction with TLS. Implementers should familiarize themselves with these materials. The NFS version 4 protocol permits more than one user to use an NFS client at the same time [RFC7862]. Typically that NFS client will conserve connection resources by routing RPC transactions from all of its users over a few or a single connection. In circumstances where the users on that NFS client belong to multiple distinct security Myklebust & Lever Expires September 26, 2019 [Page 11] Internet-Draft RPC-Over-TLS March 2019 domains, the client MUST establish independent TLS sessions for each distinct security domain. 7.1. Implications for AUTH_SYS Ever since the IETF NFSV4 Working Group took over the maintenance of the NFSv4 family of protocols (currently specified in [RFC7530], [RFC5661], and [RFC7863], among others), it has encouraged the use of RPCSEC GSS over AUTH_SYS. For various reasons, unfortunately AUTH_SYS continues to be the primary authentication mechanism deployed by NFS administrators. As a result, NFS security remains in an unsatisfactory state. A deeper purpose of this document is to attempt to address some of the shortcomings of AUTH_SYS so that, where it has been impractical to deploy RPCSEC GSS, better NFSv4 security can nevertheless be achieved. When AUTH_SYS is used with TLS and no client certificate is available, the RPC server is still acting on RPC requests for which there is no trustworthy authentication. In-transit traffic is protected, but the client itself can still misrepresent user identity without detection. This is an improvement from AUTH_SYS without encryption, but it leaves a critical security exposure. Therefore, the RECOMMENDED deployment mode is that clients have certificate material configured and used so that servers can have a degree of trust that clients are acting responsibly. 8. IANA Considerations In accordance with Section 6 of [RFC7301], the authors request that IANA allocate the following value in the "Application-Layer Protocol Negotiation (ALPN) Protocol IDs" registry. The "sunrpc" string identifies SunRPC when used over TLS. Protocol: SunRPC Identification Sequence: 0x73 0x75 0x6e 0x72 0x70 0x63 ("sunrpc") Reference: RFC-TBD Myklebust & Lever Expires September 26, 2019 [Page 12] Internet-Draft RPC-Over-TLS March 2019 9. References 9.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)", RFC 4279, DOI 10.17487/RFC4279, December 2005, . [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, . [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol Specification Version 2", RFC 5531, DOI 10.17487/RFC5531, May 2009, . [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, . [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, January 2012, . [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May 2014, . [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan, "Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301, July 2014, . [RFC7861] Adamson, A. and N. Williams, "Remote Procedure Call (RPC) Security Version 3", RFC 7861, DOI 10.17487/RFC7861, November 2016, . Myklebust & Lever Expires September 26, 2019 [Page 13] Internet-Draft RPC-Over-TLS March 2019 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running Code: The Implementation Status Section", BCP 205, RFC 7942, DOI 10.17487/RFC7942, July 2016, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . 9.2. Informative References [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS Version 3 Protocol Specification", RFC 1813, DOI 10.17487/RFC1813, June 1995, . [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol Specification", RFC 2203, DOI 10.17487/RFC2203, September 1997, . [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/RFC2818, May 2000, . [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., "Network File System (NFS) Version 4 Minor Version 1 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010, . [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J., Morris, J., Hansen, M., and R. Smith, "Privacy Considerations for Internet Protocols", RFC 6973, DOI 10.17487/RFC6973, July 2013, . [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, . [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530, March 2015, . Myklebust & Lever Expires September 26, 2019 [Page 14] Internet-Draft RPC-Over-TLS March 2019 [RFC7862] Haynes, T., "Network File System (NFS) Version 4 Minor Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862, November 2016, . [RFC7863] Haynes, T., "Network File System (NFS) Version 4 Minor Version 2 External Data Representation Standard (XDR) Description", RFC 7863, DOI 10.17487/RFC7863, November 2016, . [RFC8166] Lever, C., Ed., Simpson, W., and T. Talpey, "Remote Direct Memory Access Transport for Remote Procedure Call Version 1", RFC 8166, DOI 10.17487/RFC8166, June 2017, . [RFC8471] Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges, "The Token Binding Protocol Version 1.0", RFC 8471, DOI 10.17487/RFC8471, October 2018, . 9.3. URIs [1] https://www.linuxjournal.com/content/encrypting-nfsv4-stunnel-tls Acknowledgments Special mention goes to Charles Fisher, author of "Encrypting NFSv4 with Stunnel TLS" [1]. His article inspired the mechanism described in this document. The authors are grateful to Bill Baker, David Black, Alan DeKok, Lars Eggert, Benjamin Kaduk, Greg Marsden, Alex McDonald, Tigran Mkrtchyan, David Noveck, Justin Mazzola Paluska, and Tom Talpey for their input and support of this work. Special thanks go to Transport Area Director Magnus Westerlund, NFSV4 Working Group Chairs Spencer Shepler and Brian Pawlowski, and NFSV4 Working Group Secretary Thomas Haynes for their guidance and oversight. Authors' Addresses Trond Myklebust Hammerspace Inc 4300 El Camino Real Ste 105 Los Altos, CA 94022 United States of America Email: trond.myklebust@hammerspace.com Myklebust & Lever Expires September 26, 2019 [Page 15] Internet-Draft RPC-Over-TLS March 2019 Charles Lever (editor) Oracle Corporation United States of America Email: chuck.lever@oracle.com Myklebust & Lever Expires September 26, 2019 [Page 16]